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ABSTRACT
Designing preference elicitation (PE)methodologies that can quickly
ascertain a user’s top item preferences in a cold-start setting is a key
challenge for building effective and personalized conversational
recommendation (ConvRec) systems. While large language mod-
els (LLMs) enable fully natural language (NL) PE dialogues, we
hypothesize that monolithic LLM NL-PE approaches lack the multi-
turn, decision-theoretic reasoning required to effectively balance
the exploration and exploitation of user preferences towards an
arbitrary item set. In contrast, traditional Bayesian optimization
PE methods define theoretically optimal PE strategies, but cannot
generate arbitrary NL queries or reason over content in NL item
descriptions – requiring users to express preferences via ratings or
comparisons of unfamiliar items. To overcome the limitations of
both approaches, we formulate NL-PE in a Bayesian Optimization
(BO) framework that seeks to actively elicit NL feedback to identify
the best recommendation. Key challenges in generalizing BO to
deal with natural language feedback include determining: (a) how
to leverage LLMs to model the likelihood of NL preference feedback
as a function of item utilities, and (b) how to design an acquisition
function for NL BO that can elicit preferences in the infinite space
of language. We demonstrate our framework in a novel NL-PE al-
gorithm, PEBOL, which uses: 1) Natural Language Inference (NLI)
between user preference utterances and NL item descriptions to
maintain Bayesian preference beliefs, and 2) BO strategies such as
Thompson Sampling (TS) and Upper Confidence Bound (UCB) to
guide LLM query generation. We numerically evaluate our methods
in controlled simulations, finding that after 10 turns of dialogue,
PEBOL can achieve an MRR@10 of up to 0.27 compared to the
best monolithic LLM baseline’s MRR@10 of 0.17, despite relying
on earlier and smaller LLMs.1

∗Both authors contributed equally to this research.
1Our code is publically available at https://github.com/D3Mlab/llm-pe.
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1 INTRODUCTION
Personalized conversational recommendation (ConvRec) systems
require effective natural language (NL) preference elicitation (PE)
strategies that can efficiently learn a user’s top item preferences in
cold start settings, ideally requiring only an arbitrary set of NL item
descriptions. While the advent of large language models (LLMs)
has introduced the technology to facilitate NL-PE conversations
[14, 23] we conjecture that monolithic LLMs have limited abilities
to strategically conduct active, multi-turn NL-PE dialogues about
a set of arbitrary items. Specifically, we hypothesize that LLMs
lack the multi-turn decision-theoretic reasoning to interactively
generate queries that avoid over-exploitation or over-exploration
of user-item preferences, thus risking over-focusing on already
revealed item preferences or wastefully exploring preferences over
low-value items. Further challenges faced bymonolithic LLMNL-PE
approaches include the need to jointly reason over large, poten-
tially unseen sets of item descriptions, and the lack of control and
interpretability in system behaviour even after prompt engineering
or fine-tuning [28].

In contrast, conventional PE algorithms [21, 22, 27, 39, 40], in-
cluding Bayesian optimization methods [2, 5, 12, 32, 36], establish
formal decision-theoretic policies such as Thompson Sampling (TS)
and Upper Confidence Bound (UCB) [16] to balance exploration
and exploitation with the goal of quickly identifying the user’s most
preferred items. However, these techniques typically assume a user
can express preferences via direct item ratings or comparisons –
an unrealistic expectation when users are unfamiliar with most
items [1]. While recent work has extended Bayesian PE to a fixed
set of template-based queries over pre-defined keyphrases [36], no
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Figure 1: PEBOL’s belief updates over a cold-start user’s item utilities during three turns of NL dialogue. Bayesian preference
beliefs not only facilitate recommendation, but also enable Bayesian optimization policies to guide LLM query generation,
avoiding over-exploration (asking about clearly low-value items) and over-exploitation (over-focusing on known preferences).

existing work extends Bayesian methodologies to generative NL-PE
over a set of generic NL item descriptions.

In this paper, we make the following contributions:
• We introduce the first Bayesian optimization formalization of
NL-PE for arbitrary NL dialogue over a generic set of NL item
descriptions – establishing a new framework for research
on steering LLMs with decision-theoretic reasoning.

• We present PEBOL (Preference Elicitation with Bayesian
Optimization augmented LLMs), a novel NL-PE algorithm
which 1) infers item preferences via Natural Language In-
ference (NLI) [37] between dialogue utterances and item
descriptions to maintain Bayesian preference beliefs and
2) introduces LLM-based acquisition functions, where NL
query generation is guided by decision-theoretic strategies
such as TS and UCB over the preference beliefs.

• We numerically evaluate PEBOL against monolithic GPT-
3.5 and Gemini-Pro NL-PE methods via controlled NL-PE
dialogue experiments over multiple NL item datasets and
levels of user noise.

• Weobserve that after 10 turns of dialogue, PEBOL can achieve
a mean MRR@10 of up to 0.27 compared to the best mono-
lithic LLM baseline’s MRR@10 of 0.17, despite relying on
earlier and smaller LLMs.

2 BACKGROUND AND RELATEDWORK
2.1 Bayesian Optimization
Given an objective function 𝑓 : X → R, (standard) optimization sys-
tematically searches for a point 𝑥∗ ∈ X that maximizes2 𝑓 . Bayesian
optimization focuses on settings where 𝑓 is a black-box function
which does not provide gradient information and cannot be evalu-
ated exactly – rather, 𝑓 must be evaluated using indirect or noisy
observations which are expensive to obtain [10, 30]. To address
these challenges, Bayesian optimization maintains probabilistic be-
liefs over 𝑓 (𝑥) and its observations to guide an uncertainty-aware
optimization policy which decides where to next observe 𝑓 (𝑥).

Bayesian optimization begins with a prior 𝑝 (𝑓 ) which represents
the beliefs about 𝑓 before any observations are made. Letting 𝑦𝑖
2We take the maximization direction since this paper searches for items with maximum
utility for a person.

represent a noisy or indirect observation of 𝑓 (𝑥𝑖 ), and collecting a
sequence of observations into a dataset D = (x, y), an observation
model defines the likelihood 𝑝 (D|𝑓 ). We then use the observed data
and Bayes theorem to update our beliefs and obtain the posterior

𝑝 (𝑓 |D) = 𝑝 (𝑓 )𝑝 (D|𝑓 )
𝑝 (D) . (1)

This posterior informs an acquisition function 𝛾 (𝑥 |D) which deter-
mines where to next observe 𝑓 (𝑥) in a way that balances exploita-
tion (focusing observations where 𝑓 is likely near its maximum)
with exploration (probing areas where 𝑓 has high uncertainty).

2.2 Preference Elicitation
PE has witnessed decades of research, and includes approaches
based on Bayesian optimization (e.g., [3, 8, 11, 13, 18]), Bandits (e.g.,
[5, 24, 25, 40]), constrained optimization [29], and POMDPs [2]. In
the standard PE setting, a user is assumed to have some hidden
utilities u = [𝑢1, ..., 𝑢𝑁 ] over a set I of 𝑁 items, where item 𝑖 is
preferred to item 𝑗 if𝑢𝑖 > 𝑢 𝑗 . The goal of PE is typically to search for
an item 𝑖∗ ∈ argmax𝑖 𝑢𝑖 that maximizes user utility in a minimal
number of PE queries, which most often ask a user to express
item preferences as item ratings (e.g., [3, 5, 24, 25, 40]) or relative
preferences between item pairs or sets (e.g., [2, 8, 11, 12, 14, 32]).
An alternative form of PE asks users to express preferences over
predefined item features, also through rating- or comparison-based
queries [22, 27, 39]. Central to the above PE methods are query
selection strategies that balance the exploration and exploitation
of user preferences, with TS and UCB algorithms (cf. Sec. 4.2) often
exhibiting strong performance [5, 27, 36, 39, 40]. However, none of
these methods are able to interact with users through NL dialogue
or reason about NL item descriptions.

2.3 Language-Based Preference Elicitation
Yang et al. [36] introduce Bayesian PE strategies using TS and UCB
for keyphrase rating queries, where keyphrases are first mined from
NL item reviews and then co-embedded with user-item preferences
in a recommendation system. Handa et al. [14] propose using LLMs
to interface with a conventional Bayesian PE system, suggesting
a preprocessing step to extract features from NL descriptions and
a verbalization step to fluidly express pairwise item comparison
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Figure 2: The PEBOL NL-PE algorithm, which maintains a Bayesian belief state over a user’s item preferences given an arbitrary
set of NL item descriptions x. This belief is used by a decision-theoretic policy to balance the exploration and exploitation of
preferences by strategically selecting an item description 𝑥𝑖𝑡 as the basis for LLM query generation. Belief updates are computed
through Bayesian inference with NLI entailment scores between item descriptions and query-response pairs.

queries. Li et al. [23] prompt an LLM to generate PE queries for some
specific domain (e.g., news content, morals), observe user responses,
and evaluate LLM relevance predictions for a single item. While
these works make progress towards NL-PE, they do not study how
LLM query generation can strategically explore user preferences
towards an arbitrary item set outside the realm of item-based or
category-based feedback.

2.4 Conversational Recommendation
Recent work on ConvRec uses language models3 to facilitate NL
dialogue while integrating calls to a recommender module which
generates item recommendations based on user-item interaction
history [4, 26, 33, 35]. He et al. [15] report that on common datasets,
zero-shot GPT-3.5/4 outperforms these ConvRec methods, which
generally use older language models and require user-item interac-
tion history for their recommendation modules.

2.5 Natural Language Inference
Binary Natural Language Inference (NLI) [37] models predict the
likelihood that one span of text called a premise is entailed by (i.e.,
can be inferred from) a second span called the hypothesis. For ex-
ample, an effective NLI model should predict a high likelihood that
the premise “I want to watch Iron Man” entails the hypothesis “I
want to watch a superhero movie”. As illustrated by this example,
the hypothesis typically must be more general than the premise.
NLI models are trained by fine-tuning encoder-only LLMs on NLI
datasets [6, 31, 34], which typically consist of short text spans for
the premise and hypothesis – thus enabling relatively efficient
performance on similar tasks with a fairly small number LLM pa-
rameters.

3 PROBLEM DEFINITION
We now present a Bayesian optimization formulation of NL-PE.
The goal of NL-PE is to facilitate a NL dialogue which efficiently
discovers a user’s most preferred items out of a set of 𝑁 items.
Each item 𝑖 ∈ I has a NL description 𝑥𝑖 , which might be a title,
long-form description, or even a sequence of reviews, with the item
3Earlier systems (e.g. [4, 26]) use relatively small RNN-based language models.

set I collectively represented by x ∈ X with x = [𝑥1, ..., 𝑥𝑁 ]. We
assume the user has some (unknown) utility function 𝑓 : X → R
establishing hidden utilities u = 𝑓 (x) so that item 𝑖 is preferred to
item 𝑗 if 𝑢𝑖 > 𝑢 𝑗 . Our goal is to find the most preferred item(s):

𝑖∗ ∈ argmax
𝑖∈I

𝑢𝑖 . (2)

In contrast to standard Bayesian PE formalisms (c.f. Sec 2.2), we
do not assume that the user can effectively convey direct item-level
preferences by either: 1) providing item ratings (i.e., utilities) or
2) pairwise or listwise item comparisons. Instead, we must infer
user preferences by observing utterances during a NL system-user
dialogue. At turn 𝑡 of a dialogue, we let 𝑞𝑡 and 𝑟𝑡 be the system
and user utterance, respectively, with q𝑡 = [𝑞1, ..., 𝑞𝑡 ] and r𝑡 =

[𝑟1, ..., 𝑟𝑡 ] representing all system and user utterances up to 𝑡 . In this
paper, we call 𝑞𝑡 the query and 𝑟𝑡 the response, though extensions
to more generic dialogues (e.g., when users can also ask queries)
are discussed in Section 7. We letH𝑡 = (q𝑡 , r𝑡 ) be the conversation
history at turn 𝑡 .

To formulate NL-PE as a Bayesian optimization problem, we
place a prior belief on the user’s utilities 𝑝 (u|x), potentially con-
ditioned on item descriptions since they are available before the
dialogue begins. We then assume an observation model that gives
the likelihood 𝑝 (r𝑡 |x, u, q𝑡 ), letting us define the posterior utility
belief as

𝑝 (u|x,H𝑡 ) ∝ 𝑝 (r𝑡 |x, u, qt)𝑝 (u|x) . (3)
This posterior informs an acquisition function 𝛾 (x,H𝑡 ) which gen-
erates4 a new NL query

𝑞𝑡+1 = 𝛾 (x,H𝑡 ), (4)

to systematically search for 𝑖∗. The preference beliefs also let us
define an Expected Utility (EU) 𝜇𝑡

𝑖
for every item as

𝜇𝑡𝑖 = E𝑝 (u |x,H𝑡 ) [𝑢𝑖 ], (5)

which allows the top-𝑘 items to be recommended at any turn based
on their expected utilities.

Our Bayesian optimization NL-PE paradigm lets us formalize
several key questions, including:
4To represent the generative acquisition of NL outputs, we deviate from the conventional
definition of acquisition functions as mapping to R.
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Figure 3: Cherry-picked system-generated dialogues from our NL-PE experiments. The Monolithic GPT-3.5 dialogue (left)
demonstrates over-exploitation, with 𝑞3 directly extending 𝑞2 after a positive user preference is observed and leading to the
extreme case of query repetition (𝑞4 = 𝑞3). In contrast, PEBOL (right) continues exploring even after a positive response, while
focusing on promising aspects (three out of four queries elicit a positive response) by using UCB-guided query generation.

(1) How do we represent beliefs 𝑝 (u|x,H𝑡 ) in user-item utilities
u, given NL item descriptions x and a dialogue H𝑡 ?

(2) What are effective models for the likelihood 𝑝 (r𝑡 |x, u, q𝑡 ) of
observed responses r𝑡 given x, q𝑡 , and user utilities u?

(3) How can our beliefs inform the generative acquisition of NL
queries 𝑞𝑡+1 givenH𝑡 to strategically search for 𝑖∗?

These questions reveal a number of novel research directions dis-
cussed further in Section 7. In this paper, we present PEBOL, a
NL-PE algorithm based on the above Bayesian optimization NL-PE
formalism, and numerically evaluate it against monolithic LLM
alternatives through controlled, simulated NL dialogues (cf. Sec. 6).

4 METHODOLOGY
Limitations of Monolithic LLM Prompting. An obvious NL-PE

approach, described further as baseline in Section 5.1, is to prompt
a monolithic LLM with all item descriptions x, dialogue history
H𝑡 , and instructions to generate a new query at each turn. How-
ever, providing all item descriptions [𝑥1, ..., 𝑥𝑁 ] in the LLM context
window is very computationally expensive for all but the smallest
item sets. While item knowledge could be internalized through fine-
tuning, each item update would imply system retraining. Critically,
an LLM’s preference elicitation behaviour cannot be controlled
other than by prompt-engineering or further fine-tuning, with nei-
ther option offering any guarantees of predictable or interpretable
behaviour that balances the exploitation and exploration of user
preferences.

PEBOL Overview. We propose to addresses these limitations by
augmenting LLM reasoning with a Bayesian Optimization proce-
dure in a novel algorithm, PEBOL, illustrated in Figure 2. At each
turn 𝑡 , our algorithm maintains a probabilistic belief state over
user preferences as a Beta belief state (cf. Sec. 4.1). This belief state
guides an LLM-based acquisition function to generate NL queries
explicitly balancing exploration and exploitation to uncover the top
user preferences (cf. Sec. 4.2). In addition, our acquisition function
reduces the context needed to prompt the LLM in each turn from all
𝑁 item descriptions x to a single strategically selected item descrip-
tion 𝑥𝑖𝑡 . PEBOL then uses NLI over elicited NL preferences and item

descriptions to map dialogue utterances to numerical observations
(c.f. Sec 4.3).

4.1 Utility Beliefs
4.1.1 Prior Beliefs. Before any dialogue, PEBOL establishes an
uninformed prior belief 𝑝 (u) on user-item utilities. We assume item
utilities are independent so that

𝑝 (u) =
𝑁∏
𝑖=1

𝑝 (𝑢𝑖 ), (6)

and that the prior for each utility 𝑢𝑖 is a Beta distribution

𝑝 (𝑢𝑖 ) = Beta(𝛼0𝑖 , 𝛽
0
𝑖 ) . (7)

Since this paper focuses on fully cold start settings, we assume a
uniform Beta prior with (𝛼0

𝑖
, 𝛽0

𝑖
) = (1, 1). Beta distributions, illus-

trated in Figure 1, lie in the domain [0, 1] – a normalized interval
for bounded ratings in classical recommendation systems. We can
thus interpret utility values of 𝑢𝑖 = 1 or 𝑢𝑖 = 0 to represent a com-
plete like or dislike of item 𝑖 , respectively, while values 𝑢𝑖 ∈ (0, 1)
provide a strength of preference between these two extremes.

4.1.2 Observation Model. To perform a posterior update on our
utility beliefs given observed responses r𝑡 , we need an observa-
tion model that represents the likelihood 𝑝 (r𝑡 |x, u, q𝑡 ). Modelling
the likelihood of r𝑡 is a challenging task, so we will require some
simplifying assumptions. Firstly, we assume that the likelihood of
a single response 𝑟𝑡 is independent from any previous dialogue
history H𝑡−1, so that:

𝑝 (r𝑡 |x, u, q𝑡 ) =
𝑡∏

𝑡 ′=1
𝑝 (𝑟𝑡

′
|x, u, 𝑞𝑡

′
) . (8)

Note that this independence assumption will allow incremental
posterior belief updates, so that

𝑝 (u|x,H𝑡 ) ∝ 𝑝 (𝑟𝑡 |x, u, 𝑞𝑡 )𝑝 (u|x,H𝑡−1) . (9)

4.1.3 Binary Item Response Likelihoods and Posterior Update. With
the factorized distributions over item utilities and observational
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Figure 4: MRR@10 for MonoLLM and PEBOL-P with uncertainty-informed policies (UCB, TS, ER). All methods show preference
learning over time and MonoLLM is generally outperformed by PEBOL.

likelihood history now defined, we simply have to provide a con-
crete observational model of the response likelihood conditioned
on the query, item descriptions, and latent utility: 𝑝 (𝑟𝑡 |x, u, 𝑞𝑡 ).

Because the prior is factorized over conditionally independent
𝑢𝑖 (cf. (6)), we can likewise introduce individual per-item factor-
ized binary responses 𝑟𝑡

𝑖
∈ {0(dislike), 1(like)} to represent the

individual relevance of each item 𝑖 to the preference elicited at
turn 𝑡 . Critically, we won’t actually require an individual response
per item — this will be computed by a natural language inference
(NLI) model [6] to be discussed shortly — but we’ll begin with an
individual binary response model for 𝑟𝑡

𝑖
for simplicity:

𝑝 (𝑟𝑡𝑖 |𝑥𝑖 , 𝑢𝑖 , 𝑞
𝑡 ) = Bernoulli(𝑢𝑖 ). (10)

With our response likelihood defined, this now leads us to our
first pass at a full posterior utility update that we term PEBOL-B
for observed Binary rating feedback. Specifically, given observed
binary ratings 𝑟𝑡

𝑖
, the update at 𝑡 = 1 uses the Beta prior (7) with

the Bernoulli likelihood (10) to form a standard Beta-Bernoulli
conjugate pair and compute the posterior utility belief

𝑝 (𝑢𝑖 |𝑥𝑖 ,H1) ∝ 𝑝 (𝑢𝑖 |𝑥𝑖 )𝑝 (𝑟1𝑖 |𝑥𝑖 , 𝑢𝑖 , 𝑞
𝑡 ) (11)

= Beta(𝛼1𝑖 , 𝛽
1
𝑖 ), (12)

where 𝛼1
𝑖
= 𝛼0

𝑖
+ 𝑟1

𝑖
, 𝛽1

𝑖
= 𝛽0

𝑖
+ (1 − 𝑟1

𝑖
). Subsequent incremental

updates updates follow Eq. (9) and use the same conjugacy to give

𝑝 (𝑢𝑖 |𝑥𝑖 ,H𝑡 ) = Beta(𝛼𝑡𝑖 , 𝛽
𝑡
𝑖 ), (13)

where 𝛼𝑡
𝑖
= 𝛼𝑡−1

𝑖
+ 𝑟𝑡

𝑖
, 𝛽𝑡

𝑖
= 𝛽𝑡−1

𝑖
+ (1 − 𝑟𝑡

𝑖
).

4.1.4 Natural Language Inference and Probabilistic Posterior Update.
As hinted above, effective inference becomes slightly more nuanced
since we don’t need to observe an explicit binary response per item
in our PEBOL framework. Rather, we receive general preference
feedback 𝑟𝑡 on whether a user generically prefers a text descrip-
tion 𝑞𝑡 and then leverage an NLI model [6] to infer whether the
description 𝑥𝑖 of item 𝑖 would be preferred according to this feed-
back. For instance, for a (𝑞𝑡 , 𝑟𝑡 ) pair (“Want to watch a children’s
movie?”,“Yes”), NLI should infer a rating of 𝑟𝑡1 = 1 for 𝑥1 = “The Lion
King” and 𝑟𝑡2 = 0 for 𝑥2 = “Titanic”.

To deal with the fact that NLI models actually return an entail-
ment probability, our probabilistic observation variant, PEBOL-P
leverages the probability that item description 𝑥𝑖 entails 𝑞𝑡 , which
we denote as𝑤𝑡

𝑖
. We provide a full graphical model and derivation

of the Bayesian posterior update given this entailment probability
in the Supplementary Material, but note that we can summarize the
final result as a relaxed version of the binary posterior update of (13)

that replaces the binary observation 𝑟𝑖 ∈ {0, 1} with the entailment
probability𝑤𝑡

𝑖
∈ [0, 1], i.e., 𝛼𝑡

𝑖
= 𝛼𝑡−1

𝑖
+𝑤𝑡

𝑖
, 𝛽𝑡

𝑖
= 𝛽𝑡−1

𝑖
+ (1 −𝑤𝑡

𝑖
).

To visually illustrate how this posterior inference process works
in practice, Figure 1 shows the effect of PEBOL’s posterior utility
belief updates based on NLI for three query-response pairs – we
can see the system gaining statistical knowledge about useful items
for the user from the dialogue.

4.2 LLM-Based Acquisition Functions
Recall from Sec. 2.1 that in Bayesian optimization, the posterior
informs an acquisition function which determines where to make
the next observation. PEBOL generates a new query 𝑞𝑡 with a
two-step acquisition function 𝛾 , first using Bayesian Optimization
policies (step 1) based on the posterior utility beliefs 𝑝 (u|x,H𝑡 )
to select NL context, and then using this selected context to guide
LLM prompting (step 2). We express the overall acquisition function
𝛾 = 𝛾𝐺 ◦ 𝛾𝐶 as a composition of a context acquisition function 𝛾𝐶
(cf. Sec. 4.2.1) and a NL generation function 𝛾𝐺 (cf. Sec. 4.2.2).

4.2.1 Context Acquisition via Bayesian Optimization Policies. First,
PEBOL harnesses Bayesian optimization policies to select an item
description 𝑥𝑖𝑡 which will be used to prompt an LLM to generate a
query about an aspect described by 𝑥𝑖𝑡 (cf. Sec. 4.2.2). Selecting an
item 𝑖𝑡 whose utility 𝑢𝑖𝑡 is expected to be near the maximum, 𝑢𝑖∗ ,
will generate exploitation queries asking about properties of items
that are likely to be preferred by the user. In contrast, selecting an
item 𝑖𝑡 associatedwith high uncertainty in its utility𝑢𝑡

𝑖
will generate

exploration queries that probe into properties of items for which user
preferences are less known. Thus, strategically selecting 𝑥𝑖𝑡 allows
PEBOL to balance the exploration and exploitation behaviour of
NL queries, decreasing the risks of becoming stuck in local optima
(over-exploitation) or wasting resources exploring low utility item
preferences (over-exploration). We define the item selected by the
context acquisition function as

𝑖𝑡 = 𝛾𝐶 (x,H𝑡 ), (14)

and list several alternatives for 𝛾𝐶 , including the well-known strate-
gies of TS and UCB [30]:

(1) Thompson Sampling (TS): First, a sample of each item’s
utility 𝑢𝑡

𝑖
is taken from the posterior, 𝑢𝑡

𝑖
∼ 𝑝 (𝑢𝑖 |𝑥𝑖 ,H𝑡 ) .

Then, the item with the highest sampled utility is selected:

𝑖𝑡 = argmax
𝑖

𝑢𝑡𝑖 . (15)

TS explores more when beliefs have higher uncertainty and
exploits more as the system becomes more confident.
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Figure 5: MRR@10 for PEBOL-P with various context acquisition policies.

(2) Upper Confidence Bound (UCB): Let 𝑃𝑘 (𝛼, 𝛽) represent
the𝑘’th percentile of Beta(𝛼, 𝛽), which provides a confidence
bound on the posterior. UCB selects the itemwith the highest
confidence bound

𝑖𝑡 = argmax
𝑖

𝑃𝑘 (𝑝 (𝑢𝑖 |𝑥𝑖 ,H𝑡 )), (16)

following a balanced strategy because confidence bounds
are increased by both high utility and high uncertainty.

(3) Entropy Reduction (ER): An explore-only strategy that
selects the item with the most uncertain utility:

𝑖𝑡 = argmax
𝑖

Var(𝑝 (𝑢𝑖 |𝑥𝑖 ,H𝑡 )) . (17)

(4) Greedy: An exploit-only strategy that selects the item with
the highest expected utility 𝜇𝑡

𝑖
(Eq. 5):

𝑖𝑡 = argmax
𝑖

𝜇𝑡𝑖 . (18)

(5) Random: An explore-only heuristic that selects the next
item randomly.

4.2.2 Generating Short, Aspect-Based NL Queries. Next, PEBOL
prompts an LLM to generate a NL query 𝑞𝑡 based on the selected
item description 𝑥𝑖𝑡 while also using the dialogue history H𝑡 to
avoid repetitive queries. We choose to generate “yes-or-no” queries
asking if a user prefers items with some aspect 𝑎𝑡 , which is a short
text span extracted dynamically from 𝑥𝑖𝑡 to be different from any
previously queried aspects 𝑎1, ..., 𝑎𝑡−1. We adopt this query genera-
tion strategy to: 1) reduce cognitive load on the user, who may be
frustrated by long and specific queries about unfamiliar items and
2) better facilitate NLI through brief, general phrases [37]. Letting
𝜙 represent the query generation prompt, we let

𝑞𝑡 , 𝑎𝑡 = 𝛾𝐺 (𝑥𝑖𝑡 ,H𝑡 , 𝜙) (19)

be the LLM generated query and aspect at turn 𝑡 , with prompting
details discussed in Section 5.2.3. An example of such a query and
aspect (bold) is “Are you interested in movies with patriotic themes?”,
generated by PEBOL in our movie recommendation experiments
and shown in Figure 2.

4.3 NL Item-Preference Entailment
4.3.1 Preference Descriptions from Query Response Pairs. Next,
PEBOL receives a NL user response 𝑟𝑡 , which it must convert to
individual item preference observations. Since the LLM is instructed
to generate "yes-or-no" queries 𝑞𝑡 asking a user if they like aspect
𝑎𝑡 , we assume the user response will be a "yes" or a "no", and create
a NL description of the users preference 𝜌𝑡 , letting 𝜌𝑡 = 𝑎𝑡 if
𝑟𝑡 =“yes”, and 𝜌𝑡 = concat(“not ” , 𝑎𝑡 ) if 𝑟𝑡 = “no”. For example,

given a query that asks if the user prefers the aspect “patriotism”
in an item, if the user response is “yes”, then the user preference
𝜌𝑡 is “patriotism”, and “not patriotism” otherwise. This approach
produces short, general preference descriptions that are well suited
for NLI models [37].

4.3.2 Inferring Item Ratings from NL Preferences. Given a NL pref-
erence 𝜌𝑡 , PEBOLmust infer whether the user would like an item de-
scribed by𝑥𝑖 . Specifically, PEBOL acquires ratingsw𝑡 = [𝑤𝑡

1, ...,𝑤
𝑡
𝑁
]

(cf. Sec. 4.1.4) by using NLI to predict whether an item description
𝑥𝑖 entails (i.e., implies) the preference 𝜌𝑡 . For example, we expect
that an NLI model would predict that 𝑥𝑖 =“The Lion King” entails
𝜌𝑡 =“animated” while 𝑥 𝑗 =“Titanic” does not, inferring that a user
who expressed preference 𝜌𝑡 would like item 𝑖 but not 𝑗 . We use an
NLI model 𝑃𝜔 (𝑥𝑖 , 𝜌𝑡 ) to predict the probability𝑤𝑡

𝑖
that 𝑥𝑖 entails 𝜌𝑡 ,

and return 𝑟𝑡
𝑖
= ⌊𝑤𝑡

𝑖
⌉ in the case of binary observations (PEBOL-B)

and𝑤𝑡
𝑖
in the case of probabilistic observations (PEBOL-P).

4.4 The Complete PEBOL System
This concludes the PEBOL specification – the entire process from
prior utility belief to the LLM-based acquisition function generation
of a query to the posterior utility update is illustrated in Figure 2.

5 EXPERIMENTAL METHODS
We numerically evaluate our PEBOL variations through controlled
NL-PE dialogue experiments across multiple datasets and response
noise levels – comparing against two monolithic LLM (MonoLLM)
baselines. Specifically, these baselines directly use GPT-3.5-turbo-
0613 (GPT MonoLLM) or Gemini-Pro (Gemini MonoLLM) as the
NL-PE system, as described in Section 5.1. We do not compare
against ConvRec methods [4, 26, 33, 35] because they are not cold-
start systems, requiring observed user-item interactions data to
drive their recommendation modules. We also do not base our
experiments on ConvRec datasets such as ReDIAL [26], since they
are made up of pre-recorded conversation histories and cannot be
used to evaluate active, cold-start NL-PE systems.

5.1 MonoLLM Baseline
A major challenge of using MonoLLM for NL-PE is that item de-
scriptions x either need to be internalized through training or be
provided in the context window (cf. Sec. 4) – since we focus on fully
cold-start settings, we test the latter approach as a baseline. In each
turn, given the full conversation history H𝑡 and x, we prompt the
MonoLLM to generate a new query to elicit user preferences – all
prompts are shown in the Supplementary Materials. We evaluate
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Figure 6: MRR@10 for PEBOL using binary vs. probabilistic entailment scores. PEBOL-P with the best policy (TS on Yelp and
MovieLens, UCB on Recipe-MPR) generally outperforms PEBOL-B.

recommendation performance after each turn by using another
prompt to recommend a list of ten item names from x given H𝑡 .
Due to context window limits, this MonoLLM approach is only fea-
sible for small item sets with short item descriptions; thus, we have
to limit |I | to 100 for fair comparison to the MonoLLM baseline.

5.2 Simulation Details
We test PEBOL and MonoLLM through NL-PE dialogues with LLM-
simulated users, where the simulated users’ item preferences remain
hidden from the system.We evaluate recommendation performance
over 10 turns of dialogue.

5.2.1 User Simulation. For each experiment, we simulate 100 users,
each of which likes a single item 𝑖 ∈ I. Each user is simulated
by GPT-3.5-turbo-0613, which is given item description 𝑥𝑖 and
instructed to provide only “yes” or “no” responses to a query 𝑞𝑡 as
if it was a user who likes item 𝑖 .

5.2.2 Evaluating Recommendations. We evaluate the top-10 recom-
mendations in each turn using theMean Reciprocal Rank (MRR@10)
of the preferred item, which is equivalent to MAP@10 for the case
of a single preferred item.

5.2.3 PEBOLQueryGeneration. In turn 𝑡 , given an item description
𝑥𝑖 and previously generated aspects (𝑎1, ..., 𝑎𝑡−1), an LLM (GPT-3.5-
turbo-0613)5 is prompted to generate an aspect 𝑎𝑡 describing the
item 𝑖 that is no more than 3 words long. The LLM is then prompted
again to generate a “yes-or-no” query asking if a user prefers 𝑎𝑡 .

5.2.4 NLI. We use the 400M FAIR mNLI6 model to predicts logits
for entailment, contradiction, and neutral, and divide these logits by
an MNLI temperature 𝑇 ∈ {1, 10, 100} As per the FAIR guidelines,
we pass the temperature-scaled entailment and contradiction scores
through a softmax layer and take the entailment probabilities. We
report PEBOL results using the best MNLI temperature for the most
datasets.

5.2.5 User Response Noise. We test three user response noise levels
∈ {0,0.25,0.5} corresponding to the proportion or user responses
that are randomly selected between "yes" and "no".

5Experiments with newer LLMs such as Gemini or GPT4 for PEBOL query generation
are left for future work due to the API time and cost requirements needed to simulate
the many variants of PEBOL reported in Section 6. We do, however, compare PEBOL
against a Gemini-MonoLLM baseline.
6https://huggingface.co/facebook/bart-large-mnli

5.2.6 OmittingQueryHistory Ablation. We test how tracking query
history in PEBOL effects performance with an ablation study that
removes previously generated aspects (𝑎1, ..., 𝑎𝑡−1) from the aspect
extraction prompt.

5.3 Datasets
We obtain item descriptions from three real-world datasets: Movie-
Lens25M7, Yelp8, and Recipe-MPR [38] (example item descriptions
from each shown in Table 1 in the Supplementary Materials). After
the filtering steps below for Yelp and MovieLens, we randomly sam-
ple 100 items to create x. For Yelp, we filter restaurant descriptions
to be from a single major North American city (Philadelphia) and
to have at least 50 reviews and five or more category labels. For
MovieLens,9 we filter movies to be in the 10% by rating count with
at least 20 tags, and let movie descriptions use the title, genre labels,
and 20 most common user-assigned tags.

5.4 Research Questions
Our experiments explore the following research questions (RQs):

• RQ1: How does PEBOL perform against the MonoLLM base-
lines?

• RQ2: Does PEBOL perform better with binary or probabilis-
tic observations, and how sensitive is the latter to tempera-
ture?

• RQ3: How do PEBOL and MonoLLM perform under user
response noise?

• RQ4: How do the context selection policies of TS, UCB, ER,
Greedy, and Random effect PEBOL performance?

• RQ5:Howmuch does PEBOL performance depend on access
to the query history during query generation?

6 EXPERIMENTAL RESULTS
6.1 RQ1 - PEBOL vs. MonoLLM
Figure 4 shows MRR@10 over 10 dialogue turns for MonoLLM and
PEBOL (UCB,TS,ER),10 with 95% confidence intervals (CIs) at turn
10 shown in Figure 8 (see Supplementary Materials for CIs for all
turns and experiments). All methods start near random guessing,
reflecting a cold start, and show clear preference learning over time.
7https://grouplens.org/datasets/movielens/25m/
8https://www.yelp.com/dataset
9For all experiments with MovieLens, we use the 16k version of GPT-3.5-turbo-0613,
due to MonoLLM requiring extra context length for x.
10For each PEBOL policy, we use the MNLI temperature that performed best on the
most datasets with continuous responses (see Supplementary Materials).

https://huggingface.co/facebook/bart-large-mnli
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Figure 7: The effect of including the generated aspect history in the aspect generation prompt. Including the history improves
performance, which we hypothesize is due to reducing repeated or uninformative queries.

Figure 8: The effect of user response noise on MRR@10 – error bars are 95% confidence intervals.

Compared to GPT-MonoLLM, which uses the same LLM (GPT-
3.5-turbo-0613) as PEBOL does for query generation, after 10 turns
of dialogue PEBOL achieves: a mean MRR@10 of 0.27 vs. GPT-
MonoLLM’s MRR@10 of 0.12 on Yelp; 0.18 vs 0.09 on MovieLens;
and 0.17 vs 0.11 on Recipe-MPR, respectively. Compared to Gemini-
MonoLLM, which uses a newer generation LLM (Gemini-Pro) than
PEBOL for query generation, after 10 turns PEBOL still achieves
a higher mean MRR@10 of 0.27 vs. Gemini-MonoLLM’s mean
MRR@10 of 0.17 on Yelp; 0.18 vs. 0.15 on MovieLens, and 0.17
vs 0.16 on Recipe-MPR, respectively. While we did not have the
resources to test PEBOL with Gemini query generation, we hy-
pothesize that using a newer LLM for query generation can further
improve PEBOL performance, since using the newer LLM (Gemini)
shows performance improvements for the MonoLLM baseline.

6.2 RQ2 - Binary vs. Probabilistic Responses
Figure 6 compares PEBOL performance using binary (PEBOL-B)
vs. continuous (PEBOL-P) feedback, and shows that performance is
typically better when continuous responses are used – indicating
that binary feedback models discard valuable information from the
entailment probabilities.

6.3 RQ3 - Effect of User Response Noise
Figure 8 shows the impact of user response noise on MRR@10 at
turn 10 – PEBOL generally continues to outperform MonoLLM
under user response noise. Specifically, at all noise levels, both
MonoLLM baselines are outperformed by all PEBOL-P variants
on Yelp, and by at least one PEBOL-P variant on MovieLens and
Recipe-MPR.

6.4 RQ4 - Comparison of Context Acquisition
Policies

Figure 5 compares the performance of various PEBOL context acqui-
sition policies – all policies show active preference learning, other
than random item selection on RecipeMPR. There is considerable
overlap between methods, however for most turns TS does well on
Yelp and MovieLens while being beaten by Greedy, ER, and UCB
on Recipe-MPR. As expected due to the randomness in sampling,
TS performance is correlated with random item selection, while
UCB performs quite similarly to greedy.

6.5 RQ5 - Effect of Aspect History in Query
Generation

As shown in Figure 7, we see improvements in PEBOL performance
from including a list of previously generated aspects in the aspect
generation prompt. For instance, the differences in mean MRR@10
from including vs. excluding the query history for TS after 10 turns
were: 0.27 vs 0.16 for Yelp; 0.18 vs 0.14 for MovieLens, and 0.13 vs
0.09 for Recipe-MPR, respectively. Practically, including the aspect
generation history also helps to avoid repeat queries, which gain
no information and could frustrate a user.

7 CONCLUSION AND FUTUREWORK
This paper presents a novel Bayesian optimization formalization of
natural language (NL) preference elicitation (PE) over arbitrary NL
item descriptions, as well as introducing and evaluating PEBOL, an
algorithm for NLPreferenceElicitationwithBayesianOptimization
augmented LLMs. As discussed below, our study also presents many
opportunities for future work, including for addressing some of the
limitations of PEBOL and our experiment setup.
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User Studies. Firstly, our experiments limited by their reliance
on LLM-simulated users. While the dialogue simulations indicate
reasonable behaviour in the observed results, such as initial recom-
mendation performance near random guessing, preference learning
over time, and coherent user responses in logs such as those shown
in Figure 7, future work would benefit from human user studies.

Multi-Item Belief Updates. While the assumption that item utili-
ties can be updated independently allows the use of a simple and
interpertable Beta-Bernouilli update model for each item, it also
requires a separate NLI calculation to be performed for each item,
which is computationally expensive. A key future direction is thus
to explore alternative belief state forms which enable the joint
updating of beliefs over all items from a single NLI computation.

Collaborative Belief Updates. Since PEBOL does not leverage
any historical interactions with other users, an important future
direction is to study NL-PE which leverages collaborative, multi-
user data. One possibility is to initialize a cold start user’s prior
beliefs based on interaction histories with other users. Another
direction is adapting collaborative filtering based belief updating,
such as the methods used in item-based feedback PE techniques
(e.g., [5]), to NL-PE.

Diverse Query Forms. While PEBOL uses a pointwise query gen-
eration strategy that selects one item description at a time for LLM
context, future work can explore LLM-based acquisition functions
with pairwise and setwise context selection. Such multi-item con-
text selection would enable contrastive query generation that could
better discriminate between item preferences.

NL-PE in ConvRec Architectures. Another direction for future
research is the integration of NL-PE methodologies such as PEBOL
into conversational recommendation (ConvRec) system architec-
tures (e.g., [7, 9, 17, 20]), which must balance many tasks including
recommendation, explanation, and personalized question answer-
ing. Thus, in contrast to PEBOL’s pointwise queries and “yes-or-no”
user responses, the use of PE in ConvRec systems implies that future
algorithms will need to elicit preferences based on arbitrary pairs
of NL system-user utterances. In these potential extensions, aspect-
based NLI could be enabled by extracting aspects from utterances
with LLMs [19].

REFERENCES
[1] Erdem Biyik, Fan Yao, Yinlam Chow, Alex Haig, Chih-wei Hsu, Mohammad

Ghavamzadeh, and Craig Boutilier. 2023. Preference Elicitation with Soft At-
tributes in Interactive Recommendation. ArXiv abs/2311.02085 (2023). https:
//api.semanticscholar.org/CorpusID:265034238

[2] Craig Boutilier. 2002. A POMDP formulation of preference elicitation problems.
In AAAI/IAAI. Edmonton, AB, 239–246.

[3] Eric Brochu, Tyson Brochu, and Nando De Freitas. 2010. A Bayesian interactive
optimization approach to procedural animation design. In Proceedings of the 2010
ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 103–112.

[4] Qibin Chen, Junyang Lin, Yichang Zhang, Ming Ding, Yukuo Cen, Hongxia Yang,
and Jie Tang. 2019. Towards Knowledge-Based Recommender Dialog System.
In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan
(Eds.). Association for Computational Linguistics, Hong Kong, China, 1803–1813.
https://doi.org/10.18653/v1/D19-1189

[5] Konstantina Christakopoulou, Filip Radlinski, and Katja Hofmann. 2016. Towards
Conversational Recommender Systems. In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (San Francisco,

California, USA) (KDD ’16). Association for Computing Machinery, New York,
NY, USA, 815–824.

[6] Ido Dagan, Oren Glickman, and Bernardo Magnini. 2005. The PASCAL recog-
nising textual entailment challenge. In Machine Learning Challenges Workshop.
Springer, 177–190.

[7] Yashar Deldjoo, Zhankui He, Julian McAuley, Anton Korikov, Scott Sanner, Arnau
Ramisa, René Vidal, Maheswaran Sathiamoorthy, Atoosa Kasirzadeh, and Silvia
Milano. 2024. A Review of Modern Recommender Systems Using Generative
Models (Gen-RecSys). In Proceedings of the 30th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining (KDD ’24), August 25–29, 2024, Barcelona,
Spain.

[8] Brochu Eric, Nando Freitas, and Abhijeet Ghosh. 2007. Active preference learning
with discrete choice data. Advances in Neural Information Processing Systems 20
(2007).

[9] Luke Friedman, Sameer Ahuja, David Allen, Terry Tan, Hakim Sidahmed,
Changbo Long, Jun Xie, Gabriel Schubiner, Ajay Patel, Harsh Lara, et al. 2023.
Leveraging Large Language Models in Conversational Recommender Systems.
arXiv preprint arXiv:2305.07961 (2023).

[10] Roman Garnett. 2023. Bayesian optimization. Cambridge University Press.
[11] Javier González, Zhenwen Dai, Andreas Damianou, and Neil D Lawrence. 2017.

Preferential bayesian optimization. In International Conference on Machine Learn-
ing. PMLR, 1282–1291.

[12] Shengbo Guo and Scott Sanner. 2010. Real-time multiattribute Bayesian prefer-
ence elicitation with pairwise comparison queries. In Proceedings of the Thirteenth
International Conference on Artificial Intelligence and Statistics. JMLR Workshop
and Conference Proceedings, 289–296.

[13] Shengbo Guo, Scott Sanner, and Edwin V Bonilla. 2010. Gaussian process prefer-
ence elicitation. Advances in Neural Information Processing Systems 23 (2010).

[14] Kunal Handa, Yarin Gal, Ellie Pavlick, Noah Goodman, Jacob Andreas, Alex
Tamkin, and Belinda Z. Li. 2024. Bayesian Preference Elicitation with Language
Models. arXiv:2403.05534 [cs.CL]

[15] Zhankui He, Zhouhang Xie, Rahul Jha, Harald Steck, Dawen Liang, Yesu Feng,
Bodhisattwa Prasad Majumder, Nathan Kallus, and Julian McAuley. 2023. Large
Language Models as Zero-Shot Conversational Recommenders. Proceedings of the
32nd ACM International Conference on Information and Knowledge Management
(2023).

[16] Giannis Karamanolakis, Kevin Raji Cherian, Ananth Ravi Narayan, Jie Yuan, Da
Tang, and Tony Jebara. 2018. Item recommendationwith variational autoencoders
and heterogeneous priors. In Proceedings of the 3rd Workshop on Deep Learning
for Recommender Systems. 10–14.

[17] Sara Kemper, Justin Cui, Kai Dicarlantonio, Kathy Lin, Danjie Tang, Anton Ko-
rikov, and Scott Sanner. 2024. Retrieval-Augmented Conversational Recommen-
dation with Prompt-based Semi-Structured Natural Language State Tracking.
In Proceedings of the 47th International ACM SIGIR Conference on Research and
Development in Information Retrieval (Washington, DC, USA) (SIGIR ’24). ACM,
New York, NY, USA.

[18] Mohammad M. Khajah, Brett D. Roads, Robert V. Lindsey, Yun-En Liu, and
Michael C. Mozer. 2016. Designing Engaging Games Using Bayesian Optimization.
In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems
(San Jose, California, USA) (CHI ’16). Association for Computing Machinery, New
York, NY, USA, 5571–5582. https://doi.org/10.1145/2858036.2858253

[19] Anton Korikov, George Saad, Ethan Baron, Mustafa Khan, Manav Shah, and
Scott Sanner. 2024. Multi-Aspect Reviewed-Item Retrieval via LLM Query De-
composition and Aspect Fusion. In Proceedings of the 1st SIGIR’24 Workshop on
Information Retrieval’s Role in RAG Systems, July 18, 2024, Washington D.C., USA.

[20] Anton Korikov, Scott Sanner, Yashar Deldjoo, Francesco Ricci, Zhankui He, Ju-
lian McAuley, Arnau Ramisa, Rene Vidal, Maheswaran Sathiamoorthy, Atoosa
Kasirzadeh, and Silvia Milano. 2024. Large Language Model Driven Recommen-
dation. arXiv preprint arXiv:2404.XXXXX (2024).

[21] Hoyeop Lee, Jinbae Im, Seongwon Jang, Hyunsouk Cho, and Sehee Chung. 2019.
MeLU: Meta-Learned User Preference Estimator for Cold-Start Recommendation.
In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining (Anchorage, AK, USA) (KDD ’19). Association for
Computing Machinery, New York, NY, USA, 1073–1082. https://doi.org/10.1145/
3292500.3330859

[22] Wenqiang Lei, Gangyi Zhang, Xiangnan He, Yisong Miao, Xiang Wang, Liang
Chen, and Tat-Seng Chua. 2020. Interactive Path Reasoning on Graph for Conver-
sational Recommendation. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining (Virtual Event, CA, USA)
(KDD ’20). Association for Computing Machinery, New York, NY, USA, 2073–2083.
https://doi.org/10.1145/3394486.3403258

[23] Belinda Z. Li, Alex Tamkin, Noah Goodman, and Jacob Andreas. 2023. Eliciting
Human Preferences with Language Models. arXiv:2310.11589 [cs.CL]

[24] Lihong Li, Wei Chu, John Langford, and Robert E Schapire. 2010. A contextual-
bandit approach to personalized news article recommendation. In Proceedings of
the 19th International Conference on World Wide Web. 661–670.

[25] Lihong Li, Wei Chu, John Langford, and Xuanhui Wang. 2011. Unbiased offline
evaluation of contextual-bandit-based news article recommendation algorithms.

https://api.semanticscholar.org/CorpusID:265034238
https://api.semanticscholar.org/CorpusID:265034238
https://doi.org/10.18653/v1/D19-1189
https://arxiv.org/abs/2403.05534
https://doi.org/10.1145/2858036.2858253
https://doi.org/10.1145/3292500.3330859
https://doi.org/10.1145/3292500.3330859
https://doi.org/10.1145/3394486.3403258
https://arxiv.org/abs/2310.11589


RecSys ’24, October 14–18, 2024, Bari, Italy Austin and Korikov, et al.

In Proceedings of the Fourth ACM International Conference on Web Search and
Data Mining. 297–306.

[26] Raymond Li, Samira Ebrahimi Kahou, Hannes Schulz, Vincent Michalski, Laurent
Charlin, and Chris Pal. 2018. Towards deep conversational recommendations.
Advances in Neural Information Processing Systems 31 (2018).

[27] Shijun Li, Wenqiang Lei, Qingyun Wu, Xiangnan He, Peng Jiang, and Tat-Seng
Chua. 2021. Seamlessly Unifying Attributes and Items: Conversational Recom-
mendation for Cold-start Users. ACM Trans. Inf. Syst. 39, 4, Article 40 (aug 2021),
29 pages. https://doi.org/10.1145/3446427

[28] Joshua Maynez, Shashi Narayan, Bernd Bohnet, and Ryan McDonald. 2020. On
Faithfulness and Factuality in Abstractive Summarization. In Proceedings of the
58th Annual Meeting of the Association for Computational Linguistics, Dan Jurafsky,
Joyce Chai, Natalie Schluter, and Joel Tetreault (Eds.). Association for Compu-
tational Linguistics, Online, 1906–1919. https://doi.org/10.18653/v1/2020.acl-
main.173

[29] Francesca Rossi and Allesandro Sperduti. 2004. Acquiring both constraint and
solution preferences in interactive constraint systems. Constraints 9, 4 (2004),
311–332.

[30] Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P. Adams, and Nando de Fre-
itas. 2016. Taking the HumanOut of the Loop: A Review of Bayesian Optimization.
Proc. IEEE 104, 1 (2016), 148–175. https://doi.org/10.1109/JPROC.2015.2494218

[31] James Thorne, Andreas Vlachos, Christos Christodoulopoulos, and Arpit Mittal.
2018. FEVER: a Large-scale Dataset for Fact Extraction and VERification. In
Proceedings of the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long
Papers), Marilyn Walker, Heng Ji, and Amanda Stent (Eds.). Association for
Computational Linguistics, New Orleans, Louisiana, 809–819. https://doi.org/10.
18653/v1/N18-1074

[32] Ivan Vendrov, Tyler Lu, Qingqing Huang, and Craig Boutilier. 2020. Gradient-
Based Optimization for Bayesian Preference Elicitation. Proceedings of the AAAI
Conference on Artificial Intelligence 34, 06 (Apr. 2020), 10292–10301. https:
//doi.org/10.1609/aaai.v34i06.6592

[33] Xiaolei Wang, Kun Zhou, Ji-Rong Wen, and Wayne Xin Zhao. 2022. Towards
unified conversational recommender systems via knowledge-enhanced prompt
learning. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Dis-
covery and Data Mining. 1929–1937.

[34] Adina Williams, Nikita Nangia, and Samuel Bowman. 2018. A Broad-Coverage
Challenge Corpus for Sentence Understanding through Inference. In Proceed-
ings of the 2018 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)
(New Orleans, Louisiana). Association for Computational Linguistics, 1112–1122.
http://aclweb.org/anthology/N18-1101

[35] Bowen Yang, Cong Han, Yu Li, Lei Zuo, and Zhou Yu. 2022. Improving Con-
versational Recommendation Systems’ Quality with Context-Aware Item Meta-
Information. In Findings of the Association for Computational Linguistics: NAACL
2022. 38–48.

[36] Hojin Yang, Scott Sanner, Ga Wu, and Jin Peng Zhou. 2021. Bayesian Preference
Elicitation with Keyphrase-Item Coembeddings for Interactive Recommendation.
In Proceedings of the 29th ACM Conference on User Modeling, Adaptation and
Personalization. 55–64.

[37] Wenpeng Yin, Jamaal Hay, and Dan Roth. 2019. Benchmarking Zero-shot
Text Classification: Datasets, Evaluation and Entailment Approach. In Proceed-
ings of the 2019 Conference on Empirical Methods in Natural Language Process-
ing and the 9th International Joint Conference on Natural Language Process-
ing (EMNLP-IJCNLP), Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan
(Eds.). Association for Computational Linguistics, Hong Kong, China, 3914–3923.
https://doi.org/10.18653/v1/D19-1404

[38] Haochen Zhang, Anton Korikov, Parsa Farinneya, Mohammad Mahdi Abdol-
lah Pour, Manasa Bharadwaj, Ali Pesaranghader, Xi Yu Huang, Yi Xin Lok,
Zhaoqi Wang, Nathan Jones, and Scott Sanner. 2023. Recipe-MPR: A Test
Collection for Evaluating Multi-aspect Preference-based Natural Language Re-
trieval. In Proceedings of the 46th International ACM SIGIR Conference on Re-
search and Development in Information Retrieval (Taipei, Taiwan) (SIGIR ’23).
Association for Computing Machinery, New York, NY, USA, 2744–2753. https:
//doi.org/10.1145/3539618.3591880

[39] Xiaoying Zhang, Hong Xie, Hang Li, and John C.S. Lui. 2020. Conversational
Contextual Bandit: Algorithm and Application. In Proceedings of The Web Confer-
ence 2020 (Taipei, Taiwan) (WWW ’20). Association for Computing Machinery,
New York, NY, USA, 662–672. https://doi.org/10.1145/3366423.3380148

[40] Xiaoxue Zhao, Weinan Zhang, and Jun Wang. 2013. Interactive collaborative
filtering. In Proceedings of the 22nd ACM International Conference on Information
& Knowledge Management. 1411–1420.

https://doi.org/10.1145/3446427
https://doi.org/10.18653/v1/2020.acl-main.173
https://doi.org/10.18653/v1/2020.acl-main.173
https://doi.org/10.1109/JPROC.2015.2494218
https://doi.org/10.18653/v1/N18-1074
https://doi.org/10.18653/v1/N18-1074
https://doi.org/10.1609/aaai.v34i06.6592
https://doi.org/10.1609/aaai.v34i06.6592
http://aclweb.org/anthology/N18-1101
https://doi.org/10.18653/v1/D19-1404
https://doi.org/10.1145/3539618.3591880
https://doi.org/10.1145/3539618.3591880
https://doi.org/10.1145/3366423.3380148


Supplementary Materials

ABSTRACT
This document provides the supplementary materials for the paper
titled “Bayesian Optimization with LLM Acquisition Functions for
Natural Language Preference Elicitation”.

A PROBABILISTIC GRAPHICAL MODEL FOR
POSTERIOR UTILITY UPDATE

In this section, we present the probabilistic graphical model for
the posterior utility updates introduced in our paper with a more
detailed derivation of the posterior utility belief. As discussed in
the paper, the objective of posterior inference is to update the prior
belief maintained over the utility of each item 𝑖 ∈ I denoted by
𝑝 (𝑢𝑖 ) given the query 𝑞𝑡 , item description 𝑥𝑖 , and 𝑒𝑡

𝑖
, the binary

observation variable representing whether the item description
entails the user’s response to the queried preference 𝑞𝑡 .

Figure 1 shows the graphical model representation of these vari-
ables. The presented query 𝑞𝑡 and the item description 𝑥𝑖 are ob-
served (shaded), while the relevance of item 𝑖 to query 𝑞𝑡 is latent
(unshaded) and denoted by 𝑟𝑡

𝑖
∈ {0, 1} and conditioned on the la-

tent item utility 𝑢𝑖 . We observe whether the item 𝑥𝑖 “truly” entails
(i.e., 𝑒𝑡

𝑖
= True) the user’s response to query 𝑞𝑡 (as determined by

the NLI entailment probability𝑤𝑡
𝑖
if the item is relevant, i.e., 𝑟𝑡

𝑖
= 1).

The conditional probability distributions in this graphical model
are formally defined as follows:

𝑝 (𝑢𝑖 ) = Beta(𝑢𝑖 ;𝛼𝑖 , 𝛽𝑖 ), (1)

𝑝 (𝑟𝑡𝑖 |𝑢𝑖 ) = Bernoulli(𝑢𝑖 ), (2)

𝑝 (𝑒𝑡𝑖 = True|𝑟𝑡𝑖 , 𝑞
𝑡 , 𝑥𝑖 ) =

{
𝑤𝑡
𝑖

𝑟𝑡
𝑖
= 1

1 −𝑤𝑡
𝑖

𝑟𝑡
𝑖
= 0

, (3)

To further explain the rationale for Eq (3), we note that 𝑤𝑡
𝑖
is the

natural language entailment probability that item description 𝑥𝑖
entails the aspect queried in the user’s response to𝑞𝑡 given that item
𝑖 is relevant (𝑟𝑡

𝑖
= 1). This entailment probability is obtained from

the NLImodel, which produces the probability that the entailment is
true, hence the reason why 𝑒𝑡

𝑖
= True. If item 𝑖 is instead irrelevant

(𝑟𝑡
𝑖
= 0) then we assume for simplicity that 1−𝑤𝑡

𝑖
is the probability

of the true entailment.1
To obtain the posterior utility 𝑝 (𝑢𝑖 |𝑥𝑖 , 𝑞𝑡 , 𝑒𝑡𝑖 ), we need tomarginal-

ize the joint distribution 𝑝 (𝑢𝑖 , 𝑟𝑡𝑖 |𝑥𝑖 , 𝑞
𝑡 , 𝑒𝑡

𝑖
) over 𝑟𝑡

𝑖
. Formally,

𝑝 (𝑢𝑖 |𝑥𝑖 , 𝑞𝑡 , 𝑒𝑡𝑖 ) =
∑︁
𝑟𝑡
𝑖

𝑝 (𝑢𝑖 , 𝑟𝑡𝑖 |𝑥𝑖 , 𝑞
𝑡 , 𝑒𝑡𝑖 ) . (4)

Considering the conditional independencies determined from the
graphical model, the joint distribution factorizes as

𝑝 (𝑢𝑖 , 𝑟𝑡𝑖 |𝑥𝑖 , 𝑞
𝑡 , 𝑒𝑡𝑖 ) = 𝑝 (𝑢𝑖 )𝑝 (𝑟𝑡𝑖 |𝑢𝑖 )𝑝 (𝑒

𝑡
𝑖 |𝑟

𝑡
𝑖 , 𝑥𝑖 , 𝑞

𝑡 ). (5)

1We note that an alternative approach (not used here) could attempt to use NLI to
determine the probability of an incorrect true entailment (or confusion) given that
item 𝑖 is irrelevant (𝑟𝑡

𝑖
= 0). That is, there is no inherent requirement for the two cases

of Eq (3) to sum to 1 since 𝑟𝑡
𝑖
is on the conditional side.

t=1,...,m

Figure 1: Graphical model used for posterior utility updates.
𝑢𝑖 is the random variable representing the utility of item
𝑖 ∈ I and 𝑥𝑖 is the item description. 𝑞𝑡 is the query presented
at iteration 𝑡 , 𝑟𝑡

𝑖
is the variable representing the latent (not

directly observed) relevance of item 𝑖 at step 𝑡 , and 𝑒𝑡
𝑖
is the

binary observation representing whether the item descrip-
tion entails the user preference. Unshaded and shaded nodes
indicate unobserved and observed variables respectively.

Next, we replace the probability distribution of each factor accord-
ing to Equations (1), (2), (3) in (4), to obtain

𝑝 (𝑢𝑖 |𝑥𝑖 , 𝑞𝑡 , 𝑒𝑡𝑖 = True)

∝
∑︁

𝑟𝑡
𝑖
∈{0,1}

𝑢𝛼𝑖 (1 − 𝑢𝑖 )𝛽
({
𝑢𝑖 𝑟𝑡

𝑖
= 1

1 − 𝑢𝑖 𝑟𝑡
𝑖
= 0

) ({
𝑤𝑡
𝑖

𝑟𝑡
𝑖
= 1

1 −𝑤𝑡
𝑖

𝑟𝑡
𝑖
= 0

)
.

(6)

Expanding the summation yields

𝑝 (𝑢𝑖 |𝑥𝑖 , 𝑞𝑡 , 𝑒𝑡𝑖 = True) ∝ 𝑤𝑡
𝑖 𝑢

𝛼+1
𝑖 (1−𝑢𝑖 )𝛽 +(1−𝑤𝑡

𝑖 )𝑢
𝛼
𝑖 (1−𝑢𝑖 )

𝛽+1

∝ 𝑤𝑡
𝑖 Beta(𝑢𝑖 ;𝛼 + 1, 𝛽) + (1 −𝑤𝑡

𝑖 )Beta(𝑢𝑖 ;𝛼, 𝛽 + 1) (7)

The latter term represents a mixture of Beta distributions that is
challenging to handle since multiple posterior updates would cause
the number of components in the mixture to grow exponentially
with the number of query observations𝑚, leading to substantial
computational and memory complexity.

To address this issue, several methods have been proposed for
approximating the posterior distribution to allow for tractable com-
putations. In this work, we use the Assumed Density Filtering (ADF)
approach, a technique widely used in Bayesian filtering and track-
ing problems to project a complex posterior to an assumed simpler
form (often the same form as the prior to maintain a closed-form).
In our case, we project the Beta mixture posterior to a single Beta in
order to maintain a closed-form Beta approximation of the posterior
update matching the form of the Beta prior in Eq (1).

To apply ADF, we assume a Beta distribution with parameters
𝛼 ′ and 𝛽′ for the posterior, and approximate the original mixture
of Beta’s with this distribution by equating their first moments (i.e.,
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their means):

𝛼 ′

𝛼 ′ + 𝛽′
=

𝑤𝑡
𝑖
(1 + 𝛼)

(1 + 𝛼 + 𝛽) +
𝛼 (1 −𝑤𝑡

𝑖
)

1 + 𝛼 + 𝛽
(8)

=

[
𝛼 +𝑤𝑡

𝑖

][
𝛼 +𝑤𝑡

𝑖

]
+

[
𝛽 + (1 −𝑤𝑡

𝑖
)
] . (9)

Equating the numerators yields

𝛼 ′ = 𝛼 +𝑤𝑡
𝑖 , (10)

and replacing this 𝛼 ′ in the equation of the denominators results in

𝛽′ = 1 + 𝛽 −𝑤𝑡
𝑖 . (11)

Thus, the “mean matched” posterior is Beta(𝑢𝑖 ;𝛼 +𝑤𝑡
𝑖
, 1 + 𝛽 −𝑤𝑡

𝑖
).

Matching two distributions by equating their first moments is
a special case of a more general technique called “moment match-
ing”, which is widely used to approximate a complex probability
distribution with a simpler one by equating their moments. In our
work, we adopted a special case of this approach by matching the
first moments, which we refer to as “mean matching” of the distri-
butions that we used for its simplicity and intuitive interpretation.
However, this is only one of the possible solutions, and a complete
moment matching derivation results in a slightly different solution.

With this “mean matching” derivation and current item 𝑖 poste-
rior 𝐵𝑒𝑡𝑎(𝑢𝑖 ;𝛼, 𝛽) at step 𝑡 − 1, we can now perform an incremental
posterior update after at step 𝑡 given the probability𝑤𝑡

𝑖
that the item

description 𝑥𝑖 entails preference query 𝑞𝑡 yielding the closed-form
Beta posterior 𝐵𝑒𝑡𝑎(𝑢𝑖 ;𝛼 +𝑤𝑡

𝑖
, 1 + 𝛽 −𝑤𝑡

𝑖
) as used in PEBOL-P.
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Table 1: Examples of LLM Aspect-Based Query Generation from an Item Description

Dataset Item Description 𝑑𝑖 GeneratedAspect𝑎𝑡 Generated Query 𝑞𝑡

MovieLens Movie Title: Meet John Doe (1941)
Genres: Comedy, Drama
Tags: Christianity, Frank Capra, acting, anti-fascism, class
issues, journalism, patriotic, pro american, thought pro-
voking, AFI 100 (Cheers), BD-R, Barbara Stanwyck, Gary
Cooper, baseball player, compare: This Is Our Land (2017),
domain, funny, radio broadcast, reviewed in the NYer by
Anthony Lanne (2018-04-30), suicide note

patriotism Are you interested in movies with
patriotic themes?

classic Do you enjoy classic movies?

Recipe-MPR Spaghetti with mushrooms, onion, green pepper, chicken
breasts, and alfredo sauce

alfredo sauce Do you like alfredo sauce?

chicken breast Do you like chicken breasts?

Yelp name: Le Pain Quotidien
categories: Restaurants, Bakeries, Break-
fast & Brunch, Coffee & Tea, Food, Bel-
gian, French

bakery Do you like bakeries?

French pastries Do you like French pastries?

Figure 2: MAP@10 for all turns on all datasets and noise levels
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Figure 3: The effect of MNLI temperature on MAP@10 without noise – error bars are 95% C.I.s. Other results are reported using
the temperatures that perform best across the most datasets for each policy.

Figure 4: Effect of MNLI Temperature with noise 0.25

Figure 5: Effect of MNLI Temperature with noise 0.5
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(a) Monolithic LLM query generation (b) Monolithic LLM recommendation generation (c) Aspect generation

(d) Aspect-based query generation (e) User simulation

Figure 6: LLM Prompting Templates
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Table 2: MRR@10 Mean and 95% C.I. for PEBOL-P vs MonoLLM on MovieLens without Response Noise

Turn 1 2 3 4 5 6 7 8 9 10
Method

MonoLLM GPT Mean 0.04 0.06 0.06 0.07 0.08 0.08 0.10 0.11 0.09 0.09
MonoLLM GPT CI LB 0.01 0.02 0.02 0.02 0.03 0.03 0.05 0.06 0.04 0.04
MonoLLM GPT CI UB 0.08 0.10 0.11 0.11 0.12 0.13 0.15 0.16 0.14 0.15
MonoLLM Gemini Mean 0.04 0.02 0.06 0.06 0.07 0.08 0.11 0.10 0.10 0.15
MonoLLM Gemini CI LB 0.01 0.01 0.02 0.03 0.04 0.05 0.07 0.05 0.06 0.09
MonoLLM Gemini CI UB 0.07 0.04 0.10 0.10 0.11 0.12 0.16 0.15 0.14 0.20

ER Mean 0.05 0.05 0.06 0.08 0.09 0.10 0.12 0.12 0.13 0.14
ER CI LB 0.01 0.02 0.03 0.04 0.05 0.05 0.06 0.07 0.07 0.08
ER CI UB 0.08 0.09 0.09 0.12 0.13 0.15 0.17 0.18 0.19 0.20
Greedy Mean 0.05 0.05 0.07 0.07 0.09 0.09 0.10 0.10 0.11 0.13
Greedy CI LB 0.02 0.02 0.03 0.03 0.05 0.04 0.05 0.05 0.06 0.07
Greedy CI UB 0.09 0.09 0.10 0.11 0.14 0.14 0.15 0.15 0.17 0.19
Random Mean 0.05 0.05 0.08 0.11 0.12 0.14 0.14 0.16 0.16 0.14
Random CI LB 0.01 0.02 0.04 0.05 0.06 0.08 0.08 0.09 0.09 0.09
Random CI UB 0.08 0.09 0.13 0.16 0.18 0.21 0.20 0.22 0.22 0.20
TS Mean 0.05 0.08 0.11 0.10 0.12 0.15 0.15 0.16 0.17 0.18
TS CI LB 0.01 0.03 0.06 0.05 0.06 0.09 0.09 0.10 0.10 0.11
TS CI UB 0.08 0.13 0.17 0.15 0.17 0.22 0.21 0.23 0.23 0.24
UCB Mean 0.05 0.05 0.06 0.07 0.09 0.09 0.10 0.10 0.12 0.13
UCB CI LB 0.02 0.02 0.03 0.03 0.05 0.04 0.05 0.05 0.06 0.07
UCB CI UB 0.09 0.09 0.10 0.10 0.13 0.14 0.15 0.15 0.17 0.19

Table 3: MRR@10 Mean and 95% C.I. for PEBOL-P vs MonoLLM on Recipe-MPR without Response Noise

Turn 1 2 3 4 5 6 7 8 9 10
Method

MonoLLM GPT Mean 0.05 0.09 0.07 0.09 0.05 0.06 0.07 0.08 0.09 0.11
MonoLLM GPT CI LB 0.01 0.05 0.03 0.05 0.02 0.02 0.03 0.04 0.04 0.06
MonoLLM GPT CI UB 0.08 0.13 0.10 0.14 0.08 0.10 0.11 0.13 0.13 0.17
MonoLLM Gemini Mean 0.02 0.03 0.04 0.07 0.07 0.11 0.11 0.13 0.10 0.16
MonoLLM Gemini CI LB 0.01 0.02 0.02 0.04 0.03 0.06 0.07 0.08 0.06 0.10
MonoLLM Gemini CI UB 0.03 0.05 0.07 0.10 0.10 0.15 0.15 0.18 0.13 0.21

ER Mean 0.06 0.05 0.08 0.11 0.11 0.13 0.14 0.15 0.16 0.16
ER CI LB 0.02 0.02 0.04 0.06 0.06 0.08 0.08 0.09 0.09 0.10
ER CI UB 0.10 0.08 0.13 0.16 0.16 0.18 0.19 0.22 0.22 0.22
Greedy Mean 0.06 0.06 0.07 0.10 0.11 0.13 0.15 0.15 0.16 0.17
Greedy CI LB 0.02 0.02 0.03 0.05 0.06 0.07 0.09 0.09 0.10 0.11
Greedy CI UB 0.10 0.09 0.11 0.15 0.17 0.18 0.21 0.21 0.23 0.24
Random Mean 0.05 0.03 0.03 0.03 0.04 0.04 0.05 0.06 0.07 0.07
Random CI LB 0.02 0.01 0.01 0.00 0.01 0.01 0.02 0.02 0.03 0.02
Random CI UB 0.08 0.06 0.06 0.05 0.06 0.07 0.08 0.10 0.11 0.11
TS Mean 0.06 0.06 0.06 0.08 0.09 0.10 0.12 0.13 0.13 0.13
TS CI LB 0.02 0.02 0.02 0.03 0.05 0.05 0.06 0.07 0.07 0.07
TS CI UB 0.10 0.09 0.10 0.12 0.14 0.14 0.17 0.19 0.18 0.19
UCB Mean 0.06 0.06 0.08 0.11 0.13 0.14 0.16 0.16 0.17 0.17
UCB CI LB 0.02 0.02 0.03 0.06 0.07 0.08 0.10 0.09 0.11 0.11
UCB CI UB 0.10 0.09 0.12 0.16 0.18 0.19 0.23 0.22 0.24 0.24
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Table 4: MRR@10 Mean and 95% C.I. for PEBOL-P vs MonoLLM on Yelp without Response Noise

Turn 1 2 3 4 5 6 7 8 9 10
Method

MonoLLM GPT Mean 0.03 0.05 0.04 0.05 0.07 0.07 0.07 0.09 0.09 0.12
MonoLLM GPT CI LB 0.01 0.01 0.01 0.02 0.03 0.03 0.03 0.04 0.04 0.06
MonoLLM GPT CI UB 0.05 0.08 0.07 0.08 0.10 0.12 0.12 0.14 0.14 0.17
MonoLLM Gemini Mean 0.06 0.09 0.11 0.09 0.10 0.14 0.13 0.16 0.20 0.17
MonoLLM Gemini CI LB 0.02 0.05 0.06 0.05 0.06 0.08 0.09 0.10 0.14 0.12
MonoLLM Gemini CI UB 0.10 0.14 0.15 0.13 0.14 0.20 0.18 0.21 0.26 0.23

ER Mean 0.06 0.07 0.09 0.11 0.14 0.16 0.18 0.21 0.22 0.26
ER CI LB 0.03 0.03 0.05 0.06 0.08 0.09 0.12 0.14 0.15 0.18
ER CI UB 0.10 0.11 0.14 0.16 0.20 0.22 0.25 0.28 0.29 0.33
Greedy Mean 0.06 0.08 0.11 0.11 0.14 0.15 0.17 0.18 0.19 0.22
Greedy CI LB 0.03 0.04 0.06 0.07 0.08 0.09 0.10 0.12 0.13 0.16
Greedy CI UB 0.10 0.12 0.15 0.16 0.20 0.21 0.23 0.25 0.26 0.29
Random Mean 0.06 0.09 0.11 0.13 0.17 0.17 0.17 0.18 0.20 0.21
Random CI LB 0.03 0.04 0.06 0.08 0.11 0.11 0.11 0.12 0.13 0.15
Random CI UB 0.10 0.13 0.16 0.19 0.23 0.23 0.23 0.24 0.26 0.28
TS Mean 0.06 0.08 0.11 0.11 0.14 0.17 0.20 0.25 0.25 0.27
TS CI LB 0.03 0.04 0.06 0.07 0.09 0.11 0.13 0.18 0.18 0.20
TS CI UB 0.10 0.12 0.17 0.15 0.20 0.23 0.26 0.33 0.32 0.34
UCB Mean 0.07 0.09 0.11 0.12 0.14 0.16 0.18 0.20 0.20 0.23
UCB CI LB 0.03 0.05 0.06 0.07 0.08 0.09 0.12 0.13 0.14 0.16
UCB CI UB 0.10 0.13 0.16 0.17 0.20 0.22 0.25 0.26 0.27 0.30

Table 5: MRR@10 Mean and 95% C.I. for PEBOL-P without Aspect History on MovieLens without Response Noise

Turn 1 2 3 4 5 6 7 8 9 10
Method

TS Mean 0.03 0.05 0.06 0.06 0.08 0.11 0.13 0.12 0.13 0.14
TS CI LB 0.01 0.02 0.02 0.02 0.04 0.06 0.08 0.06 0.07 0.08
TS CI UB 0.06 0.09 0.09 0.09 0.13 0.16 0.19 0.17 0.18 0.19
UCB Mean 0.03 0.03 0.04 0.05 0.05 0.05 0.06 0.06 0.06 0.06
UCB CI LB 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
UCB CI UB 0.05 0.06 0.07 0.09 0.08 0.08 0.09 0.10 0.09 0.09

Table 6: MRR@10 Mean and 95% C.I. for PEBOL-P without Aspect History on Recipe-MPR without Response Noise

Turn 1 2 3 4 5 6 7 8 9 10
Method

TS Mean 0.04 0.05 0.03 0.04 0.06 0.07 0.06 0.09 0.10 0.09
TS CI LB 0.01 0.02 0.01 0.01 0.03 0.03 0.03 0.04 0.05 0.05
TS CI UB 0.07 0.09 0.05 0.07 0.10 0.12 0.10 0.13 0.14 0.14
UCB Mean 0.04 0.05 0.06 0.08 0.08 0.09 0.08 0.09 0.10 0.10
UCB CI LB 0.01 0.01 0.02 0.04 0.04 0.04 0.04 0.04 0.05 0.05
UCB CI UB 0.07 0.08 0.09 0.12 0.12 0.13 0.12 0.13 0.14 0.14

Table 7: MRR@10 Mean and 95% C.I. for PEBOL-P without Aspect History on Yelp without Response Noise

Turn 1 2 3 4 5 6 7 8 9 10
Method

TS Mean 0.05 0.06 0.07 0.08 0.09 0.11 0.14 0.14 0.15 0.16
TS CI LB 0.02 0.02 0.03 0.04 0.05 0.06 0.09 0.08 0.09 0.10
TS CI UB 0.09 0.09 0.10 0.11 0.13 0.16 0.20 0.19 0.21 0.22
UCB Mean 0.05 0.08 0.09 0.11 0.12 0.15 0.15 0.17 0.17 0.19
UCB CI LB 0.02 0.04 0.05 0.06 0.07 0.09 0.10 0.11 0.11 0.13
UCB CI UB 0.09 0.12 0.13 0.16 0.17 0.20 0.21 0.22 0.22 0.25
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Table 8: MRR@10 Mean and 95% C.I. for PEBOL-B on MovieLens without Response Noise

Turn 1 2 3 4 5 6 7 8 9 10
Method

ER Mean 0.03 0.04 0.04 0.05 0.06 0.08 0.09 0.11 0.11 0.12
ER CI LB 0.01 0.01 0.01 0.02 0.03 0.04 0.04 0.06 0.07 0.07
ER CI UB 0.06 0.07 0.08 0.08 0.10 0.12 0.14 0.16 0.16 0.16
Greedy Mean 0.03 0.04 0.05 0.05 0.07 0.09 0.10 0.11 0.11 0.11
Greedy CI LB 0.01 0.01 0.02 0.02 0.03 0.05 0.05 0.06 0.07 0.07
Greedy CI UB 0.06 0.08 0.08 0.09 0.11 0.13 0.14 0.16 0.16 0.16
Random Mean 0.03 0.04 0.04 0.06 0.06 0.08 0.09 0.10 0.10 0.10
Random CI LB 0.01 0.01 0.01 0.03 0.03 0.04 0.05 0.06 0.06 0.06
Random CI UB 0.06 0.06 0.07 0.09 0.10 0.12 0.13 0.14 0.14 0.14
TS Mean 0.03 0.05 0.06 0.07 0.08 0.07 0.09 0.12 0.12 0.13
TS CI LB 0.01 0.02 0.02 0.03 0.03 0.03 0.04 0.07 0.07 0.07
TS CI UB 0.06 0.08 0.09 0.11 0.12 0.11 0.13 0.17 0.18 0.18
UCB Mean 0.03 0.04 0.05 0.05 0.06 0.08 0.09 0.10 0.11 0.11
UCB CI LB 0.01 0.01 0.02 0.02 0.03 0.04 0.05 0.06 0.06 0.06
UCB CI UB 0.06 0.07 0.08 0.08 0.09 0.13 0.14 0.15 0.15 0.15

Table 9: MRR@10 Mean and 95% C.I. for PEBOL-B on Recipe-MPR without Response Noise

Turn 1 2 3 4 5 6 7 8 9 10
Method

ER Mean 0.04 0.06 0.09 0.07 0.09 0.09 0.10 0.13 0.10 0.10
ER CI LB 0.00 0.02 0.05 0.03 0.04 0.04 0.05 0.07 0.05 0.05
ER CI UB 0.07 0.10 0.14 0.10 0.14 0.14 0.16 0.19 0.15 0.15
Greedy Mean 0.04 0.04 0.06 0.07 0.10 0.11 0.12 0.12 0.12 0.13
Greedy CI LB 0.00 0.01 0.02 0.03 0.05 0.06 0.06 0.06 0.06 0.07
Greedy CI UB 0.07 0.08 0.10 0.10 0.15 0.17 0.18 0.18 0.18 0.19
Random Mean 0.04 0.03 0.03 0.05 0.04 0.04 0.05 0.04 0.05 0.06
Random CI LB 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02
Random CI UB 0.07 0.06 0.05 0.09 0.07 0.08 0.08 0.07 0.09 0.11
TS Mean 0.04 0.06 0.06 0.07 0.09 0.09 0.10 0.10 0.11 0.12
TS CI LB 0.00 0.02 0.02 0.03 0.05 0.04 0.05 0.05 0.06 0.06
TS CI UB 0.07 0.09 0.10 0.12 0.14 0.14 0.16 0.15 0.17 0.17
UCB Mean 0.04 0.05 0.07 0.07 0.09 0.11 0.12 0.12 0.13 0.13
UCB CI LB 0.00 0.02 0.03 0.03 0.04 0.05 0.06 0.07 0.07 0.08
UCB CI UB 0.07 0.08 0.11 0.11 0.14 0.16 0.17 0.18 0.18 0.19

Table 10: MRR@10 Mean and 95% C.I. for PEBOL-B on Yelp without Response Noise

Turn 1 2 3 4 5 6 7 8 9 10
Method

ER Mean 0.05 0.05 0.07 0.09 0.11 0.11 0.11 0.11 0.11 0.11
ER CI LB 0.02 0.02 0.04 0.05 0.07 0.07 0.07 0.06 0.06 0.06
ER CI UB 0.08 0.09 0.11 0.12 0.15 0.15 0.15 0.15 0.15 0.15
Greedy Mean 0.05 0.06 0.08 0.09 0.10 0.10 0.10 0.10 0.10 0.10
Greedy CI LB 0.02 0.02 0.04 0.05 0.06 0.06 0.06 0.06 0.06 0.06
Greedy CI UB 0.08 0.09 0.11 0.13 0.14 0.13 0.13 0.14 0.14 0.13
Random Mean 0.05 0.06 0.07 0.09 0.11 0.10 0.10 0.11 0.12 0.14
Random CI LB 0.02 0.03 0.03 0.05 0.06 0.06 0.06 0.07 0.07 0.09
Random CI UB 0.08 0.09 0.11 0.14 0.15 0.14 0.14 0.15 0.16 0.19
TS Mean 0.05 0.06 0.12 0.12 0.16 0.16 0.18 0.18 0.22 0.24
TS CI LB 0.02 0.02 0.07 0.07 0.10 0.10 0.12 0.12 0.15 0.17
TS CI UB 0.08 0.10 0.17 0.17 0.22 0.22 0.24 0.24 0.28 0.31
UCB Mean 0.05 0.06 0.08 0.10 0.10 0.10 0.10 0.10 0.10 0.10
UCB CI LB 0.02 0.02 0.04 0.06 0.06 0.06 0.06 0.06 0.06 0.06
UCB CI UB 0.08 0.09 0.12 0.13 0.14 0.14 0.14 0.14 0.14 0.13



Supplementary Materials RecSys ’24, 14–18 October 2024, Bari, Italy

Table 11: MRR@10 Mean and 95% C.I. at Turn 10 for PEBOL-P and MonoLLM baselines on MovieLens with Different Levels of
Response Noise

Noise Level 0 0.25 0.5
Method

MonoLLM GPT Mean 0.09 0.07 0.04
MonoLLM GPT CI LB 0.04 0.03 0.01
MonoLLM GPT CI UB 0.15 0.10 0.07
MonoLLM Gemini Mean 0.15 0.06 0.03
MonoLLM Gemini CI LB 0.09 0.02 0.00
MonoLLM Gemini CI UB 0.20 0.09 0.05

ER Mean 0.14 0.09 0.06
ER CI LB 0.08 0.04 0.03
ER CI UB 0.20 0.14 0.10
Greedy Mean 0.13 0.09 0.06
Greedy CI LB 0.07 0.04 0.02
Greedy CI UB 0.19 0.14 0.10
Random Mean 0.14 0.09 0.07
Random CI LB 0.09 0.05 0.03
Random CI UB 0.20 0.13 0.11
TS Mean 0.18 0.07 0.06
TS CI LB 0.11 0.03 0.02
TS CI UB 0.24 0.10 0.10
UCB Mean 0.13 0.08 0.07
UCB CI LB 0.07 0.04 0.03
UCB CI UB 0.19 0.13 0.11

Table 12: MRR@10 Mean and 95% C.I. at Turn 10 for PEBOL-P and MonoLLM baselines on Recipe-MPR with Different Levels of
Response Noise

Noise Level 0 0.25 0.5
Method

MonoLLM GPT Mean 0.11 0.06 0.05
MonoLLM GPT CI LB 0.06 0.02 0.01
MonoLLM GPT CI UB 0.17 0.11 0.08
MonoLLM Gemini Mean 0.16 0.13 0.08
MonoLLM Gemini CI LB 0.10 0.07 0.03
MonoLLM Gemini CI UB 0.21 0.19 0.12

ER Mean 0.16 0.15 0.09
ER CI LB 0.10 0.09 0.04
ER CI UB 0.22 0.22 0.13
Greedy Mean 0.17 0.13 0.07
Greedy CI LB 0.11 0.07 0.03
Greedy CI UB 0.24 0.19 0.11
Random Mean 0.07 0.04 0.02
Random CI LB 0.02 0.01 0.01
Random CI UB 0.11 0.06 0.04
TS Mean 0.13 0.06 0.06
TS CI LB 0.07 0.03 0.02
TS CI UB 0.19 0.08 0.10
UCB Mean 0.17 0.13 0.08
UCB CI LB 0.11 0.08 0.04
UCB CI UB 0.24 0.19 0.12
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Table 13: MRR@10Mean and 95% C.I. at Turn 10 for PEBOL-P andMonoLLM baselines on Yelp with Different Levels of Response
Noise

Noise Level 0 0.25 0.5
Method

MonoLLM GPT Mean 0.12 0.08 0.05
MonoLLM GPT CI LB 0.06 0.03 0.01
MonoLLM GPT CI UB 0.17 0.13 0.09
MonoLLM Gemini Mean 0.17 0.09 0.07
MonoLLM Gemini CI LB 0.12 0.05 0.02
MonoLLM Gemini CI UB 0.23 0.14 0.11

ER Mean 0.26 0.14 0.07
ER CI LB 0.18 0.08 0.03
ER CI UB 0.33 0.19 0.11
Greedy Mean 0.22 0.14 0.08
Greedy CI LB 0.16 0.09 0.04
Greedy CI UB 0.29 0.19 0.11
Random Mean 0.21 0.14 0.10
Random CI LB 0.15 0.09 0.05
Random CI UB 0.28 0.19 0.14
TS Mean 0.27 0.14 0.12
TS CI LB 0.20 0.08 0.06
TS CI UB 0.34 0.20 0.17
UCB Mean 0.23 0.13 0.10
UCB CI LB 0.16 0.08 0.05
UCB CI UB 0.30 0.18 0.14
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