Decision Diagrams in Automated Planning and Scheduling

Scott Sanner
Decision diagrams (DDs):

- DAG variant of decision tree
- Decision tests ordered
- Used to represent:
 - $f: B^n \rightarrow B$ (boolean – BDD, set of subsets $\{\{a,b\}, \{a\}\}$ – ZDD)
 - $f: B^n \rightarrow Z$ (integer – MTBDD / ADD)
 - $f: B^n \rightarrow R$ (real – ADD)

more expressive domains / ranges possible – @ end
What’s the Big Deal?

• More than compactness
 – Ordered decision tests in DDs support efficient operations

 • ADD: $-f, f \oplus g, f \otimes g, \max(f, g)$
 • BDD: $\neg f, f \land g, f \lor g$
 • ZDD: $f \backslash g, f \cap g, f \cup g$

– Efficient operations key to planning / inference
Tutorial Outline

• Need for \(B^n \rightarrow B / Z / R \) & operations in planning

• DDDs for representing \(B^n \rightarrow B / Z / R \)
 – Why important?
 – What can they represent compactly?
 – How to do efficient operations?

• Extensions and Software
 – ZDDs, AADDs, (F)EVBDDs …

• DDDs vs. Compilation (d-DNNF)
Factored Representations

• Natural state representations in planning

• State is inherently factored
 – Room location: \(R = \{1,2,3,4,5,6\} \)
 – Door status: \(D_i = \{\text{closed}/0, \text{open}/1\}; \ i=1..7 \)

• Relational fluents, e.g., \(\text{At}(r_1,6) \), (STRIPS) are ground variable templates: \(\text{at-r1-6} \)

For simplicity we will assume all state vars are boolean \(\{0,1\} \) – all DD ideas generalize to multi-valued case
Using Factored State in Planning

• Classical planning
 – State given by variable assignments
 • \((R=1, D_1=o, D_2=c, \ldots, D_7=o)\)
 – Planning operators efficiently update state
 – Satisficing tracks dominated by search-based algorithms
 • But representation of \(B^n \rightarrow B / Z / R\) important for optimal tracks

• Non-det. / probabilistic planning, temporal verification
 – To compute *progressions* and *regressions*, often need:
 • State sets: \(B^n \rightarrow B\) (states satisfying condition)
 • Policies: \(B^n \rightarrow Z\) (action ids \(\rightarrow Z\))
 • Value functions: \(B^n \rightarrow R\)
 – And operations on these functions
Factored Transition Systems I

- If have factored state
 - exploit factored transition systems with *graphical model* (arcs encode dependences)

- Can represent
 - (Non-)deterministic transitions
 - $T(x_1' | x_1, x_2): (x_1', x_1, x_2) \rightarrow B$
 - Probabilistic transitions
 - $P(x_1' | x_1, x_2): (x_1', x_1, x_2) \rightarrow R$ (really $[0,1]$)

<table>
<thead>
<tr>
<th></th>
<th>x_1</th>
<th>x_2</th>
<th>x_2'</th>
<th>T/P</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

How is table different for det / non-det cases?
Factored Transition Systems II

- (Non-)det. transition systems
 - Forward reachability (FR) / backward reachability (BR)

- Progression:
 - given a single state \(x_1=0, x_2=1 \)
 \[\text{FR}(x_1',x_2') = T(x_1'| x_1=0, x_2=1) \land T(x_2'| x_2=1) \]
 - given a set of possible states \(S: (x_1, x_2) \rightarrow B \)
 \[\text{FR}(x_1',x_2') = \exists x_1 \exists x_2 T(x_1'| x_1, x_2) \land T(x_2'| x_2) \land S(x_1, x_2) \]
 - Note: \(\exists x F(x, \ldots) = F(x=1, \ldots) \lor F(x=0, \ldots) \)

- Regression: given goal function \(G: (x_1', x_2') \rightarrow B \)
 - \(\text{BR}(x_1, x_2) = \exists x_1' \exists x_2' T(x_1'| x_1, x_2) \land T(x_2'| x_2) \land G(x_1', x_2') \)
Factored Transition Systems III

- **Probabilistic transition systems**

 - **State updates**: given $P(x_1, x_2)$
 - State sample: $x_1' \sim P(x_1')$: $\sum_{x_1} \sum_{x_2} P(x_1' | x_1, x_2) \otimes P(x_1, x_2)$
 - $x_2' \sim P(x_2')$: $\sum_{x_1} \sum_{x_2} P(x_2' | x_2) \otimes P(x_1, x_2)$

 - **DTR**: given value $V'(x_1', x_2')$, compute $E[V](x_1, x_2)$
 - $V(x_1, x_2) = \sum_{x_1'} \sum_{x_2'} P(x_1' | x_1, x_2) \otimes P(x_2' | x_2) \otimes V'(x_1', x_2')$

 - **State belief update**:
 - $P(x_1', x_2') = \sum_{x_1} \sum_{x_2} P(x_1' | x_1, x_2) \otimes P(x_2' | x_2) \otimes P(x_1, x_2)$

- **Note**: $\sum_x F(x, ...) = F(x=1, ...) \oplus F(x=0, ...)$

- $P(x_1, x_2)$ can be $\{0,1\}$ if prev. state known

- Decision-theoretic regression

- Avoids state enum
Factored Transition Systems IV

- Adversarial transition systems

- Adversarial DTR
 - Given value $V'(x_1', x_2')$, compute $E[V](x_1, x_2)$
 - Opponent chooses non-det. transitions to minimize V
 - $V(x_1, x_2) = \min_{x_1'} \min_{x_2'} T(x_1' | x_1, x_2) \otimes T(x_2' | x_2) \otimes V'(x_1', x_2')$
 - Note: $\min_x F(x, ...) = \min(F(x=1, ...), F(x=0, ...))$

- Many other multi-agent formalizations
 - Often alternating turns with action variables…
Factored / Symbolic Planning Approaches

- Classical and Adversarial planning
 - Classical: recent work by Torralba, Alcázar, et al
 - Games: Gamer, CGamer

- (Non-det) planning
 - Planning as model checking
 - Conformant planning
 - Temporal verification, e.g., x_1 Until x_2?
 (Bertoli, Cimatti, Pistore, Roveri, Traverso, ...)
 see refs @ http://mbp.fbk.eu/AIPS02-tutorial.html

- Probabilistic planning
 - MDPs: SPUDD (Hoey, Boutilier et al)
 - POMDPs: Symbolic Perseus (Poupart et al)

All use of Bn → B / Z / R in representation
All planning as operations on these functions
OK, we need $B^n \rightarrow B / Z / R$ for Planning

But why Decision Diagrams?
Function Representation (Tables)

- How to represent functions: \(B^n \rightarrow R \)?

- How about a fully enumerated table...

- ...OK, how to do operations?

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>F(a,b,c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0.00</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1.00</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1.00</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1.00</td>
</tr>
</tbody>
</table>
Manipulating Discrete Distributions

- Marginalization

\[\sum_b P(A, b) = P(A) \]

\[\sum_b \]

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>Pr</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>.1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>.3</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>.4</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>.2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>Pr</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>.4</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>.6</td>
<td></td>
</tr>
</tbody>
</table>
Manipulating Discrete Distributions

- Maximization

$$\max_b P(A, b) = P(A)$$

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Pr</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>.1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>.3</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>.4</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>Pr</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>.3 (B=1)</td>
</tr>
<tr>
<td>1</td>
<td>.4 (B=0)</td>
</tr>
</tbody>
</table>
Manipulating Discrete Distributions

- Binary Multiplication

\[P(A|B) \cdot P(B|C) = P(A, B|C) \]

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Pr</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>.1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>.9</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>.2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B</th>
<th>C</th>
<th>Pr</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>.1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>.9</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>.2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>.8</td>
</tr>
</tbody>
</table>

- Same principle holds for all binary ops
 - +, -, /, max, etc…
Discrete Inference & Optimization

• Observation 1: all discrete functions can be tables

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Pr</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>.1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>.3</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>.4</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>.2</td>
</tr>
</tbody>
</table>

P(A,B) =

• Observation 2: all operations computable in closed-form
 – $f_1 \oplus f_2$, $f_1 \otimes f_2$
 – $\max(f_1, f_2)$, $\min(f_1, f_2)$
 – $\sum_x f(x)$
 – $\arg\max_x f(x)$, $\arg\min_x f(x)$

Are we done? Why do we need DDs?
Why DDs for Planning?

• Reason 1: Space considerations
 – $V(\text{Door-1-open, \ldots, Door-40-open})$ requires
 ~1 terabyte if all states enumerated

• Reason 2: Time considerations
 – With 1 gigaflop/s. computing power, binary operation
 on above function requires ~1000 seconds
Function Representation (Tables)

• How to represent functions: $B^n \rightarrow R$?

• How about a fully enumerated table...

• ...OK, but can we be more compact?

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>F(a,b,c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0.00</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1.00</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1.00</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1.00</td>
</tr>
</tbody>
</table>
Function Representation (Trees)

- How about a tree? Sure, can simplify.

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>F(a,b,c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1.00</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1.00</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Context-specific independence!
Function Representation (ADDs)

- Why not a directed acyclic graph (DAG)?

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>F(a,b,c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0.00</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1.00</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1.00</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Think of BDDs as \{0,1\} subset of ADD range
Function Representation (ADDs)

- Why not a directed acyclic graph (DAG)?

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>F(a,b,c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0.00</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1.00</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1.00</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Think of BDDs as \{0,1\} subset of ADD range
Trees vs. ADDs

- Trees can compactly represent AND / OR
 - But not XOR (linear as ADD, exponential as tree)
 - Why? Trees must represent every path
Binary Operations (ADDs)

- Why do we order variable tests?
- Enables us to do efficient binary operations…
Summary

• We need $B^n \rightarrow B / Z / R$
 – We need compact representations
 – We need efficient operations

→ DDs are a promising candidate

• Great, tell me all about DDs…
 – OK 😊
Decision Diagrams: Reduce

(how to build canonical DDs)
How to Reduce Ordered Tree to ADD?

• Recursively build bottom up
 – Hash terminal nodes \(R \rightarrow ID \)
 • leaf cache
 – Hash non-terminal functions \((v, ID_0, ID_1) \rightarrow ID\)
 • special case: \((v, ID, ID) \rightarrow ID\)
 • others: keep in (reduce) cache

\[
(x_1,1,0) \rightarrow 2
\]

\[
\begin{array}{c}
(x_2,2,2) \\
\rightarrow 2
\end{array}
\]
Reduce Algorithm

Algorithm 1: \(\text{Reduce}(F) \rightarrow F_r \)

input : \(F \): Node id
output: \(F_r \): Canonical node id for reduced ADD

begin

// Check for terminal node
if (\(F \) is terminal node) then
 return canonical terminal node for value of \(F \);

// Check reduce cache
if (\(F \rightarrow F_r \) is not in reduce cache) then
 // Not in cache, so recurse
 \(F_h := \text{Reduce}(F_h) \);
 \(F_l := \text{Reduce}(F_l) \);

 // Retrieve canonical form
 \(F_r := \text{GetNode}(F^\text{var}, F_h, F_l) \);

 // Put in cache
 insert \(F \rightarrow F_r \) in reduce cache;

// Return canonical reduced node
return \(F_r \);

end
GetNode

- Returns unique ID for internal nodes
- Removes redundant branches

Algorithm 1: \(\text{GetNode}(v, F_h, F_l) \rightarrow F_r \)

input: \(v, F_h, F_l \) : Var and node ids for high/low branches

output: \(F_r \) : Return values for offset, multiplier, and canonical node id

begin

:// If branches redundant, return child

\[\text{if } (F_l = F_h) \text{ then} \]
\[\quad \text{return } F_l;\]

:// Make new node if not in cache

\[\text{if } (\langle v, F_h, F_l \rightarrow \text{id is not in node cache}) \text{ then} \]
\[\quad \text{id} := \text{currently unallocated id;}\]
\[\quad \text{insert } \langle v, F_h, F_l \rangle \rightarrow \text{id in cache};\]

:// Return the cached, canonical node
\[\text{return } \text{id} ;\]

end
Reduce Complexity

• Linear in size of input
 – Input can be tree or DAG

• Because of caching
 – Explores each node once
 – Does not need to explore all branches
Canonicity of ADDs via Reduce

• Claim: *if two functions are identical, Reduce will assign both functions same ID*

• By induction on var order
 – Base case:
 • Canonical for 0 vars: terminal nodes
 – Inductive:
 • Assume canonical for k-1 vars
 • GetNode result canonical for kth var
 (only one way to represent)
Impact of Variable Orderings

- Good orders can matter
- Good orders typically have related vars together
 - e.g., low tree-width order in transition graphical model

Original var labels
\[x_1 \cdot x_2 + x_3 \cdot x_4 + x_5 \cdot x_6 \]

Vars relabeled
\[x_1 \cdot x_3 + x_2 \cdot x_5 + x_3 \cdot x_6 \]

Left = low. Right = high

Graph-Based Algorithms for Boolean Function Manipulation
Reordering

• Rudell’s sifting algorithm
 – Global reordering as pairwise swapping
 – Only need to redirect arcs
 • Helps to use pointers
 → then don’t need to redirect parents, e.g.,

Can also do reoder using Apply... later
Decision Diagrams: Apply

(how to do efficient operations on DDs)
Recap

• Recall the Apply recursion

Result: ADD operations can avoid state enumeration

Need to handle base cases

Need to handle recursive cases
Apply Recursion

• Need to compute $F_1 \ op \ F_2$
 – e.g., $op \in \{\oplus, \otimes, \land, \lor\}$

• Case 1: F_1 & F_2 match vars

 $F_h = \text{Apply}(F_{1,h}, F_{2,h}, op)$
 $F_l = \text{Apply}(F_{1,l}, F_{2,l}, op)$
 $F_r = \text{GetNode}(F_{1\ var}, F_h, F_l)$

 ![Diagram showing the application of recursion with three nodes: \(F_h\), \(F_l\), and \(F_r\). The nodes are connected with dashed arrows indicating the recursive application. The root of the tree is labeled \(v_1\), with \(F_1\) and \(F_2\) as the top-level nodes. The \(op\) symbol is shown at the root, indicating the operation to be applied.]
Apply Recursion

- Need to compute $F_1 \ op \ F_2$
 - e.g., $\ op \in \{\oplus, \otimes, \land, \lor\}$

- **Case 2: Non-matching var: $v_1 \not< v_2$**

 $F_h = Apply(F_1, F_{2,h}, op)$
 $F_l = Apply(F_1, F_{2,l}, op)$
 $F_r = GetNode(F_{2_var}, F_h, F_l)$

```
Apply (F_1, F_{2,h}, op)  Apply (F_1, F_{2,l}, op)
F_{1,h}                F_{1,l}                F_{2,h}                F_{2,l}
```

Diagram:

- **$F_h = Apply(F_1, F_{2,h}, op)$**
- **$F_l = Apply(F_1, F_{2,l}, op)$**
- **$F_r = GetNode(F_{2_var}, F_h, F_l)$**
Apply Base Case:
ComputeResult

- Constant (terminal) nodes and some other cases can be computed without recursion

<table>
<thead>
<tr>
<th>Operation and Conditions</th>
<th>Return Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$F_1 \ op \ F_2; \ F_1 = C_1; \ F_2 = C_2$</td>
<td>$C_1 \ op \ C_2$</td>
</tr>
<tr>
<td>$F_1 \oplus F_2; \ F_2 = 0$</td>
<td>F_1</td>
</tr>
<tr>
<td>$F_1 \oplus F_2; \ F_1 = 0$</td>
<td>F_2</td>
</tr>
<tr>
<td>$F_1 \ominus F_2; \ F_2 = 0$</td>
<td>F_1</td>
</tr>
<tr>
<td>$F_1 \otimes F_2; \ F_2 = 1$</td>
<td>F_1</td>
</tr>
<tr>
<td>$F_1 \otimes F_2; \ F_1 = 1$</td>
<td>F_2</td>
</tr>
<tr>
<td>$F_1 \ominus F_2; \ F_2 = 1$</td>
<td>F_1</td>
</tr>
<tr>
<td>$\min(F_1, F_2); \ \max(F_1) \ □ \ \min(F_2)$</td>
<td>F_1</td>
</tr>
<tr>
<td>$\min(F_1, F_2); \ \max(F_2) \ □ \ \min(F_1)$</td>
<td>F_2</td>
</tr>
<tr>
<td>similarly for max</td>
<td></td>
</tr>
<tr>
<td>other</td>
<td>null</td>
</tr>
</tbody>
</table>

Table 1: Input and output summaries of ComputeResult.
Algorithm 1: $\text{Apply}(F_1, F_2, \text{op}) \rightarrow F_r$

\[\text{input : } F_1, F_2, \text{op} : \text{ADD nodes and op} \]
\[\text{output: } F_r : \text{ADD result node to return} \]

\begin{verbatim}
begin
 // Check if result can be immediately computed
 if (ComputeResult(F_1, F_2, op) \rightarrow F_r is not null) then
 return F_r;

 // Check if result already in apply cache
 if ($\langle F_1, F_2, \text{op} \rangle \rightarrow$ F_r is not in apply cache) then
 // Not terminal, so recurse
 var := GetEarliestVar($F_{\text{var}}^1, F_{\text{var}}^2$);

 // Set up nodes for recursion
 if (F_1 is non-terminal \land var $=$ F_{var}^1) then
 $F_{\text{v}1}^l$:= F_1,l; $F_{\text{v}1}^h$:= F_1,h;
 else
 $F_{\text{v}1}^l/h$:= F_1;

 if (F_2 is non-terminal \land var $=$ F_{var}^2) then
 $F_{\text{v}2}^l$:= F_2,l; $F_{\text{v}2}^h$:= F_2,h;
 else
 $F_{\text{v}2}^l/h$:= F_2;

 // Recurse and get cached result
 F_l := $\text{Apply}(F_{\text{v}1}^l, F_{\text{v}2}^l, \text{op})$;
 F_h := $\text{Apply}(F_{\text{v}1}^h, F_{\text{v}2}^h, \text{op})$;
 F_r := $\text{getNode}(\text{var}, F_h, F_l)$;

 // Put result in apply cache and return
 insert $\langle F_1, F_2, \text{op} \rangle \rightarrow F_r$ into apply cache;

 return F_r;
end
\end{verbatim}

Note: Apply works for any binary operation! Why?
Apply Properties

• Apply uses *Apply cache*
 – \((F_1,F_2,\text{op}) \rightarrow F_R\)

• **Complexity**
 – Quadratic: \(O(|F_1| \cdot |F_2|)\)
 • \(|F|\) measured in node count
 – Why?
 • Cache implies touch every pair of nodes at most once!

• **Canonical?**
 – Same inductive argument as Reduce
Reduce-Restrict

• Important operation

• Have
 – \(F(x,y,z) \)

• Want
 – \(G(x,y) = F|_{z=0} \)

• Restrict \(F|_{v=value} \) operation performs a \textit{Reduce}
 – Just returns branch for \(v=value \) whenever \(v \) reached
 – Need \textit{Restrict-Reduce cache} for \(O(|F|) \) complexity

Trivial when restricted var is root node

\begin{tikzpicture}
 \node (F) at (0,0) {F};
 \node (z) at (0,-1) {z};
 \node (ID0) at (-1,-2) {ID_0};
 \node (ID1) at (1,-2) {ID_1};
 \node (G) at (2,0) {G};

 \draw (F) -- (z);
 \draw (z) -- (ID0);
 \draw (z) -- (ID1);
 \draw (ID0) -- (G);
 \draw (ID1) -- (G);

 \node [above right] at (G) {Restrict(z=0)};
\end{tikzpicture}
Marginalization, etc.

- Use Apply + Reduce-Restrict
 - $\sum_x F(x, \ldots) = F|_{x=0} \oplus F|_{x=1}$, e.g.

- Likewise for similar operations…
 - **ADD**: $\min_x F(x, \ldots) = \min(F|_{x=0}, F|_{x=1})$
 - **BDD**: $\exists x F(x, \ldots) = F|_{x=0} \lor F|_{x=1}$
 - **BDD**: $\forall x F(x, \ldots) = F|_{x=0} \land F|_{x=1}$
Apply Tricks I

- Build $F(x_1, \ldots, x_n) = \sum_{i=1}^{n} x_i$
 - Don’t build a tree and then call Reduce!
 - Just use indicator DDs and Apply to compute

 $x_1 \oplus (x_2 \oplus (4 \odot x_3)) \odot (x_4)$

- In general:
 - Build *any* arithmetic expression bottom-up using Apply!

$$x_1 + (x_2 + 4x_3) \ast (x_4)$$

$$\rightarrow x_1 \oplus (x_2 \oplus (4 \odot x_3)) \odot (x_4)$$
Apply Tricks II

- Build *ordered* DD from *unordered* DD

z is out of order

result will have z in order!
ZDDs
(zero-suppressed BDDs)
Represent sets of subsets
ZDDs for Sets of Subsets

- Example BDD and ZDD

Figure 2. The BDD and the ZDD for the set of subsets $\{\{a,b\}, \{a,c\}, \{c\}\}$.

Variables not assigned value on path (e.g., c) assumed false! (0-suppressed)

An Introduction to Zero-Suppressed Binary Decision Diagrams
Alan Mishchenko
ZDDs vs. BDDs

• But ZDDs not universal replacement for BDDs…

Figure 1. BDD and ZDD for F = ab + cd.
How to Modify Apply for ZDDs?

• Simple
 – F_x is sub-ZDD for set with x
 – $F\setminus x$ is sub-ZDD for set without x

• $F \cap G$:
 – if (x in set)
 • then $F_x \cap G_x$
 • else $F\setminus x \cap G\setminus x$

• This is just standard Apply
 – With properly defined GetNode, leaf ops: $\cap = \land, \cup = \lor$
Affine ADDs
ADD Inefficiency

• Are ADDs enough?
• Or do we need more compactness?

• Ex. 1: Additive reward/utility functions
 \[R(a,b,c) = R(a) + R(b) + R(c) \]
 \[= 4a + 2b + c \]

• Ex. 2: Multiplicative value functions
 \[V(a,b,c) = V(a) \cdot V(b) \cdot V(c) \]
 \[= \gamma^{(4a + 2b + c)} \]
Affine ADD (AADD)

- Define a new decision diagram – **Affine ADD**

- Edges labeled by *offset* (c) and *multiplier* (b):

- **Semantics**: if (a) then \((c_1 + b_1 F_1)\) else \((c_2 + b_2 F_2)\)
Affine ADD (AADD)

• Maximize sharing by normalizing nodes $[0,1]$

• Example: if (a) then (4) else (2)

Need top-level affine transform to recover original range
AADD Reduce

Key point: automatically finds additive structure
AADD Examples

• Back to our previous examples…

• Ex. 1: Additive reward/utility functions

 • \(R(a,b) = R(a) + R(b) \)

 \(= 2a + b \)

• Ex. 2: Multiplicative value functions

 • \(V(a,b) = V(a) \cdot V(b) \)

 \(= \gamma^{2a + b}; \ \gamma < 1 \)
AADD Apply & Normalized Caching

- Need to normalize Apply cache keys, e.g., given

\[\langle 3 + 4F_1 \rangle \oplus \langle 5 + 6F_2 \rangle \]

- before lookup in Apply cache, normalize

\[8 + 4 \cdot \langle 0 + 1F_1 \rangle \oplus \langle 0 + 1.5F_2 \rangle \]

<table>
<thead>
<tr>
<th>Operation and Conditions</th>
<th>Normalized Cache Key and Computation</th>
<th>Result Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>\langle c_1 + b_1 F_1 \rangle \oplus \langle c_2 + b_2 F_2 \rangle; F_1 \neq 0</td>
<td>\langle c_r + b_r F_r \rangle = \langle 0 + 1F_1 \rangle \oplus \langle 0 + (b_2/b_1)F_2 \rangle</td>
<td>\langle (c_1 + c_2 + b_1 c_r) + b_1 b_r F_r \rangle</td>
</tr>
<tr>
<td>\langle c_1 + b_1 F_1 \rangle \otimes \langle c_2 + b_2 F_2 \rangle; F_1 \neq 0</td>
<td>\langle c_r + b_r F_r \rangle = \langle (c_1/b_1) + F_1 \rangle \otimes \langle (c_2/b_2) + F_2 \rangle</td>
<td>\langle (c_1 - c_2 + b_1 c_r) + b_1 b_r F_r \rangle</td>
</tr>
<tr>
<td>\langle c_1 + b_1 F_1 \rangle \otimes \langle c_2 + b_2 F_2 \rangle; F_1 \neq 0</td>
<td>\langle c_r + b_r F_r \rangle = \langle (c_1/b_1) + F_1 \rangle \otimes \langle (c_2/b_2) + F_2 \rangle</td>
<td>\langle b_1 b_2 c_r + b_1 b_r F_r \rangle</td>
</tr>
<tr>
<td>\max(\langle c_1 + b_1 F_1 \rangle, \langle c_2 + b_2 F_2 \rangle); F_1 \neq 0, \text{Note: same for min}</td>
<td>\langle c_r + b_r F_r \rangle = \max(\langle 0 + 1F_1 \rangle, \langle (c_2 - c_1)/b_1 + (b_2/b_1)F_2 \rangle)</td>
<td>\langle (c_1 + b_1 c_r) + b_1 b_r F_r \rangle</td>
</tr>
<tr>
<td>\langle c_1 + b_1 F_1 \rangle \langle op \rangle \langle c_2 + b_2 F_2 \rangle</td>
<td>\langle c_r + b_r F_r \rangle = \langle c_1 + b_1 F_1 \rangle \langle op \rangle \langle c_2 + b_2 F_2 \rangle</td>
<td>\langle c_r + b_r F_r \rangle</td>
</tr>
</tbody>
</table>
ADDs vs. AADDs

- Additive functions: $\sum_{i=1..n} x_i$

Note: no context-specific independence, but subdiagrams shared: result size $O(n^2)$
ADDs vs. AADDs

- Additive functions: $\sum_i 2^i x_i$
 - Best case result for ADD (exp.) vs. AADD (linear)
ADDs vs. AADDs

- Additive functions: \(\sum_{i=0..n-1} F(x_i, x_{(i+1) \% n}) \)

Pairwise factoring evident in AADD structure
Main AADD Theorem

• **AADD** can yield exponential time/space improvement over **ADD**
 – and never performs worse!

• **But…**
 – Apply operations on **AADDs** can be exponential
 – **Why?**
 • Reconvergent diagrams possible in **AADDs** (edge labels), but not **ADDs**
 • Sometimes Apply explores all paths if no hits in normalized Apply cache
Other DDs
Multivalued (MV-)DD

- A DD with multivalued variables
 - straightforward k-branch extension
 - e.g., k=6

Obvious generalizations to Apply and Reduce
Multi-terminal (MT-)BDD

- Imagine terminal is 3 bits… use 3 BDDs

- MT-BDD – combine into single diagram
 - Same as ADD using bit vector (integer) leaves
(F)EV-BDDs

- **EdgeValue-BDD** is like AADD where only additive constant subtracted
 - Not a full affine transform
 - Better numerical precision properties than AADD
 - Additive, but no multiplicative compression like AADD

- **Factor-EVBDD** is for integer leaves \mathbb{Z}
 - Instead of dividing by range…
 factors out largest prime factor as multiplier
Further Afield

- **K*DDs, BMDs, K*BMDs**
 - Like ZDD, different ways to do decomposition
 - Mainly used in digital verification literature

- **FODDs, FOADDs**
 - Support first-order logical decision tests
 - (Wang, Joshi, Khardon, JAIR-08)
 - (Sanner, Boutilier, AIJ-09)

- **XADDs: continuous variables**
 - (Sanner, UAI-11)
Approximation

Sometimes no DD is compact, but bounded approximation is…
Problem: Value ADD Too Large

- Sum: \((\sum_{i=1..3} 2^i \cdot x_i) + x_4 \cdot \varepsilon - \text{Noise}\)

- How to approximate?
Solution: APRICODD Trick

• Merge \approx leaves and reduce:

- Error is bounded!
Can use ADD to Maintain Bounds!

- Change leaf to represent range \([L,U]\)
 - Normal leaf is like \([V,V]\)
 - When merging leaves...
 - keep track of min and max values contributing

More Compactness? AADDs?

- Sum: $\sum_{i=1}^{3} 2^i \cdot x_i + x_4 \cdot \varepsilon$-Noise

- How to approximate? Error-bounded merge
Solution: MADCAP Trick

- Merge \approx nodes from bottom up:
Decision Diagram Software

Work with decision diagrams in < 1 hour!
Software Packages

• CUDD
 – BDD / ADD / ZDD
 – http://vlsi.colorado.edu/~fabio/CUDD/
 – Hands down, the best package available

• JavaBDD (native interface to CUDD / others):
 – http://javabdd.sourceforge.net/

• NuSMV – Model Based Planner (MBP)
 – http://mbp.fbk.eu/

• SPUDD – ADD-based value iteration for MDPs
 – http://www.computing.dundee.ac.uk/staff/jessehoey/spudd/index.html

• Symbolic Perseus – Matlab / Java ADD version of value PBVI for POMDPs

• Java BDDs / ADDs / AADDs
 – https://code.google.com/p/dd-inference/
 – Scott’s code, not high performance, but functional
 – Includes Java version of SPUDD factored MDP solver & variable elimination
Example Applications using Decision Diagrams

Do they really work well?
Empirical Comparison: Table/ADD/AADD

- Sum: $\sum_{i=1}^{n} 2^i \cdot x_i \oplus \sum_{i=1}^{n} 2^i \cdot x_i$
- Prod: $\prod_{i=1}^{n} \gamma(2^i \cdot x_i) \otimes \prod_{i=1}^{n} \gamma(2^i \cdot x_i)$
Application: Bayes Net Inference

• Use variable elimination
 – Replace CPTs with ADDs or AADDs
 – Could do same for clique/junction-tree algorithms

• Exploits
 – Context-specific independence
 • Probability has logical structure:
 \[P(a|b,c) = \text{if } b \ ? \ 1 : \text{if } c \ ? \ .7 : .3 \]
 – Additive CPTs
 • Probability is discretized linear function:
 \[P(a|b_1\ldots b_n) = c + b \cdot \sum_i 2^i b_i \]
 – Multiplicative CPTs
 • Noisy-or (multiplicative AADD):
 \[P(e|c_1\ldots c_n) = 1 - \prod_i (1 - p_i) \]

• If factor has above compact form, AADD exploits it
Bayes Net Results: Various Networks

<table>
<thead>
<tr>
<th>Bayes Net</th>
<th>Table</th>
<th>ADD</th>
<th>AADD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td># Entries</td>
<td>Time</td>
<td># Nodes</td>
</tr>
<tr>
<td>Alarm</td>
<td>1,192</td>
<td>2.97s</td>
<td>689</td>
</tr>
<tr>
<td>Barley</td>
<td>470,294</td>
<td>EML*</td>
<td>139,856</td>
</tr>
<tr>
<td>Carpo</td>
<td>636</td>
<td>0.58s</td>
<td>955</td>
</tr>
<tr>
<td>Hailfinder</td>
<td>9,045</td>
<td>26.4s</td>
<td>4,511</td>
</tr>
<tr>
<td>Insurance</td>
<td>2,104</td>
<td>278s</td>
<td>1,596</td>
</tr>
<tr>
<td>Noisy-Or-15</td>
<td>65,566</td>
<td>27.5s</td>
<td>125,356</td>
</tr>
<tr>
<td>Noisy-Max-15</td>
<td>131,102</td>
<td>33.4s</td>
<td>202,148</td>
</tr>
</tbody>
</table>

EML: Exceeded Memory Limit (1GB)
Application: MDP Solving

- SPUDD Factored MDP Solver (Hoey et al, 99)
 - Originally uses ADDs, can use AADDs
 - Implements factored value iteration...

\[V^{n+1}(x_1 \ldots x_i) = R(x_1 \ldots x_i) + \gamma \cdot \max_a \sum_{x_1' \ldots x_i'} \prod_{F_1 \ldots F_i} P(x_1'|x_1 \ldots x_i) \cdots P(x_i'|x_1 \ldots x_i) V^n(x_1' \ldots x_i') \]
Application: SysAdmin

- SysAdmin MDP (GKP, 2001)
 - Network of computers: c_1, \ldots, c_k
 - Various network topologies
 - Every computer is running or crashed
 - At each time step, status of c_i affected by
 - Previous state status
 - Status of incoming connections in previous state
 - Reward: +1 for every computer running (additive)
Results I: SysAdmin (10% Approx)
Results II: SysAdmin
Traffic Domain

• Binary **cell transmission model (CTM)**

• Actions
 – Light changes

• Objective:
 – Maximize empty cells in network
Results Traffic
Application: POMDPs

• Provided an AADD implementation for Guy Shani’s factored POMDP solver

• Final value function size results:

<table>
<thead>
<tr>
<th></th>
<th>ADD</th>
<th>AADD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network Management</td>
<td>7000</td>
<td>92</td>
</tr>
<tr>
<td>Rock Sample</td>
<td>189</td>
<td>34</td>
</tr>
</tbody>
</table>
Cost-optimal Planning with DDs

- Torralba et al, e.g.
 - A. Torralba’s PhD thesis
 - Many other works

- Numerous contributions
 - (Bidirectional) symbolic search
 - Propagating invariants
 - Abstraction heuristics
 - Won sequential optimal track of IPC-2014

Credit: A. Torralba Thesis Slides
Inference with Decision Diagrams vs. Compilations (d-DNNF, etc.)

Important Distinctions
BDDs in NNF

• Can express BDD as NNF formula
• Can represent NNF diagrammatically

Definitions / Diagrams from “A Knowledge Compilation Map”, Darwiche and Marquis. JAIR 02
d-DNNF

- **Decomposable NNF:** sets of leaf vars of conjuncts are disjoint

- **Deterministic NNF:** formula for disjuncts have disjoint models (conjunction is unsatisfiable)

Definitions / Diagrams from “A Knowledge Compilation Map”, Darwiche and Marquis. JAIR 02
d-DNNF

- D-DNNF used to **compile single formula**
 - d-DNNF does not support efficient binary operations (\lor, \land, \neg)
 - d-DNNF shares some polytime operations with OBDD / ADD
 - (weighted) model counting (CT) – used in many inference tasks
 - \rightarrow Size(d-DNNF) \leq Size(OBDD) so more efficient on d-DNNF

Definitions / Diagrams from *A Knowledge Compilation Map*, Darwiche and Marquis. JAIR 02

Ordered BDD, in previous slides I call this a BDD

<table>
<thead>
<tr>
<th>Notation</th>
<th>Query</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>polytime consistency check</td>
</tr>
<tr>
<td>VA</td>
<td>polytime validity check</td>
</tr>
<tr>
<td>CE</td>
<td>polytime clausal entailment check</td>
</tr>
<tr>
<td>IM</td>
<td>polytime implicant check</td>
</tr>
<tr>
<td>EQ</td>
<td>polytime equivalence check</td>
</tr>
<tr>
<td>SE</td>
<td>polytime sentential entailment check</td>
</tr>
<tr>
<td>CT</td>
<td>polytime model counting</td>
</tr>
<tr>
<td>ME</td>
<td>polytime model enumeration</td>
</tr>
</tbody>
</table>

Table 4: Notations for queries.
Compilations vs Decision Diagrams

• Summary
 – **If** you can compile problem into **single formula** then compilation is likely preferable to DDs
 • provided you only need ops that compilation supports
 – **Not all** compilations efficient for **all binary** operations
 • e.g., all ops needed for progression / regression approaches
 • fixed ordering of DDs help support these operations

• Note: other compilations (e.g., arithmetic circuits)
And that’s a crash course in DDs!

Take-home point:

• If your problem is factored
• and you’re currently using a tabular representation
• and you need binary operations on these tables
→ consider using a DD instead.