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Abstract

Potential-based reward shaping is a powerful approach for incorporating value-based advice in order to accelerate the
convergence of reinforcement learning algorithms on problems with sparse reward. We propose the idea of distributional
reward shaping, in which the shaping signal is a probability distribution over hypothetical returns in each state-action
pair. A natural setting in which such advice could be useful for transferring knowledge is the distributional reinforcement
learning (DRL), that has recently provided state-of-the-art results on a number of benchmark problems. However, it is
largely unclear how to incorporate distributional advice while maintaining policy invariance guarantees as in standard
RL. To this end, our first contribution is to show that distributional reward shaping maintains policy invariance if the
policy is derived by maximization of the expected return. By drawing on several examples from the literature, our
second contribution is to illustrate that such results do not hold generally in the risk-sensitive RL setting, in which the
agent optimizes a non-linear utility function of the return. However, we show that the utility of the distributional reward
shape could provide a powerful deterministic reward signal, that does not require making independence assumptions
nor limiting the class of utility functions that can be used.
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1 Introduction

Potential-based reward shaping (PBRS) is a powerful technique for transforming a reinforcement learning problem with a
sparse reward into one with a dense reward without changing the optimal policies [Ng et al., 1999]. Recent literature
has demonstrated its ability and flexibility in transferring knowledge from a variety of sources [Brys et al., 2015a,b,
Suay et al,, 2016]. However, none of the existing work has studied the problem of transferring knowledge that occurs
naturally in the form of a probability distribution over hypothetical return outcomes. Such “distributional” advice could
be particularly useful as a means of communicating notions of danger or uncertainty between learning agents, or from
humans to agents, and represents a richer vocabulary for transferring value-based advice than point estimates alone.
One practical setting is the transfer of knowledge between RL agents following the distributional RL (DRL) framework
[Bellemare et al., 2017], which estimates the full distribution of the return rather than its expectation alone. Here, the
learnt value function distribution from one task could be used as input to another agent who later solves a different
(but somewhat related) task, perhaps measuring risk in a different way. In many real-world domains that involve high
risk, such as medical domains for example, a human expert could provide scenarios that might play out following a
particular treatment (e.g. patient dies, patient survives), that could be best modeled as a distribution over returns due to
the stochastic or uncertain nature of the problem.

The goal of this abstract is two-fold. First, we prove that policy invariance with distributional advice holds for DRL agents
that optimize expected returns (Theorem 1). Second, we demonstrate that such results do not generalize directly to the
risk-sensitive setting (Example 1, 2). Instead, the utility of the advice provides a PBRS signal that preserves invariance,
and has favourable mathematical properties (Lemma 1).

2 Preliminaries

2.1 Distributional Reinforcement Learning

Given a Markov decision process (MDP) with state space S, actions A, reward function r, transition function P, and dis-
count factor v € (0,1), the goal of DRL is to learn the probability distribution of the discounted return Z*(s,a) =
> 150 7'7(8t, at, s141) following an optimal policy 7* (in a set of bounded random variables Z) by solving the distribu-

tional Bellman equation (DBE):
Z*(s,a) =r(s,a,8") +~vZ*(S",7*(S")), 7"(s') € argmax, Ez-[Z*(s',a)].

Bellemare et al. [2017] approximated Z*(s, a) by a histogram with equidistant points, and learnt a parametric representa-
tion Zy (s, a) by minimizing the KL-divergence between Zy(s, a) and the distribution of the single-step Bellman update.
Furthermore, they showed that the DBE operator is a contraction mapping under the p-Wasserstein metric. More re-
cently, Dabney et al. [2018b] proposed QR-DQN to estimate Z(s, a) by discretizing the quantiles of the distribution rather
than the outcomes, and used quantile regression to approximate the quantiles of Z*(s,a).

Dabney et al. [2018a] extended the framework of QR-DQN to learn risk-sensitive policies. Given a utility function U :
R — R, the goal of risk-aware RL is to learn a policy that optimizes the expected utility of the return associated with the
Bellman equation:

Z*(s,a) =r(s,a,8") +~vZ*(S",7*(S")), 7*(s') € argmax,Ez-[U(Z*(s',d"))].

Their approach, called IQN, restricted U to the class of distortion risk measures, that intuitively can be seen as computing
the expected value of the return under a distorted distribution of Z(s, a). More formally, U is associated with a distortion

function 3 : [0,1] — [0,1], such that Ez[U(Z(s,a))] = E. v (0,1))[Zs(r) (5, a)] where Z.(s,a) = Fg({s,a)(T) denotes the

quantile function of Z(s, a).

2.2 Utility Function

In our developments, we further abstract the idea of expected utility by considering the general class of concave utility
functions U : Z — R that satisfy [F6llmer and Schied, 2002]:

Al. U[0]=0

A2. if Z,,75 € Zsuch that P(Z; > Z5) = 1, then U[Z1] > U[Z5]

A3. ifceRand Z € Z, thenU[Z + | =U[Z] + ¢

A4 if 7,7, € Z thenU[Zy + Z5) > U[Z4] + U[Z],

which can be seen as necessary criteria for rational and risk-averse decision-making. We also assume:



A5. if Z, € Z converges in distribution to Z € Z with min Z; — min Z and max Z; — max Z, then U[Z;] — U[Z],

which ensures that the optimization criterion arg max, U[Z;(s, a)] remains meaningful as Z; converges to the true return
distribution.

2.3 Reward Shaping

The successful application of a reinforcement learning algorithm —and by extension DRL — depends largely on the quality
of the chosen reward function. Given a reward functionr : S x A x & — R and a shaping function F : S x A x S = R,
reward shaping produces an augmented reward function r/(s, a, s') = (s, a,s') + F (s, a, s’). The goal is to devise F' such
that the agent converges faster towards the optimal policy using ' than using r alone. However, care is necessary to
ensure that the set of optimal policies remains invariant with respect to the above change in the reward function [Randlev
and Alstrem, 1998]. One way to guarantee policy invariance is potential-based reward shaping (PRBS). Specifically, letting
® : S — Rbe any function, PBRS defines the shaping function as F(s,a,s’) = y®(s’) — ®(s). Intuitively, when the agent
transitions from state s to s, PBRS “replaces” the incentive ®(s) given in s with a new incentive ®(s’) in successor state
s'. Ng et al. [1999] showed that PBRS is the only way to ensure policy invariance in general MDPs.

3 Distributional Reward Shaping
In this section, we discuss the distributional setting in which the advice and the agent are both return distributions in Z.

3.1 Distributional Policy Invariance in DRL

To establish a characterization of policy invariance in DRL, we first study the risk-neutral setting I/ = E, where advice is
given as a probability distribution over hypothetical return.

Theorem 1. Let ® : S — Z be independent at each evaluation. If U = E, then PBRS leaves the optimal policies unchanged.

Proof. We begin with the Bellman equation for an MDP M with dynamics P and reward function r,
Zy(s,a) =71(s,a,8") +vZ141 (S, argmaxU[Zy11(S",a')]) == T Z11(s, a),
and subtract ®(s) from both sides to obtain
Zu(s,0) — O(s) = r(s,a, 8) + 1®(S") — B(s) + 7 (ZM(S’, arg maxtd[Zy41(S', a')]) - @(S/)) . M
Here and throughout, the equality is to be understood as equivalence in distribution. Next, define the random variable
Z{(s,a) and r}(s, a, s") such that:
Zy(s,a) := Zy(s,a) — D(s) ()
r'(s,a,5") :=r(s,a,5") +y®(S") — ®(s). (3)
Substituting the last two equations into (1), we obtain
Zi(s,a) =71'(s,a,8") +vZ; (S, argmax U[Z;41(S’, a')]).

Next, given A3, (2) and linearity of expectation:
Ti1(s') € argmaxU[Z;41(s',a')] = argmax {U[Z; 1 (s', )] + U[®(s)]}

= argmaxU{Z 1, (s', )] = i (),

and hence:
Zi(s,a) =71'(s,a,8") +vZ; (S, argmax U[Z;11 (S, a’))])

= rl(87 a, Sl) + ,YZTLFI(S/? arg maXU[Z£+1(S/a a/)D = T/Z£+1(Sv a)7
a/

is the distributional Bellman operator of the MDP with immediate reward function /. Finally, we observe that the roles
of the two MDPs with reward r and ’ can be interchanged, and so the optimal policies are preserved, as claimed. O

Observe that (2) foreshadows a result in Ng et al. [1999], namely that PBRS shifts the return in each state-action pair
down by the value of the potential ®(s) in each state of the MDP. However, a critical distinction in the DRL setting is that
PBRS leads to a convolution of Z,(s, a) and ®(s). Also, (3) suggests that immediate rewards ' can be stochastic even after
observing s’ ~ S” . This does not complicate our analysis, however, since the stochasticity can be absorbed directly into
the estimate Z, (s, a). Finally, we note that the consequences of this theorem also hold for arbitrary I/ if ®; is deterministic
(e.g. risk-free).



3.2 The Failure of Policy Invariance in Risk-Sensitive DRL

A natural question to ask is whether policy invariance still holds for arbitrary concave utility functions. Unfortunately,
this turns out to be false in general, since the analysis above shows that ¢/ must be strictly additive, e.g.

UZi(s,a) + O(s)] = U[Zi(s,a)] + U[D(s)] (4)

for all choices of Z; and ®. In more intuitive terms, policy invariance holds if the potential function does not permit the learning
agent to improve the overall risk through diversification among two lotteries: (1) the agent’s current knowledge of the return Z;(s, a),
and (2) the expert’s current knowledge of the return ®(s). Without further knowledge about the dependence between Z; (s, a)
and ®(s), it is therefore not possible to establish policy invariance except when ¢/ = E. To make this point clearer,
we illustrate how this would require making careful choices for ¢/ that depend on how Z;(s,a) and ®(s) are jointly
distributed.

Example 1. Suppose that Z,(s,a) and ®(s) are independent for each (s, a), and consider the entropic utility function Ug
1
Us[2] = BlogE[eﬁzL

where 8 € R is an arbitrary control parameter, and which satisfies A1-A4. Furthermore, we also define the weighted
entropic utility U,, as

(2= [Usl2)w(5)ds
where w : R — [0, 00), and which satisfies A1-A4 provided that [ w(8)dS = 1. Itis also easy to verify that:
Un[Z1(5,a) + ®(5)] = Un[Zi(s, a)] + U [D(s)]-

Furthermore, it can be shown that i, is the only class of utility functions that satisfies A1-A4 and A5 under the indepen-
dence assumption [Goovaerts et al., 2004].

While the form of I/ in the aforementioned example appears restrictive, we note that entropic utility essentially guaran-
tees policy invariance as long as Z;(s, a) and ®(s) are simulated from uncoupled stochastic processes. This setting is quite
natural, for instance, if ®(s) and Z;(s, a) were learnt on different tasks using IQN in an end-to-end framework, since sam-
ples ®(s) ~ max, Zg(+)(s,a) and Gy ~ Zg(,1(s,a) are typically generated according to i.i.d. samples 7, 7" ~ U([0, 1]). In
many instances however, such as when the immediate rewards or the return realizations from different tasks are directly
correlated [Zhang et al., 2021], the entropic utility is no longer a viable quantifier of risk.

Example 2. A converse example to independence is perfect dependence or commonoticity, in which Zy(s,a) = F,. 1(3@) (1)

and ®(s) = F*(ls) (1) for the same realization of 7 ~ U([0, 1]), where equality holds in distribution. We define Qx (p) to
denote the p-quantile function of X, and the tail value-at-risk

1

TV&RP [X] = H

/p 1 QRx(g)dg.

This utility function is additive for commonotone random variables [Dhaene et al., 2006], so (4) holds.

Taken together, the previous two examples have thus shown that policy invariance holds only when the dependence structure
between the model returns of the agent and the expert are precisely known, and the utility function U is chosen carefully. In other
words, ignoring the hidden interaction between the agents can lead to unintended behaviours in end-to-end or multi-task
approaches. Another shortcoming of the distributional approach to shaping is that it requires computing the convolution
of several probability distributions for each sample and can be computationally demanding. Finally, the choice of utility
should be dictated by the external environment (e.g. regulators), rather than solely from the specificity of each task.

3.3 Point Estimates are All You Need

If arbitrary distributional advice cannot be accounted for directly without knowing the structure of Z; and ®, we ask
whether it can be incorporated into PBRS in other ways. Given an arbitrary distribution-valued potential ®; € Z, one
such candidate that is consistent with the agent’s decision-making criteria is ¢(s) = U[®(s)]. With this simplification, (4)
holds immediately due to cash invariance, and thus ¢(s) provides a policy-invariant reward signal.

The next natural question to ask is: what kind of advice allows DRL to learn efficiently? We can answer this question
briefly by showing that the nature of the ideal deterministic potential ® takes the form of the utility of the return distribu-
tion Z*, with similar results having been shown only for standard RL [Zou et al., 2021].

Lemma 1. For an MDP with return distribution Z* under optimal policy 7*, the PBRS signal ¢(s) = max,U[Z*(s, a)| defines
an MDP M’ with a dense reward, whose optimal utility is zero along the optimal trajectory m*(s) and negative everywhere else.



Proof. The consequences of Theorem 1 hold for the deterministic signal ¢(s), and so the optimal policy remains un-
changed. Furthermore, according to (2) and A3:

UZ'(s,a)] =U[Z7(s,a) + (=6(5))] =U[Z"(s,a)] = d(s) = U[Z"(s, )] — maxU[Z"(s,a)] <O,

where equality holds only if a € arg max, U[Z*(s,a)] = 7*(s), as claimed. O

3.4 Generalization to State-Action Potentials

As a final observation, we note that it is easy to extend our previous analysis to the setting in which ®,(s, a) is time and
action-dependent, by considering the look-ahead reward shaping function
Fy(s,a,s',a") = y®i1(s',a’) — ®4(s,a),
where a is the action chosen in state s, a’ is the corresponding action chosen in state s’, and so forth. By extending the
derivations of Wiewiora et al. [2003], Devlin and Kudenko [2012] to our setting, it is easy to check that
UZi(s,a)] = U[Zi(s,a) — (s, a)].

Thus, under assumptions A1-A5, policy invariance holds once again as long as the actions in the new MDP are chosen
according to

71 (s) € argmax, {U[Z;(s,a)] + U[P(s,a)]},
where ¢(s,a) = U[Z*(s, a)] satisfies the usual guarantees for PBRS.

4 Conclusion

We demonstrated that PBRS can be generalized to a distribution over returns, and that it preserves policy invariance in
standard DRL. A negative result is illustrated, namely that policy invariance in the risk-sensitive setting cannot be guar-
anteed for arbitrary non-linear utility functions of the return. Instead, to accommodate many rational choices of utility
functions such as CVaR, we propose to map the distributional advice to a point estimate by using the given utility func-
tion, in which case the resulting PBRS signal is risk-sensitive, policy-invariant, and is optimal in certain circumstances.
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