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Abstract. Data science incorporates a variety of processes, concepts, techniques
and domains, to transform data that is representative of real-world phenomena
into meaningful insights and to inform decision-making. Data science relies on
simple datatypes like strings and integers to represent complex real-world phe-
nomena like time and geospatial regions. This reduction of semantically rich
types to simplistic ones creates issues by ignoring common and significant rela-
tionships in data science including time, mereology, and provenance. Current so-
lutions to this problem including documentation standards, provenance tracking,
and knowledge model integration are opaque, lack standardization, and require
manual intervention to validate. We introduce the meaningful type safety frame-
work (MeTS) to ensure meaningful and correct data science through semantically-
rich datatypes based on dependent types. Our solution encodes the assumptions
and rules of common real-world concepts, such as time, geospatial regions, and
populations, and automatically detects violations of these rules and assumptions.
Additionally, our type system is provenance-integrated, meaning the type envi-
ronment is updated with every data operation. To illustrate the effectiveness of
our system, we present a case study based on real-world datasets from Statistics
Canada (StatCAN). We also include a proof-of-concept implementation of our
system in the Idris programming language.

Keywords: data science · dependent types · type safety · data provenance · meaningful
types

1 Introduction

Data science is a delicate task involving the analysis and manipulation of hetereogenous
datasets that represent real-world phenomena embedded with assumptions, rules, and
interpretations. This data, however, is ultimately represented using simple datatypes
like strings or integers, which fail to typify the real-world concepts the data repre-
sents. Whether comparing net and gross profit, averaging populations of overlapping
regions, or summing measurements from different time periods, real-world phenomena
are much more than than the simple datatypes that represent them. With data science be-
coming an increasingly integral part of many industries, important decisions are being
made based on results produced by data scientists. These decisions can have significant
consequences, the wrong decision made by a hospital administrator puts human lives
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at stake, the decisions of policy-makers can have far-reaching impacts to our society;
ensuring data science is correct and verifiable will have significant benefits.

To solve datatype issues, existing work supplements simple datatypes with exter-
nal information in an informal, ad-hoc, and highly manual manner. These approaches
reduce the nuanced real-world rules and interpretations of data to scattered informal
knowledge and documentation, provenance records, and prohibitively complex knowl-
edge models. This leads to an environment where results become extremely difficult
to validate and verify, especially throughout the long and complex process that is the
modern data science pipeline.

In this paper, we present the meaningful type safety (MeTS) framework, where type
checking equates to validating the rules and assumptions of the real-world phenonema
the data represents. Rather than use strings or floats, MeTS relies on semantically-rich
types like population, time intervals, and geospatial regions. We do this through pow-
erful, expressive, and decidable dependently-typed programming, based on axioms of
formal knowledge models. Our approach, contrary to the current state, is formal, auto-
matic, and easily verifiable.

This paper consists of a detailed presentation of the issue of datatypes and how
our framework can be applied to solve it, including a case study of StatCAN census
data to make our framework concrete. To provide salient motivation, we identify spe-
cific scenarios where errors of real world rules and interpretations frequently occur in
data science, and identify how current approaches fail to address these scenarios. The
most significant portion of this paper is the specification of MeTS, presented in a for-
mal syntax based on Martin-Löf type theory [18], and also instantiated for the StatCAN
census data with a proof-of-concept implementation in the Idris programming language.
Finally, we discuss how our work fits into a broader research program including a cor-
respondence theorem and a focus on tractability.

2 Datatypes Fail to Typify Data

This section will detail three prominent and significant classes of datatype problems
including those associated with time, mereology, and data provenance. Datatype errors
are a result of the fact that one simple datatype may be used to represent multiple very
different real-world concepts. Both a person’s age and the population of a city could be
represented by an integer, despite ages and city populations having very different rules
and interpretations. This leads to many different kinds of problems, from something
seemingly simple like adding feet to metres, to more complex errors like geospatial
mereology changing as a function of time.

2.1 Time

Time is an especially important concept, it is an ever-present factor in data which con-
tains many implicit rules and assumptions. For example, training a machine learning
model on observations that occurred later than test-set observations would be predict-
ing the past from the future, producing a non-sensical, anti-causal model. Furthermore,
the real-world interpretation of data may change as a function of time, while labels do
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not. Consider comparing the price of a home in 1967 to that of a home in 2021, the
relationship of purchasing power and time must be reconciled.

Time issues can be further exacerbated through the layering of time with other meta-
data like units or labels. Consider financial analysis on the Frankfurt stock exchange;
even ignoring inflation, a quote from 1960 would be given in Marks, while one from
2004 would be given in Euros. The real-world rules and assumptions of time in a given
dataset, even if well-understood, lack a formal means of integration or validation, a
human still must interpret column labels, consult documentation, or manually review
code. So long as manual intervention is necessary to verify and validate results, errors
are bound to occur, and negative consequences are bound to follow.

2.2 Mereology

One of the most fundamental relationships that exists in data is mereology, the relation-
ship of parts to a whole. The seminal work of Winston et al [22] and the myriad of work
that built upon it, especially recent developments in the knowledge modelling commu-
nity [4,12], illustrates that mereology is a complex concept. In data science, mereology
manifests itself in many ways, from categories and sub-categories to overlapping time
intervals, data scientists must be aware of these relationships to preserve the integrity
of interpretation. For example, consider a data scientist working with COVID-19 vacci-
nation data: they must understand that “individuals with two vaccine doses” is a subset
of “individuals who have received a single dose”, and that both are part of the larger
whole of “eligible individuals”. Understanding these relationships is crucial to avoiding
errors like double-counting and preserving the integrity of results. Furthermore, time
may complicates these issues further, “eligible population” may change to encompass
new age groups, booster shots and a new 3+ dose category could alter the definition of
“fully vaccinated”, etc.

Underlying mereological relationships are not formally modelled or integrated in
data science pipelines, so catching these kinds of errors requires careful and laborious
manual review. In the data science pipeline, simple datatypes reduce concepts with
mereological relationships to formats that cannot capture this reality.

2.3 Provenance

Just as time alters the rules and interpretation of data, so do the operations data scientists
perform in their analyses. Even assuming a complete formal understanding of a dataset,
the interpretation of that dataset will throughout the data pipeline. For example, the
average of city populations is no longer itself a “city population”; a new entity has been
derived, with its own real-world rules and interpretation. Additionally, just like time,
provenance adds a layer of complexity in conjunction with the previously mentioned
issues.

Consider a relevant example of provenance issues involving physical units, whereby
types consist of physical units; going beyond floats and integers to kilograms or feet.
Even with this more complex representation, ensuring the integrity of the data’s real-
world interpretation is more than ensuring: Unit X == Unit Y. Take for example
data consisting of individual’s height measurements: if Bob and Alice’s heights are
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both measured in centimetres, heightbob + heightalice is completely type-safe from a
unit perspective, but the result of this computation has no meaningful interpretation; it
is no longer a height. Alternatively, populationregionA + populationregionB does have a
meaningful interpretation: it makes sense to speak of “total populations”, but not “total
heights”. Even with more robust datatypes, it is not enough to enforce only equal types
for any given operation, operations each have their own preconditions, and may produce
entirely new datatypes as a result.

3 Current Approaches

Data scientists utilize many tools and methodologies to address the problems of datatypes,
but none of them sufficiently address datatype issues like time, mereology, or prove-
nance. These limitations result from various factors inherent in existing methods, like
the necessity of manual effort, informal representations, poor standardization, and ad-
hoc applications. This section will critically examine these approaches in three cate-
gories: documentation, provenance tracking, and knowledge representation techniques.

3.1 Documentation Standards

Documentation is a tool intended to ensure quality, reduce risk, save time, and encour-
age knowledge sharing. However, effective utilization of documentation for data science
is a challenging task. The most significant issues of using documentation to address
datatype issues is their informal nature, their inability to properly address provenance,
and their lack of standardization.

One of the most significant recent developments for data science documentation
is Datasheets for Datasets [7], an effort to create a gold-standard for machine learn-
ing dataset documentation. These datasheets consist of answers to curated questions
about a wide range of dataset information, like their motivation, collection process,
pre-processing steps, and maintenance. While encouraging ML practitioners to be well-
informed about their data is a positive intent, this work cannot avoid the inherent limita-
tions of documentation. Even with a complete datasheet, there is no guarantee that the
answers supplied to the set of questions will be of sufficient detail, contain sufficient
contextual information, or be unambiguous. The ambiguity of natural langauge is prob-
lematic for data science, without any formal specification beyond natural language, the
issues of semantic heterogeneity are unavoidable. Moreover, while the authors do pro-
vide example datasheets for well-known datasets, they do not evaluate these examples
or provide any means of evaluation; there are no quality standards for datasheets.

An additional issue with documentation-based approaches is a failure to sufficiently
address provenance. With the interpretation of data changing as the result of data trans-
formations, the information contained in the documentation must change accordingly.
This will require an unrealistic degree of manual effort to update the documentation and
maintain effective versioning. The last major issue of documentation approaches is a
lack of standardization. Even for Datasheets for Datasets, the authors acknowledge that
enterprises use unique implementations of their work, like Google’s Model Cards [19]
or IBM’s factsheets [15]. This lack of standardization places unnecessary burdens on
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data scientists which hinders knowledge-sharing and interoperability. With no formal
semantics, quality criteria, provenance-awareness, or standardization, documentation-
based approaches cannot adequately address the datatype issues.

3.2 Provenance Tracking

Provenance tracking provides information about the origins, history and derivation of
data. For an excellent survey on data provenance work, we refer the reader to [14].
While provenance tracking is mature, formal, and well-understood within the data mod-
elling and engineering community, provenance tracking alone does not sufficiently ad-
dress the nuances of datatype issues. One example of a formal representation of prove-
nance is in Buneman et. al’s Graph Model of Data and Workflow provenance [1], which
models workflow provenance through directed acyclic graphs called provenance graphs.
As opposed to documentation-based approaches, these approaches have formal seman-
tics and are machine-readable. However, despite this formality, this provenance infor-
mation still must be interpreted with respect to the specific real-world phenomena mod-
elled in the data. Provenance tracking along does not integrate real-world knowledge
with provenance information, and fails to automatically detect datatype errors. While
provenance-based approaches are preferable to manually reviewing code, it still lacks
the additional semantics necessary to enforce meaningful data science.

3.3 Knowledge Representation

Knowledge Representation is a rich discipline containing many models which represent
complex rules and interpretations from the real-world in a very formal way. While there
are many widely accepted and useful knowledge models, such as ontologies for units
of measure [11, 21], time [13], and processes [10], current work does not sufficiently
integrate and apply them for general-purpose data science. Even given an agreed-upon
ontological representation of real-world concepts, there is no consensus on how to in-
tegrate this model into the data science pipeline, and no guarantee on the tractability or
scalability of these methods applied to data science.

Context interchange technology (COIN) [6,8,17] identifies a similar problem iden-
tified in this paper, that of semantic heterogeneity between datasets, and addresses it
using a general knowledge model to translate between more specific models, or “con-
texts”. The issue with this approach is that COIN accounts only for a single data science
operation: projection. The user queries some data and it is converted into their specific
context for them; it does not support the interpretation of addition, multiplication, av-
erages, etc. Furthermore, COINs contexts are specified weakly, with just two relations:
is a and attribute. COIN’s shortcomings are inherent to description logic-based
(DL) approaches, as even with additional properties, DL lacks the expressiveness to
integrate real-world rules into various operations.

Foundational Ontologies for Units of Measure (FOUnt) [11] is a collection of on-
tologies that model rules for combining units of measure with respect to the physical
objects and processes they describe. While these ontologies are more expressive than
those of COIN, they also provide limited coverage of data science operations; only
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specific instances of addition, subtraction, and division. In addition, FOUnt lacks con-
sideration of provenance; the axioms of units do not change as specific operations are
performed unless an entirely new unit is derived (like density from mass and volume).
The other issue with higher-order logic-based approaches like FOUnt is complexity;
reasoning in a data science application would require an enormous volume of instanti-
ations and undecidable reasoning with a theorem prover.

Real-World Types (RWT) [23, 24] is a framework with a motivation very similar
to that of COIN and this paper; it identifies a mismatch between machine represen-
tation and the real-world entities they represent. Unlike COIN and FOUnt, however,
RWT is much more informal in specifying types, they are essentially annotations of
OOP objects, consisting of a name, a natural language definition, possible values, and
references. Furthermore, the RWT framework relies on OOP naming conventions to
identify entities and generate candidates for real-world types, and requires manual re-
view to identify errors. This approach does not rely on any formal model or logic to
detect errors or enforce rules, being more akin to a low-level and object-oriented ver-
sion of an approach like datasheets for datasets [7]. RWT’s treatment of real-world rules
as add-ons to objects speaks to the larger issue of a reliance on objects as an alternative
to simple datatypes. The object-oriented-paradigm can perform many run-time checks
to verify properties of data and attempt to enforce real-world rules. The specification of
real-world rules themselves, however, must be formally specified in some other format,
as annotations, an ontology, etc. Furthermore, reliance on object implementations to en-
sure the integrity of real-world rules entangles the hides the ontological commitments
of programmers behind implementation decisions.

Other knowledge modelling approaches involve utilizing upper ontologies, those
that model real-world concepts generally, in conjunction with conceptual modelling
languages like UML. For instance, in [2], Albuquerque et al employ semantic reference
spaces to ontologically ground UML datatypes. The reference structures used to spec-
ify the meaning of datatypes consist of a taxonomy for measurement dimensions like
ordinal dimensions or interval dimensions. Consider the datatype for the temperature in
Toronto, 10◦C is an integer interval dimensions which is associated to the measurable
quality Outside Temperature, of the Toronto city. Knowing that this quantity is an in-
terval dimension, I know I can compare it to other temperatures through relations like
hotterThan, and knowing it is a characterization of a place, I could limit these com-
parisons to other cities, to answer questions like “Is Chicago hotter than Toronto?”.
However, when one considers the data science application, this approach provides no
semantic information to address which operations could be performed on this quantity;
can I add together the temperature of Toronto and Chicago? The application of these
taxonomy-centric solutions often focus on providing explanations for how quantities
may be associated to concepts, but do not provide solutions for the complex issues
encountered when combining and manipulating datatypes in the data science pipeline.

An additional form of knowledge modelling is conceptual modelling in the database
community, in approaches like the entity relationship (ER) model [5], temporal ER
models [9], and semantic data models (SDM) [20]. While these approaches provide
a more formal means of understanding and documenting database schema, they, like
knowledge modelling approaches in general, lack a focus on data science specifically.
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This kind of conceptual modelling focuses primarily on specifying the relationship
which exists between the entities represented in a database. These conceptual models,
however, are not designed specifically for the data science application, where prove-
nance becomes a significant concern. The transformative nature of data science opera-
tions, especially in high volumes, create complex semantic requirements which concep-
tual models lack the expressiveness to enforce. While knowledge models do have steps
in the right direction in terms of formality, their lack of a data science-focused approach
means they cannot adequately solve datatype issues.

4 Case Study: StatCAN Census Data

Now having a comprehensive understanding of datatype issues including how current
work fails to sufficiently address them, we provide further, concrete motivation drawn
from Statistics Canada (StatCAN) census data. These datasets model a variety of de-
mographic information for various geographic areas throughout Canada, and are made
publicly available 1. We base our analysis on population data divided by geographic
divisions of various levels 2 from 2011 and 2016. These datasets allow us to provide
specific and concrete examples of the aforementioned datatype problem classes and
can also be used to evaluate our framework. Furthermore, concepts like geospatial re-
gions, time, and mereology are not only integral to these datasets, but are commonly
represented across many diverse datasets.

4.1 Example Operations

In order to provide specific and concrete instances of how the problems of datatypes
occur within data science, we exemplify datatype errors through operations a data sci-
entist may perform on census data. These operations may be addition, subtraction, or
averages, among other common operations, and are performed on population quanti-
ties defined for a specific geospatial region and timepoint. While this case study is on
population data, the embedded concepts like time, geospatial regions, and mereology
are widely applicable to general datasets. Each of these example computations violates
real-world assumptions or rules associated with census data, and would produce a re-
sult that, while a quantity could be computed, would have no meaningful interpretation.
These examples form a foundation for the problem of providing precise explanations
for how and why real-world rules are violated through datatype errors.

Disjointedness The following two example computations violate real-world rules of
temporal and geospatial disjointedness, respectively.

– Computing the median of non-disjoint populations (campbelton and each of its
parts in bordering provinces)

1StatCAN’s full range of Census data can be accessed at https://www12.statcan.gc.
ca/census-recensement/2021/dp-pd/index-eng.cfm

2The specific datasets we referenced can be accessed by their StatCAN catalogue numbers:
98-401-X2016041, 98-401-X2016043, 98-401-X2016066
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median(Toronto, ... Campbelton, Campbelton (NB Part), Campbelton (Quebec Part))

– Computing the sum of populations over disjoint time periods
sum(Toronto2016, Hamilton2016, ... Guelph2011)

Each of these errors stems from disjointedness, with the first example, adding Campbel-
ton’s population together with that of its parts, is a case of double-counting overlapping
regions. The second example contains addition over populations which vary over both
time and geospatial regions, producing a nonsensical result.

Provenance The following two examples illustrate how data science operations pro-
duce new kinds of data, forming new rules.

– Computing the average of two average populations
avg(avg(Toronto, Hamilton), avg(Guelph, Kitchener))

– Computing the average of a population change over time, and a population differ-
ence in regions
avg((Toronto2016 - Toronto2011), (Guelph 2011 - Hamilton2011))

For the first example, while an average of averages could have an interpretation, it is not
the correct means of obtaining an average over the four regions (which is true not just of
demographics data but for any data). With the second example, an average of differences
seems like an average over the same kind of quantity. However, the key distinction is
what these differences are aggregated ‘over’: change over time is not comparable to a
difference over geospatial regions.

5 Meaningful Type Safety Framework (MeTS)

In this section, we provide a high-level overview of the framework designed to model
real-world concepts and rules like those contained in StatCAN Census data and detect
errors like those given in the example operations. The Meaningful Type Safety frame-
work (MeTS) rejects simple datatypes and elevates type safety to a meaningful result,
one which is derived from specific representations of real-world concepts and their as-
sociated rules and interpretations. The complete and production-ready implementation
of MeTs would include several components, including a method of integration with ex-
isting data science tools, and a complete correspondence theorem, both of which fit into
the broader research program of MeTS (discussed in section 8). The focus of this chap-
ter, however, is the technical heart of MeTS, namely the type-checking mechanism. In
keeping with a focused scope, we present the MeTS architecture as two primary com-
ponents: the interface component, and the typing component, depicted in Figure 1.
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Fig. 1. Architecture for the Meaningful Type Safety Framework (MeTS)

5.1 Interface Component

The interface component is how the data scientist interacts with MeTS, by perform-
ing operations on some dataset(s) and receiving corresponding feedback from the type
system. In the context of this paper, the interface component exists within our proof-of-
concept implementation (further elaborated in section 6.4) using the Idris programming
language [3]. However, it should be noted that we do not expect data scientists to learn
dependently-typed functional programmming, a production-ready interface would be
implemented through common data science tools like pandas, R, or Tableau for fa-
miliarity and ease of use, with type-checking still performed in a dependently-typed
language. Operations that a data scientist performs would be done the same as they
currently are, while real-world concepts would be specified at the beginning stage of
the data pipeline. This initial specification would associate a dataset with concepts for-
mally modeled in the type system, such as time, geospatial regions, or mereological
relationships, thereby pairing the dataset with its real-world interpretation and rules.
This pairing will then enable the automatic detection of real-world rule violations for
any downstream operations involving the dataset. This pairing is trivial in our proof-of-
concept implementation since the specification of the dataset(s) is already in Idris.

5.2 Typing Component

The typing component is the primary reasoning mechanism of the framework, based
on a dependently-typed representation of the real-world rules and assumptions of the
dataset(s) being modelled. The type system has the goal of implementing the kinds of
real-world checks that would normally be done manually, through type-checking. This
elevates the notion of type-safety from a trivial check to guaranteeing a level of inter-
pretability. It should be noted that the real-world rules and assumptions encoded within
this typing component are not arbitrary and are rooted in formal logic models, namely
first order logic ontologies. The specific relationship between these ontologies and the
typing system is outside the scope of this paper and encompassed in the correspondence
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theorem, as described in section 8.1. The specifics of the dependently-typed program
component will be presented in complete detail in section 6.

6 Type System

The type system of MeTS uses dependent type theory and expression tree represen-
tations to construct preconditions for a wide range of data science operations. For the
purpose of this paper, MeTS is presented in a simplified syntax based on Martin-Lof’s
intuitionistic type theory [18], and basic functional programming. MeTS is presented
here with specific type-checking functionality given for time, geospatial entities, and
data provenance. Additionally, the type system is evaluated with respect to the previ-
ously presented example operations (with a corresponding proof-of concept implemen-
tation in the Idris programming language [3]).

6.1 Syntax

Since dependent type theory is not typically associated with data science, our presen-
tation of the MeTS type system assumes little to no prior experience with dependent
types or functional programming (for a more thorough introduction to these topics, we
refer the reader to [16]).

To illustrate our function syntax, consider the basic factorial function:
factorial : Integer → Integer
factorial(0) = 1
factorial(n) = n*(factorial(n - 1))

Three syntactic constructs should be observed here: typing declarations, function nota-
tion, and pattern matching. We use the : operator to denote typing declarations, it can
be read as “has the type”. The→ operator denotes a function type, a function taking one
argument will have one→, infixed between the input type and the output type, a func-
tion taking n arguments will have n → symbols. Lastly, the actual function definition
utilizes pattern matching, where specific patterns for the arguments of the function are
given as a ’blueprint’ for the function to follow. In our example, the first pattern is given
as a base-case, and all other possible inputs to our function can be computed recursively.
It should also be noted that MeTS utilizes only total functions, that is, functions will
have patterns for all possible value of the input type(s).

Dependent Type Theory The central idea of dependent types is that types may de-
pend on values or other types. Dependent type theory has two new type constructs, the
dependent function type and the dependent pair type. The dependent function type con-
structs a type from some parameter, the canonical example of which is vectors of length
n, with n being a type parameter of the natural number type, denoted n : N. In the MeTS
framework, we utilize the dependent pair type, since it provides a method of enforcing
operation preconditions analogous to real-world rules.

The basic example of a dependent pair type describes pairs of values where the
type of the second element depends on the value of the first. In general, we can write a
dependent pair type as:
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∑a:A B(a)

Firstly note that the typical meaning of the ∑ operator is interpreted differently when
read in a typing statement, it denotes a dependent pair type here, also sometimes called
a sigma type for this reason. If (a,b) : ∑a:A B(a), then we can say a : A, and b : B(a).
That is, b’s type depends on the value of a. With this construct, we can also enforce
relationships within a tuple, consider the following type:

∑m:N ∑n:N((m < n) = True)

This type describes tuples (m,n) of natural numbers where the first element is less
than the second. Values inhabiting this type would consist of a triple containing: the
two elements m and n, and a proof of m < n = True. Given that the definition of the
< operator is total, this expression simply reduces to True = True and a proof of the
above can be done via reflection, type-checking is decidable for total functions. Types
of this form are essential to our typing framework: functions with arguments of this
form are analogous to preconditions for those functions.

Alternate Notations We have chosen a notation similar that of Martin-Lof type theory
since it is the seminal notation, and because the it is compact and simple to follow. Other
notations are sometimes used in more application-oriented work, as in many functional
programming papers, and may have minor variations. Table 1 shows the dependent pair
types written in some of these alternate notations, as well as how these types could be
written in Idris syntax.

Table 1. Differences in Dependent Type Theory Notations

Notation Examples
Martin-Lof Type Theory ∑a:A B(a)

∑m:N ∑n:N((m < n) = True)

Dependently-Typed
Lambda Calculus

∑a : A.B(a)

∑m : N.∑n : N.((m < n) = True)

Dependently-Typed
Lambda Calculus (Alt)

∃a : A.B(a)

∃m : N.∃n : N.((m < n) = True)

Idris (a : A) -> (b : a -> Type) -> Type

mn:(Nat, Nat)**((fst mn < snd mn)=True)

6.2 Expression Trees

To properly account for the effects of provenance, MeTS incorporates this information
in type-checking through an expression tree construct. Essentially, types are a combina-
tion of base types and the operations that have been performed, in a recursively-defined
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tree structure:

B ::= Population | Time | GeoEntity | ...
O ::= Sum | Sub |Mult | Div | Avg | ...
E ::= Atom(B) | Over(O,(List E))

That is, expressions are either an atom (base type) or some operation ‘over’ a set of ex-
pressions. This structure allows us to define type-checking functions, preconditions, that
traverse these trees, an essential component of the primary mechanism behind MeTS.

6.3 Preconditions

Preconditions are defined by typing operation functions with dependent pair types con-
sisting of the actual operands and a proof that they satisfy some set of preconditions.
The general form is given by:
operation : ∑operands : (List E) (opPreconditions(operands)=True) → result:E

The functions that evaluate preconditions, opPreconditions are structured in a way
that facilitates re-use and sharing of preconditions. For example, the precondition defi-
nition function for population sums is given by:
popSumPreconditions : List Population → Bool
popSumPreconditions(ps) = disjointRegions(ps) & allSameTime(ps) &
allMeasured(ps)

The preconditions for a sum over populations contains more general precondition func-
tions defined over geospatial regions, time, and provenance, that can be referenced in
other operation preconditions. These specific preconditions model the real-world as-
sumptions of a sum of populations, that it is a count of individuals over disjoint areas,
at some consistent point in time. allMeasured is an example of a provenance-based
precondition, its truth value is based on the the structure of the expression tree. In-
tuitively, the statement “the total population of Toronto and Hamilton 125.3 people”,
is nonsensical, a total population should never result in a non-whole number. Analo-
gously, a sum of populations should never be performed over estimated or aggregated
populations. The allMeasured function is the formal representation these real-world
rules, and acts as a method of catching a violating operation before it happens, ensuring
type-safe operations are meaningful.

6.4 Implementation

For the purposes of demonstrating MeTS, we implemented the type system in the
dependently-typed programming language Idris [3] 1. Idris was chosen for its simple
to read syntax, and its decidable type-checking. Idris type-checking is decidable since
Idris can enforce totality of functions, and ensure that any functions involved in a type-
checking operation (like precondition functions) are total, and therefore, decidable. It

1Our proof-of-concept implementation with all the example census com-
putations and more is available at https://github.com/riley-momo/

Meaningful-Type-Safety-For-Data-Science



Meaningful Type Safety for Data Science 13

is important to note that our framework is independent of the implementation language
chosen, part of the reason why we do not present our framework in Idris syntax, but a
more general dependently-typed notation.

7 Application and Evaluation on StatCAN data

In order to deliver on the original motivation for meaningful types, we demonstrate
MeTS in action on the previously mentioned StatCAN data. This section references the
specific type-checking mechanisms that detect violations of real-world rules including
disjointedness and provenance, and how this form of type-checking can be abstracted
to general problems.

7.1 Disjointedness

Disjointedness is the lack of any overlap or parthood, modelling disjointedness requires
a model of mereology, which we have implemented in MeTS for time and geospatial
regions, as well as defining a general mereological interface. Take the example com-
putation, performing addition over Campbelton’s population, and that of Campbelton’s
provincial parts. This is not a type safe operation since addition over populations as-
sumes geospatial disjointedness, to avoid doublecounting. Correctly identifying this
error requires 3 elements: modelling the knowledge that the provincial parts are parts
of the whole, a definition of disjointness for geospatial entities, and a precondition for
the addition operator that the geospatial regions of the operands must be disjoint from
one another. As for the first element, we leverage pattern-matching in a general mereo-
logical partOf function to accomplish this:
partOf : GeoEntity → GeoEntity → Bool
partOf(Campbelton (Quebec Part),Campbelton) = True
partOf(Campbelton (NB Part), Campbelton) = True
...

For this geospatial disjointedness, we use a qualitative mereology, as would be done in a
formal logic; pattern matching here is analogous to relations in the A-box. For temporal
mereology however, we do not need to rely on A-box style relations of parts; it is an
arithmetic computation.
partOf : Time → Time → Bool
partOf(Interval(x1, x2), Interval(y1, y2)) = x1 <= y2 & y1 <= x2
...
partOf(t1, t2) = t1 == t2

This is a very obvious example of MeTS efficiency over reasoning, as this kind of
quantitative reasoning in a formal logic would either require an ontology of time and
processes, or rely on SMT solvers, as opposed to our comparatively simple use of func-
tional programming techniques. For the definition of disjointedness in general, we de-
fine it in terms of the partOf relation:
disjoint(x,y) = not (partOf(x, y) OR partOf(y, x))

Finally, we require a precondition function which ensures all the geospatial regions of
a set of populations are disjoint from one another, as a pre-condition for arithmetic sum
of populations.
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disjointRegions : (List Population) → Bool
disjointRegions(ps) = disjointList (getRegions ps)

popSumPreconditions : (List Population) → Bool
popSumPreconditions(ps) = disjointRegions(ps) & ...

populationSum : (∑ps:(List Population) (popSumPreconditions(ps) = True)) → Population

Note that for the purpose of this paper, we omit some basic function definitions and
pattern matching (they are fully implemented in our proof-of-concept implementation),
since function definitions like disjointList are basic exercises in functional program-
ming, and not relevant to our key contributions. With these definitions, the sum of
populations guarantees all the geospatial regions of the populations are disjoint, and
thus ensures no errors of double-counting due to geospatial overlap. Furthermore, an
addition operation requiring disjointedness over one of its ‘stratifiers’ is not specific
to populations. Summing the mass of physical objects, for example, similarly assumes
they do not occupy the same space; the methodology of type-checking is the same in
both cases.

7.2 Provenance

Integrating provenance with type-checking is where the power of dependent typing is
most evident. Revisiting the earlier example operation, an average of averages should
not be type-safe. To correctly type this, there are two important components: the way
operations derive new expression trees, and how precondition functions distinguish be-
tween different expression trees. Returning the correct expression trees is straightfor-
ward, we need only ensure the right-hand side of our pattern matching expressions
include the correct operator:
populationSum : (∑ps:(List Population) (popSumPreconditions(ps) = True)) → Population

populationSum(ps) = Over(Sum, ps)

populationAvg : (∑ps:(List Population) (popAvgPreconditions(ps) = True)) → Population

populationAvg(ps) = Over(Avg, ps)

The next component is incorporating patterns of expression trees into precondition
functions. For example, a precondition for population trees which have had an aver-
age or median operation performed on them:
aggregatePop : Population → Bool
aggregatePop(Over(Avg, ps)) = True
aggregatePop(Over(Median, ps)) = True
aggregatePop(_) = False

Precondition functions of this form allow us to make distinctions between kinds of data
based on transformations that have been applied to them. This, in conjunction with
list comprehension functions, like all, none, atLeastOne, etc, can be incorporated
into operation preconditions to give us fine-grained control over which sequences of
operations produce meaningful results for the given data types.

Where the expressive power of preconditions becomes even more evident is in the
combination of mereological and provenance preconditions. Consider the earlier exam-
ple computation, avg((Toronto2016 - Toronto2011), (Guelph 2011 - Hamilton2011)).
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An explanation for why this computation is not meaningful requires both a mereo-
logical explanation and a provenance-based one. While both operands are population
differences (provenance tree head is the same operation), they are different kinds of dif-
ferences (mereological distinction). The complete preconditions for population average
provide insight into how this is type checked:
avgPreconditions : List Population → Bool
avgPreconditions(ps) = ((allSameRegions(ps)∧differingTime(ps))∨

(allSameTime(ps)∧(disjointRegions ps)))∧
(all(measuredPop, ps)∨all(scaledPop, ps)∨
all(differencePop, ps)∨all(ratioPop, ps))

In order to compute a population average, the population values we are averaging over
must belong to the type described by: all possible values of ps such that popAvgPreconditions(ps)
= True. In our example, the provenance portion of the preconditions (after the ∧) are
satisfied; both operands are population differences. However, our mereological compo-
nent is not satisfied; the operands vary over both time and regions. Since we cannot
generate a proof of our example operands satisfying this precondition, it is not type-
safe, and thusly not a meaningful computation.

8 Research Program

While the type system of the MeTS framework is the primary mechanism for mean-
ingful data science, its broader impact is realized when placed within the greater re-
search program of MeTS. This research program expands upon the MeTS framework
by modelling its correspondence to formal knowledge models and by extending the
implementation with tractability in mind.

8.1 Correspondence Theorem

In order to model concepts like time and mereology, fundamental assumptions about
their semantics must be made. MeTS is no different, because behind type-checking
functions and preconditions are ontological commitments. It is therefore important to
make these commitments clear and transparent; no specific interpretation should be
forced upon data scientists when implementing the framework. Furthermore, the onto-
logical commitments should not be so entangled with the type system that it becomes
impossible to adjust these commitments without significant re-engineering. This mod-
ular and ontologically-agnostic approach not only increases transparency, and supports
more domains and applications, it also has broader implications for the knowledge mod-
elling community.

The correspondence theorem of the MeTS framework intends to prove the sound-
ness and completeness of a given MeTS program with respect to some formal ontol-
ogy(ies). We have already developed FOL ontologies for census data which correspond
to the implicit modelling commitments in the exemplary StatsCAN type system, in-
cluding a method of proving the soundness of a MeTS type environment with respect to
some FOL theory. MeTS is not intended to be used as a ‘black-box’ set of dependently-
typed programs, but as a method of leveraging knowledge model(s) through a depen-
dent type system for data science. This modular and ontologically-agnostic approach
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not only increases transparency, and supports more domains and applications, it also al-
lows for new possibilities to be explored within the knowledge modelling community.

8.2 Tractability

With data becoming increasingly available and used in many industries, data science
tools should facilitate a fast and efficient data science pipeline. Considering the expres-
sive power of MeTS and its reliance on programming paradigms usually not associated
with data science, tractability is a critical factor. One significant benefit of MeTS is
the expressive power it achieves while remaining decidable. However, decidability it-
self does not guarantee adoption, a production-ready implementation of MeTS should
also prioritize integration within existing data science infrastructure. In our proof of
concept implementation, the interface component and typing component of MeTS are
both specified in idris, a general-purpose dependently typed programming langauge.
However, we should not require data scientists to learn dependent types and functional
programming in order to employ MeTS into their existing workflows. In order for the
vision of MeTS to be completely realized and to promote adoption in the data science
community, MeTS should include efficient out-of-the-box integration with common
data science tools like pandas, Tableau, etc.

9 Conclusion

The current state of data science relies heavily on datatypes which lack the expressive-
ness to accurately model the real world phenomena they represent. Simple datatypes fail
to typify data because their simplistic representation cannot capture the concepts which
underlie data including time, mereology, and provenance. Existing work addresses this
issue by supplementing datatypes with external documentation, provenance tracking,
and knowledge models in informal and ad-hoc ways that require manual effort and are
prohibitively complex. Conversely, MeTS embeds the rules, assumptions, and interpre-
tations of real-world concepts in types, elevating type safety from a trivial check to a
meaningful result. The mechanism behind the MeTS type system is dependent types and
expression trees, which integrate temporal, mereological, and provenance information
into preconditions for fundamental data science operations. Operations involving Stat-
CAN census data demonstrates concrete examples of how MeTS enforces real-world
rules of provenance, geospatial and temporal disjointedness through type-checking. The
MeTS framework is also part of a larger research program including a correspondance
theorem with broader impacts for knowledge modelling and type theory, as well as a
focus on tractability including integration with common data science tools. Ultimately,
the MeTS framework is a significant step towards transparent, verifiable, and meaning-
ful data science.
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