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ABSTRACT
Critiquing is a method for conversational recommendation that
incrementally adapts recommendations in response to user prefer-
ence feedback. Recent advances in critiquing have leveraged the
power of VAE-CF recommendation in a critiquable-explainable (CE-
VAE) framework that updates latent user preference embeddings
based on their critiques of keyphrase-based explanations. However,
the CE-VAE has two key drawbacks: (i) it uses a second VAE head
to facilitate explanations and critiquing, which can sacrifice recom-
mendation performance of the first VAE head due to multiobjective
training, and (ii) it requires iterating an inverse decoding-encoding
loop for multi-step critiquing that yields poor performance. To ad-
dress these deficiencies, we propose a novel Bayesian Keyphrase
critiquing VAE (BK-VAE) framework that builds on the strengths
of VAE-CF, but avoids the problematic second head of CE-VAE.
Instead, the BK-VAE uses a Concept Activation Vector (CAV) in-
spired approach to determine the alignment of item keyphrase
properties with latent user preferences in VAE-CF. BK-VAE lever-
ages this alignment in a Bayesian framework to model uncertainty
in a user’s latent preferences and to perform posterior updates to
these preference beliefs after each critique — essentially achieving
CE-VAE’s explanation and critique inversion through a simple ap-
plication of Bayes rule. Our empirical evaluation on two datasets
demonstrates that BK-VAE matches or dominates CE-VAE in both
recommendation and multi-step critiquing performance.

CCS CONCEPTS
• Information systems→ Recommender systems; • Comput-
ing methodologies → Neural networks.
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1 INTRODUCTION
Critiquing is a method for conversational recommendation that
incrementally adapts recommendations [1] in response to user pref-
erences. Recent work has revisited critiquing in the era of latent rec-
ommendation systems [2, 9] to propose the Critiquable-Explainable
VAE (CE-VAE) [8] architecture that builds on the strengths of the
VAE-CF recommender [6, 7].While the CE-VAEmakes an important
step forward in critiquing, we observe a few key deficiencies that sig-
nificantly limit its performance in practice (as we later demonstrate
empirically): (i) it uses a second VAE head to facilitate keyphrase
explanations and critiquing, which can sacrifice recommendation
performance of the original VAE head due to multi-objective train-
ing, and (ii) it requires training an inverse decoding-encoding loop
for critiques that further complicates model training and yields
poor performance when iterated for multi-step critiquing.

To address both deficiencies, we propose a Bayesian Keyphrase
critiquing VAE (BK-VAE) that takes a radically different approach
to VAE-based critiquing by leveraging Concept Activation Vectors
(CAVs) [3] and Bayesian inference. Specifically, we address (i) by
using CAVs to determine keyphrase description alignment with a
VAE-CF [6, 7] recommender that precludes the need for training a
second VAE head to model keyphrases. We address (ii) by taking a
Bayesian perspective to handle the inverse step of updating latent
user preferences based on keyphrase critiquing feedback — the
user’s initial VAE-CF preference embedding serves as the prior,
and we obtain posterior updates on this preference belief after
observing each keyphrase critique. BK-VAE achieves CE-VAE’s
critique inversion loop through the simple mechanism of Bayesian
updating that naturally facilitates multi-step critiquing updates.

We empirically compare the CE-VAE with our proposed BK-VAE
on two real-world datasets showing that BK-VAE (a) matches or
exceeds CE-VAE in recommendation performance, (b) effectively
updates the latent user representation during multi-step critiquing,
and (c) significantly outperforms CE-VAE on multi-step critiquing.

2 BAYESIAN CRITIQUING FOR VAE-BASED
RECOMMENDER

In this section, we review keyphrase critiquing and the CE-VAE
and then introduce the BK-VAE to address CE-VAE’s deficiencies.
Keyphrase-based Critiquing. In order to provide an overview of
the critiquing process, we provide a sneak preview of BK-VAE’s
performance in the anecdotal examples of Table 1. In brief, BK-VAE
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Table 1: Conversation flow of keyphrase-based critiquing. This table shows user simulations in BK-VAE framework using
MovieLens and Yelp datasets. The numbers in parentheses next to items indicate the initial recommendation ranking.

Dataset Time Step 𝑡 Critiqued Keyphrase Polarity Top-3 Recommended Items Information of Items

0 - - The Pier (1), 2001: A Space Odyssey (2), 8 1/2 (3) Drama, Sci-fi/Adventure, Fantasy/Drama
MovieLens 1 Fantasy not preferred The Pier (1), Sunrise: A Song of Two Humans (4), The Sorrow and the Pity (22) Drama, Romance/Drama, Documentary

2 Action preferred The Wild Bunch (9), Chinatown (24), The Godfather (52) Western, Neo-noir, American Crime

0 - - Fahrenheit Coffee (1), New Toronto Fish & Chips (2), Golden Dough (3) Cafe, Fish & Chips, Middle Eastern
Yelp 1 Chips (Fries) not preferred Fahrenheit Coffee (1), Golden Dough (3), The Captain’s Boil (6) Cafe, Middle Eastern, Fresh Seafood

2 Dessert preferred Yan’s Soy Foods (27), Mr. Chestnut (44), Allan’s Pastry Shop (329) Tofu Pudding, Roasted Chestnut, Pastry

has access to a user’s item preference history and makes three
initial recommendations at time step 𝑡 = 0. The user then provides
a keyphrase critique of the recommended items along with an
indication of whether they want to see more (preferred) or less
(not preferred) of the keyphrase property. By leveraging keyphrase
information mined from subjective user reviews, the recommender
then provides a second set of recommended items at 𝑡 = 1. This
process repeats itself once more in this example for 𝑡 = 2. One can
verify in both examples that BK-VAE’s updated recommendations
accurately capture the user keyphrase critiques at each time step.
CE-VAE for Keyphrase-based Critiquing. Before we proceed
to introduce the BK-VAE, we begin by reviewing the seminal CE-
VAE [8] framework for keyphrase-based critiquing and it’s founda-
tion on the state-of-the-art VAE-CF recommendation model [6, 7].

Figure 1(a) shows the basic VAE-CF model for recommendation,
where a (sparse) vector of user preferences r𝑢 over 𝑛 items are en-
coded by the VAE [4] into a Gaussian-distributed latent preference
embedding z𝑢 of width 𝑑 . z𝑢 is then stochastically decoded to a
(dense) reconstruction r̂𝑢 that generalizes user preferences to unob-
served items. Formally, VAE-CF optimizes the following objective
over the respective parameters 𝜙 and 𝜃 of the encoder and decoder:∑
𝑢

log𝑝 (r𝑢 ) ≥
∑
𝑢

[
𝐸𝑞𝜙 (z𝑢 |r𝑢 ) [log𝑝𝜃 (r𝑢 |z𝑢 ) ] −𝐾𝐿 [𝑞𝜙 (z𝑢 |r𝑢 ) | |𝑝 (z𝑢 ) ]

]
,

(1)

In practice, the approximation of user distribution 𝑞𝜙 (z𝑢 |r𝑢 ) is
usually a Normal distribution with learned parameters 𝜇𝑢 and Σ𝑢 .

To support keyphrase-based critiquing, the CE-VAE [8] models
the joint probability of a user’s item preferences and keyphrase
usage preferences. Formally, the CE-VAE is trained by maximiz-
ing the amortized variational lower-bound of the joint log likeli-
hood

∑
𝑢 log𝑝 (r𝑢 , e𝑢 ). Here, e𝑢 denotes the explanation vector (with

length equal to the keyphrase dictionary size), where the value of
each entry is either 1 (used by𝑢) or 0 (not used), reflecting the user’s
keyphrase usage history. As shown in Figure 1(d), the CE-VAE aug-
ments the base VAE architecture with a second head to generate
𝑒𝑢 along with 𝑟𝑢 . During critiquing, 𝑧𝑢 is naïvely updated as the
average of the original user embedding and the critique embedding
produced by the inverse feedback loop (𝑒𝑢 → 𝑧𝑢 ).

With these formal definitions, we can now concretely revisit
our criticisms of the CE-VAE that detract from its practical usage:
(i) its two-headed architecture and multi-objective training must
inherently trade off recommendation performance with keyphrase
modeling accuracy, and (ii) averaging the latent user update and
critique embeddings from the inverse encoding loop is naïve and
yields poor performance when iterated for multi-step critiquing.

Keyphrase Explanation Alignment. The CE-VAE framework
was proposed to achieve alignment between keyphrase explana-
tions and latent user preferences in order to facilitate critiquing
tasks. Inspired by CAV [3] methodology, BK-VAE achieves the same
goal by deriving Keyphrase Activation Vectors (KAV) with the off-
the-shelf VAE-CF framework, addressing CE-VAE’s first drawback.

To achieve this goal, we first observe in (1) that it is common to
use a single layer decoder with Mean Squared Error (MSE) recon-
struction loss for explicit ratings. We denote this decoder’s weight
matrix as 𝑋 ∈ R𝑛×𝑑 , where the 𝑖th vector x𝑖 is used to compute
item 𝑖’s rating given the latent preference embedding z𝑢 of user 𝑢.
Viewing the MSE from the lens of a log likelihood, we recognize

𝑃 (𝑟𝑢,𝑖 |z𝑢 , x𝑖 ) = N(x𝑖𝑇 z𝑢 , 𝜏−1𝑟 ), (2)

where the precision (i.e., inverse variance) 𝜏𝑟 is a hyperparameter.
To find the KAV for keyphrase 𝑘 (e.g., Musical), we consider the

item embedding vectors from the decoder matrix 𝑋 . We define a
KAV for 𝑘 as the normal to a hyperplane that separates items with
and without 𝑘 in the item embedding space as shown in Figure 1(b).
To obtain the activation vector for 𝑘 , we sample𝑚 examples from
a positive set of items I𝑘 (e.g., Les Miserables, Cats), and a negative
set I𝑘𝑐 (e.g., a set of random movies), respectively. A binary linear
classifier is trained to distinguish between the embeddings of the
two groups. Instead of training once, we perform multiple training
runs, and use the averaged classifier v𝑘 ∈ R𝑑 as the KAV for 𝑘 .
Posterior Belief Updating After Critiques. With a KAV v𝑘 for
each keyphrase 𝑘 , we can now perform a closed-form Bayesian
update over latent user preferences z𝑢 in response to critiques over
𝑘 , thus obviating the need for CE-VAE’s inverse feedback loop.

As KAVs are aligned with the latent item (and user) embedding
space, we adapt the log likelihood view of (2) to generate a Normal
distribution over keyphrase preference𝑦𝑢,𝑘 proportional in strength
to the inner product of keyphrase v𝑘 and user z𝑢 embeddings:

𝑃 (𝑦𝑢,𝑘 |z𝑢 , v𝑘 ) = N(v𝑘𝑇 z𝑢 , 𝜏−1𝑦 ) , (3)

where precision 𝜏𝑦 is a constant hyperparameter. With this likeli-
hood of keyphrase preference feedback 𝑦𝑢,𝑘 , Bayesian updating of
user 𝑢’s latent preferences z𝑢 for fixed v𝑘 is essentially a Bayesian
linear regression; updated beliefs over z𝑢 can then be decoded
through BK-VAE’s decoder to produce a recommendation consis-
tent with the keyphrase critiques. In our critiquing setting, a user
can express keyphrase preferences with either positive or negative
polarity.We facilitate such binary feedback bymapping the negative
and positive feedback to𝑦𝑢,𝑘 =𝑚𝑖𝑛𝑘v𝑘𝑇 z𝑢 and𝑦𝑢,𝑘 =𝑚𝑎𝑥𝑘v𝑘𝑇 z𝑢 ,
respectively, to calibrate upper and lower bounds of the user’s initial
keyphrase preference range as likelihood targets.
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Figure 1: (a)∼(c): Step-by-step flow of BK-VAE architecture. (a) An initial user representation is obtained from off-the-shelf
VAE-CF models. (b) Then the system performs a posterior update to latent user preference beliefs after each critique using
KAV and (c) generates a revised recommendation. The user may continue with further rounds of critiquing by repeating (b)
and (c), or terminate with the best recommendation. (d) The previously proposed CE-VAE architecture [8].

Table 2: Summary of datasets.

Dataset # Users # Items # Keyphrases # Ratings Sparsity

MovieLens 69,878 10,677 164 10,000,054 98.66%
Yelp 7,000 4,997 245 203,683 99.42%

Once the system receives a user’s critique on keyphrase 𝑘 with
the corresponding preference 𝑦𝑢,𝑘 at critiquing step 𝑡 , the latent
user’s belief can be updated through Bayes rule:

𝑃𝑡+1 (z𝑢 ) = 𝑃𝑡+1 (z𝑢 |v𝑘 , 𝑦𝑢,𝑘 ) ∝ 𝑃𝑡 (𝑦𝑢,𝑘 |v𝑘 , z𝑢 )𝑃𝑡 (z𝑢 ),where 𝑡 ≥ 0.

Specifically, the approximation of user distribution 𝑞𝜙 (z𝑢 |r𝑢 )
in (1) serves as an informed prior over 𝑢’s latent preferences, which
is denoted as 𝑃0 (z𝑢 ). Since both the likelihood and prior are Gauss-
ian and form a conjugate prior-likelihood pair, the posterior is also
Gaussian and can be computed incrementally in closed-form as
follows (we omit the user subscript 𝑢 to reduce notational clutter):

𝑃𝑡+1 (z𝑢 ) = N(𝜇𝑡+1, Σ𝑡+1)
where 𝜇𝑡+1 = Σ𝑡+1 (Σ𝑡−1𝜇𝑡 + 𝑦𝑘𝜏𝑦v𝑘 )

and Σ𝑡+1 = (Σ𝑡−1 + 𝜏𝑦v𝑘v𝑘𝑇 )−1 .
Comparing to CE-VAE’s naïve average-weighting algorithm for

user belief updating which discards Σ0 after training, BK-VAE ob-
tains a per-dimensional weighted update through Bayesian infer-
ences by fully utilizing the approximated user distribution. The
likelihood precision 𝜏𝑦 indicates the system’s degree of confidence
in each user’s critique. Technically, the larger the precision is, the
more the system leverages the information when it updates user
beliefs. By tuning this, the system can modulate the magnitude of
the user’s critiquing (e.g., extremely positive, neutral negative).

3 EXPERIMENTS AND EVALUATION
In this section, we evaluate BK-VAE by comparing it to CE-VAE [8]
on two different benchmark datasets.1 We evaluate: (RQ1) initial rat-
ing prediction recommendation performance comparison, (RQ2) a
diagnostic analysis of BK-VAE’s single-step critiquing, and (RQ3)
multi-step critiquing performance comparison.
1https://github.com/hojinyang/bayesian-critiquing-recommender

Table 3: Hyper-parameters tuned on the experiments.

Functionality Range Algorithms affected

Latent Dimension {50, 100, 150, 200} BK-VAE, CE-VAE
Learning Rate {1e-5, 1e-4, 1e-3, 1e-2} BK-VAE, CE-VAE
Dropout Rate {0., 0.3, 0.5} BK-VAE, CE-VAE

L2 Regularization {0., 1e-5, 1e-4 · · · 1e-1} BK-VAE, CE-VAE
KL Regularization {0.3, 0.5} BK-VAE, CE-VAE

Relative Weighting for Explanation Head {1e-4, 1e-3 · · · 1} CE-VAE
Relative Weighting for Inverse Network {1e-4, 1e-3 · · · 1} CE-VAE

Datasets. We conduct experiments on two datasets: MovieLens-
10M (MovieLens) for movie recommendation, and Yelp for business
recommendation. All datasets have keyphrase description assign-
ments for items provided by users. MovieLens contains social tags;
typically single words or short phrases assigned by users to movies.
For Yelp, we follow the preprocessing steps described in [5] to ex-
tract keyphrases from user reviews. We only keep keyphrases that
have been assigned by at least 15 users/items for both datasets.
Table 2 shows the overall dataset statistics. All experiments use 20%
of the data as a test set, and the remaining data is divided according
to a ratio of of 4:1 into the training and validation set.
Baseline. Two main modifications were performed on CE-VAE [8]
as the baseline model. First, while the original paper only suggested
to zero-out e𝑢 for keyphrases with negative critiques, we also im-
plemented a one-out variation to accommodate positive critiques.
Second, instead of using implicit feedback, we use CE-VAE in the
same explicit rating-based setting as BK-VAE. For fair comparison,
both BK-VAE and CE-VAE use the same backbone VAE structures.
Table 3 presents our hyperparameter definitions and sweeps for the
architecture and algorithm tuning on the held-out validation set.
RQ1: Initial RatingPredictionPerformanceComparison. Ta-
ble 4 shows the pre-critiquing recommendation performance com-
parison of VAE-CF (used by BK-VAE) with CE-VAE using the RMSE
metric. As the results show, VAE-CF (BK-VAE) matches CE-VAE on
Yelp and significantly outperforms CE-VAE on MovieLens.
RQ2: Single-step Critiquing Behavior Analysis. Before we
proceed to compare CE-VAE and BK-VAE, we first wish to test
a diagnostic proof-of-concept for BK-VAE’s single-step critiquing.
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Figure 2: Control over recommendationswhenkeyphrase likelihood precision is adjustedwith the values of {0, 100, 101, 102, 103}
for both positive and negative single-step critiquing cases. We observe the intended response as we increase KAV certainty.
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Figure 3: HR@{5, 10} comparison during the conversation session where the left and right y-axes represent the HR of BK-VAE
and CE-VAE, respectively (we have dual axes to show variation in CE-VAE performance more clearly). While we focus on both
negative and positive critiquing, we also test negative-only critiquing (originally proposed in [8]) for CE-VAE.We additionally
test under noisy critiquing for BK-VAE, where users may provide a random critique with probability {0.3, 0.5}.

Table 4: Comparison of VAE-CF (used by BK-VAE) against
CE-VAE; test RMSE with 95% confidence interval of 5-runs.

Dataset CE-VAE VAE-CF (BK-VAE)

MovieLens 0.9328 ± 0.0079 0.7884 ± 0.0022
Yelp 1.0011 ± 0.0114 1.0015 ± 0.0152

Ideally, after user 𝑢’s positive critique on 𝑘 , the updated ratings
of items inI𝑘 increase compared to those inI𝑘𝑐 , and decrease when
user negatively critiqued on 𝑘 . Hence, we measure the normalized
difference of average rating of items in I𝑘 compared to those in I𝑘𝑐
after critiquing on 𝑘 . Specifically,

PostCritRatingDiff(𝑢,𝑘 ;𝑝𝑜𝑙, 𝑝𝑟𝑒𝑐) = AR𝑘𝑢 (I𝑘 ) − AR𝑘𝑢 (I𝑘𝑐 )
AR𝑘𝑢 (I𝑘𝑐 )

, (4)

where AR𝑘𝑢 (·) is the average rating of items in a given set after 𝑢’s
critiquing on 𝑘 , with polarity 𝑝𝑜𝑙 and keyphrase precision 𝑝𝑟𝑒𝑐 .

In Figure 2, we report average PostCritRatingDiff over all users
for a wide range of 𝑝𝑟𝑒𝑐 values for both polarities. The result con-
firms that a user’s positive critique on 𝑘 leads to an increase in the
average rating of items in I𝑘 compared to I𝑘𝑐 (vice versa for nega-
tive critiques), and the gap increases as 𝑝𝑟𝑒𝑐 (certainty) increases.
RQ3: Multi-step Critiquing Performance Comparison. We
conduct user simulation to comparatively evaluate CE-VAE and
BK-VAE in a multi-step conversational recommendation scenario
using our datasets. Specifically, given an observed user–item-rating
triplet (u, i, r) in the test set, we may select item i as the ground
truth target to recommend when r ≥ 4. For critique selection, we
assume the user may prefer to critique a keyphrase that deviates
the most from the known target item description for both polarities.

At each step, we compare the top-10 recommended items’ aver-
aged keyphrase frequency to the target item’s keyphrase frequency.
Then we critique with the keyphrase having the largest frequency
differential. We track the conversational interaction session of sim-
ulated users, repeating critique selection for 5 rounds. We measure
recommendation quality using Hit-Rate@{5, 10}.

From Figure 3, we observe the following: (i) BK-VAE outperforms
CE-VAE by a significant margin in multi-step critiquing. Further, the
margin increases as the critiquing interactions progress. Compared
to the poor performance of CE-VAE’s trained inverse network, it
appears that the closed-form Bayesian update of BK-VAE accu-
rately models preference belief updates after critiques. (ii) While
BK-VAE’s critiquing performance decreases as the response noise
level increases, BK-VAE with noise still outperforms CE-VAE.

Despite extensive hyper-parameter tuning of the CE-VAE model,
it performs quite poorly on multi-step critiquing compared to BK-
VAE. To recap, we hypothesize that (i) the additional head of CE-VAE
makes it more difficult to train compared to BK-VAE’s single head
and (ii) the naïve averaging of user latent preferences and inverse
critique embeddings performs poorly in the multi-step setting.

4 CONCLUSION AND FUTUREWORK
We introduced BK-VAE, a novel keyphrase-based critiquing frame-
work for conversational recommendation built on the VAE-CF
framework that avoids key caveats of the previously proposed
architecture, CE-VAE [8]. Key results show that BK-VAE matches
or outperforms CE-VAE in both recommendation and multi-step
critiquing. The simplicity of BK-VAE combined with its strong per-
formance and Bayesian uncertainty model should enable versatile
future extensions such as a mixed-initiative preference elicitation
and critiquing framework to actively elicit keyphrase preferences.
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