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ABSTRACT
Managing uncertainty in preferences is core to creating the next
generation of conversational recommender systems (CRS). How-
ever, an often-overlooked element of conversational interaction is
the role of clarification. Users are notoriously noisy at revealing
their preferences, and a common error is being unnecessarily spe-
cific, e.g., suggesting "chicken fingers" when a restaurant with a
"kids menu" was the intended preference. Correcting such errors
requires reasoning about the level of generality and specificity of
preferences and verifying that the user has expressed the correct
level of generality. To this end, we propose a novel clarification-
based conversational critiquing framework that allows the system
to clarify user preferences as it accepts critiques. To support clarifi-
cation, we propose the use of distributional embeddings that can
capture the specificity and generality of concepts through distribu-
tional coverage while facilitating state-of-the-art embedding-based
recommendation methods. Specifically, we incorporate Distribu-
tional Contrastive Embeddings of critiqueable keyphrases with user
preference embeddings in a Variational Autoencoder recommen-
dation framework that we term DCE-VAE. Our experiments show
that our proposed DCE-VAE is (1) competitive in terms of general
performance in comparison to state-of-the-art recommenders and
(2) supports effective clarification-based critiquing in comparison
to alternative clarification baselines. In summary, this work adds
a new dimension of clarification to enhance the well-known cri-
tiquing framework along with a novel data-driven distributional
embedding for clarification suggestions that significantly improves
the efficacy of user interaction with critiquing-based CRSs.
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1 INTRODUCTION
With the rise of language-based intelligent assistants such as Apple
Siri, and Google Assistant, there is a growing interest in conversa-
tional recommender systems (CRS) [7, 13, 17]. Many recent works
aim to integrate recommendation into conversational interaction
via preference elicitation [30, 33, 40] or critiquing [1, 5, 6, 37] that or-
chestrate conversational interaction while iteratively zeroing in on
the user’s session-based preferences. However, an often overlooked
problem of conversational recommendation is that the clarity of
preference statements often varies due to an observed user tendency
to use overly-specific or overly-generic language [12, 24], which
can significantly impact recommendation performance. Hence, pref-
erence clarification is a critical research direction for improving
the efficacy of conversational recommender system interaction.

Clarifying a user’s intention often requires reasoning about the
level of generality and specificity of the user feedback to verify
if the user has expressed the correct level of generality. Unfortu-
nately, the generality or specificity of natural language feedback is
highly-nuanced and domain-specific. For example, to generalize an
over-specialized preference “chicken fingers” for restaurant recom-
mendation, we need to identify other keyphrases whose distribu-
tional semantics significantly overlaps with the given preference. In
this case, an appropriately generalized keyphrase preference would
be “kids menu”. While many existing works on conversational
recommendation [22, 40, 41] reason about relationships between
keyphrase embeddings, they do so with point embeddings that do
not capture any notion of the distributional extent of keyphrase
meaning required to reason about generality and specificity.

To address this technical gap, we propose a novel clarification-
based conversational recommendation framework that aims to clar-
ify potentially inaccurate critiquing feedback. The framework has
two components: (1) a critiquing-based recommender system that
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supports learning distributions for preferential keyphrase embed-
dings and (2) a query clarification mechanism that provides the
user with an option to choose a suggested clarification during the
user-system interaction. For (1), we contribute a Distributional
Contrastive Embedding extension of the Variational Autoencoder
collaborative filtering recommendation framework [20] that we
term DCE-VAE to support multivariate Gaussian embeddings for
both keyphrases and user preferences.We then leverage DCE-VAE’s
keyphrase embedding distributions to generate a Keyphrase Knowl-
edge Tree (KKT), which automatically extracts domain-specific sub-
sumption relationships among keyphrases in the context of a given
recommendation domain. For (2), we introduce a clarification step
into the conversational critiquing workflow that leverages the KKT
to suggest a potentially improved keyphrase that the user may
optionally accept as a replacement critique.

We conducted various experiments to verify the proposed DCE-
VAE against a state-of-the-art conversational recommender system
(as well as various ablations) on two real datasets. The results
demonstrate two key advantages of this work: (1) Conversational
recommendation with a clarification step usually provides better
performance vs. sans clarification. (2) Our DCE-VAE recommender
model supports critique clarification better than prior work due to
its ability to reason about distributional overlap among keyphrase
embeddings required to reason about specificity and generality.

2 RELATEDWORK
2.1 Notation
Before proceeding, we define the notation used in this paper:
• r: The implicit feedback vector for a user with length of total
number of items.

• 𝑓𝜗 (r): encoding function that maps a user’s rating history r to
the diagonal Gaussian embedding, where mean is denoted as
𝑓
𝜇

𝜗
(r) and variance is denoted as 𝑓 𝜎

𝜗
(r).

• z: : A vector with length d. This is the user latent representation
(user embedding) vector. The latent representation is sampled
from a Gaussian distribution N(𝑓 𝜇

𝜗
(r), 𝑓 𝜎

𝜗
(r)) in VAE.

• k: The keyphrase vector reflecting a user’s keyphrase usage. We
use k𝜋 to represent a permutation of k, where k𝜋 (𝑖) represents
the 𝑖th keyphrase of the permutation.

• 𝑓𝜓 (𝑘𝑖 ): An embedding lookup function for a keyphrase 𝑘𝑖 . Simi-
lar to the rating encoder, the dual outputs of this function (i.e.,
two heads) represent the mean 𝑓 𝜇

𝜓
(𝑘𝑖 ) and variance 𝑓 𝜎

𝜓
(𝑘𝑖 ).

• 𝜙 : a Kernel (IR𝑑 , IR𝑑 ) × (IR𝑑 , IR𝑑 ) −→ IR, measuring the similarity
(distributional overlap) of two diagonal Gaussian distributions.

• ·(𝑡 ) : We use braced superscript to represent the time step in the
conversational environment. For example, a(𝑡 ) denotes user’s
feedback at time step 𝑡 .

2.2 Critiquing-based Recommender Systems
Critiquing [1, 5, 6, 37] is a CRS method that incrementally improves
recommendations online by adapting multi-turn user feedback on
previously recommended items. The workflow of critiquing-based
recommender systems is illustrated in Figure 1(a), where each rec-
ommendation is followed by user critiques, and the system will
recommend more appropriate items based on this feedback. This

step repeats multiple times until the recommendation is accepted
or the stopping criteria are met. Most previous work attempted to
refine recommendations by leveraging users’ feedback directly on
items or known item attributes [6, 34]. However, this approach may
not be effective for language-based critiques that are inherently
noisy and ambiguous compared to ground truth item attributes [4].

More recent efforts focus on keyphrase-based critiquing where
users interact with a large set of descriptive keyphrases mined from
user reviews and embedded in the same latent space as user-item
embeddings. A key question is how keyphrase critique embeddings
should modulate embeddings of user preferences and the recent
literature offers many potential solutions. CE-NCF [37] adds cri-
tiquing capabilities to Neural Collaborative Filtering (NCF) [10].
CE-VAE substituted the NCF backbone with VAE-CF [20] and pro-
posed a novel variational approach to facilitate language-based
modulation of preference embeddings [23]. BK-VAE used Con-
cept Activation Vectors (CAVs) [15] to determine the alignment
of keyphrase embeddings with user embeddings in VAE-CF and
applied a Bayesian update to user beliefs after each critique [41].

2.3 Limitations
While the above works have made significant technical advances
in critiquing-based CRSs, the existing critiquing workflow has two
limitations that detract from its practical usage:
• A fundamental assumption of the existing workflow is that users
can accurately express their preferences during the critiquing
cycle. Unfortunately, users are notoriously noisy at revealing
their preferences in reality [12, 21]. Through a user study, [24]
shows that a significant amount of elicitation is for clarification
purposes — namely achieving the right level of specificity or
generality when interpreting user preference feedback.

• In the current workflow, the system makes a recommendation af-
ter receiving each user feedback. However, there might exist mis-
alignment between the user and system’s understanding of the
critiqued keyphrases [4]. Therefore, making recommendations
without confirming the meaning of the critiqued keyphrases
with users may propagate the misunderstanding into the next
round and needlessly result in additional turns to recover.

3 CLARIFICATION IN CRITIQUING-BASED
CONVERSATIONAL RECOMMENDERS

For a critiquing-based system as shown in Figure 1(a), the user feed-
back at each conversation iteration is presumed to be a keyphrase
preference that is not represented by the current recommendations.
In our clarification-based critiquing workflow shown in Figure 1(b),
the system suggests a clarification keyphrase based on the most re-
cent user critique. If the clarification keyphrase matches the user’s
intention, the user may accept it as the replacement of his/her initial
input (critiqued keyphrase); otherwise, the clarification could be
rejected. The clarification step could also be automatically bypassed
when certain stopping conditions are met, which we describe later.

There are three key questions and associated challenges that we
need to address in order to fulfill the clarification-based critiquing
workflow of Figure 1(b): (1) How can we co-embed user preferences
and keyphrasesmeaningfully such that we can leverage embeddings
of keyphrase feedback to appropriately modulate user preference
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(a) Conventional Critiquing Workflow
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(b) Clarification-based Critiquing Workflow

Figure 1: (a) In the conventional critiquing workflow, the system adjusts its recommendation after each user critique, which
may not be effective when the user’s critique is overly specific or generic. (b) The clarification step introduced in this work
aims to confirm if the user expressed the correct level of generality in his/her critiques and attempts to improve the quality of
preference feedback by proposing suggested alternatives that the user may optionally accept as a replacement critique.
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(b) Lowerbound Approximation

Figure 2: (a) Probabilistic Graphical Model of the likelihood
of recommendations and keyphrases. (b) Model correspond-
ing to our variational lower bound approximation of (a). Col-
ors in (b) show the relaxations given different conditional
models 𝜋 described in Equations 4 and 5.

embeddings and uncertainty? (2) How can we build a keyphrase
hierarchy (tree) that automatically extracts the relative specificity
and generality of critiquable keyphrases in a specific recommen-
dation context? (3) How can we generate reasonable clarification
alternatives to suggest based on users’ critiqued keyphrases?

3.1 Distributional Contrastive Embeddings
While co-embedding user and keyphrase information has been ex-
tensively studied along with various state-of-the-art deep critiquing
approaches [2, 23], these works limit the co-embedded represen-
tations of keyphrases and user preferences into vectors (i.e., point
embeddings), where representation uncertainty is disregarded. The
direct consequence of such simplification is that subsumption of
keyphrases cannot be easily mined from such embeddings. While
mining subsumption might be unnecessary for domain experts
who can accurately express their intention using short phrases, it is
valuable to assist regular users with nuanced and domain-specific
keyphrases for more effective user-system conversation. E.g., it may
be helpful to suggest “spicy” to replace a sequence of overly-specific
keyphrases such as “pepper”, “hot paprika”, “chili”, “piquant”, etc.

Hence, we now present a novel distributional co-embedding
model called Distributional Contrastive Embedding (DCE). Specifi-
cally, we extend the well-known Variational Auto-encoder-based
recommender system (VAE-CF [20]) with additional distributional
embeddings for critiquable keyphrases.

3.1.1 Objective. Given users’ historical interaction records r𝑢 and
the corresponding keyphrases k𝑢 (extracted from item descrip-
tions1), we aim to maximize the observation log likelihood such
that

∑𝑈
𝑢 log𝑝 (r𝑢 , k𝑢 ). The corresponding Probabilistic Graphical

Model is shown in Figure 2(a).
The joint log-likelihood for a single user can be factorized into

two components such that

log𝑝 (r, k) = log𝑝 (r) + log𝑝 (k|r), (1)

where themarginal rating likelihood log𝑝 (r) can bemodeled through
its variational lower-bound (as a Variational Auto-encoder)

log 𝑝 (r) ≥ E𝑞𝜗 (z |r) [log𝑝𝜃 (r|z)]︸                     ︷︷                     ︸
1○ Interaction Prediction

+ 𝛽𝐾𝐿[𝑞𝜗 (z|r) | |𝑝 (z)]︸                   ︷︷                   ︸
2○ Latent Regularization

. (2)

Here, 𝛽 is the hyperparameter to weight the KL term as motivated
in the Beta-VAE [11].

For the conditional term, log 𝑝 (k|r), however, instead of mak-
ing a conditional independence assumption such that log 𝑝 (k|r) =∑
𝑖 log𝑝 (𝑘𝑖 |r), we propose to explicitly model pair-wise correla-

tions among keyphrases. Specifically, by applying the chain rule,
the conditional likelihood 𝑝 (k|r) can be decomposed as

𝑝 (k|r) = 𝑝 (𝑘1 |r)𝑝 (𝑘2 |𝑘1)𝑝 (𝑘3 |𝑘2, 𝑘1) · · · 𝑝 (𝑘𝑁 |𝑘𝑁−1 · · ·𝑘1). (3)

By assuming the probability of observing a keyphrase only depends
on the first keyphrase observed 𝑝 (𝑘𝑖 |𝑘𝑖−1 · · ·𝑘1) = 𝑝 (𝑘𝑖 |𝑘1), we
can obtain the following relaxed expression

𝑝 (k|r) = 𝑝 (𝑘1 |r)𝑝 (𝑘2 |𝑘1)𝑝 (𝑘3 |𝑘1) · · · 𝑝 (𝑘𝑁 |𝑘1). (4)

We note there are multiple relaxation options resulting in an equiv-
alent final objective including a Markov chain conditioning assump-
tion 𝑝 (𝑘𝑖 |𝑘𝑖−1 · · ·𝑘1) = 𝑝 (𝑘𝑖 |𝑘𝑖−1) discussed in Appendix B.

Since the relaxation described above is order-sensitive (as it uses
𝑘1 as an anchor point), optimizing it may result in a biased model.
To address the order sensitivity issue, we alternatively optimize
an expectation among permutations of the orders. Specifically, we
define 𝜋 ∈ Γ as one of the possible permutations for the keyphrases

1The keyphrases could be extracted from informal descriptions of all items the user
interacted with. E.g. other users’ comments could be viewed as informal descriptions.
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Figure 3: Architecture and training objectives of the pro-
posed recommendation model. In addition to the VAE-CF
architecture (and its loss function), we introduce additional
components to explicitly model keyphrase embedding dis-
tributions through contrastive learning.

(e.g., 𝜋 (1) returns the index of the first anchoring keyphrase in the
permuted keyphrase list). The unbiased estimation of 𝑝 (k|r) is

𝑝 (k|r) =
∫
𝜋 ∈Γ

𝑝 (k𝜋 |r)𝑝 (𝜋)𝑑𝜋 = E𝜋∼Γ [𝑝 (k𝜋 |r)]

=
1
|Γ |

∑︁
𝜋 ∈Γ

[
𝑝 (𝑘𝜋 (1) |r)

𝑁∏
𝑖=2

𝑝 (𝑘𝜋 (𝑖) |𝑘𝜋 (1) )
]
,

(5)

where the permutation prior distribution 𝑝 (𝜋) is uniform.
Since the objective is in logarithm form log 𝑝 (k|r), we optimize

its lower bound to avoid computing the log-expectation term. Specif-
ically, the conditional term in our optimization objective is

log𝑝 (k|r) = logE𝜋 [𝑝 (k𝜋 |r)] ≥ E𝜋 [log(𝑝 (k𝜋 |r)]

=
1
|Γ |

∑︁
𝜋 ∈Γ

[log𝑝 (𝑘𝜋 (1) |r)︸                  ︷︷                  ︸
3○ user-keyphrase contrast

+
𝑁∑︁
𝑖=2

log𝑝 (𝑘𝜋 (𝑖) |𝑘𝜋 (1) )︸                      ︷︷                      ︸
4○ keyphrase-keyphrase contrast

] . (6)

3.1.2 Training Strategy. Directly optimizing the conditional proba-
bilities 𝑝 (𝑘𝜋 (1) |r) or 𝑝 (𝑘𝜋 (𝑖) |𝑘𝜋 (1) ) in Equation 6 is barely tractable
since computing the marginal probabilities would need to iterate
over all possible keyphrases, where the number of keyphrases in
the conversational system may up to thousands. E.g.

log𝑝 (𝑘𝜋 (1) |r) = log 𝑝 (𝑘𝜋 (1) , r) − log
∑︁
𝑖

𝑝 (𝑘𝜋 (𝑖) , r)︸                ︷︷                ︸
marginal probability

. (7)

The challenge here is similar to that of training a skip-gram model
in word embedding tasks. In particular, we can view the user rating
r as the target word, whereas keyphrases will correspond to the
context.

In this work, we leverage Noise Contrastive Estimation (NCE [8])
to optimize the conditional probabilities in a similar fashion of latest
word embedding training [9, 18, 26]. Specifically, according to NCE,
maximizing Equation 7 is equivalent (under some assumptions) to
maximizing the following objective function

log𝜙 (𝑘𝜋 (1) , r) −
𝑁 ′∑︁

𝑖′∼𝑈 [1,𝑁 ]
log𝜙 (𝑘𝜋 (𝑖′) , r) (8)

where 𝜙 is a kernel function that estimates the similarity of the two
inputs variable, 𝑁 ′ denotes the total number of negative samples,
and 𝑖 ′ denotes the index of the sample.

The remaining problem is how to define the kernel function.
Note, while the well-known sigmoid-dot-product function

𝜙 (𝑘𝜋 (1) , r) = 𝜎 (𝑓𝜓 (𝑘𝜋 (1) )⊤ 𝑓𝜗 (r)) (9)

is sufficient for vector embedding models, it fails to include the de-
sired representation uncertainty into the computation scope. Here,
encoding (or simple lookup) function 𝑓𝜓 and 𝑓𝜗 are parameter-
ized for optimization, and Sigmoid function 𝜎 limits the similarity
computation into a valid range [0, 1].

To address the aforementioned issue, we leverage the Bhat-
tacharyya Kernel [14]. Concretely, the Bhattacharyya Kernel takes
two multivariate Gaussian distributions (with diagonal covariance)
as inputs and estimate the kernel 𝜙 (𝑘𝜋 (1) , r) as follows∫

𝑥

N
(
𝑥 ; 𝑓 𝜇

𝜓
(𝑘𝜋 (1) ), 𝑓 𝜎𝜓 (𝑘𝜋 (1) )

) 1
2 N

(
𝑥 ; 𝑓 𝜇

𝜗
(r), 𝑓 𝜎

𝜗
(r)

) 1
2
𝑑𝑥, (10)

where the outputs of encoding functions are, now, branched into
mean and variance of the Gaussian distribution, which we call
distributional embeddings. At this point, we can now maximize
𝑝 (𝑘𝜋 (1) |r) with the NCE objective described in Equation 8. The
same kernel setting and NCE training strategy can also apply to
maximizing log 𝑝 (𝑘𝜋 (𝑖) |𝑘𝜋 (1) ). And, to distinguish the two different
NCE objectives, we call the former one user-keyphrase contrast
whereas the later one keyphrase-keyphrase contrast.

Combining Equations (1)-(10), we have our full objective function
with a total of four sub-objectives that are indexed with the circled
numbers in the equations. Figure 2(b) shows the actual objective
we optimize.

3.2 Keyphrase Knowledge Tree
Given the distributional embeddings learned through the previously
described training objective, we are now ready to create a Keyphrase
Knowledge Tree that facilitates user feedback clarification.

We employ a divisive clustering approach to create the knowl-
edge tree. Specifically, with the distributional embeddings for all
critiquable keyphrases

{(
𝑓
𝜇

𝜓
(𝑘𝑖 ), 𝑓 𝜎𝜓 (𝑘𝑖 )

)
|𝑖 ∈ {1 . . . 𝑁 }

}
2, we first

initialize one single cluster and select a keyphrase that has the high-
est distributional similarity with all other keyphrases to represent
the main concept of the root cluster. Formally, the index of the
topical keyphrase is selected with the following rule:

𝑡 root = argmax
𝑖

∑︁
𝑗≠𝑖

𝜙 (𝑘𝑖 , 𝑘 𝑗 ) (11)

where 𝜙 (·, ·) is the Bhattacharyya kernel with 𝑓𝜓 encoding projec-
tion as we described previously.

Next, we apply the elbow method [16] to search the number
of sub-clusters based on the root cluster and use k-means [39] to
partition the data into sub-clusters. Here, the similarity function
used in k-means is also Bhattacharyya kernel 𝜙 (𝑘𝑖 , 𝑘 𝑗 ). We proceed
recursively on each cluster with the above-mentioned steps until
the cluster has one keyphrase or the maximum hierarchy level is
reached.
2Up to this point, keyphrase perturbation 𝜋 is no longer needed (as the model has
been trained) so we will use the default keyphrase order in the following description.
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Figure 4: Hierarchical clustering of keyphrases learned through the proposed distributional embedding model. We show only
three clusters (among many). It is critical to remark that generality in this tree should be viewed from the perspective of how
keyphrases are applied to items in review data (e.g., the “milk” parent node subsumes variations of popular milk tea products).

Since the selected keyphrase shares the most similarity with
other keyphrases in the cluster, the ancestor node keyphrase in
this knowledge tree often has a more general meaning than its
descendant nodes (e.g., “Japanese” should be an ancestor node of
“miso”). Indeed, the topical keyphrase of a cluster usually has a more
significant variance that allows it to overlap with other keyphrases,
which shows the generality of its usage in the domain context.
Figure 4 shows a snippet of the hierarchical keyphrase knowledge
tree constructed using the algorithm discussed above. In the latter
context, we refer to the keyphrase knowledge tree as T.

We remark that the distributional embeddings introduced in this
work support various distribution-based distance metrics and hence
different clustering approaches to build the knowledge tree. We
choose a relatively simple solution in our description to demonstrate
the clarification step and leave the exploration of more sophisticated
clustering approaches for future work.

3.3 Clarification Design
Now, we introduce the clarification step in the critiquing-based
conversational system. A clarification step, by our definition, is
an interactive iteration between user and system. For example,
given a user’s keyphrase input 𝑘 ∈ {𝑘1 · · ·𝑘𝑁 } (as part of critiquing
conversation), the system suggests a potentially better keyphrase
alternative 𝑘 ′ ∈ {𝑘1 · · ·𝑘𝑁 }, and, then, the user takes action 𝑎 ∈
{0, 1} to indicate whether he/she would disagree or agree with the
suggestion. If the user agrees with the proposal, the system will use
𝑘 ′ as the replacement critique and update the user’s representation
accordingly for the next round of the critiquing-based conversation.

3.3.1 Clarification Proposal. The keyphrase alternative 𝑘 ′ sug-
gested by the system should ideally obey the following conditions:
(1) It should not have been used in the previous critiquing conver-

sation iterations. Redundant critiquing does not help users to
obtain better recommendations.

(2) It should be similar to the user’s original input 𝑘 in the context
of the recommendation domain.

(3) It should align with the user’s preferences. A user is unlikely to
critique a keyphrase outside of their historical preferences since
a personalized recommender system would not recommend
such a product at the beginning of the conversation session.

According to the conditions listed above, we propose to produce
a clarification suggestion at time step 𝑡 in a conversation session,

𝑘 ′(𝑡 ) , as a function 𝑓𝜏 of historical user critiques k𝑠 = [𝑘 (1) · ··𝑘 (𝑡−1) ],
historical system clarifications k′𝑠 = [𝑘 ′(1) · ··𝑘 ′(𝑡−1) ], user histori-
cal clarification feedback a𝑠 = [𝑎′(1) · ··𝑎′(𝑡−1) ], and user critiquing
at same the time step 𝑘 (𝑡 ) . Formally,

𝑘 ′(𝑡 ) = 𝑓𝜏 (k𝑠 , k′𝑠 , a𝑠 , 𝑘 (𝑡 ) ) = argmax
𝑘 𝑗 ∈E (𝑡 )

𝜙 (𝑘 𝑗 , r) (12)

and the candidate clarification keyphrase set E (𝑡 ) is

E (𝑡 ) =
{
𝑘 𝑗

����𝑘 𝑗 ∈G(𝑘 (𝑡 ) ;T), 𝑘 𝑗 ∉ set(k𝑠 ⊗ (1−a𝑠 ) + k′𝑠 ⊗ a𝑠 )
}
, (13)

where ⊗ represents the element-wise product and G(𝑘 (𝑡 ) ;T) de-
notes the neighbor nodes of the keyphrase 𝑘 (𝑡 ) in the context of
tree knowledge T. The neighbor nodes in this work are directly
connected parent and child nodes.

3.3.2 Termination Condition. The constant interruption of clari-
fications to the user may be disturbing, especially when the user
does not require assistance. Hence, automatically ceasing the clar-
ification step in a conversation session based on specific criteria
is desired. To this end, we proposed to set a rejection tolerance
threshold 𝛿 as a condition of halting clarifications. For example,
if a user has rejected suggested keyphrase clarifications from the
system for more than 𝛿 consecutive conversational steps such that

𝑡∑︁
𝜏=𝑡−𝛿

a𝑠 (𝑡 ) = 0, (14)

then the system stops the clarification suggestions since the user
either knows about their preference with high confidence or the
system fails the clarification task of revealing the true scope of the
user’s intended preferences.

3.4 User Representation Update
Critiquing-based CRS methods often have different approaches to
update the user latent representation after receiving a critique. For
example, CE-NCF [37] simply zeroes out the critiquing keyphrase
in a binary keyphrase vector and projects it into a user embedding
by training an encoder, whereas CE-VAE [23] takes the average of
the initial user embedding and the critique embedding produced
by the inverse feedback loop as the updated user embedding.

Among various existing approaches, Bayesian uncertainty updat-
ing methods with a closed-form update [25, 41] have drawn recent
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attention as a more theoretically elegant approach compared to the
more heuristic methods of previous work. In this work, we use the
Bayesian update rules proposed in BK-VAE [41] as the backbone
critiquing mechanism in our experiment.

4 EXPERIMENTS
This section evaluates the proposed system by comparing it to var-
ious baseline models on two different benchmark datasets. Specif-
ically, we proceed to evaluate the proposed model to answer the
following questions:
• RQ1: Is the proposedDistributional Contrastive Embedding (DCE)
model competitive in terms of recommendation performance in
comparison to state-of-the-art recommenders?

• RQ2: Does the keyphrase knowledge tree constructed by our
model form concise and coherent hierarchical clusters?

• RQ3: Is the proposed DCE model competitive with state-of-the-
art critiquing methods for conversational recommendation?

• RQ4: Does (personalized) clarification improve conversational
efficiency in the critiquing-based conversational system?

All code to reproduce these results is publicly available on Github.3

4.1 Experiment Settings
4.1.1 Dataset. We evaluate the performance on two publicly avail-
able datasets: The MovieLens10M (MovieLens) for movie recom-
mendations dataset and our own private crawl of the Yelp website
for business recommendations. Both datasets have keyphrase de-
scription assignments for items provided by the users. In addition,
MovieLens contains social tags, typically single words or short
phrases assigned by users to movies. For Yelp, we follow the pre-
processing steps described in [19]. Only the keyphrases that have
been assigned by at least 15 users/items for both datasets are kept.

4.1.2 Baseline. For RQ1, we compareDCE-VAEwith the following
baseline models for the recommendation performance:
• POP:Most popular items: not user-personalized but an intuitive
baseline to test the claims of this paper.

• AutoRec [32]: A neural Autoencoder based recommendation
system with one hidden layer and ReLU activation.

• MF-BPR [31]: Matrix Factorization with Bayesian Personalized
Ranking, which explicitly optimizes pairwise rankings.

• CD-AE [38]:Collaborative Denoising Autoencoder that is specif-
ically optimized for implicit feedback recommendation tasks.

• BK-VAE [41]: Bayesian Keyphrase critiquing VAE, which uses
the off-the-shelf Variational Autoencoder for Collaborative Fil-
tering (VAE-CF) [20] as the backbone of the recommender.

4.2 RQ1: Recommendation Performance
Table 1 shows the pre-critiquing recommendation performance
comparison between the proposed model and the various base-
line models on the Yelp-Toronto and MovieLens dataset. We note
that the DCE-VAE model consistently shows better performance
than the other Auto-encoder-based models. We conjecture that the
keyphrase component of the DCE-VAE likelihood helps regularize
and stabilize the auto-encoder latent representation learning.

3https://github.com/TinaBBB/DCE-Clarification-Conversational-Critiquing

4.3 RQ2: Hierarchical Clustering Performance
The Keyphrase Knowledge Tree (KKT) built up from CDE-VAE is
essentially a hierarchical clustering, where a sub-tree represents a
preference group. Ideally, the keyphrases under a sub-tree should
have a more coherent semantic meaning than the keyphrases from
different sub-trees. In this experiment, we verify the quality of the
learned KKT through a semantic coherence check. Concretely, we
use the pre-trained word embeddings from Glove [29] and the dis-
tances between those embeddings for single word keyphrases (only)
to determine semantic coherence. We can estimate the semantic
coherence of the sub-tree (i.e., intra-cluster distance) by estimating
the average Euclidean distances between Glove embeddings of all
keyphrases in the sub-tree and the root of that sub-tree. Similarly,
we can also estimate the average Euclidean distance between the
Glove embeddings of the sub-tree root and all keyphrases in differ-
ent sub-trees (i.e., inter-cluster distance). If the intra-cluster distance
is smaller than the inter-cluster distance, it empirically demon-
strates that the sub-tree root node is more semantically coherent
with keyphrases in its own sub-tree vs. other sub-trees.

Table 2 shows the intra-cluster and inter-cluster distances for
the KKT for both datasets. While the distance gaps between intra-
cluster and inter-cluster are not significant, we can still conclude
that a sub-tree root node keyphrase is more semantically coher-
ent with its own sub-tree vs. other sub-trees. We remark that the
keyphrase knowledge tree is not optimized to maximize semantic
coherence; it is merely a favorable side effect of a semantically
meaningful distributional embedding.

4.4 RQ3: Critiquing Performance
Now, we progress to evaluate the DCE-VAE in the conversational
recommendation setup. Here, we compare DCE-VAE with the state-
of-the-art critiquing-based framework BK-VAE in a user simulation
setup. In the simulation, we presume users have a desired target
item (a held-out test item) and provide critiques w.r.t. that target.

Consider a binary keyphrase-item matrix indicating that the
reviews for an item have mentioned the keyphrase at least 5 times.
Keyphase vectors (KVs) with dimension #Items correspond to their
row in this matrix; item vectors (IVs) with dimension #Keyphrases
correspond to their column in this matrix. We can then compute
the average item vector (AIV) from the top-10 recommended items.
We define two user types:
• Expert: An expert always knows the best keyphrase to critique
during the conversation to quickly retrieve the desired items. In
our setup, experts always critique a keyphrase whose index has
the largest difference between the target item IV and the AIV.

• Normal: A normal user does not always choose the Expert
critique, but may instead substitute a similar keyphrase. We
simulate the normal user’s critiques by sampling keyphrases
proportional to the cosine distance between the KV for each
keyphrase and the Expert keyphrase KV.

Note that this simulation above does not contain the clarification
step; for now we simply aim to compare critiquing performance.

Figure 5 shows our user simulation results averaged over 5000
independent runs. We measure recommendation quality using Hit-
Rate@{5,10} that measures how often the target item is ranked
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Table 1: Top-N recommendation results of the two datasets. We omit error bars as the 95% confidence interval is in the 4th digit.

Dataset Model R-Precision NDCG MAP@5 MAP@10 MAP@20 Precision@5 Precision@10 Precision@20 Recall@5 Recall@10 Recall@20

POP 0.0335 0.0499 0.0623 0.0551 0.0474 0.0533 0.0451 0.0368 0.0199 0.0327 0.0524
MF-BPR 0.0401 0.0590 0.071 0.0647 0.0578 0.0631 0.0554 0.0477 0.0214 0.037 0.0627

Yelp AutoRec 0.0333 0.0498 0.0629 0.0555 0.0477 0.0537 0.0452 0.0363 0.0199 0.0328 0.0521
CD-AE 0.0336 0.0500 0.0627 0.0554 0.0477 0.0538 0.0452 0.0367 0.0199 0.0327 0.0524
BK-VAE 0.0521 0.0657 0.0640 0.0609 0.0567 0.0615 0.0556 0.0500 0.0247 0.0431 0.0753
DCE-VAE 0.0537 0.0686 0.0711 0.0667 0.0608 0.0664 0.0600 0.0524 0.0261 0.0452 0.0771

POP 0.0810 0.1501 0.6138 0.5782 0.5258 0.5830 0.5206 0.4420 0.0273 0.0483 0.0810
MF-BPR 0.1027 0.1807 0.6480 0.6263 0.5955 0.6264 0.5921 0.5452 0.0301 0.0563 0.1027

MovieLens AutoRec 0.0789 0.1459 0.5954 0.5583 0.5091 0.5591 0.5017 0.4296 0.0262 0.0466 0.0789
CD-AE 0.0798 0.1476 0.6035 0.5652 0.5149 0.5684 0.5056 0.4341 0.0267 0.0469 0.0798
BK-VAE 0.1057 0.1840 0.6418 0.6181 0.5873 0.6189 0.5822 0.5390 0.0308 0.0577 0.1057
DCE-VAE 0.1143 0.1982 0.6835 0.6629 0.6340 0.6633 0.6301 0.5863 0.0330 0.0621 0.1139
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Figure 5: Pure critiquing task: HR@{5, 10} comparison during the conversation session between BK-VAE and DCE-VAE.
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Figure 6: Clarification critiquing task: HR@{5, 10} comparison during the conversation session between BK-VAE and DCE-VAE.

Table 2: Intra- and Extra-cluster distance measurement.

Domain Intra-cluster Distance Inter-cluster Distance

Yelp-Toronto 5.4471 ± 0.2056 5.7207 ± .1884

MovieLens 5.8283 ± 0.2806 6.1477 ± 0.2664

within the top-k recommendations. Here, for each recommender in-
dividually, we observe that the Expert user outperforms the Normal
user as expected. But more importantly, we observe for both Expert
and Normal users that the DCE-VAE consistently outperforms the
BK-VAE over all steps of conversational recommendation. This sug-
gests that DCE-VAE provides better overall critiquing performance
through its use of distributional embeddings in comparison to the
previous state-of-the-art BK-VAE.

4.5 RQ4: Effectiveness of Clarification
In Sections 3.2 and 3.3, we described how we propose critique
clarification keyphrases to the user through a Keyphrase Knowledge
Tree (KKT) T. Here, we add a clarification step to each round of
critiquing and propose three different methods (two baselines plus
one using the KKT) for selecting the system suggested clarification:

• Random: As an uninformed baseline, the system ignores the
user’s originally critiqued keyphrase and proposes a random
keyphrase as its clarification suggestion.

• Nearest Neighbor (NN): The system selects a keyphrase whose
KV representation is the closest in cosine distance to that of the
user’s critiqued keyphrase as its clarification suggestion.

• Tree: The proposed KKT-based clarification suggestion as de-
fined in Section 3.3.

Here we focus on only Normal users with noisy critiques for whom
clarification may help. In simulation, we assume a user accepts a
clarification if it is consistent with the KV for the target item. From
Figure 6, we observe the following:
(1) DCE-Tree outperforms BK-random and BK-NN consistently

for both datasets with a remarkable performance margin.
(2) For the ml10 dataset, the BK-random model has better per-

formance than BK-NN, indicating that many NN clarification
proposals may be highly suboptimal.

Overall, we see that the KKT, which captures generality and speci-
ficity relationships among keyphrases, is better able to correct
mispecifications of the user’s critiques (especially leveraging the
user’s preference distribution as well) in comparison to NN that
can only find semantically related keyphrases.
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Figure 7: Clarification Performance: HR@{5, 10} comparison during the conversation session between pure critiquing using
DCE-VAE and clarification-based critiquing.

Table 3: User study examples of the clarification-based critiquing using Yelp andMovieLens datasets. The numbers in parentheses
next to items indicate the initial recommendation ranking.

Dataset Step 𝑡 Target Item Top 3 Recommended Item Information of Recommendations Critiqued Polarity Clarified User
Keyphrase Keyphrase Acceptance

0 Wooffles & Cream (1) Gyubee Japanese BBQ (2), Good Catch Boil House (3) bbq, chinese, japanese, oyster, seafood, meat tempura preferred japanese true
Yelp 1 Miku Wooffles & Cream (1), Aoyama Sushi Restaurant (5), SongCook’s (6) japanese, bbq, busy, meat, pork bone soup expensive preferred downtown false

2 Miku (64), Ruelo Patisserie (6), Good Catch Boil House (2) pricey, expensive, japanese, tea, seafood, oyster - - - -

0 Catch Me If You Can (1), American Wedding (2), Shallow Hal (3) romance, true story, crime, fantasy love preferred chick flick true
MovieLens 1 Ghost American Wedding (2), Shallow Hal (3), Catch Me If You Can (1) los angeles, teen, true story, fantasy, crime new york city preferred comedy false

2 American Wedding (2), Shallow Hal (3), Serendipity (9) romance, hilarious, teen - - - -

Personalization vs Non-personalization: We believe the clar-
ification step should be personalized, which motivated us to intro-
duce the keyphrase suggestion rules in Section 3.3.1. In this exper-
iment, we verify if these personalized clarifications would assist
users better than non-personalized clarifications. We remark that
the non-personalized keyphrase proposal function is simply

𝑘 ′(𝑡 ) = 𝑓𝜏 (k𝑠 , k′𝑠 , a𝑠 , 𝑘 (𝑡 ) ) = argmax
𝑘 𝑗 ∈E (𝑡 )

𝜙 (𝑘 𝑗 , 𝑘 (𝑡 ) ), (15)

where we replaced the user’s rating history r with the originally
critiqued keyphrase 𝑘 (𝑡 ) KV (i.e., items mentioning 𝑘 (𝑡 ) ). In addi-
tion, we also included a baseline that does not have clarification
steps to verify that clarification improves performance.

Figure 7 demonstrates the results of the experiment. Based on
the observations, we conclude the following:
(1) Performance of the clarification-enhanced conversation consis-

tently outperforms that of the critiquing-only conversations.
(2) Comparing to a non-personalized approach, performing the

critiquing tasks with personalized clarifications gives better
recommendation performance over multiple interactions. This
observation indicates that the selection of clarification queries
should ideally take into account the user’s preference history.

4.6 Case Study
To anecdotally inspect the behavior of the clarification-based cri-
tiquing conversations, we recorded a conversation session on two
datasets, respectively, as shown in Table 3.

For the Yelp dataset, we demonstrate the workflow for a particu-
lar sampled user whose targeted item is Miku. After receiving the
initial recommendations, the user provides a positive preference
on “tempura” and accepts the system’s suggestion of the broader
concept of “Japanese” as it matches their preference scope. At the
second round, The user then rejects the clarification suggestion of
“downtown” when they express a positive preference on expensive
restaurants. With these two rounds of clarification-based critiquing,
the targeted item becomes the top-recommended item.

Turning the attention to the MovieLens dataset, the target item
for the sampled user is Ghost, and they accept the clarification
keyphrase of “chick flick” when they indicate a positive preference
towards "love”. The system suggestion shows that the proposed
model not only simply provides more general concepts as clarifica-
tion suggestions but also more specific ones by incorporating the
user’s preference scope (distributional embedding). In the second
round, the system relates the user’s critique of “new york city” with
“comedy” (many movies set in “new york city” are comedies) and
suggests the latter for substitution. Although the target item does
not pop into the top-3 list, we can see that the change in top recom-
mendation items is minimal, suggesting that the user’s preference
scope is generally vague and more interactions are needed to nar-
row the scope of the user preferences. It is important to remark
that data quality and sparsity issues that occur with human review
data may also be limiting performance in this case.

5 CONCLUSION
We presented a novel methodology for clarification in critiquing-
based conversational recommender systems. To support clarifi-
cation query selection, we proposed a Distributional Contrastive
Embedding variant of the Variational Auto-encoder-based recom-
mendation model, called DCE-VAE. DCE-VAE learns to distribution-
ally co-embed keyphrase and user preference representations that
permits reasoning about generality and specificity of keyphrase
critiques used for the clarification step as well as beliefs in the user’s
preferences. For conversational recommendations, DCE-VAE can
automatically construct a hierarchical Keyphrase Knowledge Tree
to guide the clarification query selection process. DCE-VAE not
only outperformed baseline models for critiquing-only tasks, but
also for clarification-based critiquing tasks — however, these results
were only in simulation and further user study validation of these
techniques is important future work. Together, our contributions
provide a novel workflow and methodology for clarification-based
critiquing that we hope provides inspiration for future work to im-
prove user interactions with conversational recommender systems.
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Appendix

A HYPER-PARAMETERS AND DATASET
DETAILS

Table 4: Hyper-parameters tuned on the experiments.

name Range Functionality Algorithms affected

ℎ {50, 100, 150, 200} Latent Dimension AutoRec, BPR, CD-AE
BK-VAE, DCE-VAE

𝛼 {1e-4, 5e-4, 1e-3, 5e-3} Learning Rate AutoRec,CD-AE
BK-VAE, DCE-VAE

𝜆 {1e-5, 5e-5 · · · 1e4} L2 Regularization AutoRec, BPR
CD-AE, BK-VAE, DCE-VAE

𝜆1 {0.001, 0.01, · · · 10} Regularization for User-keyphrase NCE loss DCE-VAE
𝛽 {1e-4, 1e-3 · · · 1} KL Regularization BK-VAE, DCE-VAE
𝛿 {0.1, 0.2 · · · 1} Corruption Rate CD-AE, BK-VAE, DCE-VAE
𝜄 {1,2,3,4,5} Negative Samples BPR
𝜍 {0.1, 0.2, · · · 1} Weighted RMSE Regularization BK-VAE, DCE-VAE

Table 5: Summary of datasets.

Dataset # Users # Items # Keyphrases # Ratings Sparsity

MovieLens 8,000 10,677 164 4,777,024 94.41%
Yelp 7,000 4,997 245 203,683 99.42%

B DISCUSSION OF RELAXATION FOR THE
DERIVATION OF CONTRASTIVE LOSS

As mentioned in the work, there are many way of relaxing the the
conditional likelihood 𝑝 (k|r)

𝑝 (k|r) = 𝑝 (𝑘1 |r)𝑝 (𝑘2 |𝑘1)𝑝 (𝑘3 |𝑘2, 𝑘1) · · · 𝑝 (𝑘𝑁 |𝑘𝑁−1 · · ·𝑘1) . (16)

In this section, we provide an alternative relaxation that can reach
the same final objective described in the main paper. By assuming
probability of observing a keyphrase only depends on the pre-
vious observed keyphrases as Markov chain, 𝑝 (𝑘𝑖 |𝑘𝑖−1 · · ·𝑘1) =

𝑝 (𝑘𝑖 |𝑘𝑖−1), we can obtain the following relaxed expression

𝑝 (k|r) = 𝑝 (𝑘1 |r)𝑝 (𝑘2 |𝑘1)𝑝 (𝑘3 |𝑘2) · · · 𝑝 (𝑘𝑁 |𝑘𝑁−1). (17)

Since we run the above relaxation multiple times based on differ-
ent permutations 𝜋 ∈ Γ of keyphrase list k, the overall objective still
converge back to the final objective that we described in Figure 2
and Section 3.1.

C PROBABILISTIC DISTANCES
In this section, we introduce alternative probabilistic distance vari-
ants in addition to the Bhattacharyya kernel used for the training
model. These distance variants measure the distance between two
normal distribution 𝑝 = N(𝜇1, 𝜎2

1 ) and 𝑞 = N(𝜇2, 𝜎2
2 ) . The distance

functions are non-negative, and some of these become zero if two
distributions are identical. The extensions for multivariate Gaussian
distributions with diagonal variances can be derived by summing
over the per-dimension distance.

Table 6: Best hyper-parameter setting for each algorithm.

Domain Algorithm ℎ 𝛼 𝜆 𝜆1 𝛽 Iteration* 𝛿 𝜄 𝜍

BPR 50 - 1e-4 - - 30 - 1 -
CD-AE 50 1e-4 1e-4 - - 300 0.5 - -

Yelp-Toronto BK-VAE 100 1e-2 1e-5 - 0.3 470 0.2 - 0.5
AutoRec 200 1e-4 1e-5 - - 300 0 - -
DCE-VAE 150 1e-2 0 0.01 0.3 250 0.2 - 0.5

BPR 200 - 1e-4 - - 30 - 1 -
CD-AE 50 1e-4 0.1 - - 300 0 - -

MovieLens BK-VAE 150 1e-4 1e-4 - 0.3 250 0 - 1
AutoRec 50 1e-4 0.1 - - 300 0 - -
DCE-VAE 150 1e-4 1e-4 0.1 0.3 210 0 - 1

Kullback-Leibler (KL) divergence is an asymmetric measure
for the difference between two distributions:

𝐾𝐿(𝑝, 𝑞) =
∫

log
𝑝

𝑞
𝑑𝑝

=
1
2
[log

𝜎2
2
𝜎2

1
+
𝜎2

1
𝜎2

2
+ (𝜇1 − 𝜇2)2

𝜎2
2

] .
(18)

KL divergence does not satisfy the triangular inequality, and is
asymmetric (e.g., 𝐾𝐿(𝑝, 𝑞) ≠ 𝐾𝐿(𝑞, 𝑝)). The KL divergence will
explode if 𝑞 has a very small variance. Although existing work
used KL divergence as a distance metric between Gaussian distri-
butions [3, 36], the training objective is different from ours where
asymmetric relationships between words is unknown.

Jensen-Shannon (JS) divergence is the average of the forward
KL and reversed KL divergences. The JS divergence has a division
term by variances 𝜎1𝜎2; it can be numerically unstable when the
variances are very small.

Probability product kernels[14] are the generalized inner
product for two distributions:

𝑃𝑃𝐾 (𝑝, 𝑞) =
∫
𝑧

𝑝 (𝑧)𝜌𝑞(𝑧)𝜌𝑑𝑧, (19)

When 𝜌 = 1, it is called the Expected Likelihood Kernel (ELK),
and when 𝜌 = 1

2 , it is the Bhattacharyya’s affinity [27], or the
Bhattacharyya kernel being used in this work.

Expected likelihood kernel is a special case of PPK when
𝜌 = 1 in Equation 19. The log probability is computed for ELK in
practice as the following:

𝐸𝐿𝐾 (𝑝, 𝑞) = 1
2
[ (𝜇1 − 𝜇2)2

𝜎2
1 + 𝜎2

2
+ log(𝜎2

1 + 𝜎2
2 )] . (20)

This was not used in the paper as the kernel method since ELK
would assign higher rewards to the multivariate Gaussian embed-
ding with smaller variances.

Wasserstein distance is a metric function of two distributions
on a given metric space M. Here we note the 2-Wasserstein distance:

𝑊 (𝑝, 𝑞)2 = (𝜇1 − 𝜇2)2 + 𝜎1 − 𝜎2
2 . (21)

Bhattacharyya KernelWhile using the dot product between
the means of two Gaussian distributions is a perfectly valid mea-
sure of similarity, it does not incorporate any uncertainty or the
covariances and would not provide any benefit from our probabilis-
tic model. The most suitable next choice for a similarity measure
between two Gaussian distributions would be taking the inner prod-
uct between the distributional embeddings themselves. We refer to
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such similarity measure as kernel (𝜙) measures between our em-
bedded user and keyphrase representations from the probabilistic
model.
For a positive-definite reproducing kernel𝜙 : (IR𝑑 , IR𝑑 )×(IR𝑑 , IR𝑑 ) −→
IR, the following expression represents the formulation of the kernel
measurement 𝜙 (𝑃𝑖 , 𝑃 𝑗 ) used by our model between two Gaussian
distributions 𝑃𝑖 and 𝑃 𝑗 :

𝜙 (𝑃𝑖 , 𝑃 𝑗 ) =
∫
𝑥 ∈R𝑑

N(𝑥 ; 𝜇𝑖 , Σ𝑖 )
1
2 N(𝑥 ; 𝜇 𝑗 , Σ 𝑗 )

1
2𝑑𝑥 (22)

The above kernel formulation is called the Bhattacharyya kernel
[14], because it is known as the Bhattacharyya’s measure of affin-
ity between distributions, related to the better known Hellinger’s

distance.

𝐻 (𝑃, 𝑃 ′) = 1
2

∫
(
√︁
𝑃 (𝑥) −

√︁
𝑃 ′(𝑥))2𝑑𝑥 (23)

Note that the Hellinger distance can be seen as a principled sym-
metric approximation of the KL divergence and is a bound on
KL as shown in [35]. In the maximum likelihood setting where
𝜇 = 𝑥 = 1

𝑛

∑𝑛
𝑖=1 𝑥𝑖 , the probability product kernel would reduce to

the traditional Radial Basis Function (RBF) kernel:

𝜙 (𝑥, 𝑥 ′) = 1
4𝜋𝜎2 𝑒𝑥𝑝 (−||𝑥 − 𝑥 ′ | |2/4𝜎2) (24)

Using the Bhattacharyya kernel is mentioned in [28] as a method
to calculate distributions overlap in a statistical manner.
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