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ABSTRACT
Collaborative filtering (CF) has made it possible to build personal-
ized recommendation models leveraging the collective data of large
user groups, albeit with prescribed models that cannot easily lever-
age the existence of known behavioral models in particular settings.
In this paper, we facilitate the combination of CF with existing be-
havioral models by introducing Bayesian Behavioral Collaborative
Filtering (BBCF). BBCF works by embedding arbitrary (black-box)
probabilistic models of human behavior in a latent variable Bayesian
framework capable of collectively leveraging behavioral models
trained on all users for personalized recommendation. There are
three key advantages of BBCF compared to traditional CF and non-
CF methods: (1) BBCF can leverage highly specialized behavioral
models for specific CF use cases that may outperform existing
generic models used in standard CF, (2) the behavioral models used
in BBCF may offer enhanced intepretability and explainability com-
pared to generic CF methods, and (3) compared to non-CF methods
that would train a behavioral model per specific user and thus may
suffer when individual user data is limited, BBCF leverages the data
of all users thus enabling strong performance across the data avail-
ability spectrum including the near cold-start case. Experimentally,
we compare BBCF to individual and global behavioral models as
well as CF techniques; our evaluation domains span sequential and
non-sequential tasks with a range of behavioral models for individ-
ual users, tasks, or goal-oriented behavior. Our results demonstrate
that BBCF is competitive if not better than existing methods while
still offering the interpretability and explainability benefits intrinsic
to many behavioral models.
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1 INTRODUCTION
Collaborative filtering (CF) methods [8] for personalized recommen-
dation leverage data from multiple users, under the basic assump-
tion that some users share similar behavior (preferences, actions)
and thus one’s behavior may be predicted by leveraging observa-
tions of others’ behaviors. CF methods have become popular in
recent years due to their performance and success in various com-
petitions (e.g., the Netflix Challenge). Typical CF methods can be
split into two basic variants [4]: (a) memory-based methods (e.g,
k-Nearest Neighbor methods [20]) that use similarity functions
between users or items to produce predictions, and (b) model-based
methods (e.g., matrix/tensor factorizers [19] or deep learning meth-
ods [12, 21]) that apply machine-learning techniques to learn latent
factors that best describe the observed data.

While highly successful, one caveat of existing personalized CF
recommenders is that they prescribe their own models of behav-
ior using generic machine learning methodologies such as nearest
neighbors or latent embeddings inherent to matrix/tensor and deep
models. However, in this paper, we ask how one can start with
an individual application-specific behavioral model germane to a
particular recommendation setting and leverage this behavioral
model in a more general CF framework? The answer we provide
comes in the form of Bayesian Behavioral Collaborative Filtering
(BBCF), which works by embedding arbitrary (black-box) proba-
bilistic models of human behavior in a latent variable Bayesian
graphical model framework. Through principles of Bayesian infer-
ence, BBCF learns to recommend for a given user by leveraging a
vote of the prediction of each behavioral model weighted accord-
ing to the posterior probability that it could have generated the
user’s observed behavioral history. Critically for the behavioral
modeling foundations of BBCF, users may explore a large space
with very few overlapping preferences or actions, yet evidence of
common behavioral patterns may still suggest strong similarity for
recommendation purposes.
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BBCF provides three key advantages compared to traditional CF
and non-CF methods: (1) BBCF can leverage highly specialized be-
havioral models for specific use cases that may outperform existing
application-independent models used in standard CF; (2) the behav-
ioral models used in BBCF may offer enhanced intepretability and
explainability compared to generic CF methods (i.e., a recommen-
dation is now a weighted combination of these behavioral models);
and (3) compared to non-CF methods that would train a behavioral
model per specific user and thus may suffer when individual user
data is limited, BBCF leverages the data of all users thus enabling
strong performance across the data availability spectrum including
the near cold-start case.

We evaluate BBCF on a range of datasets covering collabora-
tive content-based movie tagging, adaptive user interface behavior
prediction, navigation choice recommendation, and educational
tutoring, where we demonstrate broad applicability of our method.
Experimentally, we compare BBCF to individual and global behav-
ioral models as well as CF techniques; our evaluation domains span
both sequential and non-sequential tasks with a range of behavioral
models for individual users, tasks, or goal-oriented behavior. Our
overall results demonstrate that BBCF is competitive if not better
than existing state-of-the-art methods. In short, BBCF provides
a highly general collaborative filtering methodology for building
personalized recommender systems from known behavioral models
while enjoying the interpretability and explainability benefits of
these underlying behavioral models.

2 RELATEDWORK
We are not the first to suggest collaborative filtering through in-
ferred behavioral similarity, however we strictly generalize the
range of applicability of existing frameworks. An early proposal
for leveraging behavioral similarity in collaborative filtering was
provided by Personality Diagnosis (PD) [17], but it focused only
on simple Gaussian rating vectors. In this work, we generalize this
approach to arbitrary graphical user models and do not require
common item sets or pre-agreed rating or label meanings. More
recently, the robotics and controls communities have focused on
leveraging multi-user data in intent-aware navigation, gesture, and
other goal-oriented human action prediction models [2, 3, 5, 18].
This work did not identify connections nor applications to collabo-
rative filtering nor compare to such methods as we do in this paper;
further we will show that one can instantiate our framework for
this specific goal-oriented setting as we demonstrate empirically
on the Taxi trajectory prediction task, but our framework is strictly
more general and intended for a broader range of CF applications.

3 BAYESIAN BEHAVIORAL COLLABORATIVE
FILTERING

3.1 General Framework
In this section, we provide a probabilistic derivation of Bayesian
Behavioral Collaborative Filtering (BBCF), where we assume the
existence of a known class of pretrained behavioral models. These
behavioral models, in principle, capture a broad range of models
aimed at tackling a variety of user-oriented data, including but not
limited to individual user behaviors, task-defined behaviors, and
goal-driven behaviors.

We begin with a general modeling framework for BBCF, then
provide a variant for the special case of temporal data. Graphical
models for both formulations of BBCF are given in Figure 1.

Let b ∈ B be a specific behavior label drawn from a discrete set
B. Given the data generated by b denoted as Db = {(xi ,yi )} |Db |

i=1 ,
an individualized behavioral model Mb can be trained with Db
to predict yi given xi . Specifically, we assume that training the
model results in a learned parameter vector θb and that the model
produces predictive distributions p(y |x ,Mb ) = p(y |x ,θb ).

Now, assume we have a collection of behavioral models M =

{Mb }
|B |
b=1. Each behavioral modelMb is trained independently and

has associated parameters θb obtained using Db . Similar to the
framework in [6, 14], we assume we have some historical data Dr
for a user (with unknown behavior) for whom we wish to make
a future prediction. We define a data-dependent weight vector
w(Dr ) = [wb (Dr )] |B |

b=1 ∈ W, where
∑
b wb (Dr ) = 1, and our

prediction,

y∗(x∗;Dr ) =
|B |∑
b=1

wb (Dr )yb (x∗), (1)

which is a convex combination of individual behavioral model
predictions yb (x∗).

But what form should the weights w take1? Under the assump-
tion that a “sufficiently good” model exists in M, we argue that w
is a one-hot binary vector. To elaborate, when r ’s model is in this
collection, Mr ∈ M, under typical losses (e.g., squared loss) and
consistent estimators, the asymptotically optimal weight is a one-
hot binary vector with 1 at the index of r . In the non-limiting case,
we make the basic assumption underlying collaborative filtering
methods: that users are not completely distinct and share similar
behaviors. Specifically, we assume that there exists another model
Ma ∈ M with θa sufficiently close to θ∗r , making it a good proxy
for the true model.

In both cases, there is one “correct” model responsible for gen-
erating the observed data and thus, we limit W to the space of
one-hot binary vectors W = {w ∈ {0, 1} |B | :

∑
t wb = 1} and

place a categorical distribution over w.
Here, the distribution over the averaged prediction y∗(x) is

p(y∗ |x ,w,Dr ,M) =
|B |∑
b=1

wb (Dr )p(y∗ |x ,Mb ), (2)

which we can recognize as a finite mixture model with w acting as
the latent “membership” variable;wb (Dr ) selects the appropriate
modelMb given the observed data Dr . Marginalizing (2) over the
probability of w = [wb ] yields:

p(y∗ |x ,Dr ,M) =
|B |∑
b=1

p(wb = 1|Dr )p(y∗ |x ,Mb )

=

|B |∑
b=1

p(Mb |Dr )p(y∗ |x ,Mb ) (3)

1We omit denoting w’s dependence on Dr to simplify the exposition.



Θb

xi

yib

b = 1,..,B

b = 1,..,B

(a) Nonsequential

Θb

xi

yib

b = 1,..,B

b = 1,..,B

yi-1

(b) Sequential

Figure 1: Graphical representations for the individual
behavior-centric data. For both cases we have B underlying
behavioral patterns each parameterized by specific instan-
tiations θb . (a) The general BBCF model where behavioral
context xi in conjunction with behavioral model b gener-
ates observed behavior yi . (b) The special case of BBCF for
Markovian temporal models where the behavioral context
xi , previous observed behavior yi−1, and behavioral model b
generates current observed behavior yi .

since p(wb = 1|Dr ) = p(Mb |Dr ), and

p(Mb |Dr ) = p(Dr |Mb )p(Mb )/p(Dr )

=

∏
i p(yi |xi ,Mb )p(Mb )∑

b′
∏

i p(yi |xi ,Mb′)p(Mb′)
. (4)

Equation (3) with (4) can be identified as Bayesian Model Averaging
(BMA) applied over a collection of behavioral models.

3.2 General BBCF
As an example of Figure 1(a) for the general case of BBCF, we assume
data originates from a group of users, where each behavioral model
b is defined per user and produces tag yi given item context xi .
Given a new user, we want to find other users with similar tagging
styles. Here, we see that a distribution over latent tagging behavior
model b would be inferred for the new user based on their tagging
history and the tagging predictions of each model b for new context
xi would be averaged according to this distribution to produce tag
prediction yi .

3.3 Sequential BBCF
In the special case of temporal or sequential data provided in Fig-
ure 1(b), we again assume data originates from many users, where
each behavioral model b is defined per user (or task or goal, as
appropriate) and produces observed behavior yi given context xi
and previous observed behavior yi−1. Note that context xi can be
empty. To make this concrete, we consider two examples from our
experiments. For an adaptive user interface model, we define a
behavior b per user task where interface context xi , previous action
yi−1, and task b combine to predict the next interface action yi . For
navigation recommendation, we define a behavior b per navigation
goal where driving context xi , goal b, and previous location yi−1
combine to predict the next recommended location yi .

4 BASELINE MODELS
4.1 Generative Models
Wefirst cover two generative probabilisticmodels for non-sequential
and sequential data respectively that can be incorporated as be-
havioral models for use in BBCF. In conjunction with application-
specific feature representations, these models represent two of
many possible probabilistic behavioral models for use in BBCF.

4.1.1 Naïve Bayes. For non-sequential data where samples xi
are feature vectors containing features xi j , we can use the Naïve
Bayes as our baseline behavioral model used to predict P(yi |xi ) ∝
P(yi )

∏
j P(xi j |yi ,b) for each behavior b.

4.1.2 (Hidden) Markov model. A common approach to time se-
ries modeling for a sequence of observations is to assume that yi is
generated not only from the current behavior b and context xi , but
also from yi−1 generated in the immediately preceding time step.
The modeling of such Markov Models requires the estimation of
a stationary distribution P(yi |yi−1,b,xi ) = P(yi−1 |yi−2,b,xi−1),∀i .
When xi andyi are finite discrete random variables, P(yi |yi−1,b,xi )
may be defined in terms of a well-known transition matrix Tb,xi :
yi−1 × yi → [0, 1].

A Hidden Markov Model (HMM) assumes additional structure
wherein the Markovian transition structure is not directly over
the observable yi , but instead over a latent state variable zi that
generates yi . The HMM requires a transition model over latent
state P(zi |zi−1,b,xi ) along with an additional observation model
P(yi |zi ) representing a generalization of the provided sequential
Markov model.

4.2 Recommendation Baselines
In addition to the previous generative models for BBCF, we also pro-
vide standard baselines for recommendation that will be compared
to in this paper.

4.2.1 Nearest neighbors. k nearest-neighbormethods (kNN) rep-
resent one of the most common types of recommender system [1].
For the extension of kNN methods to sequential data, we transform
sequences into frequency counts between adjacent pairs of states;
for a problem with N states, each sequence is therefore transformed
into an N × N count matrix (or N 2 length vector).

We use two standard distance functions to match observable
behavior: cosine and Euclidean distance. Given the k nearest neigh-
bors, we predict or recommendyi as the majority vote among theyi
predicted by the neighbors with ties broken randomly. The number
of neighbors k is chosen via cross-validation with k ∈ {1, . . . , 10}.

4.2.2 LSTM Recurrent Neural Network. Specifically for sequen-
tial data, Long-Short Term Memory (LSTM) [13] based neural net-
works have gained recent popularity as a strong baseline recom-
mendation model [12]. Our models use a single layer of LSTM cells
with training data composed of sequences of prespecified length.
The network learns to predict the next state by producing the prob-
abilities for all states (via softmax layer). Hyperparameters of the
model (learning rate, number of neurons in LSTM cell, batch size
during training phase, dropout rate) are obtained via 3-fold cross
validation on available data. Once the hyperparameter values are
selected, the final training phase runs for a maximum of 50 epochs



Table 1: Summary of sequential data sets

#samples seq. length
Data train test min max avg

synthetic 13500 1500 13 50 32.0
Taxi 64881 7209 2 48 10.3
UI 89 8 43 572 185.8

KT-SK1 141 15 17 115 36.6
KT-SK2 168 29 16 195 68.4
KT-SK3 116 12 17 96 38.8
KT-SK4 505 56 7 213 50.8

with an early stopping criterion defined on a separate validation
set to prevent overfitting.

5 EXPERIMENTAL DOMAINS
To test the proposed BBCF method against commonly used ap-
proaches, we use four data sets: one synthetic, three sequential
real-world data sets, and one collaborative tagging data set. Table 1
summarizes all sequential data sets.

5.1 Synthetic Sequential Prediction
The rationale for synthetic data construction is to vary the degree of
separation between different behaviors to observe how this affects
BBCF and other recommenders. Synthetic data is constructed by
first specifying several transition models/matrices T k by hand and
the uniform transition matrix TU. We introduce a separation level
λ to indicate distinction between the individual models T k and the
uniformmodelTU as T̄ k = λT k+(1−λ)TU. With λ = 1 all transition
matrices are intact and sufficiently different, while λ = 0 squashes
all transitions to a single uniform model. Varying λ provides some
intermediate level between two extremes. For each λ, we generate
up to N samples for each task T k ending with a total of K ∗ N
samples. We have chosen K = 3 tasks, each containing 4 states and
sampled 5000 points for each task ending with 15k data sequences
in total. The lengths of sequences varied between 5 and 50.

5.2 Taxi Navigation Recommendation
This data set was provided as part of a competition affiliated with
ECML/PKDD in 2015 entitled The Taxi Service Trip Time competi-
tion [16], but we are interested in recommending the next position
given a particular prior travel path of a taxi.

The trajectories of taxi cars are monitored via GPS from the
initial state to their goal state and the locations are given in (lon-
gitude, latitude) pairs over a period of time. In order to simplify
calculations, all sequences have been converted to fall within a grid
of prespecified size.

Unusually long sequences have been removed prior to remov-
ing self-transitions since they heavily dominate the data. For our
experiments, we chose first 100k samples of the training data file,
and a grid map of size 20 × 20, giving us roughly 70k samples.

5.3 Adaptive User Interface Recommendation
The third sequential data set is constructed from logs of an exper-
iment involving an adaptive user interface (UI). The participants

were asked to perform two tasks involving communication network
(of users and emails) while the logger recorded their actions. The
two tasks were set up as follows: (1) identify the source user who
issued a malicious email, and (2) label as many nodes that satisfy
certain conditions. More details about the interface itself are given
in [15]. There are total of 14 actions possible within the interface
and the problem is predicting the next action the user will perform.

The number of available samples in this domain is very low
due to the limited number of human participants observed in this
dataset. For task (1) there are 76 available samples and 13 samples
for task (2). For our experiments we use 4 samples from each task
to form the test set.

5.4 Assistments Tutoring Prediction
Knowledge Tracing (KT) models are designed to capture the student
learning process by inferring latent knowledge states and future
student performance. In this domain, Bayesian knowledge tracing
(BKT) remains one of the most applied models due to its relative per-
formance and interpretability. One downside of the standard BKT
method is the need to train per-user (individual) models when the
interaction data is limited [7]. On the other hand, pooling all avail-
able data in order to train a single (global) model ignores the fact
that each student’s learning characteristics can vary substantially
and that individualized models provide better accuracy [22].

Here, we use Assistments dataset [9] that we further categorize
into four skill sets: Charts & Graphs, Probability & Statistics, Angles
and Fractions, where each skill set consists of several conceptu-
ally related skills. For each skill, we observe a sequence of binary
problem outcomes indicating whether the student answered each
problem correctly. The summary statistics given in Table 1 involve
pooling all users together across their assignments for each chosen
skill set.

5.5 MovieLens Collaborative Tagging
Collaborative tagging (CT) systems (e.g., MovieLens, Flickr) allow
users to “tag” content (e.g., movies, documents, photos) with key-
words, thus providing socially-procured metadata for exploration,
search and retrieval [10]. Often, CT systems provide assistance to
users in the form of recommended tags that can be suggested based
on tagging history and resource content.

We evaluate the non-sequential aspect of our method on the
MovieLens dataset [11], which contains approximately 580k tags
applied by 247k users across 34k movies. Similar to prior studies
(e.g., [19]), we work with a 10-core dataset (movies with at least 10
tags, with users that have tagged at least 10 movies), leaving 46k
tagging events by 1198 users on 1597 movies using 198 tags. To
generate movie content features, we transformed movie synopses
obtained from the IMDB database into normalized 5000-word count
histograms xj ∈ R5000.

6 EXPERIMENTAL RESULTS
In our experiments2, we aim to evaluate the performance of BBCF
under a wide variety of behavioral models on real datasets: one

2Code is available at https://github.com/dusansovilj/umap18_bbcf
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non-sequential classification behavior model (MovieLens Collabo-
rative Tagging), and on the sequential side, one user-based behav-
ioral model (Assistments Tutoring Prediction), one goal-oriented
behavioral model (Taxi Navigation Recommendation), and one task-
oriented behavioral model (Adaptive User Interface Recommenda-
tion). We include an additional sequential behavioral model (Syn-
thetic) to explore how BBCF and other baseline systems perform
as the similarity between different behaviors varies from complete
behavioral overlap to complete independence (since this can be
directly modulated for synthetic data).

For baseline methods, we use (Hidden) Markov model, nearest-
neighbor and Long-Short Term Memory (LSTM) neural nets in the
case of sequential data, and the Naïve Bayes classifier for feature-
based data. We omit the nearest-neighbor and neural network based
models for the non-sequential collaborative tagging case as both
require a common set of items between different users to be tagged,
which does not hold in our experiments (i.e., our objective is to
learn tagging behavior conditioned on document content, not to
recommend specific tags for specific documents).

First, we aim to address two important questions regarding our
approach for both non-sequential and temporal data:

1. How does BBCF compare to non-collaborative filtering base-
lines using per-user trained individual behavioral models
and a single global behavioral model that pools all data?

2. How does BBCF compare to standard recommendation base-
lines?

Outcomes from these first two questions served as guidelines
for the next set of questions targeting the sequential domains only:

3. How well does each method perform in a variable task sepa-
ration scenario?

4. How does the number of samples impact overall perfor-
mance?

5. How does the performance change as prediction horizon
increases?

6.1 Baseline comparisons
6.1.1 Non-sequential (tagging) case. In this experiment, we com-

bine individualized content-based tag recommenders using the
BBCF framework. Our base user content-based classifier is a gener-
ative model, where given resource j with content xj and user-tag
parameters θu = {θu,i }i ∈I , the probability that tag i ∈ I is applied
by user u is given by,

p(yi,u, j |xj ,θu ) =
1
Z
p(xj |yi,u, j ,θu,i )p(yi,u, j )

=
1
Z

K∏
k

p(x j,k |yi,u, j ,θu,i )p(yi,u, j ) (5)

where yi,u, j ∈ {0, 1}, Z = ∑
i, j p(xj |yi,u, j ,θu,i )p(yi,u, j ) is the nor-

malization factor, and we have assumed that the K content features
factorize given the tag (Naïve Bayes assumption). To obtain a rec-
ommendation, we marginalize over the parameters (obtained by
training each user model separately),
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Figure 2: Mean Average Precision (MAP) for the three ap-
proaches: global, individual and BBCF framework onMovie-
Lens data. Global model is trained on full data, while indi-
vidual models are trained per user data set Dr .

p(yi,v, j |xj , {θu }u ) =
∑
u

p(yi,u, j |xj ,θu )p(θu |Dv ) (6)

where Du = {(xj , âi,u, j )Ll=1} is a set of observed tags by the user
u. The user model posterior given a likelihood function ℓ(·) is

p(θu |Dv ) =
1
Z

L∏
l

∑
yi,v, j

ℓ(âi,v, j |yi,v, j )p(yi,v, j |xj ,θu )p(θu ). (7)

In the following, we used a Bernoulli likelihood,

ℓ(ŷi,v, j |yi,u, j , β) =
{
β if ŷi,v, j = yi,v, j
1 − β otherwise

(8)

with observation noise parameter β = 0.3, and multinomial
likelihoods for p(yi,u, j |xj ,θu ).

We conducted 10-fold cross-validation where 80% of the users
were used for training the models and the remaining 20% for testing.
Model performance was measured using mean average precision
(MAP):

MAP =
1
L

L∑
l=1

R∑
r=1

Prec(r )∆Recall(r ) (9)

where r is the cut-off rank, R is the number of recommended tags,
Prec(r ) is the precision at the cut-off r , and ∆Recall(r ) is the change
in recall. For each test user, we measured the MAP for different
proportions of user data to evaluate performance under varying
test data volume conditions.

Figure 2 illustrates the MAP scores achieved by the three models
as varying proportions of user tags from 10-90% were revealed. The
global model was largely unaffected by the additional tags (MAP
scores ∼ 0.27) since the newly observed tags consisted small pro-
portions of the overall data. As expected, the MAP scores increased
as more tags were revealed for both the individual (0.06-0.27) and
BBCF (0.25-0.35) models. The BBCF model clearly outperformed



Table 2: Accuracy of prediction (with 95% confidence intervals in brackets) across four skill categories in Assistments data.

method KT-SK1 KT-SK2 KT-SK3 KT-SK4

BBCF 79.30 (1.82) 72.71 (1.19) 69.06 (1.63) 78.15 (0.66)
HMM global 78.24 (1.37) 67.44 (0.81) 66.42 (1.62) 74.37 (0.48)

HMM individual 74.37 (2.22) 66.95 (1.55) 63.82 (2.44) 74.83 (0.72)
NN(cos) global 70.40 (1.79) 57.26 (1.88) 55.38 (1.94) 65.92 (1.39)

NN(cos) individual 63.26 (1.52) 55.06 (0.76) 50.44 (1.33) 65.45 (0.70)
NN(euc) global 70.12 (2.40) 57.26 (1.88) 57.41 (1.51) 67.62 (1.31)

NN(euc) individual 63.26 (1.52) 55.06 (0.76) 50.44 (1.33) 65.45 (0.70)
LSTM global 88.32 (3.09) 70.32 (4.13) 78.52 (5.11) 79.24 (1.28)

LSTM individual 87.88 (3.75) 69.05 (4.73) 56.76 (8.29) 79.52 (4.07)

the individual model at all proportions, indicating that movie tag-
ging behaviors were not entirely distinct between users. Although
not directly observed here, it is expected that the individual model
would eventually “catch up” to BBCF as more data is provided.

6.1.2 Sequential cases. For the initial testing case, we use Assist-
ments Tutoring data where we performed 10-fold cross validation
with the following scheme: 80% of the users were used to train
individualized models and testing was performed on the remaining
20% of the users. At each test iteration, the models were used to
predict the attempted problem outcome, and after each sequence,
the test user’s model was updated with the observations. To en-
hance performance in the global model setting, the global model
was re-trained with the newly observed test sequence included in
the training set since it is computationally viable to incrementally
retrain a single global model.

Table 2 shows the performance across four extracted skill sets.
The outcome heavily depends on the specific skill category, with
some being easier to predict than others. Overall, the LSTMprovides
the best results (both in global and individualized aspects), while
our BBCF method is close to LSTM performance in two cases (KT-
SK2 and KT-SK3). Compared to other baselines, BBCF is able to
surpass both the Markov model and nearest-neighbor methods.
Another gain over LSTMs is reduced variance as tuning LSTM
hyperparameters is noisy and depends on the quality of available
training data. BBCF also supports explainability and interpretability
regarding how students are similar to each other via their learning
behavior provided as their posterior model weights over b ∈ B.

Given that individualized models are slightly inferior to their
global counterparts for both MovieLens and Assistments data, we
resort to testing only single global model for the rest of the exper-
iments. In addition to accuracy, we also measure performance in
terms of Hit Rate at 2 (HR@2), that is, among the two highest rated
predictions, is there one that is correct. The results are obtained via
10-fold cross-validation procedure.

Table 3 shows the performance of all methods on the remain-
ing sequential data sets with results averaged across complete test
sequences. Overall, the proposed BBCF outperforms the other meth-
ods and in some cases by quite a margin (Synthetic and Taxi data)
which can be attributed to incorporating historical (and behavioral)
information into the approach. In the case of synthetic data, we see
that if “exact” models are in the pool of behavioral models B, BBCF
can easily identify the underlying pattern and provide substantially
better results than other methods. On the other hand, results on

Table 3: Performance measurements (with 95% confidence
intervals in brackets) across three data sets tested over com-
plete sequences. HR@1 is the same as accuracy.

Data method HR@1 HR@2

Synthetic

BBCF 84.10 (4.85) 96.15 (1.49)
HMM 43.93 (10.72) 67.09 (3.53)
NN(cos) 36.64 (3.72) 37.72 (2.18)
NN(euc) 36.71 (3.68) 37.80 (2.15)
LSTM 39.01 (1.71) 70.70 (4.48)

Taxi

BBCF 64.80 (0.03) 85.01 (0.20)
HMM 44.37 (0.02) 72.62 (0.24)
NN(cos) 28.45 (0.03) 45.26 (0.24)
NN(euc) 28.74 (0.04) 44.65 (0.36)
LSTM 47.84 (0.05) 68.98 (0.71)

User Interface

BBCF 52.13 (0.06) 70.59 (0.71)
HMM 46.60 (0.02) 64.80 (0.72)
NN(cos) 20.01 (0.13) 20.01 (0.13)
NN(euc) 36.37 (0.03) 36.37 (0.03)
LSTM 54.22 (0.08) 74.38 (1.00)

Adaptive User Interface indicate low numbers of samples lead to
similar predictions for Markov and BBCF , while the superior per-
formance of neural nets might signify that the tasks in this context
are not easily separated and behavioral patterns are more similar
than for the Taxi domain, which has considerably more goal states.

In both sequential and non-sequential domains, we are able to
increase our prediction accuracy when compared to the baseline
model (for both individualized and global modeling approaches)
and still provide comparable performance to the more advanced
(but less intepretable and explainable) models. Stronger behavioral
generative models may also further reduce the gap.

6.2 Varying conditions for sequential data
For this set of experiments, we measure both accuracy and hit rate
at 2 and report average performance and confidence intervals via
10-fold cross-validation.

For the Markov model, all trajectories are taken into account to
compute the transitionmatrix of probabilitiesT . In order to make all
transitions possible from a particular state s to all its adjacent states
(given the constraints in the domain), a small Laplace smoothing
prior of 0.1 is added to frequency counts. For BBCF , aMarkovmodel
is the individual model, where Mb is constructed on sequences
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Figure 3: Performance (and 95% confidence intervals) of methods under varying levels of separability between three tasks.
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Figure 4: Performance (and 95% confidence intervals) of methods under varying number of samples on the Taxi data.

belonging to behavioral pattern b. For kNN, we use only the first
neighbor (selected via cross-validation for all data sets) and we
also take partial trajectories into account, that is, we introduce new
samples that are shorter versions of original data. In this way, we
ensure that sequences of similar lengths are used for matching
neighbors.

6.2.1 Varying task separability. First, we wish to assess howwell
we are able to distinguish between different behavioral patterns
associated with specific underlying tasks. We use the Synthetic data
where we can easily control the level of separation between tasks
by construction. Figure 3 shows the accuracy of all tested methods
under different separability values. When the tasks are indistin-
guishable, all methods have very similar outcomes which is quite
close to a random guess (given the domain with 4 states), but as the
separation increases, BBCF is able to detect more precisely which
tasks y∗ is responsible for the given trace x∗. In this setting, we are
able to heavily outperform the more complex deep learning based
LSTM baseline since BBCF’s behavioral models are very accurate

as the separability level increases and BBCF can easily identify the
correct behavioral model for a user with high probability.

6.2.2 Varying number of data samples. In order to assess how
fast BBCF can learn to recommend accurately, we vary the number
of available training samples. For this experiment, we use the Taxi
Navigation data set, but limit the domain to the 50 most frequently
visited destinations and ensure that all goals are equally represented
during the training phase. Figure 4 showcases the outcome for all
methods. We see that BBCF is able to outperform other methods
even in the low-sample scenario and the performance increases
with more available data. The Markov model and NN do not benefit
greatly from more data and either remain constant (NN) or slightly
improve (Markov), partially because all necessary information is
already present in the reduced case. The LSTM model greatly ben-
efits from increased training data, but the performance is still far
inferior to BBCF . In this goal-oriented scenario where users do not
necessarily traverse similar paths and where there are only a few
overlapping points, BBCF is able to extract the intended behavior for
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Figure 5: Performance (with 95% confidence intervals) of methods on sequential data given specific sequence length.

new taxi customers by leveraging all encountered behaviors, while
the LSTM appears unable to infer such goal-oriented behavior.

6.2.3 Varying prediction horizon. In our final experiment, Fig-
ure 5 shows recommendation performance with respect to test
sequence length for the Taxi Navigation and Adaptive User In-
terface domains. We see that BBCF is increasingly able to model
the correct posterior weighting over goal states with increasing
sequence length on the Taxi data. This holds for several steps as
we predict the general or initial direction for new traces. However,
the performance (of all methods) drops slightly the longer the se-
quences become. The reason is that reaching the exact destination
of a long test sequence may not be feasible since outlying desti-
nations prevalent in longer sequences might not be present in the
training data. Regardless, BBCF dominates all other methods.

The number of test cases for the Adaptive User Interface domain
is considerably low (only 8) per segment so the variance is high
for nearest-neighbor and LSTM, while Markov and BBCF perform
comparably up to sequence length 20 then diverge. This divergence
indicates that initial data traces up to length 20 (the average se-
quence length is 180) follow the same pattern and only beyond this
point can BBCF identify a clear behavioral task separation.

7 CONCLUSION
We proposed the novel BBCF approach to collaborative filtering of
behavioral models for personalized recommendation and prediction.
This approach led to a convenient and efficient Bayesian model
averaging solution for leveraging existing application-specific be-
havioral models. The BBCF framework is quite general as evidenced
by its application to non-sequential collaborative tagging as well as
sequential tasks with user-level, goal-oriented, and task-oriented be-
havioral models. Our results demonstrate that BBCF is competitive
if not better than existing recommenders including deep learning
models under a large variety of conditions (task separation, horizon
length, and amount of data) while still offering the interpretability
and explainability benefits intrinsic to many behavioral models.
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