
ICAPS 2018 Tutorial

Scott Sanner

Introduction to Planning
Domain Modeling in RDDL

http://users.rsise.anu.edu.au/%7Essanner/

Observation
• Planning languages direct 5+ years of research

– PDDL and variants
– PPDDL

• Why?
– Domain design is time-consuming

• So everyone uses the existing benchmarks
– Need for comparison

• Planner code not always released
• Only means of comparison is on competition benchmarks

• Implication:
– We should choose our languages & problems well…

Current Stochastic Domain Language
• PPDDL

– more expressive than PSTRIPS
– for example, probabilistic universal

and conditional effects:

(:action put-all-blue-blocks-on-table
:parameters ()
:precondition ()
:effect (probabilistic 0.9

(forall (?b)
(when (Blue ?b)

(not (OnTable ?b)))))

• But wait, not just BlocksWorld…
– Colored BlocksWorld
– Exploding BlocksWorld
– Moving-stacks BlocksWorld

• Difficult problems but where to apply solutions???

• Compact relational PPDDL Description:

(:action load-box-on-truck-in-city
:parameters (?b - box ?t - truck ?c – city)
:precondition (and (BIn ?b ?c) (TIn ?t ?c))
:effect (and (On ?b ?t) (not (BIn ?b ?c))))

London
Paris

Rome
Berlin MoscowLogistics:

More Realistic: Logistics

• But wait… only one truck can move at a time???
• No concurrency, no time: will FedEx care?

• Can instantiate problems for any domain objects
- 3 trucks: 2 planes: 3 boxes:

What stochastic problems
should we care about?

Mars Rovers

• Continuous
– Time, robot position / pose, sun angle, …

• Partially observable
– Even worse: high-dimensional partially observable

Mealeau, Benazera,
Brafman, Hansen,
Mausam. JAIR-09.

Elevator Control
• Concurrent Actions

– Elevator: up/down/stay
– 6 elevators: 3^6 actions

• Exogenous / Non-boolean:
– Random integer arrivals

(e.g., Poisson)

• Complex Objective:
– Minimize sum of wait times
– Could even be nonlinear function

(squared wait times)

• Policy Constraints:
– People might get annoyed

if elevator reverses direction

http://www.melsa.com.sa/images/Elevators%20at%20Kingdom%20Centre,%20Riyadh.JPG
http://www.melsa.com.sa/images/Elevators%20at%20Kingdom%20Centre,%20Riyadh.JPG
http://alpha.dickinson.edu/prorg/nectfl/elevators.jpg
http://alpha.dickinson.edu/prorg/nectfl/elevators.jpg

Traffic Control

• Concurrent
– Multiple lights

• Indep. Exogenous Events
– Multiple vehicles

• Continuous Variables
– Nonlinear dynamics

• Partially observable
– Only observe stoplines

Can PPDDL model
these problems?

No? What happened?

Let’s examine a simple
problem that cannot be
modeled in PPDDL

Wildfire Domain (today’s lab)

• Contributed by Zhenyu Yu (School of Economics
and Management, Tongji University)
– Karafyllidis, I., & Thanailakis, A. (1997). A model for

predicting forest fire spreading using gridular
automata. Ecological Modelling, 99(1), 87-97.

Wildfire in RDDL
cpfs {

burning'(?x, ?y) =

if (put-out(?x, ?y))

then false
else if (~out-of-fuel(?x, ?y) ^ ~burning(?x, ?y))

then Bernoulli(1.0 / (1.0 + exp[4.5 - (sum_{?x2: x_pos, ?y2: y_pos}
(NEIGHBOR(?x, ?y, ?x2, ?y2) ^ burning(?x2, ?y2)))]))

else
burning(?x, ?y); // State persists

out-of-fuel'(?x, ?y) = out-of-fuel(?x, ?y) | burning(?x,?y);

};

reward =

[sum_{?x: x_pos, ?y: y_pos} [COST_CUTOUT*cut-out(?x, ?y)]]
+ [sum_{?x: x_pos, ?y: y_pos} [COST_PUTOUT*put-out(?x, ?y)]]
+ [sum_{?x: x_pos, ?y: y_pos} [COST_NONTARGET_BURN*[burning(?x, ?y) ^ ~TARGET(?x, ?y)]]]
+ [sum_{?x: x_pos, ?y: y_pos}

[COST_TARGET_BURN*[(burning(?x, ?y) | out-of-fuel(?x, ?y)) ^ TARGET(?x, ?y)]]];

Each cell may independently
stochastically ignite

Looking ahead… will need something
more like Relational DBN

What’s missing in PPDDL, Part I
• Need Unrestricted Concurrency:

– In PPDDL, would have to enumerate joint actions
– In PDDL 2.1: restricted concurrency

• conflicting actions not executable
• when effects probabilistic, some chance most effects conflict

– really need unrestricted concurrency in probabilistic setting

• Multiple Independent Exogenous Events:
– PPDDL only allows 1 independent event to affect fluent

• E.g, what if fire in each cell spreads independently?

What’s missing in PPDDL, Part II

• Expressive transition
distributions:
– (Nonlinear) stochastic

difference equations
– E.g., cell velocity as

a function of traffic
density

• Partial observability:
– In practice, only

observe stopline

What’s missing in PPDDL, Part III

• Distinguish fluents from nonfluents:
– E.g., topology of traffic network
– Lifted planners must know this to be efficient!

• Expressive rewards & probabilities:
– E.g., sums, products, nonlinear functions, ratios, conditionals

• Global state-action preconditions and state invariants:
– Concurrent domains need global action preconditions

• E.g., two traffic lights cannot go into a given state

– In logistics, vehicles cannot be in two different locations
• Regression planners need state constraints!

Is there any hope?

Yes, but we need to borrow from
factored MDP / POMDP community…

A Brief History of (ICAPS) Time

STRIPS (1971)
Fikes & Nilsson

Relational

ADL (1987)
Pednault

Cond. Effects
Open World

PDDL 1.2 (1998)
McDermott et al

Univ. Effects

PDDL 2.1, + (2003)
Fox & Long

Numerical fluents,
Conc., Exogenous

PDDL 2.2 (2004)
Edelkamp & Hoffmann
Derived Pred, Temporal

PDDL 3.0 (2004)
Gerevini & Long
Traj. Constraints,

Preferences

PPDDL (2004)
Littmann & Younes

Prob. Effects

RDDL (2010)
Sanner

PDDL 2.2 × DBN++

Dynamic Bayes Nets (1989)
Dean and Kanazawa

Factored Stochastic Processes

Big
Bang

SPUDD, Sym. Perseus (1999,
2004) Hoey, Boutilier, Poupart
DBN + Utility: Fact. (PO)MDP

ICAPS

UAI

3.2

Relational!

What is RDDL?
• Relational Dynamic

Influence Diagram
Language
– Relational

[DBN + Influence Diagram]

• Think of it as
Relational SPUDD /
Symbolic Perseus
– On speed

t t+1

a

x1

x2

r

x1’

x2’

o1 o2

Key task: how
to specify (lifted)
distributions &

reward?

Facilitating Model Development by Writing Simulators:
Relational Dynamic Influence Diagram Language (RDDL)

Write
probabilistic
programs for

transitions

Automatic
Translation

Sanner (2010)

RDDL Principles I
• Everything is a fluent (parameterized variable)

– State fluents
– Observation fluents

• for partially observed domains
– Action fluents

• supports factored concurrency
– Intermediate fluents

• derived predicates, correlated effects, …
– Constant nonfluents (general constants, topology relations, …)

• Flexible fluent types
– Binary (predicate) fluents
– Multi-valued (enumerated) fluents
– Integer and continuous fluents (from PDDL 2.1)

RDDL Principles II
• Semantics is ground DBN / Influence Diagram

– Unambiguous specification of transition semantics
• Supports unrestricted concurrency

– Naturally supports independent exogenous events

• General expressions in transition / reward
– Logical expressions (∧, ∨, ⇒, ⇔, ∀, ∃)
– Arithmetic expressions (+,−,*, /, ∑x, ∏x)
– In/dis/equality comparison expressions (=, ≠, <,>, ≤, ≥)
– Conditional expressions (if-then-else, switch)
– Basic probability distributions

• Bernoulli, Discrete, Normal, Poisson

Logical expr. {0,1}
so can use in

arithmetic expr.

∑x, ∏x aggregators over
domain objects extremely

powerful

RDDL Principles III
• Goal + General (PO)MDP objectives

– Arbitrary reward
• goals, numerical preferences (c.f., PDDL 3.0)

– Finite horizon
– Discounted or undiscounted

• State/action constraints
– Encode legal actions

• (concurrent) action preconditions
– Assert state invariants

• e.g., a package cannot be in two locations

RDDL Grammar

Let’s examine BNF
grammar in infinite tedium!

OK, maybe not.
(Grammar online if you want it.)

http://code.google.com/p/rddlsim/source/browse/#svn%2Ftrunk%2Fsrc%2Frddl%2Fparser

RDDL Examples

Easiest to understand
RDDL in use…

How to Represent Factored MDP?

P(p’|p,r)

RDDL Equivalent

Can think of
transition

distributions
as “sampling
instructions”

A Discrete-Continuous POMDP?

Integer

Multi-
valued

Continuous

A Discrete-Continuous POMDP, Part I

A Discrete-Continuous POMDP, Part II
Integer

Multi-
valued

Real

Variance comes from other
previously sampled variables

Mixture of
Normals

RDDL so far…
• Mainly SPUDD / Symbolic Perseus with a

different syntax
– A few enhancements

• concurrency
• constraints
• integer / continuous variables

• Real problems (e.g., traffic) need lifting
– An intersection model
– A vehicle model

• Specify each intersection / vehicle model once!

Lifting: Conway’s Game of Life
(simpler than traffic)

• Cells born, live, die based on neighbors
– < 2 or > 3

neighbors:
cell dies

– 2 or 3
neighbors:
cell lives

– 3 neighbors
 → cell birth!

– Make into MDP
• Probabilities
• Actions to turn

on cells
• Maximize number

of cells on

• Compact RDDL specification for any grid size? Lifting.

http://en.wikipedia.org/wiki/Conway's_Game_of_Life

http://en.wikipedia.org/wiki/Conway's_Game_of_Life

Lifted
MDP:

Game
of Life

Concurrency
as factored

action variables
How many

possible joint
actions here?

A Lifted MDP
Intermediate variable: like derived predicate

Using counts to
decide next state

Additive reward!

State constraints,
preconditions

Nonfluent and Instance Defintion

Objects that don’t
change b/w instances

Topologies over
these objects

Numerical constant
nonfluent

Import a topology

Initial state as usual

Concurrency

Power of Lifting
non-fluents game3x3 {

domain = game_of_life;

objects {
x_pos : {x1,x2,x3};
y_pos : {y1,y2,y3};

};

non-fluents {
NEIGHBOR(x1,y1,x1,y2);
NEIGHBOR(x1,y1,x2,y1);
NEIGHBOR(x1,y1,x2,y2);
NEIGHBOR(x1,y2,x1,y1);
NEIGHBOR(x1,y2,x2,y1);
NEIGHBOR(x1,y2,x2,y2);
NEIGHBOR(x1,y2,x2,y3);
NEIGHBOR(x1,y2,x1,y3);
NEIGHBOR(x1,y3,x1,y2);
NEIGHBOR(x1,y3,x2,y2);
NEIGHBOR(x1,y3,x2,y3);
NEIGHBOR(x2,y1,x1,y1);
NEIGHBOR(x2,y1,x1,y2);
NEIGHBOR(x2,y1,x2,y2);
NEIGHBOR(x2,y1,x3,y2);
NEIGHBOR(x2,y1,x3,y1);
NEIGHBOR(x2,y2,x1,y1);
NEIGHBOR(x2,y2,x1,y2);
NEIGHBOR(x2,y2,x1,y3);
NEIGHBOR(x2,y2,x2,y1);
NEIGHBOR(x2,y2,x2,y3);
NEIGHBOR(x2,y2,x3,y1);
NEIGHBOR(x2,y2,x3,y2);
NEIGHBOR(x2,y2,x3,y3);
NEIGHBOR(x2,y3,x1,y3);
NEIGHBOR(x2,y3,x1,y2);
NEIGHBOR(x2,y3,x2,y2);
NEIGHBOR(x2,y3,x3,y2);
NEIGHBOR(x2,y3,x3,y3);
NEIGHBOR(x3,y1,x2,y1);
NEIGHBOR(x3,y1,x2,y2);
NEIGHBOR(x3,y1,x3,y2);
NEIGHBOR(x3,y2,x3,y1);
NEIGHBOR(x3,y2,x2,y1);
NEIGHBOR(x3,y2,x2,y2);
NEIGHBOR(x3,y2,x2,y3);
NEIGHBOR(x3,y2,x3,y3);
NEIGHBOR(x3,y3,x2,y3);
NEIGHBOR(x3,y3,x2,y2);
NEIGHBOR(x3,y3,x3,y2);

};
}

non-fluents game2x2 {

domain = game_of_life;

objects {
x_pos : {x1,x2};
y_pos : {y1,y2};

};

non-fluents {
PROB_REGENERATE = 0.9;

NEIGHBOR(x1,y1,x1,y2);
NEIGHBOR(x1,y1,x2,y1);
NEIGHBOR(x1,y1,x2,y2);

NEIGHBOR(x1,y2,x1,y1);
NEIGHBOR(x1,y2,x2,y1);
NEIGHBOR(x1,y2,x2,y2);

NEIGHBOR(x2,y1,x1,y1);
NEIGHBOR(x2,y1,x1,y2);
NEIGHBOR(x2,y1,x2,y2);

NEIGHBOR(x2,y2,x1,y1);
NEIGHBOR(x2,y2,x1,y2);
NEIGHBOR(x2,y2,x2,y1);

};
}

Simple domains
can generate

complex DBNs!

35

Complex Lifted Transitions: SysAdmin
SysAdmin (Guestrin et al, 2001)

• Have n computers C = {c1, …, cn} in a network
• State: each computer ci is either “up” or “down”

• Transition: computer is “up” proportional to its
state and # upstream connections that are “up”

• Action: manually reboot one computer
• Reward: +1 for every “up” computer

c1

c2

c4

c3

Complex Lifted Transitions
SysAdmin (Guestrin et al, 2001)

Probability of a
computer running

depends on ratio of
connected

computers running!

Lifted Continuous MDP in RDDL:
Simple Mars Rover

x

y

Picture
Point 1

Picture
Point 3

Picture
Point 2

Simple Mars Rover: Part I
types { picture-point : object; };

pvariables {

PICT_XPOS(picture-point) : { non-fluent, real, default = 0.0 };
PICT_YPOS(picture-point) : { non-fluent, real, default = 0.0 };
PICT_VALUE(picture-point) : { non-fluent, real, default = 1.0 };
PICT_ERROR_ALLOW(picture-point) : { non-fluent, real, default = 0.5 };

xPos : { state-fluent, real, default = 0.0 };
yPos : { state-fluent, real, default = 0.0 };
time : { state-fluent, real, default = 0.0 };

xMove : { action-fluent, real, default = 0.0 };
yMove : { action-fluent, real, default = 0.0 };
snapPicture : { action-fluent, bool, default = false };

};

Constant
picture
points,

bounding box

Rover position
(only one

rover)
and time

Rover
actions

Question, how
to make multi-

rover?

Simple Mars Rover: Part II
cpfs {

// Noisy movement update
xPos' = xPos + xMove + Normal(0.0, MOVE_VARIANCE_MULT*xMove);

yPos' = yPos + yMove + Normal(0.0, MOVE_VARIANCE_MULT*yMove);

// Time update
time' = if (snapPicture)

then DiracDelta(time + 0.25)
else DiracDelta(time +

[if (xMove > 0) then xMove else -xMove] +
[if (yMove > 0) then yMove else -yMove]);

};

Fixed time for picture

Time proportional to
distance moved

White noise, variance
proportional to distance moved

nb., This is RDDL1, in
RDDL2, now have vectors

and functions like abs[]

Simple Mars Rover: Part III
// We get a reward for any picture taken within picture box error bounds
// and the time limit.
reward = if (snapPicture ^ (time <= MAX_TIME))

then sum_{?p : picture-point} [
if ((xPos >= PICT_XPOS(?p) - PICT_ERROR_ALLOW(?p))

^ (xPos <= PICT_XPOS(?p) + PICT_ERROR_ALLOW(?p))

^ (yPos >= PICT_YPOS(?p) - PICT_ERROR_ALLOW(?p))
^ (yPos <= PICT_YPOS(?p) + PICT_ERROR_ALLOW(?p)))

then PICT_VALUE(?p)
else 0.0]

else 0.0;

state-action-constraints {

// Cannot snap a picture and move at the same time
snapPicture => ((xMove == 0.0) ^ (yMove == 0.0));

};

Reward for all pictures taken
within bounding box!

Cannot move and take
picture at same time.

How to Think About Distributions
• Transition distribution is stochastic program

– Similar to BLOG (Milch, Russell, et al), IBAL (Pfeffer)

• Procedural specification of sampling process
– Basically writing a simulator
– E.g., drawing a distance measurement in robotics

• boolean Noise := sample from Bernoulli (.1)
• real Measurement := If (Noise == true)

– Then sample from Uniform(0, 10)
– Else sample from Normal(true-distance, σ2)

0 10

true-distance
Convenient way to write

complex mixture models and
conditional distributions that

occur in practice!

RDDL Recap I
• Everything is a fluent (parameterized variable)

– State fluents
– Observation fluents

• for partially observed domains
– Action fluents

• supports factored concurrency
– Intermediate fluents

• derived predicates, correlated effects, …
– Constant nonfluents (general constants, topology relations, …)

• Flexible fluent types
– Binary (predicate) fluents
– Multi-valued (enumerated) fluents
– Integer and continuous fluents (from PDDL 2.1)

RDDL Recap II
• Semantics is ground DBN / Influence Diagram

– Unambiguous specification of transition semantics
• Supports unrestricted concurrency

– Naturally supports independent exogenous events

• General expressions in transition / reward
– Logical expressions (∧, ∨, ⇒, ⇔, ∀, ∃)
– Arithmetic expressions (+,−,*, /, ∑x, ∏x)
– In/dis/equality comparison expressions (=, ≠, <,>, ≤, ≥)
– Conditional expressions (if-then-else, switch)
– Basic probability distributions

• Bernoulli, Discrete, Normal, Poisson

Logical expr. {0,1}
so can use in

arithmetic expr.

∑x, ∏x aggregators over
domain objects extremely

powerful

RDDL Recap III
• Goal + General (PO)MDP objectives

– Arbitrary reward
• goals, numerical preferences (c.f., PDDL 3.0)

– Finite horizon
– Discounted or undiscounted

• State/action constraints
– Encode legal actions

• (concurrent) action preconditions
– Assert state invariants

• e.g., a package cannot be in two locations

RDDL Software

Open source & online at
https://github.com/ssanner/rddlsim

https://github.com/ssanner/rddlsim

Java Software Overview
• BNF grammar and parser

• Simulator

• Automatic translations
– LISP-like format (easier to parse)
– SPUDD & Symbolic Perseus (boolean subset)
– Ground PPDDL (boolean subset)

• Client / Server
– Evaluation scripts for log files

• Visualization
– DBN Visualization
– Domain Visualization – see how your planner is doing

Visualization of Boolean Traffic

Visualization of Boolean Elevators

Submit your own
Domains in RDDL!

Field only makes true progress
working on realistic problems

RDDL2 (with Thomas Keller)
• Elementary functions

– abs, sin, cos, log, exp, pow, sqrt, etc.

• Vectors
– Need for some distributions (multinomial, multivariate normal)

• Object fluents and bounded integers

• Derived fluents
– Like intermediate but can use in preconditions

• Indefinite horizon (goal-oriented problems)

• Recursion!
– Fluents can self-reference as long as define a DAG

RDDL Domain Examples
• See IPPC 2011 (Discrete)

– http://users.cecs.anu.edu.au/~ssanner/IPPC_2011/index.html

• See IPPC 2014 (Discrete)
– https://cs.uwaterloo.ca/~mgrzes/IPPC_2014/

• See IPPC 2014/5 (Continuous)
– http://users.cecs.anu.edu.au/~ssanner/IPPC_2014/index.html

http://users.cecs.anu.edu.au/%7Essanner/IPPC_2011/index.html
https://cs.uwaterloo.ca/%7Emgrzes/IPPC_2014/
http://users.cecs.anu.edu.au/%7Essanner/IPPC_2014/index.html

Ideas for other RDDL Domains
• UAVs with partial observability

• (Hybrid) Control
– Linear-quadratic control (Kalman filtering with control)
– Discrete and continuous actions – avoided by planning
– Nonlinear control

• Dynamical Systems from other fields
– Population dynamics
– Chemical / biological systems
– Physical systems

• Pinball!
– Environmental / climate systems

• Bayesian Modeling
– Continuous Fluents can represent parameters

• Beta / Bernoulli / Dirichlet / Multinomial / Gaussian
– Then progression is a Bayesian update!

• Bayesian reinforcement learning

RDDL3?
• Effects-based specification?

– Easier to write than current fluent-centered approach
– But how to resolve conflicting effects in unrestricted concurrency

• Timed processes?
– Concurrency + time quite difficult
– Should we simply use languages like RMPL (Williams et al)

• Or could there be RDDL + RMPL hybrids?

Enjoy RDDL!

(no lack of difficult
problems to solve!)

Questions?

Now to hands-on RDDL Tutorial

• Linked from github rddlsim repo:
– https://sites.google.com/site/rddltutorial/

• Also provides instructions for how to run
PROST planner using MCTS
– IPPC 2011 and 2014 competition winner for

discrete domains, no intermediate fluents

https://sites.google.com/site/rddltutorial/

	ICAPS 2018 Tutorial
	Observation
	Current Stochastic Domain Language
	More Realistic: Logistics
	What stochastic problems should we care about?
	Mars Rovers
	Elevator Control
	Traffic Control
	Can PPDDL model �these problems?
	Wildfire Domain (today’s lab)
	Wildfire in RDDL
	What’s missing in PPDDL, Part I
	What’s missing in PPDDL, Part II
	What’s missing in PPDDL, Part III
	Is there any hope?
	A Brief History of (ICAPS) Time
	What is RDDL?
	Facilitating Model Development by Writing Simulators:�Relational Dynamic Influence Diagram Language (RDDL)
	RDDL Principles I
	RDDL Principles II
	RDDL Principles III
	RDDL Grammar
	RDDL Examples
	How to Represent Factored MDP?
	RDDL Equivalent
	A Discrete-Continuous POMDP?
	A Discrete-Continuous POMDP, Part I
	A Discrete-Continuous POMDP, Part II
	RDDL so far…
	Lifting: Conway’s Game of Life�(simpler than traffic)
	Lifted�MDP:��Game �of Life
	A Lifted MDP
	Nonfluent and Instance Defintion
	Power of Lifting
	Complex Lifted Transitions: SysAdmin�SysAdmin (Guestrin et al, 2001)
	Complex Lifted Transitions
	Lifted Continuous MDP in RDDL:�Simple Mars Rover
	Simple Mars Rover: Part I
	Simple Mars Rover: Part II
	Simple Mars Rover: Part III
	How to Think About Distributions
	RDDL Recap I
	RDDL Recap II
	RDDL Recap III
	RDDL Software
	Java Software Overview
	Visualization of Boolean Traffic
	Visualization of Boolean Elevators
	Submit your own �Domains in RDDL!
	RDDL2 (with Thomas Keller)
	RDDL Domain Examples
	Ideas for other RDDL Domains
	RDDL3?
	Enjoy RDDL!��(no lack of difficult �problems to solve!)
	Now to hands-on RDDL Tutorial

