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ABSTRACT
The rise of interactive recommendation assistants has led to a novel

domain of natural language (NL) recommendation that would bene-

fit from improved multi-aspect reasoning to retrieve relevant items

based on NL statements of preference. Such preference statements

often involve multiple aspects, e.g., “I would likemeat lasagna but
I’m watching my weight”. Unfortunately, progress in this domain

is slowed by the lack of annotated data. To address this gap, we

curate a novel dataset
1
which captures logical reasoning over multi-

aspect, NL preference-based queries and a set of multiple-choice,

multi-aspect item descriptions. We focus on the recipe domain in

which multi-aspect preferences are often encountered due to the

complexity of the human diet. The goal of publishing our dataset

is to provide a benchmark for joint progress in three key areas:

1) structured, multi-aspect NL reasoning with a variety of proper-

ties (e.g., level of specificity, presence of negation, and the need for

commonsense, analogical, and/or temporal inference), 2) the ability

of recommender systems to respond to NL preference utterances,
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and 3) explainable NL recommendation facilitated by aspect ex-

traction and reasoning. We perform experiments using a variety of

methods (sparse and dense retrieval, zero- and few-shot reasoning

with large language models) in two settings: a monolithic setting
which uses the full query and an aspect-based setting which isolates

individual query aspects and aggregates the results. GPT-3 results

in much stronger performance than other methods with 73% zero-

shot accuracy and 83% few-shot accuracy in the monolithic setting.

Aspect-based GPT-3, which faciliates structured explanations, also

shows promise with 68% zero-shot accuracy. These results establish

baselines for future research into explainable recommendations via

multi-aspect preference-based NL reasoning.
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Query: “I would like meat lasagna but I’m watching my weight”

Retrieved Item: “Beef lasagna with whole-wheat noodles, low-fat cottage cheese, and part-skim mozzarella cheese.”

Satisfies (S) S S S

Figure 1: Preference Satisfaction: Each preference aspect (blue/purple span) is satisfied by at least one item aspect (orange span).

Table 1: Examples of data entries in Recipe-MPR.

Example 1
Query I would like meat lasagna but I’m watching my weight

Properties ✓ Specific ✓ Commonsense ✓ Negated ✓ Analogical ✓ Temporal

Options

✓ Vegetarian lasagna with mushrooms, mixed vegetables, textured

vegetable protein, and meat replacement

✓ Forgot the Meat Lasagna with onions, mushrooms and spinach

✓ Beef lasagna with whole-wheat noodles, low-fat cottage cheese,

and part-skim mozzarella cheese

✓ Cheesy lasagna with Italian sausage, mushrooms, and 8 types of

cheese

✓Meat loaf containing vegetables such as potatoes, onions, corn,

carrots, and cabbage

Aspects beef lasagna → meat lasagna

whole-wheat, low-fat, part-skim → watching my weight

Example 2
Query I want chicken that has a kick to it

Properties ✓ Specific ✓ Commonsense ✓ Negated ✓ Analogical ✓ Temporal

Options

✓ Cheese chicken made with chicken legs, eggs, cheese, and bread-

ing

✓ Chicken wings made with hot chili sauce, butter, and Worcester-

shire sauce

✓ Hard-cooked egg with a sriracha kick

✓ Easy chicken legs made with Italian salad dressing

✓ ShrimpWith a Kick - made with garlic, olive oil, and fresh cilantro

Aspects Chicken → chicken

hot chili sauce → kick

1 INTRODUCTION
Interactive, natural language (NL) AI assistants are developing

rapidly, both in terms of their performance on a variety of real

world tasks [5, 32, 39, 40] and the scale of their deployment (e.g.,

ChatGPT
2
). Paramount to the development of effective NL assis-

tants is the ability to provide precise feedback on task perfor-

mance [14, 29, 42], motivating the need for task-specific datasets.

Amidst the recent progress on generative, dialogue-orientated tasks

[11, 14, 28], the integration of information retrieval abilities into

conversational assistants remains an open and pressing challenge

[1, 10]. Amongmany retrieval-based tasks, a primary domain is con-

versational recommendation (ConvRec) [9]: the recommendation

of items based on a user’s NL description of her preferences.

Studies of human-to-human recommendation interactions [23]

have shown that NL preference statements often involve multiple

preference aspects: facets (or parts) of a preference that require in-
dependent reasoning. Furthermore, an open challenge remains the

integration of structured reasoning abilities into conversational

AI agents [21, 22, 41, 44]. For these reasons, we introduce a novel

dataset which models the task of satisfying each individual prefer-

ence aspect in a preference statement based on attributes inferred

2
https://openai.com/blog/chatgpt/

from a set of item descriptions, following the form of a multiple-

choice question answering task [35].

Specifically, we study user statements (which in our problem

setting take the role of queries) where preference aspects are iden-
tifiable by spans in the utterance, such as the bold spans in the

query “I would likemeat lasagna but I’m watching my weight”.
Similarly, we consider a set of item descriptions in which certain

spans identify item aspects: qualities of an item which require in-

dependent reasoning during retrieval. An example of such a de-

scription with bold spans identifying item aspects relevant to the

above query is “Beef lasagna with whole-wheat noodles, low-fat
cottage cheese, and part-skim mozzarella cheese”. In our dataset,

this lasagna recipe is relevant to retrieve for the above preference

statement because of satisfaction relations between item aspects

and preference aspects. Specifically, as illustrated in Figure 1, we say

that "beef lasagna" satisfies "meat lasagna", and “whole-wheat”,
“low-fat”, and “part-skim” each satisfy “watching my weight”.

In this model of a ConvRec task, an item is deemed relevant to
a query if each preference aspect in the query is satisfied by at least
one item aspect in the item description. For this task, we introduce a
dataset consisting of NL queries with labeled preference aspects,

a set of candidate NL item descriptions, and an item description

identified as relevant for each query with labeled item aspects. We

focus on the recipe domain, which often involves multi-aspect pref-

erences due to the complexity of the human diet and personal food

preferences. In addition, our dataset also labels whether a preference

expression uses any of several reasoning strategies such as analogi-

cal, negated, and commonsense reasoning. For instance, the query

“Can I get a breakfast that’s easy to eat on-the-go, like a wrap?”

is identified as using analogical and commonsense reasoning. We

call our dataset the Recipe Multi-aspect Preference-based Retrieval

dataset (Recipe-MPR), for which two examples of complete data

entries are given in Table 1.

While there are alternative ways to benchmark ConvRec per-

formance, there are several reasons this formulation and dataset

are worth studying. Specifically, our dataset evaluates a system’s

ability to infer multi-aspect preference satisfaction from NL, which

we conjecture is a key structural element of ConvRec. In addition,

the explicit item aspect-satisfies-preference aspect structure of our
data facilitates explanations, such as the correctness explanation

in Figure 1. Furthermore, the relationship between our problem

definition, the satisfiability problem (SAT) and textual entailment

[24] provide opportunities for future research into the integration

of NL reasoning and symbolic reasoning in ConvRec (see Section 4).

https://openai.com/blog/chatgpt/
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Finally, while most ConvRec datasets focus on multi-turn interac-

tions, our data isolates a single interaction step, focusing on cases

when a recommendation can be made in a single turn.

In addition to providing new data and theoretical discussion, we

present numerical experiments evaluating several baselines on our

dataset. As well as investigating a monolithic setting where models

are given the full query as an input, we also explore a basic form

of aspect-level reasoning by modifying the input to sequentially

isolate individual aspects and then aggregate the results, These

aspect-based baselines are a step towards recommendations that

are more explainable and verifiable at an aspect level. We find that

sparse retrieval methods (OWC, TF-IDF [37], BM25 [34]) have very

poor performance (less than 23% accuracy) due to their reliance

on exact term matches. We test multiple large language models

(LLMs) (BERT [6], TAS-B [13], OPT [45], GPT-2 [30], GPT-3 [27]) in

few-shot and zero-shot settings and find monolithic GPT-3 provides

the best results with few-shot and zero-shot accuracies of 83.4% and

72.6%, respectively. Despite performing slightly worse, our best ex-

plicit aspect-level result (zero-shot GPT-3) is promising with 67.6%

accuracy, which is close to full-query zero-shot GPT-3. Improving

the accuracy of explicit aspect-level reasoning is an obvious future

research direction. However, our dataset can also further develop

such explicit NL aspect-based reasoning by supporting research

into areas such as aspect extraction or the joint optimization for

explainability and recommendation performance (see Section 4).

2 RELATEDWORK
ConvRec Datasets
Existing ConvRec datasets can be broadly categorized as synthetic

or human-generated [9], with the majority focusing on multi-turn

dialogues. Synthetic datasets such as ConvRec [15], TG-Redial [46],

and COOKIE [8] contain simulated or partially-simulated dialogues

derived from user-item data and conversation templates. While

synthetic data can be produced in large volumes, it is typically of

lower quality than human-generated data.

Several non-synthetic datasets such as ReDial [20], MovieSent

[38], and CCPE-M [31] contain annotated NL data from human

dialogues. ReDial is a multi-turn dialogue dataset of crowdworker

movie recommendation interactions with certain utterances that re-

fer to specific movies annotated with “liked”, “didn’t like”, or “didn’t
say” tags. CCPE-M is a similar dataset of crowdsourced dialogues

with certain utterances annotated as containing entities, entity de-

scriptions and entity preferences. MovieSent is an extension of this

dataset to include additional entity (movie) information based on

RottenTomatoes
3
and sentiment labels for user utterances.

While containing valuable data, these datasets primarily focus on

eliciting human preference through dialogue. In contrast, our work

studies a setting where we are given a clear NL preference state-

ment. Furthermore, much of the annotation in the above datasets

concerns recording users’ responses toward a specific item (e.g.,

"liked"). In contrast, we focus on annotating the reasons why a

recommendation is valid by annotating preference aspects, item

aspects, and satisfaction relations between them. Our preference

statements and item descriptions are also explicitly multi-aspect,
which is not necessarily true for existing datasets.

3
https://www.rottentomatoes.com/

Rationale-Labeled Datasets
Though it deals with a different set of domains, tasks, and label-

ing approaches, work on the Evaluating Rationales And Simple

English Reasoning (ERASER) [7] datasets is highly relevant to ours.
ERASER is a collection of seven datasets that explores the use of

labeled spans as rationales for various NL tasks. It includes the

Commonsense Explanations (CoS-E) corpus [32], where rationales

are spans of a multiple choice question (MCQ) that support a cor-

rect answer, such as the bold text in the question “Where do you
find the most amount of leaves?” for a correct answer "Forest".
ERASER includes two more question-answering corpora, MultiRC

[17] and BoolQ [5], and a sentiment analysis corpus, Movie Review

[43], each with similarly annotated rationales.

Also included is the explanation-augmented Stanford Natural
Language Inference (e-SNLI) corpus [4], where rationales are la-
beled for the task of inferring one of three principal NL inference

(NLI) relations: entailment, contradiction, or neutral. Of these three

relations, the connection between preference satisfaction and tex-

tual entailment, which specifies that a hypothesis is true if a premise

is true, will be discussed further in Section 4. An example of ratio-

nales for entailment in e-SNLI are the bold spans in the premise “A
man in an orange vest leans over a pickup truck.” and hypothesis

“A man is touching a truck.”
In addition to collecting data, the authors of ERASER investigate

how NLP methods can extract rationales during tasks and how the

impact of these rationales on predictions can be measured. Based

on Lei et al. [19], they consider two-step “hard” extraction where

an encoder identifies rationalizing spans and then an independent

decoder uses these spans as inputs for predictions. In addition, they

consider “soft” extraction which assigns a continuous importance

score to tokens using feature-importance explainability methods

(gradients, attention, LIME [33]). They propose two measures for

assessing the significance of rationales for prediction. Comprehen-
siveness is the change in confidence for the correct prediction when

rationales are deleted from the input (expected to be a loss for valid

rationales), and sufficiency is the change in this confidence when

everything except the rationales is deleted from the input.

Though ERASER investigates similar ideas, our work explores a

new domain, task structure, and annotation method. Specifically,

we focus on annotating and studying the satisfaction of preference

aspects by item aspects in ConvRec contexts. Furthermore, our

data reflects a precise multi-aspect satisfaction structure, of which

the implications for hybrid NL/symbolic reasoning are discussed

further in Section 4.

Multi-aspect Retrieval
Work has been done in the information retrieval field that considers

multiple aspects – specifically, Kong et al.[18] consider multiple as-

pects when calculating relevance scores in dense retrieval. However,

their work uses a proprietary dataset where queries and documents

contain a fixed number of aspects from known categories. Similarly,

the label aggregation method of Kang et al. [16] has some similar-

ities to our task, but assumes there are a fixed number of known

categories; an unrealistic assumption for NL preference expressions

in ConvRec settings.

https://www.rottentomatoes.com/
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3 THE RECIPE-MPR DATASET
3.1 Overview
To model and benchmark progress on the ConvRec task, we intro-

duce a manually-curated, publicly released dataset, Recipe-MPR.
4

Our dataset contains a set of NL preference statements (queries)

and for each query, as shown in Table 1, a set of NL item descrip-

tions where one item is marked as a relevant recommendation.

Furthermore, we identify spans in the query describing preference
aspects and spans in the recommended item description (item as-
pects) which satisfy these preference aspects. Motivated by the need

to study multi-aspect preferences [23], all queries in our dataset

contain more than one preference aspect, and an item recommenda-

tion must result in each preference aspect being satisfied by at least

one item aspect. These aspect satisfaction labels aim to explicitly

benchmark a fundamental element of ConvRec: the NL inference

of multiple item-preference satisfaction relations. We also anno-

tate whether a preference statement uses one of several reasoning

strategies such as analogical or temporal reasoning (see Section

3.2). In terms of domain, we focus on recipe recommendation since

this is an area where multi-aspect preferences are typical due to

the complexity of the human diet.

Our dataset consists of 500 entries constructed with the help

of recipe information available in FoodKG [12] and Recipe1M+

[25]. Two example entries are shown in Table 1. The 𝑖’th entry

𝑥𝑖 = {𝑞𝑖 ,P𝑖 ,O𝑖 , 𝑎𝑖 ,I𝑖 , E𝑖 } of our dataset D includes a query 𝑞𝑖 (a

preference statement), a set of five options O𝑖 = {𝑜1
𝑖
, · · · , 𝑜5

𝑖
} (item

descriptions), and a unique answer index 𝑎𝑖 ∈ [1, 5]. Each query

contains at least two spans (e.g., the coloured spans in Table 1)

making up a set of preference aspects P𝑖 , and each recommended

item contains at least two spans making up a set of item aspects I𝑖 .
The satisfaction relations are defined by the set of directed edges

E𝑖 which contains ( 𝑗, 𝑝) if item aspect 𝑗 ∈ I𝑖 satisfies preference
aspect 𝑝 ∈ P𝑖 . While the underlying goal of introducing our dataset

is progress towards retrieval-based ConvRec, the task we model

can also be interpreted as multiple choice question-answering since

only five possible options are given per query.

The query text, text description of options, and provided an-

notations are all manually curated by five data curators. All data

curators were researchers on the project and co-authors of this

paper. Each was asked not to provide any personally identifying

information.

3.2 Query Generation and Property Annotation
We aimed to manually generate queries that were: a) natural, to

simulate conversational language, and b) multi-aspect, to reflect

the often compound nature of human preference queries. Each

data curator was asked to generate 100 varied queries that did

not overlap in content. Each query was also labelled according

to whether it used one or more of the five following reasoning

strategies:

(1) Specific:mentions a certain dish or recipe name, e.g., “spaghetti
carbonara”.

4
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Table 2: Summary of preference reasoning strategies in
Recipe-MPR.

Property Specific Commonsense Negated Analogical Temporal

#Queries 151 268 109 30 32

(2) Commonsense: requires commonsense reasoning, e.g., in-

ferring “I’m watching my weight” to mean “I want a low
calorie meal”.

(3) Negated: contains contradiction or denial, using terms like

“but”, “but not”, “without”, “doesn’t”, etc.
(4) Analogical: uses metaphors or similes to express prefer-

ences using a comparison, e.g., “like McDonald’s”.
(5) Temporal: contains explicit references to time such as a

time of day, or terms concerning the passage of time like

“slow”, “fast”, “lasting”, etc.

The number of queries using each reasoning strategy is summa-

rized in Table 2.

3.3 Option Generation
For each query 𝑞𝑖 , an annotator was tasked to provide a set of

five options (item descriptions) O𝑖 , in which one option is a rele-

vant recommendation. Recipe information was obtained from the

FoodKG database, with the corresponding recipe ID being recorded

for each. The knowledge graph foundation from FoodKG provides

opportunities for future work that further explores the integration

of discrete and NL reasoning. For each option 𝑜𝑙
𝑖
∈ O𝑖 , the curators

were asked to write a brief text description for the corresponding

recipe according to its name, ingredients, and nutritional infor-

mation. Sometimes, additional recipe details such as the cooking

method or the estimated time, were included if needed to differen-

tiate options. The requirements for option generation provided to

the data curators were:

(1) The incorrect options should be hard negatives (i.e., near
misses). Hard negative options are defined as options that

are close to the correct answer, but differing by at least one

aspect. This requirement is motivated by the need to reflect

a real-world setting, where many items may satisfy some

but not all of the preference aspects. Examples of queries

along with incorrect, hard negative, options are shown in

Table 3.

(2) There should only be one answer that can be considered a

relevant recommendation (i.e. satisfy all preference aspects)

among the five options. Certain recipes may appear more

than once in the dataset as a correct answer or as an option.
5

(3) The text descriptions that are manually written do not have

to contain full recipe details, but need to include enough

information to discern the correct option from the wrong

ones.

(4) The text descriptions should remain factual and avoid any

human inference from the given recipe information.

(5) The text description for the correct answer should avoid

direct word-matching with the query as much as possible.

5
75% of recipes are unique.

https://github.com/D3Mlab/Recipe-MPR
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Table 3: Examples of incorrect options. Incorrect options
were designed to be hard negatives.

Query Incorrect Option
Can I have a recipe for clam chow-

der that isn’t too fat?

Clam chowder made with heavy

whipping cream

Can I have a shrimp pasta recipe for

someone with low spice tolerance?

Spaghetti noodles and shrimp con-

taining red pepper flakes

I want tomake a paella but I’m short

on time

Paella made with Spanish rice mix,

vegetables, and chicken sausage in

a slow-cooker

3.4 Annotating Aspect Satisfaction
For the entries they generated, data curators were responsible for

labeling preference aspects P𝑖 and item aspects I𝑖 as spans in the

query and recommended item description, respectively. They also

identified the preference satisfaction relations E𝑖 , for instance “beef
lasagna” satisfies “meat lasagna” in the first entry of Table 1. In

some cases, an <Inferred> tag was used when it was not possible

to identify an explicit span in the recommended item description

that satisfied a preference aspect. For example, the preference as-

pect “without basil” is satisfied by the <Inferred> tag if the item

description does not include basil in the ingredients. Approximately

11% of item aspects are the <Inferred> tag. In total, our dataset

contains 1,140 preference aspects and 1,298 item aspects, with av-

erages of 2.3 and 2.6 aspects per query and per item description,

respectively. Figure 2 shows the top frequency words in the query

aspects across the whole dataset.

Figure 2: Most frequent words used in query aspects.

3.5 Data Validation
Following the data generation and annotation stages, the dataset

was validated by curators through two rounds of validation. In each

round, the queries and associated labels, options, and descriptions

were validated by someone other than the original curator. Thus,

each data sample was validated by two other curators other than

the original curator. The data validation was to ensure:

• Queries, options, and text descriptions follow the guidelines

established above.

• Labels for query reasoning strategies are used consistently

and correctly.

• A single correct answer can be identified without ambiguity

and without looking at the ground truth label.

• The descriptions for any recipe used multiple times are con-

sistent.

• There are no duplicate queries.

In the second validation round, the second validator helped resolve

conflicts and oversee that suggested changes were made. Changes

were made only if both validators agreed on the modifications.

4 PREDICTED IMPACT
Our corpus presents structured NL data that models a recommen-

dation task using explicit labels for preference aspects and the item

aspects that satisfy them in valid recommendations. It thus supports

a variety of directions for future work. By providing rationales for

recommendations, this data supports work on explainable NLP [7]

in a novel, multi-aspect setting. While explainable recommendation

has the potential to become a sophisticated academic topic, it is also

practically relevant: a recent study of human-human recommen-

dation conversations classified 38% of utterances as explanations

[23]. In addition to explainability research, by annotating individual

preference satisfaction relations, this data supports future work on

integrating discrete symbolic reasoning into NLP.

Our data supports multiple opportunities to explore explainable

recommendation as part of the emerging field of explainable NLP,

including aspect (rationale) extraction, aspect evaluation, and joint

optimization for recommendation performance and explainability.

As discussed in Related Work, two aspect extraction methods that

can be investigated with our data are: 1) "hard" (discrete) token se-

lection techniques implemented with an independent encoder and

decoder [19], and 2) “soft” selectionmethods assigning a continuous

score to each token implemented with a feature-importance tech-

nique (e.g. LIME [33], gradients, attention) [7]. Furthermore, it is

worth exploring how rationale extraction can be adapted to account

for the known multi-aspect structure in our data (i.e., that prefer-

ence aspects must be independently satisfied by at least one item

aspect). To the best of our knowledge, such structured, multiple-

rationale extraction has not yet been explored in explainable NLP.

While a baseline to evaluate the coherency of extracted aspects

with human-labeled aspects is Interval Over Union (IOU, a measure

of span overlap) [7], our corpus also motivates the investigation of

new coherency metrics specific to multi-aspect settings. Similarly,

novel, multi-aspect notions of rationale sufficiency and comprehen-

siveness [7] will be valuable. In addition to work on extracting and

evaluating aspects, our dataset also allows for research on the joint

optimization of models for recommendation performance and co-

herency of extracted aspects with labeled aspects. Such bi-objective

optimization could connect to past recommendation work which

used latent factor models to jointly optimize recommendation qual-

ity and review text topic distributions [26].

In addition to providing a benchmark for explainable ConvRec,

our corpus also facilitates the exploration of how discrete symbolic

reasoning can be integrated into NL recommendation. The attentive

reader may have already noticed that our model of a ConvRec task

can be expressed as a SAT problem [36]. Specifically, let E𝑖 ( 𝑗, 𝑝)
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map to TRUE when item aspect 𝑗 ∈ I𝑖 satisfies preference aspect
𝑝 ∈ P𝑖 . An item with aspects I𝑖 = { 𝑗1, ..., 𝑗𝑛} is relevant to a

query 𝑞𝑖 with properties P𝑖 = {𝑝1, ..., 𝑝𝑚} when the following SAT

problem evaluates to TRUE:(
E𝑖 ( 𝑗1, 𝑝1) ∨ E𝑖 ( 𝑗𝑛, 𝑝1)

)
∧ · · · ∧

(
E𝑖 ( 𝑗1, 𝑝𝑚) ∨ E𝑖 ( 𝑗𝑛, 𝑝𝑚)

)
.

The ability to express our data in this formal way may be use-

ful for further investigation into how symbolic reasoning may be

combined with NL inference in recommendation. There are also

clear similarities between our task of inferring satisfaction relations

between queries and item descriptions and the well-studied task of

textual entailment [24] (see Section 2) which has the potential to be

leveraged for explainable recommendation. While our experiments

begin to use the NL inference abilities of LLMs to disjointly reason

over individual aspects in this paper, we envision that much more

sophisticated experimentation with our corpus is possible in the

future.

5 EXPERIMENTAL METHODS
To assess the difficulty of our dataset and establish a starting point

for future work, we evaluate several baseline models on our corpus.

Full code to reproduce these experiments is included in our dataset

repository.
4
Our baseline methods include sparse retrieval (OWC,

TF-IDF, BM25) [34, 37], dense retrieval using LLM embeddings

(BERT, TAS-B, GPT-3) [6, 13, 27], and zero- and few-shot reasoning

with LLMs (OPT, GPT-2, GPT-3) [3, 30, 45]. In addition to measuring

performance on the full corpus, we examine differences across

the five reasoning strategies. Furthermore, we begin to explore

the differences between aspect-level reasoning and query-level

reasoning for these baselines. Specifically, our experiments include

two settings: monolithic, where the input is the full query, and

aspect-based, where the model makes separate predictions using

each individual preference aspect as a separate input, after which

these predictions are aggregated.

5.1 Baseline Models
• Sparse. Sparse methods represent queries and options as

sparse vectors. We consider OverlappingWord Count (OWC)

which ranks the options based on the number of terms over-

lapping with the query, TF-IDF [37], and BM25 [34] as sparse

methods. Prior to applying these baselines, queries, and op-

tions are preprocessed with stopword removal and lemmati-

zation using the Natural Language Toolkit [2].

• Dense. These neural methods represent queries and options

as continuous embedding vectors to provide dense, lower-

dimensional semantic representations. Dot product similar-

ities of embedded queries and options are then used for

matching. Specifically, we use pre-trained BERT
6
[6], TAS-

B
7
[13] which is a fine-tuned version of BERT, and GPT-3

embeddings
8
[27]

• Zero-Shot. Such methods use pre-trained LLMs which are

not explicitly trained on this task, specifically pre-trained

6
BERT-110M: https://huggingface.co/bert-base-uncased

7
TAS-B: https://huggingface.co/sebastian-hofstaetter/distilbert-dot-tas_b-b256-

msmarco

8
text-embedding-ada-002: https://platform.openai.com/docs/api-reference/

embeddings/create

GPT-2
9
[30], OPT-1.3B

10
[45] and GPT-3 DaVinci

11
[3]. GPT-

2 andOPT are used to rank options based on the log-likelihood

that the query precedes the option. Since the GPT-3 API does

not currently permit log-likelihood scoring of prespecified

completions, GPT-3 is given the full list of options in the

prompt and asked to choose the best option in the monolithic

setting or provide scores for each option in the aspect-based

setting (see Sections 5.2 and 5.3).

• Few-Shot. Few-shot methods extend zero-shot LLM meth-

ods by concatenating a fixed number of correct query-answer

samples onto each input query. This is done to provide the

LLM with added context on the task.

5.2 Monolithic Setting
In monolithic experiments, the full query is given as an input, where

all preference aspects are provided in the initial NL context. In this

setting, the model does not rely on any external knowledge of the

underlying problem structure: it does not know a priori what the
preference aspects are, nor that no preference aspect can be left

unsatisfied. For the few-shot methods, the example template con-

catenated onto the input for GPT-2 and OPT was: "input: <sample

query>, output: <sample correct option description>," since these

LLMs evaluated the likelihood of one query-option pair at a time.

Since GPT-3 prompts included the full list of options, the example

template for GPT-3 was: "Query: <sample query>, Options: <sam-

ple option list>, Option: <sample correct option description>". Full

prompt details are available in the code documentation.
4

5.3 Aspect-based Setting
We also investigate simple methods for explicit aspect-level reason-

ing, aiming to establish baselines for future work on explainable

and verifiable NL recommendation. Specifically, we sequentially

provide one preference aspect at a time as an input to a model, after

which we aggregate the output scores. For instance, for the first

entry in Table 1, the model would first use “meat lasagna” as an
input, then “watching my weight” as an input, and finally aggre-

gate the results. This approach uses knowledge of the preference

aspects and the problem structure (i.e. that all preference aspects

must be satisfied) to force language models to reason about prefer-

ence aspects disjointly, followed by an aggregation step. While this

is a simple baseline, it is a step towards the study of how language

models can be guided to perform more advanced forms of discrete

reasoning with explicit aspects.

For a query 𝑞𝑖 with |P𝑖 | = 𝑁𝑖 preference aspects, an individual

aspect 𝑗 ∈ P𝑖 given to a model as an input results in option scores

{𝑠1
𝑖, 𝑗
, ..., 𝑠5

𝑖, 𝑗
}where 𝑠𝑙

𝑖, 𝑗
is the score for the 𝑙 ’th option𝑜𝑙

𝑖
, and a higher

score indicates a model is more confident an option is correct.
12

To

produce a single score 𝑆𝑙
𝑖
for each option, outputs are aggregated

aspect-wise using one of the following functions:

• Min: min𝑗∈{1,...,𝑁𝑖 } 𝑠
𝑙
𝑖, 𝑗

• Max: max𝑗∈{1,...,𝑁𝑖 } 𝑠
𝑙
𝑖, 𝑗

9
GPT-2: https://huggingface.co/gpt2

10
OPT-1.3B: https://huggingface.co/docs/transformers/model_doc/opt

11
text-davinci-003: https://platform.openai.com/docs/models/gpt-3-5

12
We refer to a general output score since scores have different meanings for different

models, for instance TF-IDF score versus log-likelihood.

https://huggingface.co/bert-base-uncased
https://huggingface.co/sebastian-hofstaetter/distilbert-dot-tas_b-b256-msmarco
https://huggingface.co/sebastian-hofstaetter/distilbert-dot-tas_b-b256-msmarco
https://platform.openai.com/docs/api-reference/embeddings/create
https://platform.openai.com/docs/api-reference/embeddings/create
https://huggingface.co/gpt2
https://huggingface.co/docs/transformers/model_doc/opt
https://platform.openai.com/docs/models/gpt-3-5
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Table 4: Monolithic (full query) setting % accuracy ± 95% CIs.

Sparse
OWC 17.6 ± 1.6

TFIDF 20.8 ± 2.7

BM25 19.0 ± 4.2

Dense
BERT 18.6 ± 2.3

TAS-B 31.2 ± 3.0

GPT-3 54.0 ± 2.4

Zero-Shot OPT 30.8 ± 2.9

GPT-2 27.0 ± 5.6

GPT-3 72.6 ± 3.7

Few-Shot OPT 31.0 ± 4.3

GPT-2 24.6 ± 5.5

GPT-3 83.4 ± 2.5

• Amean (arithmetic mean):
1

𝑁𝑖

∑𝑁𝑖

𝑗=1
𝑠𝑙
𝑖, 𝑗

• Gmean (geometric mean):
𝑁𝑖

√︃∏𝑁𝑖

𝑗=1
𝑠𝑙
𝑖, 𝑗

One of the goals of studying these aggregation functions was

to investigate whether aggregation bymin or Gmean (which are

strongly affected by small elements) would be enough to capture

the requirement that all preference aspects must be satisfied. The

rationale for emphasizing the smallest scores is that if a model cor-

rectly inferred that at least one preference aspect 𝑗 was unsatisfied

in an option 𝑜𝑙
𝑖
by producing a low score 𝑠𝑙

𝑖, 𝑗
, these aggregation

functions would correctly assign a low total score for option 𝑜𝑙
𝑖
.

Since log-likelihoods could not be used for option scores for

GPT-3, it was explicitly prompted to provide scores for each option.

For the few-shot example templates, the GPT-2 and OPT examples

followed the same format as in the monolithic case with the aspect

replacing the query. For GPT-3, to help the model output scores in

text, the few-shot examples used scores of 0 for all incorrect options

and 1 for the correct option (see code
4
for format details). However,

the few-shot approach in the aspect-based setting is limited by the

fact that our dataset does not include aspect labels for incorrect op-

tions, even though the hard negative options are typically positive

for at least one aspect. Thus, while the few-shot examples identify

aspects in the correct option, they do not properly identify aspects

in all options.

5.4 Experimental Details
The baseline methods were evaluated on the full dataset via 5-

fold cross-validation over five randomized, independent 400/100

train/test splits. Accuracy was used as the metric for all experiments.

For few-shot methods, five examples were randomly selected from

the training set to use as part of the prompt, and performance was

evaluated on the remaining 100 test samples. For all other methods

(zero-shot, dense, sparse), performance was evaluated directly on

the test set since these methods do not use the training data.

A second round of experiments investigated the effects of reason-

ing strategies. Since some strategies had very few examples (e.g.,

only 30 analogical queries) and query strategies are multi-label,

the per-strategy performance is evaluated on a single fold of 5/495

train/test split, where the 5 training samples are used for the few-

shot prompt. Since only one fold is used, no confidence intervals

(CIs) are computed for the reasoning strategy experiments.

6 EXPERIMENTAL RESULTS
6.1 Monolithic Setting
The results for the accuracy of all baseline methods with 95% con-

fidence intervals on the monolithic setting for the full corpus are

shown in Table 4 and Figure 3a. Dense and zero-shot methods out-

perform sparse methods, which is expected since sparse methods

focus on lexical overlap and often fail to capture semantic similarity.

Our dataset explicitly avoided lexical overlap between the correct

answer and the query, while allowing for exact term matches in

incorrect options (designed to be hard negatives). The performance

of the sparse methods was near-random selection (20%).

GPT-3 in the few-shot setting achieved the best overall perfor-

mance, including compared to any aspect-basedmethod (see Section

6.2), with 83.4% accuracy. This strong result is remarkably higher

than sparse retrieval, and we interpret it as a validation of the qual-

ity of our data. Zero-shot GPT-3 gave the next best result with 72.6%

accuracy, indicating that while GPT-3 benefited from examples, it

also achieved strong performance without them. Dense retrieval

using GPT-3 gave the third best result in the monolithic setting

with 54.0% accuracy, suggesting that comparing the embedding

similarity between options fails to capture part of the reasoning

required, though it is still able to solve over half of the problems.

Three of the other LLMs, GPT-2, OPT, and TAS-B, all achieved

similar performance to each other near 30% accuracy, while BERT,

the oldest LLM tested, achieved 18.6% accuracy. These results show

a clear increase in performance for more advanced generations

of LLMs, indicating that our dataset succeeds in benchmarking

improvements in LLM reasoning abilities. Interestingly, OPT and

GPT-2 did not achieve higher accuracy in the few-shot setting.

We conjecture that, unlike GPT-3, these models are not able to

make necessary inferences about the problem structure from the

examples.

In addition, we generate results for each reasoning strategy,

shown in Table 5 and Figure 3b. All methods achieve above-average

performance on Analogical queries relative to their performance

across all strategies, and the highest overall performance was for

the Specific category for GPT-3 at 90.1% accuracy. These results

suggest that queries that use Analogical and Specific reasoning

may be favorable to queries that use other strategies. In contrast,

the worst performance of all zero-shot and few-shot methods was

on the Temporal category, suggesting that LLMs struggle to make

inferences that require temporal reasoning in our dataset.

6.2 Aspect-based Setting
Table 6 and Figure 4a show results from the aspect-based setting,

where individual preference aspects are used as inputs and the out-

put scores are then aggregated. Zero-shot GPT-3 with Gmean ag-

gregation (the best aggregation function for this method) achieves

67.6% accuracy, which is comparable (within CI range) to mono-

lithic zero-shot GPT-3, suggesting that the multi-aspect satisfaction

structure of the problem is successfully captured by this explicit

aspect-based reasoning method. However, while the use of few-

shot examples led to performance improvement for GPT-3 in the

monolithic setting, it led to a performance decrease for LLMs in

the aspect-based setting. The likely cause is that, since our dataset
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Figure 3: Experimental Results for Monolithic Setting

Table 5: Per reasoning strategy accuracy (%) for the monolithic setting.

Specific Commonsense Negated Analogical Temporal

Sparse
OWC 25.8 15.4 16.8 23.3 16.7

TF-IDF 30.5 19.9 13.1 40.0 23.3

BM25 31.8 16.5 12.2 26.7 16.7

Dense BERT 13.3 17.3 14.0 23.3 30.0

TAS-B 40.4 28.2 16.8 43.3 33.3

GPT-3 61.6 51.5 39.3 70.0 46.7

Zero-Shot OPT 27.8 32.0 24.3 46.7 20.0

GPT-2 23.8 29.3 22.4 36.7 16.7

GPT-3 75.5 73.7 78.5 80.0 66.7

Few-Shot OPT 31.8 32.7 23.4 40.0 20.0

GPT-2 27.8 27.4 26.2 30.0 13.3

GPT-3 90.1 82.3 80.4 86.7 80.0

Table 6: Aspect-based setting accuracy (%) ± 95% CIs. The best aggregation function for each method is indicated in bold.

Min Max Amean Gmean

Sparse
OWC 2.0 ± 1.2 17.0 ± 1.1 20.6 ± 1.5 2.2 ± 1.3

TF-IDF 4.8 ± 1.7 21.8 ± 1.7 22.4 ± 2.1 5.2 ±1.7
BM25 3.4 ± 1.8 19.8 ± 2.6 20.0 ± 3.3 3.8 ± 1.7

Dense
BERT 17.8 ± 0.9 21.2 ± 2.4 19.2 ± 2.6 19.2 ± 2.9

TAS-B 36.4 ± 4.8 27.2 ± 3.9 34.6 ± 2.4 35.2 ± 2.2

GPT-3 42.4 ± 2.9 30.8 ± 5.2 47.2 ± 3.7 48.4 ± 4.2

Zero-Shot OPT 23.8 ± 3.4 24.6 ± 3.4 24.6 ± 3.1 14.0 ± 2.8

GPT-2 27.6 ± 4.0 25.2 ± 4.3 24.6 ± 4.2 15.2 ± 1.2

GPT-3 58.0 ± 7.9 36.8 ± 4.4 64.0 ± 2.5 67.6 ± 4.8

Few-Shot OPT 20.4 ± 2.8 21.2 ± 4.6 21.0 ± 3.8 10.0 ± 0.8

GPT-2 21.6 ± 2.6 22.6 ± 3.4 22.0 ± 3.6 13.4 ± 1.6

GPT-3 39.6 ± 6.7 43.6 ± 9.2 57.4 ± 4.7 39.6 ± 6.7

includes aspect labels only for the correct options and not the in-

correct options (see Section 5.3), the few-shot examples misguided

the LLM by identifying aspect satisfaction in the correct option

only. Though the monolithic and best aspect-based zero-shot GPT-3

results were comparable, the best performance on the dataset was

achieved by few-shot monolithic GPT-3 due to its ability to benefit

from examples.

For most sparse, dense, and zero-shot methods (except OWC

and OPT), aspect-based performance with the best aggregation

function was comparable to its monolithic counterpart (within CI

ranges). However, since not all aggregation functions led to good

performance, it is useful to speculate about possible limitations of

our simple aspect-based approach. One possible limitation is that

isolating a single aspect degrades the ability to benefit from the NL

context in which the aspects occur. Another is that even if high

scores are output for all options which satisfy individual aspects,

simple aggregation functions may not be suitable for combining
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Figure 4: Experimental Results for Aspect Setting

Table 7: Per reasoning strategy accuracy (%) for the aspect-based setting.

Specific Commonsense Negated Analogical Temporal

Sparse
OWC (Amean) 31.1 17.7 19.6 36.7 20.0

TF-IDF (Amean) 33.1 19.6 16.8 46.7 16.7

BM25 (Amean) 32.5 15.8 14.0 26.7 20.0

Dense
BERT (Max) 18.5 20.7 20.6 16.7 20.0

TAS-B (Min) 48.3 32.7 21.5 40.0 26.7

GPT-3 (Gmean) 58.9 43.2 29.9 56.7 43.3

Zero-Shot
OPT (Amean) 20.5 25.9 21.5 33.3 16.7

GPT-2 (Min) 23.2 31.2 23.4 36.7 20.0

GPT-3 (Gmean) 70.2 61.7 69.2 70.0 60.0

Few-Shot
OPT (Max) 26.5 26.3 26.2 23.3 16.7

GPT-2 (Min) 25.2 25.9 24.3 20.0 10.0

GPT-3 (Amean) 64.2 53.4 56.1 70.0 60.0

these scores. Lastly, forcing the model to make multiple inferences

per query exposes it to more points of failure.

We also investigate the effects of reasoning strategies on aspect-

level reasoning. Per-strategy experiments were performed using

the best aggregation function for each baseline, with results shown

in Table 7 and Figure 4b. As in the monolithic setting, the best

aspect-based method (zero-shot GPT-3 with Gmean) achieves the
strongest results on Specific and Analogical queries with 70.2%

and 70.0% accuracy, respectively, and its worst performance on

the Temporal queries with 60.0% accuracy. Thus, prompts that are

Specific and/or Analogical may be good choices for both monolithic

and aspect-level reasoning settings, while performance on Temporal

prompts should be a direction for future work.

7 CONCLUSION
Aiming to advance research into ConvRec, we introduce a novel

manually-curated dataset of multi-aspect NL preference statements

andNL item descriptions of both ground-truth true positivematches

and hard negativemismatches.We specifically focus on themultiple-

choice task of retrieving items that correctly match multi-aspect

preferences stated in an NL query. Also, to provide explanations for

recommendations, we explicitly annotate preference aspects, item

aspects, and satisfaction relations between the two. As part of the

dataset, we have released code to reproduce results for a diverse set

of baselines in both a standard full-query (monolithic) setting and

an aspect-based setting, the latter of which forces reasoning over

isolated query aspects and aggregates the results. While the best

results came from GPT-3 in the monolithic setting, our aspect-based

GPT-3 baselines also performed well with a zero-shot accuracy near

that of the monolithic setting (68% vs 73%, respectively). Overall,

our dataset and baselines establish a foundation for further research

into explicit multi-aspect NL reasoning, including research direc-

tions such as aspect-specific few-shot methods, aspect extraction

and evaluation, matching multiaspect NL queries to FoodKG knowl-

edge graph entities backing each option, and joint optimization for

explainability and recommendation performance.
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