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Bayesian Networks for Data Integration
in the Absence of Foreign Keys

Bohan Zhang, Scott Sanner, Mohamed Reda Bouadjenek, and Shagun Gupta

Abstract—In the era of open data, a single data source rarely contains all of the attributes we need for inference in specific
applications. For example, a marketing department may aim to integrate retailer-specific purchase data with separate demographic
data for purposes of targeted advertising – a capability not possible with either dataset alone. In this work, we address two key
desiderata of an automated framework for probabilistic data integration over multiple data sources: (1) we require that each relational
data source share at least one attribute with another relational data source, but we do not require these attributes to be foreign keys
(e.g., attributes such as gender, age, and postal code are not foreign keys because they do not uniquely identify individuals in a data
source) and (2) we require inference to be probabilistic to reflect inherent uncertainty in population-level predictions given the absence
of foreign keys. While some frameworks such as Probabilistic Relational Models (PRMs) address point (2), they do not address point
(1) since they rely on foreign keys to link tables. To achieve both desiderata simultaneously, we develop an automated framework to
construct Bayesian networks for data integration capable of answering any probabilistic query spanning the attributes of multiple
relational data sources. We demonstrate that our framework is able to closely approximate the inference of a global Bayesian network
over a single relation that has been projected onto multiple local relations and further investigate properties of local relations such as
the number of shared attributes and their cardinality to understand how these properties affect the quality of inference.

Index Terms—Bayesian networks, probabilistic data integration
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1 INTRODUCTION

O PEN databases provide unprecedented access to a
range of data, but rarely does a single data source

contain all of the attributes that we need for specific applica-
tions. For example, consider the case of targeted marketing,
where a company has data on purchases, gender, and age
for a set of consumers, but wants to target advertising based
on consumer education level. To do this, we would like to
integrate external survey or market research data containing
education level into our consumer behavior model. Specif-
ically, let us consider the case that we have two datasets to
integrate: one that relates consumer behavior with gender
and age, and one that relates gender and age with education
level. Our ultimate goal is to predict consumer behavior
from education level, which requires reasoning jointly over
both data sources. However, this is not a standard data
integration problem for two key reasons: First, no foreign
keys link the two data sources (i.e., privacy concerns may
require anonymization and gender and age do not uniquely
select an entity in either relation) meaning we cannot simply
perform inference by using a global schema mapping as
done by [1]–[4]. (2) Second, unlike standard data integration,
which focuses on instance-level inference [5], the predictions
will have a high degree of uncertainty and therefore we
would like to assign probabilities to predicted behavior.

In this work, we attack both problems (1) and (2) by
leveraging a novel Bayesian network methodology for prob-
abilistic reasoning over multiple data sources. While Prob-
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abilistic Relational Models (PRMs) [6], [7] have been previ-
ously proposed as a formalism for leveraging Bayesian net-
work inference for probabilistic reasoning over databases,
PRMs never explicitly focused on data integration and fur-
ther, they require foreign keys for inference. In a different
vein, work on Probabilistic Data Integration (PDI) [8]–[10]
also focused on data integration under data uncertainty
— often explicitly represented by probabilities in the data
storage representation. In contrast to PDI, this work does
not assume an explicit representation of probabilistic uncer-
tainty within the database relations nor does it require linked
data. While it is possible to discover foreign key or inclusion
dependencies [11]–[13] that are not explicitly annotated in
the data schema, we focus on the setting where overlapping
relation attributes cannot act as (implicit) foreign keys, but
can instead be characterized through probability distribu-
tions conditioned on other attributes (e.g., gender and age in
our previous example, or even partial foreign keys such as a
postal code that induces a distribution over other attributes).

The critical insight behind our method is that we can
adapt existing Bayesian network structure learning method-
ologies to the case of data integration to build a global
Bayesian network from individual local relations. We note
that if all local relations could be joined into a single global
relation via foreign keys, we could simply apply standard Bayesian
network structure learning methodology. However, when we
are unable to join local relations, we need to instead in-
troduce special constraints on the structure of the Bayesian
network to ensure it can be learned from the individual local
relations. Once learned, this Bayesian network then permits
general probabilistic queries over the attributes of all local
relations. In our marketing example, this allows us to infer
the probability of a person buying an item given that the
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person has a Masters degree, even though the local relations
with these attributes are not linked by any foreign keys.

Using the restricted search and learning methodology for
Bayesian network learning over local relations without for-
eign keys that we contribute in this article, we demonstrate
important properties of our approach: (a) Under conditions
that we elucidate in the paper, it is actually possible to
recover the same Bayesian network structure from local
relations that we would have learned if the original global
relation was explicitly given. (b) Second, in cases that do not
meet the previous conditions, we empirically find that we
are still able to recover Bayesian networks that provide data
models and probabilistic inference comparable to Bayesian
networks learned directly from the global relation.

2 BAYESIAN NETWORK PRELIMINARIES

Before we can proceed to define the Bayesian network
modeling methodology in this paper, we first briefly review
critical Bayesian network concepts that will be used later.
The following content is explained with more detail in [14].
Model Definition: A Bayesian network provides a compact
representation of a probability distribution that exploits
conditional independence of all child nodes in the Bayesian
network conditioned on their parents. Formally, for a set of
discrete random variables X = {X1, . . . , Xn}, a Bayesian
network factorizes their joint distribution as follows:

P (X1, X2, . . . , Xn) =
n∏

i=1

P (Xi|Parents(Xi)), (1)

where Parents of Xi are determined according to a Directed
Acyclic Graph (DAG) over X (see the example in Fig. 3).
Inference: Given this joint distribution, a variety of algo-
rithms permit us to exploit the DAG stucture of the Bayesian
network to efficiently infer any probability P (Q|E) given
query Q ⊆ X and evidence E ⊂ X, where Q ∩ E = ∅.
When all random variables are discrete, Conditional Proba-
bility Distributions (CPDs) P (Xi|Parents(Xi)) can be rep-
resented in a tabular form enumerating all possible combi-
nations of variable assignments with maximum likelihood
parameters estimated from their empirical distribution.
Conditional Independence: Every Bayesian network DAG
implies a set of (conditional) independences among its
variables. As illustrated in Fig. 1, for a Bayesian network
involving three variables A,B and C with A being a shared
variable, there are four possible edge orientations.

Fig. 1. All Orientations of 3 Nodes, with A Being the Shared Variable

Orientation (1), (2) and (3) are called I-equivalent as they
represent the same independence relationship, B ⊥ C|A.
That is, when A is observed, B is independent of C so C’s
influence cannot flow to B, and as such, we say there is
no active trail (dependence) between B and C . When A is

not observed, B 6⊥ C so one can estimate C by using B
as evidence or vice versa, and we say that there is an active
trail between B and C . Orientation (4) represents a different
independence relationship, B 6⊥ C|A, which is also called a
“V-structure”. There exists an active trail between B and C
when A is observed, but the active trail is blocked when A is
not observed. We will need to leverage these properties later
when defining legal Bayesian networks for data integration.
Structure Learning: When learning the Bayesian network
structure from a single relation over variables X, we start
with isolated nodes (no edges) and we greedily select ac-
tions to modify the Bayes net structure to maximize a struc-
ture scoring function (e.g., K2 score [14]) while maintaining
the DAG property. There are three types of legal actions we
can perform when learning the edges E = {E1, E2, ..., Em}:

• Add a directed edge, Ei = Xa → Xb where Ei 6∈ E
and Xa, Xb ∈ X

• Reverse a directed edge, Ei where Ei ∈ E
• Delete a directed edge, Ei where Ei ∈ E

We keep performing actions that yield the highest score
until we can no longer improve the overall score of the struc-
ture. Having the Bayesian network structure, we use max-
imum likelihood estimation as outlined previously to learn
the parameters of the CPD’s. We refer to this well-known
Bayes net structure learning algorithm as BNLEARN [14].

Since learning the structure of a Bayesian network is NP-
hard, we perform Hill Climbing search using K2 score as a
heuristic [14]. While other scores could be used with our
approach, K2 conveniently consists of a log likelihood term
under a Dirichlet prior with unit hyperpriors plus a log
prior over the network structure itself, both of which can
be computed using the same time and information it takes
to compute the structure’s maximum likelihood parameters.

3 FORMAL PROBLEM DEFINITION

In this article, we assume that we have a global relation (table)
that we want to model. However, we are only provided
with projections of that global relation, which we call local
relations (tables). Formally, we use RG(X) to represent the
global relation over attribute set X = {X1, X2, . . . , Xn},
where in a probabilistic sense, we can also think of each Xi

as a random variable. Also, we use RLj
(Xj) for j = 1 . . . k

to represent the jth local relation generated from RG(X) by
projecting to the subset of local attributes Xj ⊆ X. Critically,
we note that while an attribute Xi may be shared between
local relations, in this paper we consider the case where Xi

cannot be considered as a foreign key but rather induces
a distribution over other attributes, e.g., Xi may represent
gender, age, or postal code, but none of these necessarily
independently selects for a unique row in any local relation.

Our objective in this paper is to find the best Bayesian
network structure over attributes X that: (i) can be used
to answer a probabilistic query P (Q|E), (ii) can be exactly
learned from only the data in local relations RLj (Xj) (i.e.,
tables), and (iii) optimizes the K2 score, making it the
best possible Bayesian network structure according to this
metric. The key technical contribution in this article is in
defining a set of constraints regarding dependences (edges)
achieving (i), (ii), and (iii), that we will elucidate shortly
after we discuss a motivating example for our methodology.
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4 METHODOLOGY

Our goal is to define an extension of BNLEARN called
LR-BNLEARN that learns a Bayesian network over the
local relations RLj (Xj) and permits probabilistic inference
P (Q|E) over Q and E containing any attributes from the
local relations. The key idea is that all attributes (random
variables) shared between local relations serve as conduits
that permit information sharing across the LR-BNLEARN’ed
Bayesian network (termed the LR Bayesian network) and
hence should allow for effective inference of any P (Q|E).
Our ultimate objective in this construction is for inference in
the LR Bayesian network to match or closely approximate
inference in the Global Bayesian network that is BNLEARN’ed
from the global relation.1

For example, as illustrated in Fig. 2, assume we have
a global relation RG over variables (relation attributes) A,
B, and C projected onto two local relations RL1

(A,B) and
RL2

(B,C). Assuming our goal is to query C given A as
evidence, we can first learn the Bayesian network with
(B → A) and (B → C) as shown for BN1 in Fig. 2. Then
the query P (C|A) exploits the active trail between C and A.

4.1 Local Relation Constrained Bayes Net Learning
In the example above, we saw that learning Bayesian net-
works over local relations involves a search for DAGs that
link variables (attributes) shared among relations. However,
in this section, we observe that not all legal DAG struc-
tures can be learned from local relations, specifically shared
variables cannot participate in V-structures in the Bayes net.
Below, we formally define and discuss this constraint:

Definition 4.1 LR-Learnable Node: The conditional prob-
ability distribution (CPD) for a Bayesian network node Xi

is LR-learnable if ∃j∈{1 . . . k} s.t. {Xi}∪Parents(Xi) ⊆ Xj

for some local relation RLj
.

In short, because maximum likelihood CPD learning for
a node requires empirical frequency counts of data over all
joint assignments to the node and its parents in the Bayes
net, we require all of these variables to be present in at least
one local relation. LR-Learnability then implies that a shared
variable cannot be at the vertex in a V-structure with parents
from two different local relations. It further implies that two
variables that do not appear in the same local relation cannot
be connected by any edge in the Bayesian network DAG (cf.
BN2 in Fig. 2 and the explanation in the caption).

Definition 4.2 LR-Learnable Model: A Bayes net model is
LR-Learnable if all nodes are LR-learnable.

This provides an easily checked LR-Learnability suffi-
ciency constraint on Bayesian Network DAG learning over
local relations that we use next in defining LR-BNLearn.

4.2 LR-BNLEARN

In order to construct a Bayesian network DAG to answer a
probabilistic query P (Q|E) w.r.t. a local relation decomposi-

1. In practice we do not have access to the global relation since we
would not need to reason over local relations if the global relation was
available. However, our experimental design assumes knowledge of
the global relation in order to compare inference in the global Bayesian
network with the LR-BNLEARN’ed Bayesian network.

TABLE 1
Global Relation

A B C
1 3 2
2 2 3
3 1 1
2 1 1
2 2 2

TABLE 2
Local Relation 1

A B
1 3
2 2
3 1
2 1
2 2

TABLE 3
Local Relation 2

B C
3 2
2 3
1 1
1 1
2 2

B

CA

A C

B

��1 ��2

Fig. 2. An illustration of LR-Learnability for a global relation in Table 1
decomposed into two location relations in Tables 2 and 3. While the
DAG for BN1 (bottom left) is LR-Learnable from the local relations, BN2

(bottom right) is not LR-Learnable because there is no local relation that
allows learning of the CPD for edge A→ C.

tion of a global relation, we need to modify the original BN-
LEARN algorithm from Section 2 (Structure Learning) to take
into account LR-Learnability constraints during DAG struc-
ture search. We call this modified algorithm LR-BNLEARN,
which at each step of the BNLEARN DAG modification pro-
cess (where edges are added, reversed, or deleted) ensures
that modifications are only considered if the resulting DAG
is LR-Learnable w.r.t. available local relations.

Since LR-BNLearn is simply a restriction of the DAG
modification search process in the existing BNLearn algo-
rithm, the time complexity of LR-BNLearn is on the same or-
der as BNLearn — O(RC2) for R rows, C column attributes,
and assuming a constant upper bound on the number of
parents of any node. Furthermore, we note that since the
K2 score uses the same information required to compute the
maximum likelihood parameters of the Bayesian network,
K2 extends easily to LR-BNLearn, which ensures that all
parameters can be learned exclusively from local relations.

5 EXPERIMENTS

In our experiments, there are four key questions we want to
answer in order to validate the correctness and effectiveness
of our data integration framework, LR-BNLEARN 2:

1) How much do the probability distributions inferred
from the LR-Learned model differ from the ground
truth probabilities (e.g., in terms of absolute error or
KL-divergence)?

2) If we have a known ground truth Bayesian network
that is not LR-Learnable w.r.t. the given local rela-
tions, how does this impact the quality of probabilis-
tic inference (e.g., in terms of absolute error or KL-
divergence) in the LR-Learned Bayesian network
compared to the ground truth Bayesian network?

2. https://github.com/bohan-zhang/autopgm
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3) How closely does the probability distribution of
the LR-Learned Bayesian network approximate the
ground truth probability as the quantity of data
increases?

4) How does the number (and cardinality) of shared
variables affect the error of probabilistic inference of
models learned by LR-BNLEARN in comparison to
the ground truth values?

Experiments that further address the last question are
reported in Appendix A and summarized in Section 5.3.4.

5.1 Data Sets

We constructed four experiments to answer the questions
above, using both synthetic and real-world datasets with
discrete and integer variables described in the following
subsections. Each dataset is randomly divided into a train-
ing set (80%) and a test set (20%), and the training set
is then projected onto local relations with different but
overlapping columns.3 LR-BNLEARN treats these projected
tables as different data sources and automatically trains an
LR-Learned Bayesian network from these local relations.
Then, the LR-Learned BN is evaluated against the test set
joint distribution considered to be the “ground truth”.

5.1.1 Experiment 1: Student SAT (Synthetic)
The Student SAT model [14], as illustrated in Fig. 3, describes
the relationship between 5 variables:

• Intelligence of the student (I)
• Difficulty of the course (D)
• Grade of the student (G)
• Student receiving a recommendation letter (L)
• Student’s SAT score (S)

Fig. 3. Student SAT Experiment Ground Truth Bayesian Network

A synthetic dataset of 1, 000, 000 rows is generated based
on this model; we focus on synthetically sampled data
since we aim to test if the LR-Learned Bayesian network
converges to the true distribution represented by the model.

The five variables are projected into 3 local relations with
the following columns: (1) I, S, (2) G, L, and (3) I, D, G.

3. In this paper, we assume local relations are projections of the
global relation and hence the marginal distributions of all shared
variables match. In practice, however, it may be the case that local
relation projections are subsampled according to different distributions,
especially for open data. While it is beyond the scope of this article
to address sample bias mismatch in its full generality, we note with
an example in Appendix B that this sample bias may be addressed in
certain cases without major changes to the methodology proposed here.

5.1.2 Experiment 2: Shared Variables (Synthetic)
This experiment is designed to investigate the effect of the
number of shared variables. Since real-world datasets with
a large number of shared variables are largely unavailable,
1, 000, 000 rows of synthetic data are generated using the
Bayesian network shown in Fig. 4, with 6 random variables,
and the following projection onto two local relations: (1) A,
B, C, D, E and (2) B, C, D, E, F. To reduce the number of shared
variables in experiments, we simply remove B, C, D, E to
achieve the desired amount of sharing. Also, to investigate
the behavior of learning non-BN-LEARNABLE structure, we
intentionally constructed two V-structures at node D and E.

A

DCB E

F

Fig. 4. Shared Variables Ground Truth Bayesian Network

5.1.3 Experiment 3: 2016 American Jobs Survey
The dataset, 2016 State of American Jobs Survey, is acquired
from Pew Research Center 4. Since this is non-synthetic data,
there is no ground truth Bayesian network. 5,006 data points
were collected in this survey and a subset of columns are
included in our experiment:

• Income level (income / In)
• Own or rent an apartment (ownrent / Ow)
• Employment status (em / Em)
• Financial status (financial / Fi)
• Level of happiness (happy / Ha)

These variables are projected onto two separate ta-
bles with overlapping columns, with each containing:
(1) income, em, ownrent, and (2) income, em, happy,
financial.

We perform this projection because the data collected
in the local relation (1) and the local relation (2) could
come from different sources in reality requiring the use of
techniques introduced in this work. For example, a real-
estate firm might be interested in knowing a customer’s
preference of renting or purchasing a property based on
their financial status. In the meantime, an individual might
also be motivated to know whether renting or buying an
apartment would lead to an increased level of happiness.

5.1.4 Experiment 4: HackerRank Survey
HackerRank Developer Survey 2018, acquired from Kaggle 5,
contains 25,090 responses from students and developers.
Since this is non-synthetic, there is no ground truth Bayesian
network. Among 50+ columns, we include the following:

4. http://assets.pewresearch.org/wp-content/uploads/
sites/3/2017/10/09160742/May16-data-release.zip

5. https://www.kaggle.com/hackerrank/
developer-survey-2018
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• Whether the survey taker is willing to recommend
HackerRank to a friend (recommend / Re)

• Whether they have received a HackerRank challenge
before (hr_challenge/ Hr)

• Age (age / Ag)
• Gender (gender / Ge)
• Student or not a student (stu / St)
• Degree type (degree / De)
• Level of education (edu / Ed)

These seven variables are projected onto two local re-
lations in the following manner: (1) age, gender, stu,
recommend, hr_challenge, and (2) age, gender, stu,
edu, degree. The rationale is that, HackerRank, as a com-
pany, might be interested to know whether a person is likely
to become a HackerRank user (hr_challenge) or even rec-
ommend HackerRank to their friends (recommend), based
on their degree type or educational background. Knowing
this information, HackerRank can optimize its targeted mar-
keting campaign and thus improve its profitability.

5.2 Metrics
To evaluate the performance of the LR-Learned Bayesian
networks, we use two different metrics: KL Divergence and
Mean Absolute Deviation defined below.

Kullback-Leibler divergence (KL divergence), DKL(P ||Q),
measures how the LR-Learned Bayesian network’s distri-
bution Q diverges from the test data’s joint distribution
(ground truth) P and is defined as follows:

DKL(P ||Q) = −
∑
i

P (i) log2
Q(i)

P (i)
.

While KL divergence estimates the divergence between
two distributions, an alternative more interpretable metric
for individual query probabilities would be absolute devia-
tion. Hence, letting P (X = i|E) be the probability inferred
from the LR-learned model and p∗i be the ground truth
value, we define Mean Absolute Deviation (MAD) as follows:

MAD =
1

n

n∑
i=1

|p∗i − P (X = i|E)|

5.3 Experimental Evaluation
5.3.1 Performance
Here we recall that the Global BN is the Bayesian network
learned using BNLEARN on the global relation. We now
compare inference in this Global BN to the LR-BN learned
from projected local relations using LR-BNLEARN, with
results shown in Table 4. Here we see that the KL divergence
of the Global BN’s joint distribution from the data it was
learned from is very small and LR-BN does almost as well
indicated by the last column showing a small % difference.

TABLE 4
KL Divergence of All Experiments

Experiment KL (Global BN) KL (LR-BN) % ∆

SAT 0.000221 0.000221 0.00%
Shared Variable 0.315862 0.315862 0.00%
American Jobs 0.497224 0.494564 -0.53%
HackerRank 0.216894 0.224685 3.59%

I D

G

L

S

I D

G

L

S

I D

G

L

S

Ground Truth Global LR-Learned

Fig. 5. Bayesian Networks, Student SAT Experiment

A

DCB E

F

A

DCB E

F

A

DCB E

F

Ground Truth Global LR-Learned

Fig. 6. Bayesian Networks, Shared Variable Experiment

Ow

In Em

Fi Ha

Ow

In Em

Fi Ha

Global LR-Learned

Fig. 7. Bayesian Networks, American Jobs Experiment

St Ag

Ed De

Ge

Hr Re

St Ag

Ed De

Ge

Hr Re

Global LR-Learned

Fig. 8. Bayesian Networks, HackerRank Experiment

For Student SAT, the KL divergence approaches 0 (within
the bound of statistical noise) since an I-equivalent structure
to Ground Truth is recovered (Fig. 5). For Shared Variable,
where a structure I-equivalent to Ground Truth is not LR-
LEARN-able (Fig. 6), a 0 KL divergence is more difficult
to achieve, but structurally matches the Global model. For
American Jobs Survey, a significantly higher KL divergence
value is obtained because there are only 5,006 data points
available, and the variables have high cardinalities yielding
many parameters to learn. The LR-Learned Bayesian net-
work only differs from Global due to non-deterministic tie-
breaks in (LR-)BNLearn. For HackerRank, we see a 3.59%
difference between the LR-Learned Bayesian network and
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Fig. 9. KL Divergence of the LR-learned Bayesian Network from the Test Data Distribution vs. Amount of Training Data

the original Bayesian network. This is explained by Fig. 8:
the edge (De→ Hr) spans different local relations and can-
not be recovered. Overall, we note the restricted search of
LR-BNLearn yields identical or similar models to BNLearn.

5.3.2 Convergence
To verify whether the LR-Learned Bayesian network’s dis-
tribution will converge to the ground truth given as the
amount of data increases, we plot the KL divergence of
every experiment versus the amount of training data in
Fig. 9. Unsurprisingly, we see a consistent downward trend
across all experiments as more training data is given, since
it is easier for LR-BNLEARN to separate signal from noise
and recover an accurate predictive model as data increases.

The LR-Learnable Student SAT KL divergence eventually
reaches 0, as I-equivalent structures are learned and ample
training data is given. On the other hand, the other three
non-LR-LEARN-able datasets’ KL divergences have not con-
verged to 0 when given the full training set, because the
amount of training data is insufficient and/or I-equivalent
structures are not possible to be learned from local relations.

5.3.3 Inference when Global BN cannot be Recovered
In the HackerRank model, the edge (De→ Hr) spans across
two local relations and thus is not LR-Learnable. The unrep-
resented edge gives rise to a 3.59% difference between the
KL divergence of the LR-BN and Global BN. In Table 5, we
assess the KL divergence and MAD of queries that require
this unrecovered edge for exact inference. Subscript GT
indicates the comparison between the LR-Learned Bayesian
network and the ground truth test data, and subscript G
denotes the comparison between the LR-BN and the Global
BN. In short, the KL divergence is small and the MAD only a
few hundredths off from the data and Global BN estimates,
indicating that unrecoverable edges in the LR-BN do not
necessarily inhibit relatively accurate inference.

TABLE 5
Mean Absolute Deviation of Cross-Table Queries

Query MADGT KLGT MADG KLG

P (Hr|De = comsci) 0.0229 0.0015 0.0243 0.0017
P (Hr|De = other) 0.0639 0.0124 0.0458 0.0063
P (De|Hr = YES) 0.0378 0.0130 0.0276 0.0080
P (De|Hr = NO) 0.0211 0.0069 0.0195 0.0035

5.3.4 Number and Cardinality of Shared Variables
We studied the impact of the number of shared variables
and the cardinality of a shared variable on queries spanning

local relations with these shared variables. The models and
results detailed in Appendix A show that the MAD worsens
as we reduce the number of shared variables or we reduce
a shared variable’s cardinality. This suggests that (1) more
shared variables promote increased accuracy in LR-BN in-
ference and (2) lower cardinality shared variables limit the
information that can be transmitted in cross-relation queries.

6 CONCLUSION

We proposed LR-BNLEARN, an automated framework to
construct Bayesian networks that allows us to reason prob-
abilistically over multiple relations not linked by foreign
keys — a novel capability not available in previous prob-
abilistic relational modeling frameworks. We showed that
our framework is able to closely approximate inference w.r.t.
ground truth reference data and models even when source
relations do not permit optimal recovery of the true model.
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