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ABSTRACT
Modeling and predicting the popularity of online content is
a significant problem for the practice of information dissem-
ination, advertising, and consumption. Recent work ana-
lyzing massive datasets advances our understanding of pop-
ularity, but one major gap remains: To precisely quantify
the relationship between the popularity of an online item
and the external promotions it receives. This work supplies
the missing link between exogenous inputs from public social
media platforms, such as Twitter, and endogenous responses
within the content platform, such as YouTube. We develop
a novel mathematical model, the Hawkes intensity process,
which can explain the complex popularity history of each
video according to its type of content, network of diffusion,
and sensitivity to promotion. Our model supplies a proto-
typical description of videos, called an endo-exo map. This
map explains popularity as the result of an extrinsic factor
– the amount of promotions from the outside world that the
video receives, acting upon two intrinsic factors – sensitiv-
ity to promotion, and inherent virality. We use this model
to forecast future popularity given promotions on a large
5-months feed of the most-tweeted videos, and found it to
lower the average error by 28.6% from approaches based on
popularity history. Finally, we can identify videos that have
a high potential to become viral, as well as those for which
promotions will have hardly any effect.

1. INTRODUCTION
The popularity of an online cultural item is described by

the amount of attention it receives, and the popularity dy-
namics refers to its evolution over time. Popularity is a crit-
ical measure of information dissemination for content pro-
ducers, and a way to manage information overload for con-
tent consumers. Understanding and predicting popularity
have been active topics in both research and practice, but
many fundamental questions remain open, such as: What
describes the most viral items? What do the popularity dy-
namics of news, music, films look like, and what are their
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differences and similarities? Can we promote an item to
increase its popularity, and how much promotion is needed?

Building upon recent research progress in understanding
popularity, we identify three important questions that are
still open. The first one concerns modeling popularity. One
set of approaches describe popularity dynamics as stylis-
tic prototypes, such as being power-law shapes from either
an exogenous shock or endogenous relaxation [13], a com-
bination of power-law and exponential decay [24], multiple
power-law decays with periodicity [27] or a collection of re-
currence peaks [10]. However, one question remains: How
would popularity evolve under continuous external
influence? Especially, how one can explain complex rise
and fall patterns that do not follow the prescribed proto-
types. The second questions concerns virality. Content and
initial diffusion have both been identified as key factors that
influence popularity. Here content factors include positive
sentiment [2], emotional arousal [5], publishing venue [3],
visibility [6]; and factors of diffusion history include [9] net-
work structure, information about the original poster and
re-sharers, the timing of the early posts. However, describ-
ing viral content in the light of external promotions is still
an open problem, and in particular: Can something go
viral if promoted? The third questions involves predict-
ing future popularity. It is known that the approaches that
use the popularity history [30, 34] produce competitive esti-
mates about future popularity over time. Also, timing fea-
tures have been shown to be more predictable than content,
structure, and user features [9], and prediction without ini-
tial history is generally shown as a hard problem [26]. How-
ever, these recent insights do not answer: How to forecast
future popularity given planned promotions?

In this work, we answer all three questions above, using
a large dataset that connects popularity in one social me-
dia platform – 81.9 million YouTube videos – to discussions
about each of these digital items in an external platform –
in 1.06 billion tweets over a six-month period.

To describe complex popularity dynamics under contin-
uous external influence, we propose a new mathematical
model that reveals an analytical relationship between en-
dogenous and exogenous demand factors, called the Hawkes
Intensity Process (HIP). HIP extends the well-known Hawkes
point-process [19], by taking the expectation over stochas-
tic event histories so as to describe expected event volumes,
rather than a set of event times. Figure 1 illustrates the HIP
model. On the top left is the volume of exogenous promo-
tions over time, which drives the endogenous response de-
termined by the HIP (middle); the output on the right is the
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Figure 1: Linking endogenous and exogenous factors of pop-
ularity using the Hawkes Intensity Process. Top row: The
input are volumes of exogenous promotion or discussions
s(t), that engender endogenous reactions from the online
social networks described by the impulse response function
ξ̂(t) (middle box, defined in Sec 2.5), to generate the total
popularity series ξ(t). Bottom row: The endogenous reac-
tions are self-exciting point processes, widely used in recent
literature [4, 23, 28, 31, 33, 39]. Here each event triggers
subsequent events with memory kernels φ(t). Such point
process models can incorporate individual external stimulus
(show on the left) which in turn lead to a larger number of
events in response (shown on the right). Middle arrow: The
proposed HIP model is a result of taking the expectation
over all stochastic event history of the Hawkes process in
the bottom.

popularity series. The popularity series modeled through the
Hawkes intensity process matches closely with the observed
view count series, even for videos with complex popularity
lifecycles (Section 2).

To answer the second question, on whether or not an item
will go viral if promoted, we derive two new metrics based
on HIP – the endogenous response and exogenous sensitivity.
These two metrics naturally lend to a novel two-dimensional
visualization tool, dubbed the endo-exo map (Section 4).
On this map, one can identify online videos that have high
potential but are not yet popular. In other words, video with
high sensitivity to external promotions and high endogenous
response are expected to go viral if promoted. On the other
hand, one can also identify videos for which promotion is
unlikely to have an effect, such as those scoring very low in
either the endo- or exo- dimension.

Finally, the HIP model can be used to help forecast fu-
ture popularity given (known or planned) promotions. HIP
model parameters are estimated on the first 90 days of each
video’s history, and forecasts are made for the next 30 days.
We evaluate forecasting on a collection of 13K+ most ac-
tively discussed YouTube videos over a six-month period,
and found that estimates made with the HIP lower the aver-
age percentile error by 28.6% from state-of-the-art methods
based on popularity history (Section 5).

The main contributions of this work include:
• The HIP model, a volume based version of the Hawkes

point process. Its essential novelty is to regard popular-
ity as externally-driven, with exogenous events activat-
ing endogenous responses inside the social environment
which may, or may not, amplify the exogenous signal.
• The exogenous sensitivity and the endogenous response,

two new metrics to quantify two distinct aspects of a
video’s inherent tendency to be popular. They are com-

bined in the endo-exo map, a tool used to comparatively
explain popularity and identify potentially viral videos.
• A method to forecast popularity gain after promotion.

Evaluated on a large set of YouTube videos, it signifi-
cantly outperforms approaches using popularity history.
• A new dataset of tweeted videos that links online videos

to their external discussions, available at https://github.
com/andrei-rizoiu/hip-popularity.

2. THE MODEL
We introduce a model for the evolution of online atten-

tion under external influence. We start by discussing the
problem setting of aggregated attention under external pro-
motion (in Sec. 2.1), the key concepts of the Hawkes process
and its use to link the ongoing effect of external stimuli to
the word-of-mouth spread of attention (Sec. 2.2). Next, we
propose HIP, a model to explain the observed popularity his-
tory from daily volumes when the underlying viewing events
are unobserved (Sec. 2.3). Lastly, we introduce two key met-
rics derived from the HIP model, the endogenous response
and exogenous sensitivity, to quantify the viral potential of
a video (Sec. 2.5).

2.1 Problem setting: views under promotion
This paper aims to model the popularity of videos un-

der external promotion. Here popularity is measured in the
number of total views after the video being online for a cer-
tain number of days (e.g. up to 120 days). External pro-
motion is harder to measure, since by definition, it needs to
capture data from other platforms. In this paper, we have
two different views of promotion, due to the data collection
setting described in Sec 3. The first is shares, tracked by
YouTube via the share button under each video that allows
a user to share a link of the video on a selection of pop-
ular social network sites – 13 at the time of this writing.
The second view is tweets, tracked with twitter streaming
API with keyword filters that retrieve tweets that link to a
video. Neither source is complete – with the distributed na-
ture of the Internet, one can see that a complete capture of
all discussions is practically impossible. The shares captures
external promotions from a diverse set of sources, but is far
from complete in any one source. The tweets captures an
almost-complete feed of video promotions in one platform.
In the rest of this paper, both of these sources are collec-
tively referred to as external promotions about a video. In
our evaluations, the results obtained using each source are
presented separately.

2.2 Hawkes process for social events
We model online attention as an exogenously-driven self-

exciting process – each viewing event is triggered either by
a previous event or as a result of external influence. We
assume that viewing events of a YouTube video follow a
Hawkes point process [19], a type of non-homogeneous point
process in which the arrival of an event increases the likeli-
hood of future events. Although variants of point processes
have recently been used to model events in social media, all
existing work focus on learning point process model from
one information source, such retweeting [39, 23], arrival of
citations [33], or endogenous response after an initial exter-
nal shock [13]. To the best of our knowledge, this is the first
work that models the continuous interaction of two sources
– exogenous stimuli and endogenous response.

https://github.com/andrei-rizoiu/hip-popularity
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Figure 2: Explaining popularity dynamics using the Hawkes intensity model. (a) Number of shares (red), observed popularity
history (black dashed) and popularity as explained by the HIP (blue) on two examples videos: a music video bUORBT9iFKc
and a News & Politics video WKJoBeeSWhc. The multi-phased popularity history cannot be explained by current models
such as [13], while the HIP tracks the complex dynamics well. (b) A sliced fitting graph of a music video (Youtube ID

0bR4L0Y94AQ) – using the impulse response ξ̂(t) and exogenous stimuli s(t) to explain observed popularity. Each alternating
gray and white area under the fitted (blue) curve is a slice of endogenous reaction generated by the external influence in a
given day. The left inset zooms-in one of the early months in the video’s evolution, in May 2014. The total event intensity
(blue solid line) is a sum of temporally shifted and scaled versions of ξ̂(t), which tracks the long-term trends in observed
popularity well (dashed line). The period around the first larger exogenous peak is shown magnified so that its corresponding

endogenous response is clearly visible. (right inset) Example of the impulse response ξ̂(t) to one unit of external excitation.
The area under this function, Aξ̂, quantifies the endogenous reaction of a video – it is the total number of views after each
unit of exogenous excitation.

In particular, the arrival rate of viewing events λ(t), a
measure of how likely a viewing event will occur in a in-
finitesimal interval around time t, is determined by two ad-
ditive components in Eq (1). The first component is pro-
portional to a measure of external influence s(t) scaled by
a constant µ. Here s(t) represents the volume of external
discussion (or promotion) over time. The second compo-
nent represents the rate of views triggered by a previous
event i, which occurred at time ti with magnitude mi > 0,
according to a time-decaying triggering kernel φmi(t − ti).
Furthermore, each event ti < t adds to λ(t) independently.
The following equations describe the event rate of such a
marked Hawkes process:

λ(t) = µs(t) +
∑
ti<t

φmi(t− ti) (1)

φm(τ) = κ mβ (τ + c)−(1+θ), τ ∈ R+ (2)

Eq. 2 describes the triggering kernel φ(τ). In this work it is
designed to capture several key quantities influencing popu-
larity. Parameter κ is a scaling factor for video quality. m
describes the relative influence of the user who generated
the event, i.e., mi in Eq. 1 when multiple events are con-
cerned. The user influence exponent β, newly introduced in
this work, accounts for the nonlinearity between observed
metrics of influence (such as the number of followers) and
popularity. This particular form allows both flexibility in
modeling how much effect some observed metric of influ-
ence (e.g. number of followers) has on views (e.g. β = 0
would be no effect), and at the same time computing ex-
pectations over stochastic event history analytically, as will
be shown in the next subsection. Time interval τ = t − ti
is the elapsed time since the parent event at ti; c > 0 is a
cutoff term to keep φm(τ) bounded when τ is small; 1 + θ
(for θ > 0) is the power-law exponent for social memory –
the larger θ is, the sooner the reaction to an event will stop.
We use a power-law kernel for φm(τ), as recent work [28]

observed it to have better performance on social media data
than popular variants like the exponential kernel.

This model is an instance of a marked Hawkes process [19].
An illustration of the Hawkes process with external excita-
tion is in the bottom row of Figure 1. A set of input events of
different magnitudes trigger new events through the kernel
φ(t), which then trigger offspring events themselves, result-
ing in the observed event sequence.

2.3 From Hawkes to HIP
The Hawkes point-process faces a few modeling challenges

in large-scale applications. In terms of data source, what we
often observe is the volume of total attention in a given in-
terval (e.g. daily views on YouTube), rather than the times
and properties of individual actions, due to constraints in
user privacy and data volume. In terms of computation, full
estimation of the Hawkes process is quadratic in the num-
ber of events. Therefore, the full estimation quickly becomes
expensive when the number of events is in the hundred thou-
sands or millions – this is where the most popular videos are
(see Sec 3.2). It is very desirable if one could estimate video
popularity with daily data, which is typically a few dozens
to a few hundred data points.

To this end, we introduce the Hawkes intensity ξ(t), the
expectation of the event rate λ(t) over the event history Ht,
consisting of the set of (random) event times and magnitudes
up to time t.

Theorem 2.1. Hawkes Intensity Process (HIP) Given
a marked Hawkes process described in Equations (1) and (2).
Its event history

Ht = {(t1,m1), . . . , (tn,mn)}tn<t

contains all event times and marks before time t, where each
mark m is drawn iid from a power-law distribution p(m) =
(α−1)m−α. We define event intensity as the expectation of
the event rate over the event history ξ(t) = EHt [λ(t)], then



ξ(t) follows the following self-consistent integral equation:

ξ(t) = µs(t) + C

∫ t

0

ξ(t− τ)(τ + c)−(1+θ)dτ . (3)

Here constant C = κ(α−1)
α−β−1

, and κ and β are as in Eq (2).

Intuitively, this expression of event intensity ξ(t) at time
t is determined by the external stimulus s(t), and a convo-
lution of its own history with a power-law memory kernel
(τ+c)−(1+θ). Theorem 2.1 can be intuitively understood by
breaking down the expectation into several parts. Note µs(t)
is non-random and does not change after expectation. We
compute analytically the expectation over stochastic history,
with a random number of events at random times, by de-
composing EHt into expectations over binary variables dNt,
which indicates whether or not there is an event in a small
interval around time t. This trick discretizes time, and con-
verts the sum over past events in Eq (1) into an integration
seen in Eq (3). Note that the expectation of the user in-
fluence warping term mβ over the power-law distribution of
the mark m has an analytical form, leading to the constant
C. Due to space limitations, we include the full proof in the
online appendix [1].

Here (µ, θ, C, c) are video-dependent parameters estimated
from the popularity history of each video. Note that α > 0
is the power-law exponent of user influence distribution, es-
timated as α = 2.016 from a large Twitter sample using
standard fitting procedures [11]. The two power law expo-
nents α and θ in HIP are distinct in meaning and function,
θ defines memory decay over time, while α is determined by
the user distribution at large.

Compared to existing models of data volume, HIP cap-
tures the ongoing interactions of exogenous and endogenous
effects. Hence it is able to explain complex popularity series
with multiple rises and falls (as shown in Figure 2). Helm-
stetter and Sornette [20] fit the observed event rate after an
initial shock, and Crane and Sornette [13] produce a curve
fit on the long-term approximation of the endogenous de-
cay with no exogenous input. SpikeM [27] models volumes
of events both prior and after a single considered shock,
without accounting for external influences. The work most
related to ours on computing expectations over stochastic
event histories is th work of Farajtabar et al. [16], who mod-
eled co-excitation on Twitter and computed the equivalent
of ξ(t) on multivariate Hawkes process with exponential ker-
nels, which admits a closed-form solution. In contrast, our
work uses a univariate Hawkes process focused on modeling
the impact of Twitter on individual Youtube videos and a
power law kernel. De et al. [14] further develop the work
in [16] by combining a Markov process with a multivariate
Hawkes process for modeling opinion dynamics.

2.4 Estimating HIP from data
We discuss key steps for estimating HIP from observed

series of views and external promotions over time.
Discretizing over time. We observe that behavioral

statistics are aggregated over fixed and discrete intervals –
for YouTube, the public API provides the daily history of
the number of views ξ̄[t] and number of shares s̄[t] for t =
1, . . . , T . Expressing HIP (Eq (3)) over discrete time gives:

ξ[t] = µs[t] + C

t∑
τ=1

ξ[t− τ ](τ + c)−(1+θ) . (4)

Here we use square brackets to denote discrete time, e.g. ξ[t],
and round brackets to denote continuous time, e.g. ξ(t).

Accounting for unobserved external influence. In
addition to the observed external promotions s̄[t] in tweets
or shares, we model the unobserved external excitation as an
initial shock (at t = 0) and a constant background excitation
(for t > 0).

s[t] =
γ

µ
1[t = 0] +

η

µ
1[t > 0] + s̄[t] , (5)

where 1(arg) is the standard impulse function – taking the
value 1 when arg is true and 0 otherwise. In the absence
of a parametric model of generic external influence, the ini-
tial impulse and the constant component require the least
amount of assumptions about how unobserved influence evolves.
Here γ and η are additional parameters estimated from data.
In our experiments, adding estimates for such unobserved in-
fluence components improves the fitting for a large number
of videos.

The loss function For each video, we find an optimal
set of model parameters (µ, θ, C, c) and of unobserved ex-
ternal influence (γ and η). This is done by minimizing the
square error between the observed viewcount series ξ̄[t] and
the model ξ[t], t = 1 : T . The corresponding optimization
problem is as follows:

min
µ,θ,C,c,γ,η

J =
1

2

T∑
t=0

(
ξ[t]− ξ̄[t]

)2
(6)

We use L-BFGS [25] with analytical gradients and random
restarts to minimize this non-linear loss function. Gradient
computation is detailed in the appendix [1].

Three example fits are shown in Figure 2. Visibly, the
event intensity model in Equation 3 links the exogenous
and the endogenous effects of the social system, resulting
in a tight fit between the model and the observed popular-
ity history. For the Brazilian music video bUORBT9iFKc
the memory kernel decays fast (θ = 5.37), and the resulting
intensity series tracks the temporal dynamics of the stimuli
closely. For news video WKJoBeeSWhc, the memory kernel
decays slowly (θ = 0.41), hence the delayed accumulation
of exogenous promotion via the memory kernel results in an
overall rising trend. We can see that only by capturing the
non-obvious joint effects from within and outside a social
network can a model produce both fine-grained short-term
dynamics and accurate long-term trends.

2.5 Properties of the HIP
In this section, we examine the key property of HIP of

being a linear time-invariant system, which leads to two
important metrics for measuring two distinct aspects of a
video’s viral potential – the exogenous sensitivity and the
endogenous response.

Exogenous sensitivity µ. As shown in Eq 3, the total
attention that a video receives consists of two parts: the
input from the exogenous stimuli, and the endogenous re-
sponse corresponding to non-linear effects accumulated through
the integral equation. The scaling parameter µ quantifies a
video’s sensitivity to external stimuli s(t). When µ → 0,
external promotion would have no effect; when µ is large,
each unit of external promotion leads to a large number of
new views.

HIP as an LTI system. We observe an important prop-
erty of the HIP model.



Corollary 2.2. The HIP model, as defined in Eq (4)
and (3), is a linear time-invariant (LTI) system for t > 0.

Being an LTI system [29] is to say that if ξ[t] is the event
intensity function for input s[t], then (for the same video)
the event intensity function for a shifted and scaled version
of the input as[t − t0] is aξ[t − t0] for a > 0, t0 ≥ 0, i.e.,
scaled and shifted by the same amount.

It is easy to see linearity holds by multiplying both sides
of Eq 3 by the same constant. For time invariance, change
of variable and then using the fact that ξ[t] = 0 when t < 0.
A full proof is in the appendix [1].

Impulse response function ξ̂[t]. One important de-
scriptor of an LTI system is the impulse response function,
the response to the unit impulse function 1[t], which takes

the value 1 when t = 0, and 0 otherwise. We define ξ̂[t]
as the impulse response of the HIP model. It follows from
Eq. (4) that ξ̂[t] is the solution to the following self-consistent
equation:

ξ̂[t] = 1[t] + C

T∑
t=0

ξ̂[t− τ ](τ + c)−(1+θ)dτ , (7)

For each video, ξ̂[t] completely characterizes the endoge-
nous response of the HIP model:

Lemma 2.3. Sliced Responses The intensity function
ξ[t] of HIP can be written as the sum of impulse responses,
scaled and shifted by the corresponding external input.

ξ[t] =

T∑
τ=0

s[τ ]ξ̂[t− τ ] (8)

To see that this is true, first notice that external input s[t]
can be expressed as a sum of shifted and scaled impulses.

s[t] =

T∑
τ=0

s[τ ]1[t− τ ] (9)

Combining Eq (7) and (9) will lead to Eq (8). In other words,
the total popularity at time T can be obtained as the sum of
the unfolding through the endogenous reaction, of the exter-
nal stimuli having occurred at times 1, 2, . . . , T −1. Fig 2(b)
illustrates this property using a sliced and stacked popular-
ity graph. The alternating white and gray slices are scaled
(and shifted) versions of the impulse response represented in
the right inset. For each discrete time point t′ corresponds a
slice, scaled by the external stimuli s(t′), which adds to the
slices constructed at previous times t < t′. Adding all these
slices together recovers the overall intensity ξ(t) as in Eq 3
(blue line), which tracks closely the long-term dynamics of
the observed popularity (dashed line). The LTI property
and its related quantities provides the mathematical ground
to define our second important measure.

Endogenous response Aξ̂. We define the total endoge-
nous response generated from a single unit of exogenous ex-
citation, computed as Aξ̂ =

∑∞
t=0 ξ̂[t]. In this work, we

compute Aξ̂ by taking the sum over 10,000 time steps. Aξ̂
is finite when the underlying HIP is so-called sub-critical.
Other HIP-derived quantities, such as scaling parameter C
or memory exponent θ could potentially serve to describe
video virality. We find, however, that despite being related,
the non-linear interactions among HIP parameters render
them inaccurate in explaining popularity compared to Aξ̂.

Detailed discussions on the convergence criteria for Aξ̂, and
visualizations of other parameters are in the appendix [1].
Together with exogenous sensitivity µ, this is the second key
quantity for measuring video virality. They will be used to
compare individual and collections of videos in Sec. 4.

3. THE TWEETED VIDEOS DATASET
A key component in linking the exogenous influence and

the endogenous response is to obtain data for the exogenous
component, preferably both inside and outside the studied
social network. We describe a new dataset across Twitter
and Youtube networks, linked via the unique video ids, in
which the volumes of tweets and Youtube shares serve as
exogenous signals. We then introduce the popularity scale, a
mapping between the number of views (or shares, or tweets)
and the percentile ranking of a video, which will be used for
visualizing popularity and for evaluating popularity forecast.

3.1 Dataset construction
We collect a dataset of tweeted videos by streaming tweets

(via Twitter API) published between 2014-05-29 and 2014-
12-26 which mentions YouTube videos. This yields a large
and diverse set of over 81.9 million videos mentioned in 1.06
billion tweets. We obtain from YouTube their video meta-
data, including upload date, author and video category, as
well as the time series consisting of the daily number of views
and shares. The video categories are a one-level YouTube
classification of videos, example of such categories being Mu-

sic, Gaming or Film & Animation. Along with the daily
number of tweets, we have three attention-related time se-
ries for each video: (views[t], shares[t] and tweets[t]), where
t indexes time with the unit of a day.

In order to study videos with non-trivial popularity and
promotion activities, we construct a subset, denoted as the
Active dataset, by restricting to videos that are still online
and that have their popularity and sharing series at least
120 days long, since the upload and until the crawling date.
Furthermore, we restrict the set of videos to those that re-
ceived at least 100 tweets and 100 shares by the 120th day,
in order to obtain videos twitted and shared enough to esti-
mate the external influence on popularity. We also remove
6 rare categories containing less than 1% videos (and their
corresponding videos). The Active dataset contains 13,738
videos across 14 categories and it is used in both explaining
and forecasting popularity in Sec. 5. Reasons for the dras-
tic dataset reduction from 81M to Active include: videos
uploaded earlier than 2014-05-29 (and hence without a com-
plete tweet history), videos that are no longer online, those
do not make viewcount history public, and the long-tailed
distribution of tweets and shares – more than half of the
videos are tweeted only once. Note that when they exist,
the popularity and the sharing series do not contain miss-
ing data. A profile of the tweeted videos dataset and more
details about its construction are given in the appendix [1].
We use the first 90 days of each videos’ viewing and shar-
ing/tweeting history to estimate the HIP parameters.

3.2 The popularity scale
It is well-known that network measurements such as the

number of views and shares follow a long-tailed distribution.
We quantify video popularity on an explicit popularity per-
centile scale, with 0.0% being the least popular, and 100%
being the most popular. Fig. 3(a) and (b) show the popular-
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Figure 3: The popularity scale of YouTube videos, computed on the Active dataset. The total numbers of shares (a) and
views (b) obtained by each video in the first 60 days after upload are divided into 40 equally spaced bins (i.e. each with 2.5%
of the videos). Boxplots of shares/views in each bin are shown. The 2.5% most popular videos span more than one order of
magnitude for both views and shares. Note that outliers in this bin are not represented, as the most popular videos in the
collection have ∼ 108 views and ∼ 106 shares. (c) Evolution of the views popularity between 30 (y-axis) and 60 (x-axis) days.
Boxplots show where each 2.5% of videos at 60 days came from (in terms of percentile position at 30 days). The outliers are
videos that have improved their popularity significantly.

ity scale as boxplots (in log-scale) over the Active dataset,
after 60 days of video life for shares and views, respectively.
The shape of the scale is similar for both shares and views,
and it reflects their long tail distribution. The only notable
difference is the scale of the y-axis, as videos tend to accumu-
late less shares than views. The popularity scale for tweets
is very similar to the one for shares, and shown in the ap-
pendix [1]. Based on the shares and views popularity scales,
we define two mapping functions St(x), Pt(x) : R+ −→ [0, 1].
Each function takes an argument – the number of shares for
St(x) or the number of views for Pt(x) – and outputs the
percentile value on the corresponding popularity scale con-
structed at time t.

In Fig. 3(c) we explore the change of views popularity
of each video from 30 days (y-axis) to 60 days (x-axis).
Formally, we plot the relation between P30

(∑30
1 ξ̄[t]

)
and

P60

(∑60
1 ξ̄[t]

)
, where ξ̄[t] is the number of views at time t

(here the t-th day). Note that most videos retain a simi-
lar rank (in the boxes along the 45 degree diagonal line), or
have a slight rank decrease as they are overtaken by other
videos (slightly above the diagonal in the plot). No outliers
exist in the upper-left part of the graph, since a video cannot
lose viewcount that it already gained. Most notably, we can
see that videos from any bin can jump to the top popularity
bins between 30 and 60 days of age, such as the outliers for
the few boxes on the far right. This phenomenon elicits two
important questions: how did these videos go viral, and is
this phenomenon related to external promotions?

4. THE ENDO-EXO MAP
Using two quantities defined in Sec 2.5, we construct a

2-dimensional map with endogenous response Aξ̂ as the x-
axis and exogenous sensitivity µ as the y-axis. We call this
plot the endo-exo map. This section presents example uses
of this map for explaining video popularity, and identifying
videos that are not promotable.

Explaining popularity. Intuitively, a video with a large
endogenous response Aξ̂ and a high exogenous sensitivity µ
has high potential to become viral. Specifically, each unit of
exogenous excitation will generate µAξ̂ events through the
Hawkes intensity process. On the endo-exo map, videos in

close proximity have similar potentials to become popular
and the differences in their popularity would be due solely
to the difference in exogenous attention. Fig 4(a) illustrates
this phenomena using four videos. Videos v1 and v2 are
very similar in both Aξ̂ and µ; the fact that v1 has 4.61x
more views is explained by it receiving 3.22x more exoge-
nous promotions. On the same map, v4 received a similar
amount of promotion as v1 and their differences in popular-
ity are explained by v4 being less endogenously responsive
(smaller Aξ̂) than v1. Moreover, v3 has a similar endoge-
nous response and sees similar amounts of promotion as v1;
the difference between their popularities is explained by v3

being less exogenously sensitive, with a lower µ. The endo-
exo map provides two distinct aspects from which a video’s
popularity can be analyzed, which are detailed next.

What describes the most popular videos? One
may wonder whether higher popularity can be attributed
to higher exogenous sensitivity, higher endogenous response
or a combination of both. We examine a collection contain-
ing diverse video categories and find that the explanation
varies. We draw on the endo-exo map all the videos that
belong to the same category in the Active dataset and we
visualize them as two-dimensional density plots. Fig. 4 (c)
and (d) compares the plots for the videos in Gaming and Film

& Animation, to that of the top 5% most popular videos in
these two categories, respectively. Visibly, while most pop-
ular videos in Film & Animation are described by higher
exogenous sensitivity (shifting upwards), the most popular
Gaming videos have higher endogenous response – their den-
sity mass is shifted to the right of the endo-exo map. Other
categories such as Comedy or News & Politics (shown in
the appendix [1]) present two dense regions, one for higher
Aξ̂ and one for higher µ. These observations show that the
most popular videos in different categories differ in terms of
the two main factors that drive popularity.

Identifying unpromotable videos. The endo-exo map
can be used to readily identify an interesting class of videos:
the ones which are very difficult to promote. Given that the
quantity µAξ̂ describes the number of views that one unit of
external promotion (via sharing or tweeting) will generate
under the joint influence of endo- and exo- factors – a very
small µAξ̂ (e.g., µAξ̂ < 1e − 3) is a hallmark of a video
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Figure 4: Visualizing video virality and video popularity using the endo-exo map. (a) Four example videos on the endo-exo
map. X-axis Aξ̂: the magnitude of endogenous reaction; Y-axis µ: sensitivity to exogenous stimuli. The radius of each circle

is proportional to the popularity percentile Pt(·) of each video after t = 120 days, with values between 0.0 (least popular)
and 1.0 (most popular). The color represents the amount (percentile) of total shares received, denoted as St(·), with values
between 0.0 (no promotion) and 1.0 (receiving the most promotions). v1 and v2 present similar endogenous reaction and
exogenous sensitivity, being at the same position on the endo-exo map. The difference in their popularity (size) is explained
by the fact that v1 received 3.22 times more promotions than v2. Both v3 and v4 receive similar amounts of promotion (color)
as v1, but they achieve lower popularity (smaller size) due to their less privileged position on the endo-exo map: v3 is less
sensitive to external stimuli than v1 and v2, while v4 has a smaller endogenous reaction than v1 and v2. Information about
the four example videos are as follows, with their popularity percentile P120 and shares percentile S120: v1 is a short Gaming

video, YoutubeID 0lTTWeavl1c, P120(634, 370 views) = 85%, S120(351 shares = 65%; v2 is a collection of “ALS ice bucket
challenge” videos, YoutubeID 3hSIh-tbiKE, P120(137, 481) = 40%, S120(109) = 10%; v3 is a funny science video, explaining
types of infinity in math, YoutubeID 23I5GS4JiDg, P120(193, 052) = 60%, S120(356) = 65%; v4 is from a Portuguese youtuber,
YoutubeID 0ndmJzEIcgU, P120(93, 959) = 40%, S120(311) = 60%. (b) A zoomed-out scatter plot of the endo-exo map of
the videos in the People & Blogs category. The shaded portion of this map consists of videos with low values of total
response µAξ̂ < 10−3 and hence dubbed unpromotable videos. Thumbnail of an example video 8DcM1NSpn94 is included,

with µ = 2.88 × 10−15 and Aξ̂ = 1. (c) Density plot for all (left) vs the most popular 5% (right) Film & Animation videos.

(d) Density plot for all (left) vs the most popular 5% (right) Gaming videos. Popular Film and Animation videos tend to
have a higher exogenous sensitivity, while those for Gaming have mainly a higher endogenous response.

being unpromotable. Fig. 4(b) contains a zoomed-out view
of the endo-exo map associated with the category People

& Blogs. We found 63 videos (∼ 3.2%) in this category
to be unpromotable. Overall, 549 (∼ 3.9%) videos in the
Active set are deemed unpromotable. The thumbnail of
one example video (a teenager video blog) is shown. It has
µ = 2.88× 10−15 and Aξ̂ = 1, hence each online promotion
is expected to generate 0 views. In contrast, for video v1 in
Fig. 4(a), each promotion is expected to generate 598 views.

5. FORECASTING POPULARITY GROWTH
Via the endo-exo map, the Hawkes intensity process pre-

scribes a video’s expected popularity dynamics under exter-
nal promotions. This section explores the predictive power
of such a model. We first illustrate the setting for popu-

larity forecasts using video examples, and then present a
quantitative evaluation.

5.1 A video that will go viral
We use HIP to identify videos that are not already popular

but have a high potential to become so. This is similar to the
phenomenon of delayed recognition in science [21]. Note that
this approach is predictive in that we aim to find such poten-
tially viral items before they become popular, rather than
a measurement-driven approach that analyzes viral items in
past history. Video 1PuvXpv0yDM in Fig. 5(a) is such an
example, it received 15,687 views after being online for 90
days. The HIP model deems it to have a high endogenous
response (Aξ̂ = 6.94×1072) and a high exogenous sensitivity
(µ = 119.02). Between days 91 and 120, the video received
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Figure 5: Popularity forecasting using the Hawkes intensity process. (a) Popularity series for video 1PuvXpv0yDM, explaining
a brain disorder. The video receives a total of 36 shares and 15,687 views in the first 90 days (see inset), it is estimated to
have a high exogenous sensitivity and a high endogenous response (µ = 119.02, Aξ̂ = 6.94× 1072). Between day 91 and day
120, this video jumped from a popularity percentile of 5.85% to 94.9%, receiving 229 shares and gaining 2.42 million views.
(b) Forecasting popularity for video 0qMJ zhat E. Black dotted line: viewcounts series from day 1 to 120 after video upload.
Red line: exogenous simuli s(t), also used in parameters estimation. Left of the the gray dashed vertical line at T ≤ 90 days:
time period used for parameters estimation. Blue line: fitted viewcounts for T ≤ 90 days, generated using Eq 3. Magenta line:
viewcount forecast for day 91 to 120. (c) Comparison of average forecasting errors on the Active set. y-axis: Forecasting
errors, calculated as the absolute difference between the popularity percentile at day 120 and that forecasted by each approach.
x-axis, left to right: Hawkes intensity model, using either #shares or #tweets as s(t); multivariate linear regression (MLR),
using only popularity history, or #shares and #tweets, respectively.

an additional 229 shares, more than 6 times the number
of shares during its first 90 days. Consequently, the video
gained 2.42 million views, drastically improving its ranking
on the popularity percentile scale from 5.85% to 94.9%.

5.2 Evaluation of forecast
The HIP model takes as input the exogenous promotion

s[t] to produce estimates of the viewcount ξ[t]. To construct
ξ[t] in the future, s[t] needs to be either estimable or known.
We call this forecasting popularity, as opposed to predict-
ing popularity where no information about future exoge-
nous stimuli is assumed. Forecasting popularity has broad
applications, such as estimating the effect of intended (pro-
motional) interventions, and making decisions about when
to promote.

Evaluating popularity forecast on temporal hold-
out data. We design a protocol to quantitatively evaluate
the predictive power of HIP. We use historical data held-out
over time, thus avoiding the practical difficulty of generat-
ing realistic promotions and responses in a large-scale social
network. Using (known) exogenous promotion s[t], we fore-
cast the popularity

∑120
91 ξ[t] during the evaluation period

(in purple) using Eq (4). Fig. 5(b) illustrates this setting
with an example music video. A vertical line divides the
observation period, day 1 to 90, and the evaluation period,
day 91 to 120. The viewcount and the sharing history in
the observation period is used to fit model parameters and
explain observed popularity (in blue). For this example, the
forecast and the actual views are fairly similar.

Percentile-error metric. We obtain a predicted total
viewcount at the end of evaluation period, i.e,

∑90
1 ξ̄[t] +∑120

91 ξ[t], and we evaluate the performances by comparing

it to the actual total viewcount
∑120

1 ξ̄. Commonly-used
performance error metrics, such as root-mean-square-error
(RMSE) or the normalized RMSE, are skewed by the large
number of outliers in a long-tailed viewcount distribution
and we chose not to use them. Instead, we map the fore-
casted number views to the popularity scale described in
Sec. 3.2, by applying the mapping function P120(x) to nor-
malize the number of views into a metric between 0 and 1.
We then compute the absolute error of the predicted per-
centile. When compared to the error metrics based on the

difference in views (like RMSE), this metric focuses on rank-
ing videos correctly with respect to a large collection and is
as useful as the broad class of learning to rank applications.

Baseline algorithms. The state-of-the-art approach for
popularity prediction uses multivariate linear regression (MLR),
based on the observation that historic viewcounts are pre-
dictive for future viewcounts [30, 34]. We train linear re-
gressors to predict daily viewcounts for each day between
91 and 120, using a 90-dimensional feature corresponding to
the number of views in days 1 to 90. To give the MLR fore-
cast the same amount of information as the HIP model, we
build two enhanced baselines, denoted by MLR (#shares)
and MLR (#tweets), by introducing the exogenous influ-
ence as additional variables, both in the training and in
the prediction. Note that the HIP models for each video
are learned and evaluated independently, all baselines are
trained on Active and we obtain predictions for each video
using cross-validation.

5.3 Forecasting results
Fig. 5(c) summarizes forecasting performance for HIP and

the MLR baselines. The forecasts made using HIP have
lower average error compared to the linear regression with
or without exogenous stimuli (#shares, #tweets). The best
forecast obtained an average percentile error of 4.96% (me-
dian 3%) for HIP (#shares) and 6.94% (median 3.75%) for
the MLR (#shares), corresponding to a 28.6% relative re-
duction of error. These differences are statistically signifi-
cant with paired t-test p < 0.001, and with a medium effect
size according to Cohen’s d [12]. Within the HIP variants,
we found that using the number of shares generates slightly
better forecast than the number of tweets, but the differ-
ences are not statistically significant at p = 0.001 (more de-
tails about effect sizes and statistical tests can be found in
the online appendix [1]). We speculate that the difference in
forecasting performance is due to the nature of the sources of
exogenous excitation: shares capture the promotion behav-
ior via a multitude of environments, whereas tweets count
the volume of promotion in Twitter only.

We also observe that the performance gap doubles when
forecasting popularity on more difficult videos – videos with
a large exogenous shock in the forecasting period, defined
as the mean number plus 100 times the standard devia-



tion of the number of shares during the observed period.
Fig. 5(a) shows an example of such a video. There are 4006
such videos in the Active dataset, for which HIP (#shares)
achieves a mean percentile error of 5.11% (median 3.25%),
whereas MLR (#shares) achieves a mean error of 9.24% (me-
dian 6.5%). A typical situation when HIP misses the fore-
cast is when none or very little external influence is recorded
during the observed period and during which the popularity
is likely to have been driven by unseen exogenous sources.

Lastly, a note about causality: HIP is linear control sys-
tem with feedback loop, it is causal in a linear system sense [29]
in that future tweets cannot change past views, but does not
directly correspond to the causal inference paradigm about
whether a control variable will change a response variable
in the presence of other confounding factors. Nonetheless,
we conducted statistical tests using the well-known Granger
Causality [18] on the shares and view series (details in the
appendix [1]); they do not show consistent results for either
shares influencing views or vice versa.

6. RELATED WORK
Popularity modeling and prediction. Early measure-

ment studies linked popularity with user influence in Twit-
ter [7, 36] and with the speed and spread of information in
social networks [8]. More recently, generative methods, usu-
ally based on point-processes, were introduced for popularity
modeling [13, 15, 38] and prediction [4, 28]. In their seminal
work, Crane and Sornette [13] showed how a Hawkes point-
process can account for popularity bursts and decays. Sub-
sequently, more sophisticated models have been proposed
to model and simulate popularity in microblogs [38] and
videos [15], by accounting for phenomena such as the “rich-
get-richer”phenomenon and social contagion. Shen et al. [33]
employ reinforced Poisson processes, modeling three phe-
nomena: fitness of an item, a temporal relaxation function
and a reinforcement mechanism. Zhao et al. [39] propose
SEISMIC, which employs a double stochastic process, one
accounting for infectiousness and the other one for the ar-
rival time of events. TiDeH [23] is an extension of SEIS-
MIC, which aims at estimating future number of views as a
function of time, instead of just the final total cascade size.
HIP differs from the above applications in two fundamen-
tal ways. First, most of the models [4, 23, 28, 31, 39] deal
with single diffusion cascades, that is the reaction to single
shocks. HIP models popularity as a continuous endogenous-
exogenous intertwining, allowing it to closely fit complex
evolutions. Second, typical point-process based methods re-
quire to observe each individual event during the training
period, whereas HIP models volumes of attention directly.

Modeling volumes of popularity. A number of mod-
els have been proposed to describe the shape and evolution
of the volume of social media activity over time. The semi-
nal meme-tracker [24] system uses a curve with polynomial
increase followed by exponential decay to describe sawtooth-
shaped volume of news mentions. The SpikeM [27] system
uses a fixed memory component, modulated by a periodic
component, however it does not explicitly account for exter-
nal influence. Most recently, Tsytsarau et al. [35] model the
popularity volume as the convolutions two sequences, news
event importance and media response, which are assumed
to have predefined shapes. Yang et al. [37] propose a gen-
erative model to describe sequences that have multiple pro-
gression stages along with algorithms to estimate model pa-

rameters and to segment existing sequences. Being based a
self-excited Hawkes process, HIP simultaneously addresses a
series of shortcomings of the above approaches: it is adapted
to forecast total popularity, it can recover all parameters
from data, and it explains additional, non-stationary varia-
tions from linked data sources of external activities.

Influence estimation and maximization are some-
what related research problems, but distinct from the one
approached in this paper. Influence estimation [17] aims to
learn probabilities of influence between pairs of users, start-
ing from a social graph and a log of actions of its users.
Influence maximization [16, 22, 32] finds the subset of users
who, if convinced to promote a piece of content, would max-
imize its diffusion. The main difference between this line
of work and HIP is that we measure the volume of promo-
tion and use it to forecast popularity, rather than taking
a graph-centric view based on network structure and user
interactions.

7. SUMMARY AND DISCUSSION
This research establishes a novel mathematical model to

systematically link the endogenous response to the exoge-
nous stimuli of a social system. The model developed here
provides a nuanced view of the continued interactions of en-
dogenous and exogenous effects that generate complex and
multi-phased popularity dynamics over time. We validate
the model on the popularity and promotion history of a large
set of YouTube videos. We quantify the endogenous virality
and exogenous sensitivity for each video, and we them to
explain the properties of the most popular videos, as well
as to identify videos that will respond well to promotions
and those that will not. Such detailed analysis is possi-
ble because the aggregated attention and promotion data
are available from YouTube or inferred from public sources
such as Twitter. Note however that HIP does not make
any platform-dependent assumption and that it can function
with any popularity and promotion series generated by ag-
gregated human behavior. We envision that the same kind
of attention dynamics would hold for other content types,
such as webpage views, podcasts, or blogs.

There are a number of simplifying assumptions and limi-
tations of the proposed model, which can become fruitful di-
rections of further investigation. The Hawkes intensity pro-
cess captures popularity dynamics that are reflected only in
the observed external promotion series, and does not capture
other factors such as (daily or weekly) seasonality. What this
model also focuses on is the expected influence over all users
rather than individual influence. Both of these observations
suggest extensions that could incorporate seasonality com-
ponents as well as taking into account individual influences.
Lastly, media items are influenced by a variety of sources
in the open world and there are many sources of online or
offline promotion that are unobserved or difficult to obtain
data from. A well-known example is that gaming videos are
known to be discussed intensively in topic-specific forums.
Tracking and estimating diverse or even unknown sources of
exogenous influence is another open research question.
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