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1 Background

In this section, we briefly review the background knowledge needed for this project. We start by
summarizing Variational Auto-encoder and several project related VAE variants. We then describe
the pros and cons of conditional inference methods that applicable on VAE structure.

1.1 Variational Auto-encoder and Its Variants

This project based on three important work in Variational Auto-encoder literature: VAE, CVAE and
BCDE. While there exist numerous variants of VAE, the following discussion would stand in most of
the cases. Thus, we would only concentrate the canonical versions.

1.1.1 Variational Auto-encoder [Kingma and Welling, 2013]

Original Variational Autoencoder optimize the Lower-bound of log probability of the full observations:

log p(v) = log

∫
z

q(z|v)p(v|z)p(z)
q(z|v)

dz

≥
∫
z

q(z|v) log p(v|z)p(z)
q(z|v)

dz

=

∫
z

q(z|v) log p(v|z)dz +
∫
z

q(z|v) p(z)
q(z|v)

dz

= Eq(z|v)[log p(v|z)dz]−KL[q(z|v)||p(z)],

(1)

where the prior latent distribution p(z) was assumed to be standard Normal distribution. While there
exists multiple works on changing this relaxation with complex latent priors [Kingma et al., 2016],
in practice, most of the VAE implementation is still in its original form with expoential family due
to simplicity. Alternatively, we notice that if the latent dimension is large enough, the Gaussian
assumption is still valid due to no complex latent distribution needed for the representation.

1.1.2 Conditional Variational Auto-encoder [Sohn et al., 2015]

Variational Auto-encoder as a generative model cannot effectively generate observations that fit
certain requirements. For example, requiring the model generate MNIST image that represents 7 is
hard. Thus, Conditional Variational Auto-encoder extends the VAE family by allowing the network
carrying evidence when generating observations.



More specifically, CVAE optimize the lower-bound of log conditional probability p(y|x):

log p(y|x) = log

∫
z

q(z|x, y)p(y|z, x)p(z|x)
q(z|x, y)

dz

≥
∫
z

q(z|x, y) log p(y|z, x)p(z|x)
q(z|x, y)

dz

=

∫
z

q(z|x, y) log p(y|z, x)dz +
∫
z

q(z|x, y) p(z|x)
q(z|x, y)

dz

= Eq(z|x,y)[log p(y|z, x)dz]−KL[q(z|x, y)||p(z|x)]

(2)

Note that, in CVAE, p(z|x) is a prior network that either pre-trained or assumed to be relaxed as p(z).
The generative network p(y|z, x) always take evidence x as input.

One major problem of CVAE is that people have to train the CVAE network for each particular split
of evidence variables X and query variables Y , which loss the ability to do arbitrary conditional
inference.

1.1.3 Bottleneck Conditional Density Estimation [Shu et al., 2017]

Bottleneck Conditional Density Estimation(BCDE) tries to conquer completely different problems
with CVAE and VAE. The goal of BCDE is to estimate the conditional probability p(y|x) instead
of generating new observations given evidence. It is a refined version of CVAE particular for
density estimation, it combines generative models and discriminative model with mutual parameter
regularization. Generative models are used to improve the training effectiveness as multi-objective
training.

Interestingly, for the discrimiative part of the BCDE model, it re-derived the log conditional likelihood
as:

log p(y|x) = log

∫
z

q(z|x, y)p(y|z)p(z|x)
q(z|x, y)

dz

≥
∫
z

q(z|x, y) log p(y|z)p(z|x)
q(z|x, y)

dz

=

∫
z

q(z|x, y) log p(y|z)dz +
∫
z

q(z|x, y) p(z|x)
q(z|x, y)

dz

= Eq(z|x,y)[log p(y|z)dz]−KL[q(z|x, y)||p(z|x)],

(3)

where the decoder network p(y|z) no longer need evidence x as input(which also suggesting it cannot
to conditional observation generation as CVAE).

1.2 Conditional Inference on Variational Auto-Encoders

In this section, we review the methods that can do arbitrary conditional inference on the VAE structure.
This is different with CVAE or BCDE whose evidence and query variables are pre-partitioned before
training the network. Such fixed partitioning does not support arbitrary inference where evidence
could be any subset of the observation variables (instead of fixed).

1.2.1 Hamilton Monte Carlo [Neal et al., 2011]

Given pre-trained VAE, the HMC does conditional inference by exploiting VAE decoder structure.
More specifically, we model the conditional inference as:

pθ(y|x) =
∫
z

pθ(z, y|x) =
∫
z

pθ(z|x)pθ(y|z)dz. (4)

HMC exploit this factorization by sample z along from p(z|x) instead of y, z together, and then it
draw exact samples from p(y|z) just by forward propagation in decoder network for each sample of
z.

While this method works in some simple cases, when the latent space of z is multi-mode, it fails
to exploit all modes and lead into biased inference due to travel difficulty. Unfortunately, latent
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distribution given partial observation p(z|x) is usually complex distribution with multiple near zero
density area. Note that, even though VAE latent for full observations is assumed to be gaussian,
for the partial observations, it is not the case. In another word, the original VAE is not friendly for
conditional inference.

One may argue the HMC is able to exploit multi-mode distribution. Our claim is it is very hard to
tune HMC with proper hyper-parameters that allows HMC move smoothly in arbitrary conditional
inference cases, since each query evidence may dramatically change the latent distribution, in which
pre-set hyper-parameter may not effective.

1.2.2 Rezende Approach [Rezende et al., 2014]

The Rezende approach constructs a transition function:

T (ŷ|y, x) =
∫
x̂

∫
z

p(ŷ, x̂|z)q(z|x, y)dzdx̂, (5)

where q(z|x, y) and q(x̂, ŷ|z) are encoder and decoder of VAE. It assumes q(z|x, y) is a good
approximation of p(z|x, y). By fixing the input evidence x and iterative update ŷ, this approach
approximate the blocked Gibbs sampling and is able to find stationary distribution of p(y|x) for
arbitrary evidence variable set X and query variable set Y .

As pointed out in paper [Wu et al., 2018], Rezende approach needs more evidence variables ratio
over all variables to trigger the effective transition. General observation is that, when less than 40%
variables are observed, the Rezende approach may not find the stationary distribution due to the
transition is potentially not aperiodic and irreducible everywhere in the latent space.

1.2.3 Cross-coding Inference [Wu et al., 2018]

Cross-coding is a variational inference method which approximate p(y|x) by minimize the upper-
bound of KL divergence

KL[qψ(y)||pθ(y|x)] ≤ KL[qψ(y, z)||pθ(y, z|x)]
= KL[qψ(z)||pθ(z|x)] +KL[pθ(y|z)||pθ(y|z, x)]
= KL[qψ(z)||pθ(z|x)] +KL[pθ(y|z)||pθ(y|z)]
= KL[qψ(z)||pθ(z|x)],

(6)

where qψ(z) is assumed to be an prior function that project standard Normal distribution into complex
distribution that close to pθ(z|x).
While, from conditional generation quality perspective, Cross-coding inference achieves desirable
performance, it suffers from low efficiency due to it requires to train the prior network for each
instance of the conditional inference.

2 Queryable Variational Auto-encoder

We notice that arbitrary conditional inference has not been solved yet due to the limitation from either
efficiency from inference methods or from the training of VAE itself.

Leveraging on previous VAE, CVAE and BCDE works, we propose Queryable Variational Auto-
encoder. The proposed model could directly deploy on lots of VAE variants without changing basic
structure.

Assume the full variable list is V . X,Y ⊆ V and X ∩ Y = ∅. Note, there may exist free variables so
that X ∪ Y 6= V .

For any random partition of variables X and Y , the joint probability of any assignment p(x, y) is

log p(x, y)

= log p(y|x) + logp(x)

≥ Eq(z|x,y)[log p(y|z)dz]−KL[q(z|x, y)||p(z|x)] + Eq(z|x)[log p(x|z)dz]−KL[q(z|x)||p(z)]
≥ Eq(z|x,y)[log p(y|z)dz]−KL[q(z|x, y)||q(z|x)] + Eq(z|x)[log p(x|z)dz]−KL[q(z|x)||p(z)]

(7)
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where we relax p(z|x) by its lower-bound q(z|x) instead of q(z), and we do not need additional prior
network.

By learning a model that maximize the probability of any subset of V , it approximate an Bayesian
model averaging where each prediction output is given by multiple trained subset models. Mathmat-
ically, if we assume the random partition probability is p(s), the joint objective function could be
represented as

|D|∑
i

∑
s

p(s) log p(x(i), y(i)) (8)

2.1 Property 1: Bounded Estimation

Comparing to original Variational Auto-encoder with conditional independent assumption (generative
probability p(x|z) and p(y|z) are independent):

log p(x, y) ≥
∫
z

q(z|x, y) log p(x, y|z)p(z)
q(z|x, y)

dz (9)

Use (7) minus (9), we have:∫
z

q(z|x, y) log p(y|z)p(z|x)
q(z|x, y)

dz +

∫
z

q(z|x) log p(x|z)p(z)
q(z|x)

dz −
∫
z

q(z|x, y) log p(x, y|z)p(z)
q(z|x, y)

dz

= −logp(x) +
∫
z

q(z|x) log p(x|z)p(z)
q(z|x)

dz

= KL(q(z|x)||p(z|x)),
(10)

which indicate the gap between the different types of lower-bounds are simply KL(q(z|x)||p(z|x)).
Thus, the lower bound of p(x,y) in Q-VAE is: KL(q(z|x)||p(z|x)) +KL(q(z|x, y)||p(z|x, y)).

2.2 Property 2: Robust Latent Representation with More or Less Observations

Look at the KL terms for Normal distribution in the objective function in equation 7

KL[q(z|x, y)||q(z|x)]

= log
σx
σx,y

+
σ2
x,y + (µx,y − µx)2

2σ2
x

− 1

2
,

(11)

which suggests the mean of more observations should be close to any mean of less observations,
where overlapped observations are identical. This interpretation is corresponding to the experiment
result as shown in section 3.2.

2.3 Property 3: Support Arbitrary Combination of Evidence and Query Variables

From the conditional inference perspective, in stead of fixing the split of variables X and Y as in
CVAE and BCDE, Q-VAE randomly split variables during training through cascade random dropouts
as described in section 2. Such random dropout training allows model being able to do arbitrary
conditional inference with different set of evidence or query variables without retrain a new model.

For example, we can obtain random X ∪ Y , X and Y through

X ∪ Y = Dropout(V, ρ)
X = Dropout(X ∪ Y, ρ)
Y = X ∪ Y −X,

(12)

where ρ indicates dropout ratio. Clearly, the partition probability p(s) is a function of the dropout rate
ρ. Note: if the evidence feeding into network is not full, we have to re-scale the input to guarantee
the statistic in-variance.
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3 Demo with MNIST

3.1 Ability of Conditional Inference

To demonstrate the ability of conditional inference of Q-VAE, we do image inpainting on corrupted
MNIST images. In this demo, the evidence varaibles are pixels that observed by the network and
query variables are everything corrupted.

Note, Variational auto-encoder without modification can also do image impainting by approximating
blocked gibbs sampling through repeating forward propagation as shown in Rezende et al. [2014].
However, our previous experiments show it does not work when the evidence percentage is less than
40%.

(a) Original (b) Corrupted (c) Mean of Prediction

Figure 1: Image in-painting example. We feed corrupted images as input of the trained Q-VAE
network. The network produce the full filled prediction that matches evidence with single forward
propagation. The evidence percentage is around 10%

3.2 Uncertainty with Partial Observation

We show the Q-VAE is able to correctly represent the uncertainty with different level partial observa-
tions. Intuitively, we want the latent representation distribution has the following properties:

• The less we observe, the larger variance we should obtain in the latent space.

• With more observations, the latent distribution should be inside of the distribution of that
with fewer observations.

(a) Corrupted (b) Q-VAE Latent Distributions (c) VAE Latent Distributions

Figure 2: Uncertainty of different observation percentage. (a)Shows different level of input cor-
ruptions from less to more. (b) shows the corresponding latent distributions of Q-VAE.(first two
dimensions) (c) shows the latent distributions of original VAE. Note the circles cover 99% latent
distribution for each partial input.
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Appendix

3.3 Algorithm

The following algorithm shows the rough step of the coding, where we assume encoder and decoder
are multi-layer neural networks with bottleneck latent dimension.

Algorithm 1 Queryable Variational Auto-encoder(Q-VAE)

1: procedure TRAIN(D, V )
2: for i ∈ range(1, |D|) do . Loop over data
3: x, y, ρ← GetRandomSplit(di, V )
4: µx, σx ← Encoderψ(x, ρ)
5: µx,y, σx,y ← Encoderψ((x, y), ρ2)
6: zx ← µx + σx ∗Random(0 · · · 1) . Re-parameterization Trick
7: zx,y ← µx,y + σx,y ∗Random(0 · · · 1)
8: x̂← Decoderθ(zx)
9: ŷ ← Decoderθ(zx,y)

10: L← (1− ρ)[KL(µx,y, σx,y, µx, σx) + KL(µx, σx, 0, 1) + `(x, x̂) + `(y, ŷ)] . Loss
11: ψ ← ψ + ∂L

∂ψ . Parameter Update
12: θ ← θ + ∂L

∂θ

13:
14: procedure GETRANDOMSPLIT(di, V ) . Create Random Split for Pairwise Training
15: ρ← Random(0.1 · · · 0.9) . Random Dropout Rate
16: X ∪ Y ← Dropout(V, ρ)
17: X ← Dropout(X ∪ Y, ρ)
18: x← di[X]
19: y ← di[X ∪ Y −X]
20: return x, y, ρ
21:
22: procedure KL( µx,y , σx,y , µx, σx) . Gaussian Close Form KL Divergence

23: return log σx

σx,y
+

σ2
x,y+(µx,y−µx)

2

2σ2
x

− 1
2
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