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APPENDIX

A. ADDITIONAL EXPERIMENTS

Experiment: Shared Variables (Synthetic)

This experiment is designed to investigate the effect of the
number of shared variables. Since real-world datasets with
a large number of shared variables are largely unavailable,
1, 000, 000 rows of synthetic data are generated using the
Bayesian network shown in Fig. 1, with 6 random variables,
and the following projection onto two local relations: (1) A,
B, C, D, E and (2) B, C, D, E, F. To reduce the number of
shared variables in experiments, we simply remove B, C, D,
E to achieve the desired amount of sharing.
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Fig. 1. Bayesian Networks, Experiment 2 (Shared Variables)

We evaluate the effect of removing shared variables in
Fig. 1 by measuring the mean absolute deviation and KL
divergence of two cross-table queries, P (F |A = 0) and
P (F |A = 1). In brief, the performance worsens in both
cases as we reduce the number of shared variables from
4 to 1 indicating that more shared variables promote increased
accuracy in LR-BN inference since there are more paths (i.e.,
effectively more bandwidth) for information flow.
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Fig. 2. Mean Absolute Deviation vs. Number of Shared Variables

Experiment: Shared Variable Cardinality (Synthetic)

In this experiment, we use a simple model, A → B → C ,
and 1, 000, 000 rows of synthetic data, to explore the impact
of shared variables’ cardinality. The model is projected onto
two local relations: (1) A, B and (2) B, C. Here, B is the shared
variable with a cardinality of 5. During our experiment,
we reduce B’s cardinality by one at a time and observe
the change in mean absolute deviation to determine the
significance of the shared variable’s cardinality.
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Fig. 3. Bayesian Networks, Experiment 3 (Cardinality)

The model, A → B → C , as shown in Fig. 3., is
used to validate the hypothesis that accuracy will increase
with shared variables’ cardinality. In this model, B has a
an original cardinality of 5, and we collapse its cardinality
by one at a time, until it has a cardinality of 1. The mean
absolute deviation of two cross-table queries, P (C|A = 0)
and P (C|A = 1), is plotted with respect to different
cardinalities in Fig. 4. Unsurprisingly, the mean absolute
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deviation increases with decreasing shared-variable cardi-
nality as suggested by the > 12.5% mean absolute deviation
shown in P (C|A = 1). In short, fewer values in shared
variables limits the information that can be transmitted
through shared variables.
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Fig. 4. Mean Absolute Deviation vs. Shared Variable’s Cardinality

B. SAMPLE BIAS IN LOCAL RELATIONS

We address here the specific case of data integration when
local relations come from different distributions.

Consider a simplified version of the targeted marketing
example discussed in the main article, where a company
would like to target advertising based on consumer edu-
cation level. Let us suppose that there are two datasets to
integrate: a company dataset that relates age range x ∈ X
with consumer purchase behavior y ∈ Y in Relation 1
(RL1

) and a census dataset that relates age range x ∈ X
with education level z ∈ Z in Relation 2 (RL2

). In this
case, the two datasets are drawn from different distributions
and can be seen as projections of a global relation followed
by a randomized subsampling procedure according to the
distribution of each respective dataset.

In this Appendix, we demonstrate that when two lo-
cal binary relations arise from different distributions and
contain a single shared parent attribute in a Bayesian net-
work structure, (a) one only needs to know which of the
distributions represents the true (intended) prior of the
shared parent attribute while learning the Bayesian network
parameters, and very conveniently, (b) the distributions con-
ditioned on this shared parent attribute remain unaffected.
While this is just one case of many possible scenarios, it
does suggest that there are straightforward ways to resolve
issues of sample bias and mismatch in local relations within
the LR-BNLEARN framework proposed in this article.

Problem Setup: Given two local relations, RL1
(X,Y )

and RL2
(X,Z), our goal is to query Y given Z as evidence.

To this end, let us assume we wish to learn the parameters
for the LR-Learnable Bayesian network with (X → Y )
and (X → Z) as shown for BN1 in Fig. 5. However, in
this particular case RL1

and RL2
are drawn from different

distributions and thus have different marginals over X :

• Table 1 (RL1
) : q(x, y)→ q(x)

• Table 2 (RL2
) : p(x, z)→ p(x)

How can we then learn the parameters for the CPDs of the
Bayesian Network in Fig. 5?

Solution: Suppose that we know the true marginal dis-
tribution over ages corresponding to the sample population
we care about is p(x) of Table 2. That is, the sample space of

TABLE 1
Local Relation 1

X Y
1 0
1 0
0 1
0 0
0 1

TABLE 2
Local Relation 2

X Z
0 1
1 0
1 0
1 0
0 1

X

ZY

BN1

Fig. 5. An illustration showing two local relations in Tables 1 and 2 arising
from different distributions. We want to learn the DAG for BN1.

individuals that we are concerned with is the sample space
of individuals from the census — we might consider Table
1 from a company to not be as representative of the general
population distribution as Table 2 should be according to
census policy. As a result, considering q(x, y) to be Table
1’s distribution, we want a modified version of Table 1’s
distribution q̃(x, y) that uses the correct prior p(x) of the
shared variable X from Table 2:

q(x, y) = q(y|x)q(x) under Table 1’s distribution

q̃(x, y) = q(y|x) q̃(x)︸︷︷︸
p(x)

introduce modified q to match Table 1’s p(x)

Clearly, now q̃(x, y) has a marginal distribution over X of
q̃(x) = p(x) as intended while retaining the conditional
q(y|x) from q(x, y):

q̃(x)=
∑
y

q̃(x, y)=
∑
y

q(y|x)p(x) = p(x)
��

��
�*1∑

y

q(y|x) = p(x) .

This scheme suggests the overall graphical model can be
learned using empirical distributions for the following:

• X : p(x)
• X → Y : q(y|x)
• X → Z : p(z|x)

We make two key observations about this above solution:

Claim 1: Given the choice of two marginals p(x) and
q(x), we choose the marginal p(x) correspond-
ing to the table that provides our target sampling
distribution (Table 2 in this case).

Claim 2: We use the empirical q(y|x) and p(z|x) to es-
timate their respective CPDs, which is what we
would have done in the original methodology if
both tables had the same sampling distribution.

Another more mathematical treatment to justify the
above claims would be to estimate q(x) and q(y|x) under
an importance sampling correction that corrects the biased
distribution q(x) to p(x).
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A justification of Claims 1 and 2 is given below based
on this importance sampling approach, but first we briefly
review the importance sampling estimator for completeness.
In general, given a function f(x) where x has distribution p,
importance sampling allows us to estimate the expectation
of f(x) by sampling ∼ from an alternate distribution q:

Ep

[
f(x)

]
= Eq

[
f(x) · p(x)

q(x)

]
≈ 1

n

n∑
i=1

f(xi) · p(xi)
q(xi)

, xi ∼ q(x)

=
1

n

n∑
i=1

f(xi) · wi ,

where wi = p(xi)/q(xi) is the importance sampling weight.
Importance Sampling Justification of Claims 1 and 2:

We wish to learn the maximum likelihood parameters θ for
the Bayesian network edge X → Y given n data samples
〈xi, yi〉 ∼ q(x, y), corrected via importance sampling to
have marginal p(x). Because marginal constraint p(x) states
nothing about p(y|x), we will assume p(y|x) = q(y|x):

argmax
θ

L(θ : D) = argmax
θ

n∏
i=1

p(xi, yi : θ)

= argmax
θ

log

( n∏
i=1

p(xi, yi : θ)

)

= argmax
θ

n∑
i=1

log

(
p(xi, yi : θ)

)
(1)

We can view the main expression of (1) as a Monte Carlo
estimate of the following expectation:

n∑
i=1

log p(xi, yi : θ) = Ep(x,y)

[
log p(x, y : θ)

]
Next, we can apply the importance sampling correction to
reweight samples 〈xi, yi〉 ∼ q(x, y):

Eq(y,x)

[
p(y, x)

q(y, x)
log p(x, y : θ)

]
=

n∑
i=1

p(yi, xi)

q(yi, xi)
log

(
p(xi, yi : θ)

)

=
n∑

i=1

p(yi|xi)p(xi)
q(yi|xi)q(xi)

log

(
p(xi, yi : θ)

)

=
n∑

i=1

p(xi)

q(xi)
log

(
p(xi, yi : θ)

)

=
n∑

i=1

wi log

(
p(xi, yi : θ)

)

=
n∑

i=1

wi log

(
p(xi : θ) · p(yi | xi : θ)

)

=
n∑

i=1

[
wi log

(
p(xi : θ)

)
+ wi log

(
p(yi | xi : θ)

)]

=
n∑

i=1

[
wi log

(
p(xi : θ)

)]
︸ ︷︷ ︸

A

+
n∑

i=1

[
wi log

(
p(yi | xi : θ)

)]
︸ ︷︷ ︸

B
(2)

We see that the likelihood decomposes into two separate
terms, one for estimation of the parameters of the prior
distribution p(x) (A) and the other for the estimation of
parameters of the conditional distribution p(y|x) (B). We
note that because terms A and B involve disjoint parameter
sets, they can be maximized separately.

For Claim 1, we consider maximization of term A from
equation (2) for the prior parameters:

n∑
i=1

[
wi log

(
p(xi : θ)

)]
Without loss of generality, we assume that X is a Bernoulli
random variable taking on two values: xi = 1 with probabil-
ity θX and xi = 0 with probability 1− θX . Below, we let {·}
denote the 0-1 indicator function that takes value 1 when its
argument · is true. We also let wx=j = p(x = j)/q(x = j).

=
n∑

i=1

[
wi log

(
θ
{xi=1}
X · (1− θX){xi=0}

)]

=
n∑

i=1

[
wi{xi = 1} log θX + wi{xi = 0} log(1− θX)

]
= log θX

∑
{i|xi=1}

wx=1 + log(1− θX)
∑

{i|xi=0}

wx=0

Since the log likelihood for the exponential family is con-
cave, we can solve for the maximizing θX by differentiating
w.r.t. θX and setting it equal to 0:

⇒
∑
{i|xi=1} w

x=1

θX
−
∑
{i|xi=0} w

x=0

(1− θX)
= 0

⇒
∑

{i|xi=1}

wx=1(1− θX) =
∑

{i|xi=0}

wx=0θX

θX =

∑
{i|xi=1} w

x=1∑
{i|xi=1} w

x=1 +
∑
{i|xi=0} w

x=0

Letting #[·] denote the count of data i meeting the specified
criteria of its argument ·, recalling the definition of impor-
tance weight wx=j , and recalling that the total number of
samples is n, we complete the derivation:

θX =

p(x=1)
q(x=1)#[xi = 1]

p(x=1)
q(x=1)#[xi = 1] + p(x=0)

q(x=0) )#[xi = 0]

=

p(x=1)
q(x=1)

#[xi=1]
n

p(x=1)
q(x=1)

#[xi=1]
n + p(x=0)

q(x=0)
#[xi=0]

n

=

p(x=1)
q(x=1)q(x = 1)

p(x=1)
q(x=1)q(x = 1) + p(x=0)

q(x=0)q(x = 0)

=
p(x = 1)

p(x = 1) + p(x = 0)︸ ︷︷ ︸
1

= p(x = 1)

Here we arrive at the intuitive result of Claim 1 that the es-
timate of the maximum likelihood parameters for the prior
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over X using data samples 〈xi, yi〉 ∼ q(x, y) matches p(x)
from Table 2 when using importance sampling to correct
the marginal sample bias of Table 1 to match Table 2 on
their shared variable X .

We now proceed to address Claim 2. Without loss of
generality, we assume X and Y are Bernoulli random
variables. Let θY |x0 (θY |x1 ) be the probability of yi = 1 if
conditioned on xi = 0 (xi = 1). Decomposing term B from
equation (2) in a similar manner as for Claim 1, we arrive at
a different result for the maximum likelihood parameters of
the importance sampling corrected conditional:
n∑

i=1

[
wi log

(
p(yi | xi : θ)

)]

=
∑

{i|xi=0}

[
wi log

(
p(yi | xi : θY |x0)

)]
︸ ︷︷ ︸

C

+
∑

{i|xi=1}

[
wi log

(
p(yi | xi : θY |x1)

)]
︸ ︷︷ ︸

D

(3)

Now we consider only term C from (3) since the derivation
for term D is identical and independently maximized:

=
∑

{i|xi=0}

[
wi log

(
θ
{xi=0,yi=1}
Y |x0 (1− θY |x0){xi=0,yi=0}

)]

=
∑

{i|xi=0}

[
wi{xi = 0, yi = 1} log θY |x0+

wi{xi = 0, yi = 0} log(1− θY |x0)
]

= log θY |x0

∑
{i|yi=1,xi=0}

[
wi{xi = 0, yi = 1}

]
+

log(1− θY |x0)
∑

{i|yi=0,xi=0}

[
wi{xi = 0, yi = 0}

]
= log θY |x0

∑
{i|yi=1,xi=0}

[
wi

]
+ log(1− θY |x0)

∑
{i|yi=0,xi=0}

[
wi

]
Differentiating w.r.t. θY |x0 and setting it equal to 0:

⇒
∑
{i|yi=1,xi=0}

[
wi

]
θY |x0

−
∑
{i|yi=0,xi=0}

[
wi

]
(1− θY |x0)

= 0

⇒
∑

{i|yi=1,xi=0}

[
wi

]
(1− θY |x0) =

∑
{i|yi=0,xi=0}

[
wi

]
θY |x0

θY |x0 =

∑
{i|yi=1,xi=0}

[
wi

]∑
{i|yi=1,xi=0}

[
wi

]
+
∑
{i|yi=0,xi=0}

[
wi

]
Finally, since wi only depends on xi, and xi = 0 throughout
term C, we can factor it out of the numerator and denomi-
nator and thus arrive at a fortuitous cancellation:

θY |x0 =
��*

1
wi

∑
{i|yi=1,xi=0}1

��*
1

wi

(∑
{i|yi=1,xi=0}1 +

∑
{i|yi=0,xi=0}1

)
=

#[xi = 0, yi = 1]

#[xi = 0, yi = 1] + #[xi = 0, yi = 0]

Noting that the bottom term is just the total count #[xi = 0]
since Y is a binary variable and both y = 1 and y = 0
are considered, we can easily identify this as an empirical
estimate of q(y = 1|x = 0):

θY |x0 =
#[xi = 0, yi = 1]

#[xi = 0]
= q(y = 1|x = 0)

Here we arrive at the final result of Claim 2 that the estimate
of the maximum likelihood parameters for the edge X → Y
are simply the unweighted empirical conditional probabil-
ities q(y|x) from Table 1 data samples 〈xi, yi〉 ∼ q(x, y)
since the importance weights cancel when conditioning on
X . As for p(z|x) being the correct empirical conditional
distribution for X → Z — this follows trivially from the
fact that Table 2 is already the target sampling distribution
and requires no importance sampling correction.


