~ ICAPS 2018 Tutorial |

Scott Sanner

http://users.rsise.anu.edu.au/%7Essanner/

Observation

* Planning languages direct 5+ years of research

— PDDL and variants
— PPDDL

« Why?
— Domain design is time-consuming
» SO0 everyone uses the existing benchmarks

— Need for comparison
* Planner code not always released
* Only means of comparison is on competition benchmarks

e Implication:
— We should choose our languages & problems well...

Current Stochastic Domain Language

« PPDDL

— more expressive than PSTRIPS

— for example, probabilistic universal
and conditional effects:

(:action put-all-blue-blocks-on-table
:parameters ()
:precondition ()

-effect (probabilistic 0.9

(forall (?b)
(when (Blue ?b) @
(not (OnTable ?b)))))
e But walt, not just BlocksWorld... ._._l
— Colored BlocksWorld

— Exploding BlocksWorld
— Moving-stacks BlocksWorld

 Difficult problems but where to apply solutions???

More Realistic: Logistics

 Compact relational PPDDL Description:

—_—

Logistics: | 'ondon \

(:action load-box-on-truck-in-city
:parameters (?b - box ?t - truck ?c — city)
-precondition (and (BIn ?b ?c) (TIn ?t ?¢))
-effect (and (On ?b ?t) (not (BIn ?b ?c))))
e Can instantiate problems for any domain objects

- 3 trucks: ¥ " 5§ 2 planes: == == 3 boxes:™

e But wait... only one truck can move at a time???
* No concurrency, no time: will FedEx care?

What stochastic problems
should we care about?

Mars Rovers

Start ges ObsPt3
Obs o.
Pt4 o®
2 L)
\
3 Q

Y Unsafe
W,
W

Featureless
Obs

ObsPt2

Audience

Mealeau, Benazera,
Brafman, Hansen,
Mausam. JAIR-09.

ObsPt1 Y
® Far

e Continuous
— Time, robot position / pose, sun angle, ...

o Partially observable
— Even worse: high-dimensional partially observable

Elevator Control

Concurrent Actions
— Elevator: up/down/stay
— 6 elevators: 36 actions

Exogenous / Non-boolean:

— Random integer arrivals
(e.g., Poisson)

Complex Objective:
— Minimize sum of wait times

— Could even be nonlinear function
(squared wait times)

Policy Constraints:

— People might get annoyed
If elevator reverses direction

http://www.melsa.com.sa/images/Elevators%20at%20Kingdom%20Centre,%20Riyadh.JPG
http://www.melsa.com.sa/images/Elevators%20at%20Kingdom%20Centre,%20Riyadh.JPG
http://alpha.dickinson.edu/prorg/nectfl/elevators.jpg
http://alpha.dickinson.edu/prorg/nectfl/elevators.jpg

Traffic Control

e Concurrent e Continuous Variables
— Multiple lights — Nonlinear dynamics

* Indep. Exogenous Events < Partially observable
— Multiple vehicles — Only observe stoplines

Can PPDDL model
these problems?

No? What happened?

Let's examine a simple
problem that cannot be
modeled in PPDDL

Wildfire Domain (today’s lab)

RDDL Wildfire Simulation

o Contributed by Zhenyu Yu (School of Economics
and Management, Tongji University)

— Karafyllidis, I., & Thanailakis, A. (1997). A model for
predicting forest fire spreading using gridular
automata. Ecological Modelling, 99(1), 87-97.

Wildfire in RDDL

Each cell may independently

cpfs { . . .
stochastically ignite

burning®(?x, ?y) =
it (put-out(?x, ?y))
then false
else 1f (~out-of-fuel(?x, ?y) ™ ~burning(?x, ?y))
then Bernoulli(1.0 /7 (1.0 + exp[4.5 - (sum_{?x2: x_pos, ?y2: y pos}
(NEIGHBOR(?x, ?y, ?x2, ?y2) ~ burning(?x2, ?y2)))]))
else
burning(?x, ?y); // State persists

out-of-fuel " (?x, ?y) = out-of-fuel(?x, ?y) | burning(?x,?y);
};

reward =
[sum {?x: x _pos, ?y: y pos} [COST _CUTOUT*cut-out(?x, ?y)]l
+ [sum_{?x: x pos, ?y: y pos} [COST_PUTOUT*put-out(?x, ?y) 11
+ [sum_{?x: x_pos, ?y: y pos} [COST_NONTARGET_BURN*[burning(?x, ?y) ™ ~TARGET(?x, ?y) 111

+ [sum_{?x: x_pos, ?y: y pos}
[COST_TARGET_BURN*[(burning(?x, ?y) | out-of-fuel(?x, ?y)) ™ TARGET(?x, ?y) 111;

What's missing in PPDDL, Part |

 Need Unrestricted Concurrency:
— In PPDDL, would have to enumerate joint actions

— In PDDL 2.1: restricted concurrency
 conflicting actions not executable
» when effects probabilistic, some chance most effects conflict
— really need unrestricted concurrency in probabilistic setting

 Multiple Independent Exogenous Events:

— PPDDL only allows 1 independent event to affect fluent
« E.g, what if fire in each cell spreads independently?

Looking ahead... will need something
more like Relational DBN

What's missing in PPDDL, Part Il

e EXpressive transition
distributions:

— (Nonlinear) stochastic
difference equations

— E.g., cell velocity as
a function of traffic
density

= E

{
HERE

FEE bfsb-l I]

EEE
HEBEERE
BEEE

EEEEE EEaEE L T .

BEEE

» Partial observability: CEEENEEEEENGESONEEEEN

— In practice, only
observe stopline

What's missing in PPDDL, Part lll

« Distinguish fluents from nonfluents:
— E.g., topology of traffic network
— Lifted planners must know this to be efficient!

o EXpressive rewards & probabilities:
— E.g., sums, products, nonlinear functions, ratios, conditionals

* Global state-action preconditions and state invariants:
— Concurrent domains need global action preconditions
* E.g., two traffic lights cannot go into a given state

— In logistics, vehicles cannot be in two different locations
* Regression planners need state constraints!

Is there any hope?

Yes, but we need to borrow from
factored MDP / POMDP community...

A Brief History of (ICAPS) Time

ADL (1987)
Pednault
Cond. Effects
Open World

ICAPS

PDDL 2.1, + (2003)
Fox & Long
Numerical fluents,
Conc., Exogenous

PDDL 3.0 (2004)
Gerevini & Long
Traj. Constraints,
Preferences

STRIPS (1971)
Fikes & Nilsson

PDDL 1.2 (1998)
McDermott et al

PDD‘k 2.2 (2004)

Edelkamp & Hoffmann

Relational Univ. Effects Derived Rred, Temporal
v
> |\
PPDDL (2004) \ |
Littmann & Younes , Relational!
Prob. Effects \
UAI \
——— ' >
Dynamic Bayes Nets (1989) SPUDD, Sym. Perseus (1999, RDDL (2010)

Dean and Kanazawa
Factored Stochastic Processes

2004) Hoey, Boutilier, Poupart
DBN + Utility: Fact. (PO)MDP

Sanner
PDDL 2.2 x DBN++

What is RDDL?

. . t t+1 -~ N
e Relational Dynamic Key task: how
: to specify (lifted)
nfluence Diagram distributions &
_anguage K reward? j

— Relational
[DBN + Influence Diagram]

 Think of it as
Relational SPUDD /
Symbolic Perseus

— On speed 0

&—) (I

S
D)
0,

Sanner (2010)

Facilitating Model Development by Writing Simulators:
Relational Dynamic Influence Diagram Language (RDDL)

// Store alive-neighbor count for eac

count -neighbors (7x,7y) =
KronDelta(sum_{7x2 : x_pos, ?7y2 :
[NEIGHBOR (7x,7y,7Xx20 7 y2

// Determine whether .
alive’ (?x,7y) = if (JEEAALLeInF=1d]e:
Translation

else

4 Write S
S | [Talive (7x
probabilistic "~ (count -n
programs for | set (?x,7y)
- then Bernoulli (PROB_R
\ transitions /élse Bernoulli (1.0

Current State and Actions Intermediate @ Level 1

Next State and Reward

"’ comt—nbnrs(;&, y1)
X o ;
| omtncighbors y3) >

7 =T —
=<

<

L

/
X
7

2|

j
A/
i

I

A

(i

< <
% |])
{
I‘ / |
A =

RDDL Principles |

Everything is a fluent (parameterized variable)
— State fluents

— Observation fluents
« for partially observed domains

— Action fluents
» supports factored concurrency

— Intermediate fluents
» derived predicates, correlated effects, ...

— Constant nonfluents (general constants, topology relations, ...)

Flexible fluent types

— Binary (predicate) fluents

— Multi-valued (enumerated) fluents

— Integer and continuous fluents (from PDDL 2.1)

RDDL Principles Il

o Semantics is ground DBN / Influence Diagram

— Unambiguous specification of transition semantics
e Supports unrestricted concurrency

— Naturally supports independent exogenous events

* General expressions in transition / reward
— Logical expressions (A, v, =, <, V, 3) imgica' expr. {0’1}}

— Arithmetic expressions (+,—,%, /, 2.,, I 1) a?ﬁhc;ﬁgtilésggr.
— In/dis/equality comparison expressions (=, #, <,>, <, >)
— Conditional expressions (if-then-else, switch)

— Basic probability distributions [

« Bernoulli, Discrete, Normal, Poisson | domain objects extremely

> I 1, aggregators over }
powerful

RDDL Principles Il

 Goal + General (PO)MDP objectives

— Arbitrary reward
e goals, numerical preferences (c.f., PDDL 3.0)

— Finite horizon
— Discounted or undiscounted

o State/action constraints
— Encode legal actions
» (concurrent) action preconditions

— Assert state invariants
* e.g., a package cannot be in two locations

RDDL Grammar

Let’'s examine BNF
grammar In infinite tedium!

OK, maybe not.
(Grammar online if you want it.)

http://code.google.com/p/rddlsim/source/browse/#svn%2Ftrunk%2Fsrc%2Frddl%2Fparser

RDDL Examples

Easiest to understand
RDDL In use...

How to Represent Factored MDP?

Current State and Actions Next State and Reward

lp__[r |0 [PElpn) |
true | true | true || 0.9
true | true | false || 0.1
true | false | true || 0.3
true | false | false || 0.7
false | true | true || 0.3
false | true | false || 0.7
false | false | true || 0.3
false | false | false || 0.7

RDDL Equivalent

// Define the state and action variables (not parameterized here)
pvariables A

p : { state-fluent, bool, default = false };

q { state-fluent, ©bool, default = false 1};

r { state-fluent, ©bool, default = false }; <3anthhﬂ<of\\

a { action-fluent, bool, default = false 1I}; "
transition

+; o
distributions

// Define the conditional probability function for eac as “sampling

// state variable in terms of previous state and actio instructions”
cpfs {

p’ = if (p ~ r) then Bernoulli(.9) else Bernoulli(.3);

q’ = if (q ° r) then Bernoulli (.9)

else 1if (a) then Bernoulli(.3) else Bernoulli(.8);
r’ = if ("q) then KronDelta(r) else KronDelta(r <=> q);
// Define the reward function; note that boolean functions are

// treated as 0/1 integers in arithmetic expressions
reward = p + q - r;

A Discrete-Continuous POMDP?

Intermediate (@ Level 1 Intermediate @ Level 2

Next State and Reward

. . . — Observatior
Current State and Actions ~ :

A Discrete-Continuous POMDP, Part |

// User-defined types

types {
enum_level : {@low, Omedium, @high}; // An enumerated type

+;

pvariables {

p : { state-fluent, ©bool, default = false };
q ¢ { state-fluent, bool, default = false };
r : { state-fluent, Dbool, default = false };
il { interm-fluent, int, level = 1 };
i2 { interm-fluent, enum_level, level = 2 };
ol { observ-fluent, bool };

02 { observ-fluent, real };

a : { action-fluent, bool, default = false };

// Some standard Bernoulli conditional probability tables
p’ = if (p ~ r) then Bernoulli(.9) else Bernoulli(.3);

if (q = r) then Bernoulli(.9)
else if (a) then Bernoulli(.3) else Bernoulli(.8);

0
I

// KronDelta is a delta function for a discrete argument
r> = if (7"q) then KronDelta(r) else KronDelta(r <=> q);

A Discrete-Continuous POMDP, Part Il

A

%
il

//
i2

Multi-
valued

)

//
ol

//
02

Mixture of
Normals

)

};

Just set i1 to a count of true state variables
= KronDelta(p + q + r);

Choose a level with given probabilities that sum to 1
= Discrete(enum_level,

Qlow

if (i1 >= 2) then 0.5 else 0.2,

O@medium : if (il >= 2) then 0.2 else 0.5,

@high

);

0.3

Note: Bernoulli parameter must be in [0,1]
= Bernoulli((p + q + r)/3.0);

Conditional linear stochastic equation

= switch (i2) {
case Qlow

case Omedium

case Q@high

it + 1.0 + Normal (0.0, il1lx*iil),
i1 + 2.0 + Normal (0.0, i1x%*i1/2.0),
il + 3.0 + Normal (0.0, i1*i1/4.0) 1};

Variance comes from other
previously sampled variables

RDDL so far...

 Mainly SPUDD / Symbolic Perseus with a
different syntax ©

— A few enhancements
¢ concurrency
¢ constraints
* integer / continuous variables

 Real problems (e.g., traffic) need lifting
— An intersection model

— A vehicle model
» Specify each intersection / vehicle model once!

Lifting: Conway’s Game of Life

(simpler than traffic)

o Cells born, live, die based on neighbors

— <2o0r>3
neighbors:
cell dies N N
| |
neighbors: .
celi'lives EEE =N Em_ Emm
— 3 neighbors L N
— cell birth! - -
II= .I= =I. - L
— Make into MDP L L L , =
* Probabilities =l l= EEEE
« Actions to turn) —
on cells
« Maximize number - N |
of cells on http://en.wikipedia.org/wiki/Conway's_Game_of Life

« Compact RDDL specification for any grid size? Lifting.

http://en.wikipedia.org/wiki/Conway's_Game_of_Life

Current State and Actions

Intermediate @ Level 1

set(x1, yl)

Next State and Reward
sel(x1. y2)

_—

P gy

Lifted
MDP:

alive(x1, yl)

/\

alive’(x2, y1)

set(x2, y1) K ‘

2.2

set(x2, y2)

A Lifted MDP

=‘2[Intermediate variable: like derived predicate]

// Store alive-neighbor
count -neighbors (7x,?y)
KronDelta (sum_{7x2 : x_pos, 7y2 : y_pos}
[NEIGHBOR (?x,7y,7x2,7y2) ~ alive(?7x2,7y2)]1);

// Determine whether cell (?x,?y) is alive in next state
alive’ (?x,?y) = if (forall_{7y2 : y_pos} “alive(?x,7y2))

then Bernoulli (PROB_REGENERATE) // Rule 6

"~ (count-neighbors (?x,%7y) >= 2)
(count -neighbors (?7x,7y) <= 3)]
| [“alive (?x,7y)
(count-neighbors (?x,?y) == 3)]

| set(?x,7y))
then Bernoulli (PROB_REGENERATE)
else Bernoulli (1.0 - PROB_REGENERATE) ;

-~

Using counts to
decide next state

T
// Reward is number of alive cells i Additive reward! J
reward = sum_{7x : x_pos, 7y : y_pos} alive(?x,7y);

state-action-constraints { State consft.ralnts,
// Assertion: ensure PROB_REGENERATE is a valid pr preconditions

(PROB_REGENERATE >= 0.0) -~ (PROB_REGENERATE <= 1.0);

// Precondition: perhaps we should not set a cell if already alive
forall {7x : x_pos, 7y : y_posl} alive(7x,7y) => “set(?7x,7y);

Nonfluent and Instance Defintion

// Define numerical and topological constants

non-fluents game2x2 {

domain =
objects {
X_pos
y-pos
+s

game_of_life; Objects that don’t
change b/w instances
{x1,x2}%};
{y1,y2};

non-fluents {

PROB_REGENERATE = 0.9;

Topologies over
these objects

ants are St non-fluents

Numerical constant
nonfluent

NEIGHBOR (x1,y1,x1,y2); NEIGHBOR(x1l,yl,x2,y1l); NEIGHBOR(x1l,yl,x2,y2);
NEIGHBOR (x1,y2,x1,y1); NEIGHBOR(x1l,y2,x2,y1); NEIGHBOR(x1,y2,x2,y2);
NEIGHBOR (x2,y1,x1,y1); NEIGHBOR(x2,yl,x1,y2); NEIGHBOR(x2,y1l,x2,y2);
NEIGHBOR (x2,y2,x1,y1); NEIGHBOR(x2,y2,x1,y2); NEIGHBOR(x2,y2,x2,y1);

};
}

instance isi
domain =

{

init-state {

alive (x1,y1);
alive (x2,y2);

};

max —nondef -actions

horizon
discount

20;
0.9;

f_life;
gamj-;a;le;}c;j <[Import a topology }

non-fluents

4 Initial state as usual]

= 3; // Allow up to 3 cells to be set concurrently

T Concurrency]

non-fluents game2x2 {
domain = game_of_life;

objects {

X_pos : {x1,x2};
y_pos : {yl,y2};

b

non-fluents {

Power of Lift

non-fluents game3x3 {

PROB_REGENERATE = 0.9;

NEIGHBOR(x1,y1,x1,y2);
NEIGHBOR(x1,y1,x2,y1);
NEIGHBOR(x1,y1,x2,y2);

NEIGHBOR(x1,y2,x1,y1);
NEIGHBOR(x1,y2,x2,y1);
NEIGHBOR(x1,y2,x2,y2);

NEIGHBOR(x2,y1,x1,y1);
NEIGHBOR(x2,y1,x1,y2);
NEIGHBOR(x2,y1,x2,y2);

NEIGHBOR(x2,y2,x1,y1);
NEIGHBOR(x2,y2,x1,y2);
NEIGHBOR(x2,y2,x2,y1);

Current State and Actions Intermediate @ Level 1

Next State and Reward

domain = game_of_life;

objects {
X_pos : {x1,x2,x3};
) y_pos : {yl,y2,y3};

non-fluents {

NEIGHBOR(X1,y1,x1,y2);
NEIGHBOR(x1,y1,x2,y1);
NEIGHBOR(x1,y1,x2,y2);
NEIGHBOR(x1,y2,x1,y1);
NEIGHBOR(x1,y2,x2,y1);
NEIGHBOR(X1,y2,x2,y2);
NEIGHBOR(x1,y2,x2,y3);
NEIGHBOR(x1,y2,x1,y3);
NEIGHBOR(x1,y3,x1,y2);
NEIGHBOR(x1,y3,x2,y2);
NEIGHBOR(x1,y3,x2,y3);
NEIGHBOR(x2,y1,x1,y1);
NEIGHBOR(X2,y1,x1,y2);
NEIGHBOR(X2,y1,x2,y2);
NEIGHBOR(X2,y1,x3,y2);
NEIGHBOR(X2,y1,x3,y1);
NEIGHBOR(x2,y2,x1,y1);
NEIGHBOR(x2,y2,x1,y2);
NEIGHBOR(x2,y2,x1,y3);
NEIGHBOR(x2,y2,x2,y1);
NEIGHBOR(x2,y2,x2,y3);
NEIGHBOR(x2,y2,x3,y1);
NEIGHBOR(x2,y2,x3,y2);
NEIGHBOR(x2,y2,x3,y3);
NEIGHBOR(x2,y3,x1,y3);
NEIGHBOR(x2,y3,x1,y2);
NEIGHBOR(x2,y3,%2,y2);
NEIGHBOR(x2,y3,x3,y2);
NEIGHBOR(x2,y3,x3,y3);
NEIGHBOR(x3,y1,x2,y1);
NEIGHBOR(x3,y1,x2,y2);
NEIGHBOR(x3,y1,x3,y2);
NEIGHBOR(x3,y2,x3,y1);
NEIGHBOR(x3,y2,x2,y1);
NEIGHBOR(x3,y2,x2,y2);
NEIGHBOR(x3,y2,x2,y3);
NEIGHBOR(x3,y2,x3,y3);
NEIGHBOR(x3,y3,x2,y3);
NEIGHBOR(x3,y3,%2,y2);
NEIGHBOR(x3,y3,x3,y2);

u
Current State and Actions

Simple domains
can generate
complex DBNS!

Intermediate @ Level 1

Next State and Reward

(=" dlivea3, y1)

X

N
|

¥

Calivtel, 25— |

=

‘

A
alive(x1, y3)

scifal, y2,

set(x1, y3)

>
g

a—
count-neighbors(x2, y3)
N ,
s
‘ count-neighbors(x1, y1)

N ——

“‘;\\

»

V"./

0
i

|

e

</

count-neighbors(x1, y2) A

Z—9

D — — S,
p——]

ive'(x1, y3)

Complex Lifted Transitions: SysAdmin
SysAdmin (Guestrin et al, 2001)

 Have n computers C ={c,, ..., ¢} In a network
e State: each computer ¢, Is either “up” or “down”

Transition: computer is “up” proportional to its
state and # upstream connections that are “up”

e Action: manually reboot one computer
« Reward: +1 for every “up” computer

35

Complex Lifted Transitions
SysAdmin (Guestrin et al, 2001)

pvariables A

REBOOT-PROB : { non-fluent, real, default = 0.1 };
REBOOT-PENALTY : { non-fluent, real, default = 0.75 };

CONNECTED (computer , computer) : { non-fluent, bool, default = false };
running (computer) : { state-fluent, bool, default = false }I};

reboot (computer) : { action-fluent, bool, default = false };

2 « D

Probability of a
cpfs { computer running
depends on ratio of
running ’(?x) = if (reboot (?x)) connected
then KronDelta(true) // if then must be running

Talo L
else if (running(?7x)) // els computers runnmg'Jnetwork properties

then Bernoulli (
.5 + .5%x[1 + sum_{7y : computer} (CONNECTED(?7y,?x) ~ running(?y))]
/ [1 + sum_{?y : computer} CONNECTED (?y,?x)])
else Bernoulli (REBOOT-PROB);
3

reward = sum_{7c : computer} [running(?c) - (REBOOT-PENALTY * reboot(7c))];

Lifted Continuous MDP in RDDL.:
Simple Mars Rover

Simple Mars Rover: Part |

types { picture-point : object; };

pvariables {
PICT_XPOS(picture-point) : { non-fluent, real, default = 0.0 };
Constant PICT_YPOS(picture-point) : { non-fluent, real, default = 0.0 };
plqture PICT_VALUE(picture-point) : { non-fluent, real, default = 1.0 };
points, PICT_ERROR_ALLOW(picture-point) : { non-fluent, real, default = 0.5 };

_bounding box

xPos : { state-fluent, real, default = 0.0 };

Rover position yPos : { state-fluent, real, default = 0.0 };
(only one time : { state-fluent, real, default = 0.0 };
rover)
_ and time
XMove . { action-fluent, real, default = 0.0 };

yMove . { action-fluent, real, default = 0.0 };
Rover snapPicture : { action-fluent, bool, default = false };
actions

Simple Mars Rover: Part Il

cpfs {

// Noisy movement update
xPos' = xPos + xMove + Normal(0.0, MOVE_VARIANCE MULT*xMove);

yPos' = yPos + yMove + Normal(0.0, MOVE_VARIANCE MULT*yMove);

/l Time update proportional to distance moved
time' = if (snapPicture)
_ _ _ then DiracDelta(time + 0.25)
[Fixed time for picture]7 else DiracDelta(time +
[if (xXMove > 0) then xMove else -xMove] +

if (yMove > 0) then yMove else -yMove]);

[White noise, variance }

Time proportional to
distance moved

nb., This is RDDL1, in
RDDL2, now have vectors
and functions like abs]]

Simple Mars Rover: Part Il

Il We get a reward for any picture taken within picture box error bounds
/[and the time limit,
reward = if (snapPicture * (time <= MAX_TIME))
then sum_{?p : picture-point} |
If (xPos >=PICT_XPOS(?p) - PICT_ERROR_ALLOW(?p))
N (xPos <= PICT_XPOS(?p) + PICT_ERROR_ALLOW(?p))

A (yPos >= PICT_YPOS(?p) - PICT_ERROR_ALLOW(?p))
A (yPos <= PICT_YPOS(?p) + PICT_ERROR_ALLOW(?p)))
then PICT_VALUE(?p)

else 0.0] .
else 0.0: Reward for all pictures taken
’ within bounding box!
state-action-constraints { Cannot move and take
picture at same time.

/[Cannot snap a picture and move at the same
snapPicture => ((xMove == 0.0) * (yMove == 0.0));

\l

How to Think About Distributions

e Transition distribution is stochastic program
— Similar to BLOG (Milch, Russell, et al), IBAL (Pfeffer)

* Procedural specification of sampling process

— Basically writing a simulator

— E.g., drawing a distance measurement in robotics
* boolean Noise := sample from Bernoulli (.1)

* real Measurement ;= If (Noise == true)
— Then sample from Uniform(0, 10)

— Else sample from Normal(true-distance, ¢?) I

Convenient way to write
complex mixture models and
conditional distributions that

occur in practice!

)

|
:tr -distance

T 1

0 10

RDDL Recap |

Everything is a fluent (parameterized variable)
— State fluents

— Observation fluents
« for partially observed domains

— Action fluents
» supports factored concurrency

— Intermediate fluents
» derived predicates, correlated effects, ...

— Constant nonfluents (general constants, topology relations, ...)

Flexible fluent types

— Binary (predicate) fluents

— Multi-valued (enumerated) fluents

— Integer and continuous fluents (from PDDL 2.1)

RDDL Recap |I

o Semantics is ground DBN / Influence Diagram

— Unambiguous specification of transition semantics
e Supports unrestricted concurrency

— Naturally supports independent exogenous events

* General expressions in transition / reward
— Logical expressions (A, v, =, <, V, 3) imgica' expr. {0’1}}

— Arithmetic expressions (+,—,%, /, 2.,, I 1) a?ﬁhc;ﬁgtilésggr.
— In/dis/equality comparison expressions (=, #, <,>, <, >)
— Conditional expressions (if-then-else, switch)

— Basic probability distributions [

« Bernoulli, Discrete, Normal, Poisson | domain objects extremely

> I 1, aggregators over }
powerful

RDDL Recap Il

 Goal + General (PO)MDP objectives

— Arbitrary reward
e goals, numerical preferences (c.f., PDDL 3.0)

— Finite horizon
— Discounted or undiscounted

o State/action constraints
— Encode legal actions
» (concurrent) action preconditions

— Assert state invariants
* e.g., a package cannot be in two locations

RDDL Software

Open source & online at
https://github.com/ssanner/rddisim

https://github.com/ssanner/rddlsim

Java Software Overview

BNF grammar and parser
Simulator

Automatic translations

— LISP-like format (easier to parse)
— SPUDD & Symbolic Perseus (boolean subset)
— Ground PPDDL (boolean subset)

Client / Server
— Evaluation scripts for log files

Visualization
— DBN Visualization
— Domain Visualization — see how your planner is doing

Visualization of Boolean Traffic

RODL Traffic Simulation §§§§§§§§EEEEEEEEEEE5@5@5@5§§§§§§§EEEEEEEEEEE i |

RDDL Traffic Simulation
: _
|| i

i _

H u Ba. . -.1 o
_ _
o N lf-l....il-l

- N
_ .

Visualization of Boolean Elevators

Submit your own
Domains in RDDL!

Field only makes true progress
working on realistic problems

RDDL2 (with Thomas Keller)

Elementary functions
— abs, sin, cos, log, exp, pow, sqgrt, etc.

Vectors
— Need for some distributions (multinomial, multivariate normal)

Object fluents and bounded integers

Derived fluents
— Like intermediate but can use in preconditions

Indefinite horizon (goal-oriented problems)

Recursion!
— Fluents can self-reference as long as define a DAG

RDDL Domain Examples

 See IPPC 2011 (Discrete)
— http://users.cecs.anu.edu.au/~ssanner/IPPC 2011/index.html

o« See IPPC 2014 (Discrete)
— https://cs.uwaterloo.ca/~mqrzes/IPPC 2014/

o See IPPC 2014/5 (Continuous)
— http://users.cecs.anu.edu.au/~ssanner/IPPC 2014/index.html

http://users.cecs.anu.edu.au/%7Essanner/IPPC_2011/index.html
https://cs.uwaterloo.ca/%7Emgrzes/IPPC_2014/
http://users.cecs.anu.edu.au/%7Essanner/IPPC_2014/index.html

ldeas for other RDDL Domains

UAVs with partial observability

(Hybrid) Control
— Linear-quadratic control (Kalman filtering with control)
— Discrete and continuous actions — avoided by planning
— Nonlinear control

Dynamical Systems from other fields
— Population dynamics
— Chemical / biological systems

— Physical systems
* Pinball!
— Environmental / climate systems

Bayesian Modeling
— Continuous Fluents can represent parameters

« Beta / Bernoulli / Dirichlet / Multinomial / Gaussian
— Then progression is a Bayesian update!

« Bayesian reinforcement learning

RDDL3?

o Effects-based specification?
— Easier to write than current fluent-centered approach
— But how to resolve conflicting effects in unrestricted concurrency

 Timed processes?
— Concurrency + time quite difficult

— Should we simply use languages like RMPL (Williams et al)
e Or could there be RDDL + RMPL hybrids?

Enjoy RDDL!

(no lack of difficult
problems to solve!)

Questions?

Now to hands-on RDDL Tutorial

* Linked from github rddlsim repo:
— https://sites.google.com/site/rddltutorial/

» Also provides instructions for how to run
PROST planner using MCTS

— IPPC 2011 and 2014 competition winner for
discrete domains, no intermediate fluents

https://sites.google.com/site/rddltutorial/

	ICAPS 2018 Tutorial
	Observation
	Current Stochastic Domain Language
	More Realistic: Logistics
	What stochastic problems should we care about?
	Mars Rovers
	Elevator Control
	Traffic Control
	Can PPDDL model �these problems?
	Wildfire Domain (today’s lab)
	Wildfire in RDDL
	What’s missing in PPDDL, Part I
	What’s missing in PPDDL, Part II
	What’s missing in PPDDL, Part III
	Is there any hope?
	A Brief History of (ICAPS) Time
	What is RDDL?
	Facilitating Model Development by Writing Simulators:�Relational Dynamic Influence Diagram Language (RDDL)
	RDDL Principles I
	RDDL Principles II
	RDDL Principles III
	RDDL Grammar
	RDDL Examples
	How to Represent Factored MDP?
	RDDL Equivalent
	A Discrete-Continuous POMDP?
	A Discrete-Continuous POMDP, Part I
	A Discrete-Continuous POMDP, Part II
	RDDL so far…
	Lifting: Conway’s Game of Life�(simpler than traffic)
	Lifted�MDP:��Game �of Life
	A Lifted MDP
	Nonfluent and Instance Defintion
	Power of Lifting
	Complex Lifted Transitions: SysAdmin�SysAdmin (Guestrin et al, 2001)
	Complex Lifted Transitions
	Lifted Continuous MDP in RDDL:�Simple Mars Rover
	Simple Mars Rover: Part I
	Simple Mars Rover: Part II
	Simple Mars Rover: Part III
	How to Think About Distributions
	RDDL Recap I
	RDDL Recap II
	RDDL Recap III
	RDDL Software
	Java Software Overview
	Visualization of Boolean Traffic
	Visualization of Boolean Elevators
	Submit your own �Domains in RDDL!
	RDDL2 (with Thomas Keller)
	RDDL Domain Examples
	Ideas for other RDDL Domains
	RDDL3?
	Enjoy RDDL!��(no lack of difficult �problems to solve!)
	Now to hands-on RDDL Tutorial

