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ABSTRACT

Twitter represents a massively distributed information source over topics ranging from social and political
events to entertainment and sports news. While recent work has suggested this content can be narrowed
down to the personalized interests of individual users by training topic filters using standard classifiers,
there remain many open questions about the efficacy of such classification-based filtering approaches.
For example, over a year or more after training, how well do such classifiers generalize to future novel
topical content, and are such results stable across a range of topics? In addition, how robust is a topic
classifier over the time horizon, e.g., can a model trained in one year be used for making predictions in the
subsequent year? Furthermore, what features, feature classes, and feature attributes are most critical for
long-term classifier performance? To answer these questions, we collected a corpus of over 800 million
English Tweets via the Twitter streaming API during 2013 and 2014 and learned topic classifiers for 10
diverse themes ranging from social issues to celebrity deaths to the “Iran nuclear deal”. The results of
this long-term study of topic classifier performance provide a number of important insights, among them
that: (i) such classifiers can indeed generalize to novel topical content with high precision over a year or
more after training though performance degrades with time, (ii) the classes of hashtags and simple terms
contain the most informative feature instances, (iii) removing tweets containing training hashtags from the
validation set allows better generalization, and (iv) the simple volume of tweets by a user correlates more
with their informativeness than their follower or friend count. In summary, this work provides a long-term
study of topic classifiers on Twitter that further justifies classification-based topical filtering approaches
while providing detailed insight into the feature properties most critical for topic classifier performance.

INTRODUCTION

With the emergence of the social Web in the mid-2000s, the Web has evolved from a static Web, where
users were only able to consume information, to a Web where users are also able to interact and produce
information (Bouadjenek et al., 2016). This evolution, which is commonly known as the Social Web, has
introduced new freedoms for the user in their relation with the Web by facilitating their interactions with
other users who have similar tastes or share similar resources. Specifically, social media platforms such as
Twitter are commonly used as a means to communicate with other users and to post messages that express
opinions and topics of interest. In 2019, it was estimated that more than 330 million users posted 500
million tweets per dayF_-]

Consequently, Twitter represents a double-edged sword for users. On one hand it contains a vast
amount of novel and topical content that challenge traditional news media sources in terms of their
timeliness and diversity. Yet on the other hand Twitter also contains a vast amount of chatter and otherwise
low-value content for most users’ information needs where manual filtering of irrelevant content can

*This work has been primarily completed while the author was at the University of Toronto.
https://www.brandwatch.com/blog/twitter-stats—and-statistics/
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be extremely time-consuming. Previous work by (Lin et al., 2011} |Yang et al.,|2014) and (Magdy and
Elsayed, 2014)) has noted the need for topic-based filtering on Twitter and has proposed a range of
variations on supervised classification techniques to build effective topic filters.

While these previous approaches have augmented their respective topical classifiers with extensions
including semi-supervised training of multiple stages of classification-based filtering and online tracking of
foreground and background language model evolution, we seek to analyze the lowest common denominator
of all of these methods, namely the performance of the underlying (vanilla) supervised classification
paradigm. Our fundamental research questions in this paper are hence focused on a longitudinal study
of the performance of such supervised topic classifiers. For example, over a year or more after training,
how well do such classifiers generalize to future novel topical content, and are such results stable across
a range of topics? In addition, how robust is a topic classifier over the time horizon, e.g., can a model
trained in one year be used for making predictions in the subsequent year? Furthermore, what features,
feature classes, and feature attributes are most critical for long-term classifier performance?

To answer these questions, we collected a corpus of over 800 million English Tweets via the Twitter
streaming API during 2013 and 2014 and learned topic classifiers for 10 diverse themes ranging from
social issues to celebrity deaths to the “Iran nuclear deal”. We leverage ideas from (Lin et al.|[2011) for
curating hashtags to define our 10 training topics and label tweets for supervised training; however, we
also curate disjoint hashtag sets for validation and test data to tune hyperparameters and evaluate true
generalization performance of the topic filters to future novel content.

The main outcomes of this work can be summarized as follows:

e We empirically show that the random forest classifier generalizes well to unseen future topical
content (including content with no hashtags) in terms of its average precision (AP) and Precision@n
(for a range of n) evaluated over long time-spans of typically one year or more after training.

o We demonstrate that the performance of classifiers tends to drop over time — roughly 35% drop
in Mean Average Precision 350 days after training ends, which is an expected, but nonetheless
significant decrease. We attribute this to the fact that over long periods of time, features that are
predictive during the training period may prove ephemeral and fail to generalize to prediction at
future times.

e To address the problem above, we show that one can remove tweets containing training hashtags
from the validation set to allow better parameter tuning leading to less overfitting and improved
long-term generalization. Indeed, although our approach here is simple, it yields a roughly 11%
improvement for Mean Average Precision.

e Finally, we provide a detailed analysis of features and feature classes and how they contribute to
classifier performance. Among numerous insights, we show that the class of hashtags and simple
terms have some of the most informative feature instances. We also show that the volume of tweets
by a user correlates more with their informativeness than their follower or friend count.

In summary, this Wor provides a longitudinal study of Twitter topic classifiers that further justifies
supervised approaches used in existing work while providing detailed insight into feature properties and
training methodologies leading to good performance. The rest of this paper is organized as follows: we
first review the literature and then describe the notation we use in this paper as well as a formal definition
of the problem we address. Next, we provide a description of the dataset we used for the analysis in this
paper, followed by a description of the general methodology we use for learning topic classifiers. Finally,
we provide a discussion of our empirical results before concluding and outlining future work.

RELATED WORK

There is a substantial body of research related to topic classification in social media. Below, we review
the major works related to Twitter topic classification, topic modeling for social media and applications of
classifiers for social media (including tweet recommendation, event detection in social media, and “friend
sensors”).

2This is an extended and revised version of a preliminary conference report that was presented in (Iman et al.l[2017).
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Twitter Topic Classification

Topic classification for social media aims to detect and track general topics such as “Baseball” or
“Fashion”. In previous work, researchers have collected labeled data either by using a single hashtag for
each topic (Lin et al.l [2011), a user-defined query for each topic (Magdy and Elsayed, 2014}, manual
labeling (Daouadi et al., 20215 |Ayo et al.,|2021])), or co-training based on the URLSs and text of the tweet
(Yang et al., 2014)). We expand on (Lin et al.;, 2011)’s work and use a set of hashtags instead of a single
hashtag. Similarly, we extract features consisting of hashtags, mentions, unigram terms, and authors
as done in this prior work, but also add location as another feature, which has shown to be the second
most important feature for topic classification after unigram terms. Furthermore, we provided a novel
learning and evaluation paradigm based on splitting both the data and hashtags along temporal boundaries
to generate train, validation and test datasets in order to evaluate long-term generalization of trained topic
classifiers. In contrast, we remark that (Lin et al.l | 2011)) only evaluated over 1 week, (Magdy and Elsayed,
2014) over 4 days, and (Yang et al.,|2014) did not explicitly mention the data duration or that their study
was intended to assess long-term performance. Hence these previous studies do not permit one to assess
the long-term topic classification performance of topic classifiers for Twitter as intended by the 2 year
longitudinal study performed in this article.

Topic Modeling for Social Media

Topic models are a type of statistical model for discovering abstract “topics” that occur in a collection
of documents (Blei, |2012). For this purpose, machine learning researchers have developed a suite of
algorithms including Probabilistic Latent Semantic Analysis (PLSA) (Hofmann| [1999)), Non-negative
matrix factorization (Lee and Seung, [1999; |Arora et al., 2012; [Luo et al.,|2017), and Latent Dirichlet
allocation (LDA) (Blei et al., 2003)). LDA is perhaps the most common topic model currently in use.

While topic models such as LDA have a long history of successful application to content domains
such as news articles (Chen et al., 2010; |Cohen and Ruths|, 2013}, |Greene and Crossl |2015) and medical
science (Paul and Dredze, [2011;|Wu et al., 2012} [Zhang et al., 2017), they are often less coherent when
applied to social media and specifically microblog content like Twitter. In particular, Twitter poses
challenges for topic modeling mainly because it contains short and messy text (Zhao et al.,[2011b; [Han
et al.,2012; [Mehrotra et al.,2013; Jelodar et al.|[2018};[Zuo et al.| [2021)). This problem has been frequently
addressed through content pooling methods (Hong and Davison, [2010; Weng et al.,[2010; Naveed et al.,
2011; Mehrotra et al.l 2013 |Alvarez-Melis and Saveskil [2016), which comprise a data preprocessing
step consisting of merging related tweets together and presenting them as a single document to the topic
modeling algorithm. In a different vein, several works proposed to integrate network structure with topic
modeling (Tang et al.| 2008 |Chen et al.l 2012b} |Kim et al.| 2012; |Chen et al.,2017). Very recent work by
Nolasco and Oliveira (Nolasco and Oliveira, |2019) proposed a method for detecting subevents within
main complex events through topic modeling in social media posts.

Despite this rich tradition of work in topic modeling including applications to Twitter, we remark
that all of these methods are unsupervised and seek to discover topics, whereas our work is focused on
the supervised setting where topics (and their labels) are available and we are concerned with long-term
classifier accuracy in this supervised, known topic setting.

Related Applications of Classifiers for Social Media

Aside from highly related work on supervised topic classifiers for Twitter (Lin et al., 2011 Yang et al.,
2014; Magdy and Elsayed, |2014) that motivated this study as discussed previously, there are many other
uses of classifiers for social media. While we argue no prior work has performed a longitudinal analysis
of supervised Twitter topical classifiers as done in this article, these alternative applications of classifiers
for social media may broadly benefit from the insights gained by our present study. We cover these
related uses below along with important differences with the present work, divided into the following
four subareas: (1) trending topic detection, (2) tweet recommendation, (3) friend sensors, and (4) specific
event detection such as earthquake or influenza sensors.

Trending Topic Detection represents one of the most popular types of topical tweet detector and can be
subdivided into many categories. The first general category of methods define trends as topically coherent
content and focus on clustering across lexical, linguistic, temporal and/or spatial dimensions (Petrovi¢
et al.}2010; [shikawa et al.} 2012; Phuvipadawat and Muratal 2010; Becker et al., [2011}|O’Connor et al.,
2010;|Weng and Leel |2011). The second general category of methods define trends as temporally coherent
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patterns of terms or keywords and focus largely on detecting bursts of terms or phrases (Mathioudakis
and Koudas| [2010; |Cui et al.L [2012; Zhao et al., 2011a} [Nichols et al., 20125 |Aiello et al., [2013). The
third category of methods extends the previous categories by additionally exploiting network structure
properties (Budak et al.,|2011). Despite this important and very active area of work that can be considered
a type of topical tweet detector, trending topic detection is intrinsically unsupervised and not intended to
detect targeted topics. In contrast, the work in this article is based on supervised learning of a specific
topical tweet detector trained on the topical set of hashtags provided by the user.

Tweet Recommendation represents an alternate use of tweet classification and falls into two broad
categories: personalized or content-oriented recommendation and retweet recommendation. For the first
category, the objective of personalized recommendation is to observe a user’s interests and behavior from
their user profile, sharing or retweet preferences, and social relations to generate tweets the user may
like (Yan et al.,|2012; |Chen et al.,|2012a). The objective of content-oriented recommendation is to use
source content (e.g., a news article) to identify and recommend relevant tweets (e.g., to allow someone
to track discussion of a news article) (Krestel et al.| [2015). For the second category, there has been a
variety of work on retweet prediction that leverages retweet history in combination with tweet-based,
author-based, and social network features to predict whether a user will retweet a given tweet (Can et al.,
2013;|Xu and Yang, 2012} |Petrovic et al.,|2011; |Gilabert and Segui, |2021). Despite the fact that all of
these methods recommend tweets, they — and recommendation methods in general — are not focused on
a specific topic but rather on predicting tweets that correlate with the preferences of a specific user or
that are directly related to specific content. Rather the focus with learning topical classifiers is to learn
to predict for a broad theme (independent of a user’s profile) in a way that generalizes beyond existing
labeled topical content to novel future topical content.

Specific Event Detection builds topical tweet detectors as we do in this work but focuses on highly
specific events such as disasters or epidemics. For the use case of earthquake detection, an SVM
can be trained to detect earthquake events and coupled with a Kalman filter for localization (Sakaki
et al., |2013), whereas in (Bouadjenek et al.| [2020; |Bouadjenek and Sanner, 2019) a relevance-driven
clustering algorithm to detect natural disasters has been proposed. In another example use case to detect
health epidemics such as influenza, researchers build purpose-specific classifiers targeted to this specific
epidemic (Culottal [2010; |/Aramaki et al.,[2011), e.g, by exploiting knowledge of users’ proximity and
friendship along with the contageous nature of influenza (Sadilek et al.l | 2012). While these targeted event
detectors have the potential of providing high precision event detection, they are highly specific to the
target event and do not easily generalize to learn arbitrary topic-based classifiers for Twitter as analyzed
in this work.

Friend Sensors are a fourth and final class of social sensors intended for early event detection (Kry{
vasheyeu et al., 2014; |Garcia-Herranz et al.| 2012) by leveraging the concept of the “friendship para-
dox” (Feld, |1991)), to build user-centric social sensors. We note that our topical classifiers represent a
superset of friend sensors since our work includes author features that the predictor may learn to use
if this proves effective for prediction. However, as shown in our feature analysis, user-based features
are among the least informative feature types for our topical classifier suggesting that general topical
classifiers can benefit from a wide variety of features well beyond those of author features alone.

NOTATION AND PROBLEM DEFINITION

Our objective in this article is to carry out a longitudinal study of topic classifiers for Twitter. For each
Twitter topic, we seek to build a binary classifier that can label a previously unseen tweet as topical (or
not). To achieve this, we train and evaluate the classifier on a set of topically labeled historical tweets as
described later in this article.

Formally, given an arbitrary tweet d (a document in text classification parlance) and a set of topics
T ={t,...,tx}, we wish to train f’(d) to predict a continuous score value for each topic r € T over
a subset of labeled training tweets from D = {d,...,dy}. We assume that each tweet d; € D (for
i € {1,...,N}) is represented by a vector of M binary features d; = [d},...,d™] with & € {0,1} (for
m € {1,...,M}) indicating that the mth feature occurs in d; (1) or not (0). Each tweet d; also has an
associated topic label #(d;) € {0, 1} to indicate whether the tweet d; is topical (1) or not (0). As done in
many standard classifiers (e.g., naive Bayes, logistic regression, SVM), we wish to learn a scoring function
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Figure 1. Per capita tweet frequency across different international and U.S. locations for different topics.
The legend provides the number of tweets per 1 Million capita.

f*(d) such that a higher score f’(d) indicates a higher confidence that d should classified as topical for ¢
and furthermore this generalizes well to new unseen tweet data not encountered during training.

DATA DESCRIPTION

We begin with details of the Twitter testbed for topical classifier learning that we evaluate in this paper.
We crawled Twitter data using Twitter Streaming API for two years spanning 2013 and 2014 years. We
collected more than 2.5 TB of compressed data, which contains a total number of 811,683,028 English
tweets. In the context of Twitter, we consider five feature types for each tweet. Each tweet has a User
feature (i.e., the person who tweeted it), a possible Location (i.e., a string provided as meta-data), and a
time stamp when it was posted. A tweet can also contain one or more of the following:

e Hashtag: a topical keyword specified using the # sign.
e Mention: a Twitter username reference using the @ sign.
e Term: any non-hashtag and non-mention unigrams.

We provide more detailed statistics about each feature in Table [T} For example, there are over 11 million
unique hashtags, the most frequent unique hashtag occurred in over 1.6 million tweets, a hashtag has been
used on average by 10.08 unique users, and authors (Users) have used a median value of 2 tweets.

Figure[T|shows per capita tweet frequency across different international and U.S. locations for different
topics. While English speaking countries dominate English tweets, we see that the Middle East and
Malaysia additionally stand out for the topic of Human Caused Disaster (MH370 incident), Iran, U.S.,
and Europe for nuclear negotiations the “Iran Nuclear deal”, and soccer for some (English-speaking)
countries where it is popular. For U.S. states, we see that Colorado stands out for health epidemics (both
whooping cough and pneumonic plague), Missouri stands out for social issues (#blacklivesmatter in St.
Louis), and Texas stands out for space due to NASA'’s presence there.

METHODOLOGY

In this section, we describe the formal framework we use for our longitudinal study of topic classification.
We begin by describing how we automatically label data using a set of manually curated hashtags. Then,
we proceed to describe how we temporally split both the dataset and manually curated hashtags into
train, validation and test sets, which is a critical step for our longitudinal study of topical classifiers and
long-term generalization. Finally, we provide a brief description of several score-based classification
algorithms and one ranking algorithm used in our analysis.
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Table 1. Feature Statistics of our 811,683,028 tweet corpus.

#Unique Features

User Hashtag Mention Location Term
85,794,831 | 13,607,023 | 46,391,269 | 18,244,772 16,212,640

Feature Usage in #Tweets

Feature Max Avg Median Most frequent
User 10,196 8.67 2 running_status

Hashtag 1,653,159 13.91 1 #retweet

Mention 6,291 1.26 1 tweet_all_time

Location 10,848,224 9,562.34 130 london
Term 241,896,559 492.37 1 It

Feature Usage by #Users

Hashtag 592,363 10.08 1 #retweet

Mention 26,293 5.44 1 dimensionist

Location 739,120 641.5 2 london
Term 1,799,385 6,616.65 1 It

Feature Using #Hashtags
User 18,167 2 0 daily_astrodata
Location 2,440,969 1,837.79 21 uk

Table 2. Train/Validation/Test Hashtag samples and statistics.

Tennis Space Soccer Iran Nuclear H.uman Celebrity Social N.atural Epidemics LGBT
Deal Disaster Death Issues Disaster
#TrainHashtags 62 112 144 12 57 33 37 61 55 30
#ValHashtags 14 32 42 2 8 4 5 4 17 9
#TestHashtags 14 17 21 3 12 7 8 17 13 5
#+TrainTweets 21,716 5,333 14,006 6,077 153,612 155,121 27,423 46,432 14,177 1,344
#-TrainTweets 191,905 46,587 123,073 54,045 1,363,260 1,376,872 244,106 411,609 125,092 11,915
#+ValTweets 884 2,281 4,073 1,261 53,340 23,710 3,088 843 4,348 50
#-ValTweets 7,860 20,368 36,341 11,363 473,791 210,484 27,598 7,456 39,042 443
#+TestTweets 1,510 5,908 11,503 368 34,055 7,334 14,566 5,240 3,105 692
#-TestTweets 13,746 53,348 103,496 3,256 305,662 65,615 130,118 47,208 27,828 6,325
#usopenchampion | #asteroids #worldcup #irandeal #gazaunderattack | #robinwilliams | #policebrutality #earthquake #ebola #loveislove
Sample #novakdjokovic | #astronauts | #lovesoccer | #iranfreedom | #childrenofsyria #ripmandela | #michaelbrown #storm #virus #gaypride
Hashtags #wimbledon #satellite #fifa #irantalk #iraqwar #ripjoanrivers #justicedall £ i # itebl
#womenstennis | #spacecraft | #realmadrid #rouhani #bombthreat #mandela #freetheweed #abfloods #chickenpox #homo
#tennisnews #telescope | #beckham | #nuclearpower #isis #paulwalker #newnjgunlaw | #hurricanekatrina | #theplague | #gaymarriage

Dataset labelling

A critical bottleneck for learning targeted topical social classifiers is to achieve sufficient supervised
content labeling. With data requirements often in the thousands of labels to ensure effective learning
and generalization over a large candidate feature space (as found in social media), manual labeling is
simply too time-consuming for many users, while crowdsourced labels are both costly and prone to
misinterpretation of users’ information needs. Fortuitously, hashtags have emerged in recent years as a
pervasive topical proxy on social media sites — hashtags originated on Internet Relay Chat (IRC), were
adopted later (and perhaps most famously) on Twitter, and now appear on other social media platforms
such as Instagram, Tumblr, and Facebook. Following the approach of [Lin et al.[(2011), for each topic
t € T, we leverage a (small) set of user hand-curated topical hashtags H' to efficiently label a large number
of supervised topic labels for social media content.

Specifically, we manually curated a broad thematic range of 10 topics shown in the top row of Table 2]
by annotating hashtag sets H' for each topic r € T. We used 4 independent annotators to query the Twitter
search API to identify candidate hashtags for each topic, requiring an inter-annotator agreement of 3
annotators to permit a hashtag to be assigned to a topic set. Samples of hashtags for each topic are given
in the bottom row of Table 2]

Dataset splitting

In the following, we describe key aspects related to the temporal splitting of the dataset and H' labels for
training, validation parameter tuning, and test evaluation purposes. We also outline a methodology for
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sampling negative examples and an overall training procedure including hyperparameter tuning.

Temporal splits of data and H' for training, validation and testing: As standard for machine learning
methods, we divide our training data into train, validation, and test sets — the validation set is used for
hyperparameter tuning to control overfitting and ensure generalization to unseen data. As a critical insight
for topical generalization where we view correct classification of tweets with previously unseen topical
hashtags as a proxy for topical generalization, we do not simply split our data temporally into train and
test sets and label both with all hashtags in H'. Rather, we split each H' into three disjoint sets H’,

train’
H,, and H{, according to two time stamps 130 and 4l for topic ¢ and the first usage time stamp /gmes

split split

of each hashtag 4 € H'. In short, all hashtags 4 € H' first used before tﬁ“}‘? are used to generate positive

labels in the training data, all hashtags & € H' first used after t‘”““ and before t"al are used to generate
positive labels in the validation data, and the remaining hashtags are used to generate positive labels in the
test data. Here we first outline the procedure and follow later with a detailed explanation.

To achieve this effect formally, we define the following:

Httmm {hlh € H' Niimes < l‘igﬂ?

i 1
{hlh S H A\ htlme* > t;rpii:? A\ htime* < tSV;llt}

te@t - {hlh € H' A hiimes = tsvpllt}

va] -

Once we have split our hashtags into training and validation sets according to t&fﬂ? and tsvglllt’ we next
proceed to temporally split our training documents D into a training set D, , a validation set D, and a

test set Di for topic ¢ based on the posting time stamp d; jime« of each tweet d; as follows:

Diram {d,~|d,~ € D Ad; timex < plrain

split
i 1
Va] - {d |d € D/\dl limex 2 t;gﬂ? /\di timex < t:gm (Vh €di:h ¢ tram)}

test {d |d € D/\dl timesx 2 ti/r‘ﬁm A (Vh € d h ¢ trdm)}

Finally, to label the train, validation, and test data sets D! , D', and D{.y, we use the respective
hashtag sets H . , H! |, H{., for generating the topic label for a particular tweet #(d;) € {0,1} as follows,

where we take a set-based view of the features positively contained in vector d;:

ANJhedi:heH

train

1ifd; € D!

train

(dy) = lifdie Dy N3hed;:heH, Val
’ lifd; € Dieg NI hEd;: he Hl,

0 otherwise

The critical insight here is that we not only divide the train, validation, and test data temporally,
but we also divide the hashtag labels temporally and label the validation and test data with an entirely
disjoint set of topical labels from the training data. The purpose behind this training, validation and
test data split and labeling is to ensure that hyperparameters are tuned so as to prevent overfitting and
maximize generalization to unseen topical content (i.e., new hashtags). We remark that by doing this,
a classifier that simply memorizes training hashtags will fail to correctly classify the validation data
except in cases where a tweet contains both a training and validation hashtag. Moreover, we argue that
removing tweets containing training hashtags from the validation data is important since ranking these
tweets highly does not provide any indication of classifier generalization beyond the training hashtags.
We later experimentally validate this tweet removal proposal against a baseline where (a) we include all
train hashtags H/ . in the validation hashtag set H! and (b) we include all tweets d; containing these
train hashtags in the validation dataset D',

Per topic, hashtags were split into train and test sets according to their first usage time stamp roughly
according to a 3/5 to 2/5 proportion (the test interval spanned between 9-14 months). The train set was
further temporally subdivided into train and validation hashtag sets according to a 5/6 to 1/6 proportion.
We show a variety of statistics and five sample hashtags per topic in Table 2} Here we can see that different
topics had varying prevalence in the data with Soccer being the most tweeted topic and Iran Nuclear Deal
being the least tweeted according to our curated hashtags.

Sampling negative examples: Topic classification is often considered to be an imbalanced classification
task since usually there are many more negative examples than positive examples. Indeed, the large
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Table 3. Cutoff threshold and corresponding number of unique values of candidate features CF for
learning. Thresholds were chosen to balance the number of each type of feature.

Frequency Threshold | #Unique Values

User 235 206,084
Hashtag 65 201,204
Mention 230 200,051
Location 160 205,884
Term 200 204,712
Total Candidate — 1,017,935
Features (CF)

number of users on Twitter, their diversity, their wide range interests, and the short lifetime of topics
discussed on a daily basis typically imply that each topic has only a small set of positive examples.
For example, in the “natural disaster” topic that we evaluate in this article, we remark that we have
over 800 million negative examples and only 500,000 positive examples. Therefore, given this extreme
class imbalance, we have chosen to subsample negative examples, which is commonly used to enable
faster training and more effective hyperparameter tuning compared to training with all negative examples.
Specifically, we randomly subsample negative examples such that positive examples represent 10% of the
dataset for each topic while negative examples represent 90% of the dataset. This rule is valid for the
training, validation and test sets of each topic. Detailed statistics of each topic dataset are provided in
Table
t

Training and hyper-parameter tuning: Once Df_.
our scoring function f* on D, and select hyperparameters to optimize Average Precision (AP onD’, .
Once the optimal f* is found for D!, we return it as our final learned topical scoring function f* for topic
t. Because f(d;) € R is a scoring function, it can be used to rank.

With train, validation, and testing data defined along with the training methodology, it remains now to

extract relevant features, described next.

and D’Val have been constructed, we proceed to train

Topic classification features

The set of features that we consider for each tweet d; are: (i) User (author of the tweet), (ii) Mention, (iii)
Location, (iv) Term, and (v) Hashtag features. Because we have a total of 538,365,507 unique features in
our Twitter corpus (the total count of unique feature values is shown in Table[I)), it is critical to pare this
down to a size amenable for efficient learning and robust to overfitting. To this end, we thresholded all
features according to the frequencies listed in Table[3] The rationale for our frequency thresholding was
to have roughly 1 million features with equal numbers of each feature type. We also removed common
English stopwords which further reduced the unique term count. Overall, we end up with 1,017,935
candidate features (CF) for learning topical classifiers.

Supervised Learning Algorithms

With our labeled training, validation, and test datasets and our candidate feature set CF now defined,
we proceed to apply different probabilistic classification and ranking algorithms to generate a scoring
function f* for learning topical classifiers as defined previously. In this paper, we experiment with the
following five state-of-the-art supervised classification and ranking methods:

1. Logistic Regression (LR) (Fan et al. (2008))): LR uses a logistic function to predict the probability
that a tweet is topical. We used L, regularization with the hyperparameter C (the inverse of
regularization strength) selected from a search over the values C € {107'2,10-'" ... 10! 10'2}.

2. Naive Bayes (NB) (McCallum and Nigam| (1998))): NB makes a naive assumption that all are
features are independent conditioned on the class label. Despite the general incorrectness of
this independence assumption, McCallum and Nigam)| (1998) remark that it is known to make an
effective topic classifier. Like LR, NB predicts the probability that a tweet is topical. For parameter

3See[Manning et al.[(2008) for a discussion and definition of this commonly used ranking metric.
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estimation, we used Bayesian smoothing using Dirichlet priors with hyperparameter o selected
from a search over the values & € {1072°,1071%,1078,1073, 1071, 1}.

3. RankSVM (Lee and Lin|(2014)): RankSVM is a variant of the support vector machine algorithm
used to learn from pairwise comparison data (in our case pairs consist of a positive labeled datum
that should be ranked above a negatively labeled datum) that naturally produces a ranking. We used
a linear kernel with the regularization hyperparameter C (the trade-off between training error and
margin) selected in the range C € {10-'2, 10~ ... /10! 102}

4. Random Forest (RF) (Breiman| (2001)): RF is an ensemble learning method for classification
that operates by constructing a multitude of decision trees at training time and predicting the class
that is the mode of the class prediction of the individual trees (the number of trees that predict the
most common class being the score). RF is known to be a classifier that generalizes well due to its
robustness to overfitting. For RF, we tuned the hyperparameter for the number of trees in the forest
selected from a search over the respective values {10,20,50,100,200}.

5. k-Nearest Neighbors (k-NN) (Aha et al.| (1991)): k-NN is a non-parametric method used for
classification. An instance is classified by a plurality vote of its k neighbors, with the object being
assigned to the class most common among its k nearest neighbors (the number of k neighbors for
the most common class being the score). The value of & is the primary hyperparameter for k-NN
and was selected from a search over the respective values {1,2,3,...,10}.

We remark that almost all algorithms performed better with feature selection and hence we used
feature selection for all algorithms, where the number of top features M was selected in a topic-specific
manner based on their Mutual Information with the topic being classified. M was tuned over values in
{1027 103,10*,10° }. As noted previously, hyperparameter tuning is done via exhaustive grid search using
the Average Precision (AP) ranking metric on validation data. All code to process the raw Twitter data
and to train and evaluate these classifiers as described above is provided on githubE]

In the next section, we present results for an intensive evaluation of these classifiers for our longitudinal
study of topic classification on the Twitter data previously described.

RESULTS AND DISCUSSION

We now report and discuss the main results of our longitudinal study of topic classification on Twitter.

Classification Performance Analysis
In the following, we first conduct an analysis of the overall classification performance by comparing the
classifiers described above, and then, we describe the outcome of a longitudinal classification performance.

Overall Classification Performance

While our training data is provided as supervised class labels, we remark that topical classifiers are
targeted towards individual users who will naturally be inclined to examine only the highest ranked tweets.
Hence we believe ranking metrics represent the best performance measures for the intended use case
of this work. While RankSVM naturally produces a ranking, all classifiers are score-based, which also
allows them to provide a natural ranking of the test data that we evaluate via the following ranking metrics:

e AP: Average Precision over the ranked list (Manning et al.| (2008)); the mean over all topics
provides the Mean Average Precision (MAP).

e P@k: Precision at k for k € {10,100,1000}.

While P@ 10 may be a more standard retrieval metric for tasks such as ad-hoc web search, we remark that
the short length of tweets relative to web documents makes it more plausible to look at a much larger
number of tweets, hence the reason for also evaluating P@ 100 and P@ 1000.

Table [ evaluates our chosen ranking metrics for each topic. Random Forest is the best performing
method on average, except for P@1000 where Logistic Regression performed slightly better in the
3rd significant digit. The generally strong performance of Random Forest is due to its robustness to

4https://github.com/SocialSensorProject/socialsensor
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Table 4. Performance of topical classifier learning algorithms across metrics and topics with the mean
performance over all topics shown in the right column with £+ 95% confidence intervals. The best mean
performance per metric is shown in bold.

Tennis | Space | Soccer Iran Nuclear | Human | Celebrity | Social | Natural Epidemics | LGBT Mean
Deal Disaster Death Issues | Disaster
LR AP 0.9590 | 0.6452 | 0.5036 0.9807 0.6952 0.9293 | 0.5698 | 0.9428 0.4005 0.1559 | 0.6782+0.1724
NB AP 0.5859 | 0.8471 | 0.3059 0.9584 0.4224 0.4658 | 0.5030 | 0.3518 0.4050 0.1689 | 0.5014+0.1494
RankSVM AP 0.702 | 0.840 | 0.674 0.586 0.603 0.469 0.370 0.248 0.136 0.082 0.471£0.18
RF AP 0.9344 | 0.9314 | 0.5509 0.9757 0.6658 0.9571 | 0.8213 | 0.8306 0.5154 0.2633 | 0.7445+0.14764
KNN AP 0.9550 | 0.7751 | 0.4739 0.9752 0.598 0.542 0.5078 | 0.9599 0.5317 0.1774 | 0.6496+0.1618
LR P@10 1.0 02 03 1.0 0.5 0.8 0.2 1.0 0.5 0.6 0.61£0.2012
NB P@10 0.1 0.8 0.0 0.9 0.7 0.1 0.0 03 0.1 0.0 0.3+0.2225
RankSVM | P@10 1.0 0.8 0.6 0.8 0.4 0.3 0.0 0.1 0.0 0.2 0.42+0.26
RF P@10 1.0 0.5 0.5 1.0 0.9 1.0 1.0 1.0 0.7 0.5 0.81+0.1444
KNN P@10 1.0 0.0 1.0 1.0 0.7 0.9 0.0 0.9 0.3 0.4 0.62+0.2543
LR P@100 0.98 0.65 0.44 0.99 0.74 0.94 0.59 0.98 0.45 0.2 0.696+0.1721
NB P@100 0.56 0.95 0.0 0.98 0.39 0.36 0.16 0.37 0.48 0.1 0.435+0.2033
RankSVM | P@100 0.73 0.72 0.31 0.70 0.88 0.44 0.48 0.34 0.02 0.100 0.472+0.20
RF P@100 0.98 0.94 0.43 0.98 0.62 0.97 0.81 0.9 0.61 0.29 0.753+0.1555
KNN P@100 1.0 0.59 0.34 1.0 0.72 0.54 0.39 0.96 0.54 0.24 0.632+0.1731
LR P@1000 | 0.653 | 0.703 | 0.545 0.299 0.666 0.884 0.574 0.919 0.267 0.076 | 0.5586+0.1682
NB P@1000 | 0.551 | 0.667 0.29 0.333 0.338 0.542 0.655 0.287 0.319 0.169 | 0.4151+0.1073
RankSVM | P@1000 | 0.799 | 0.922 | 0.764 0.218 0.525 0.547 0.215 0.173 0.154 0.064 0.438+0.22
RF P@1000 | 0.728 | 0.464 | 0.576 0.331 0.463 0.914 0.789 0.728 0.397 0.159 0.5549+0.145
KNN P@1000 | 0.571 | 0.821 0.53 0.329 0.476 0.84 0.49 0.929 0.234 0.083 | 0.5303+0.1696

overfitting Breiman| (2001). In general, KNN is only slightly worse than Logistic Regression, while Naive
Bayes and RankSVM typically perform worse. Notably, trained classifiers outperform RankSVM on the
ranking task thus justifying the use of trained topic classifiers for ranking.

To provide more insight into the general performance of our learning topical classifier framework, we
provide the top five tweets for each topic according to Logistic RegressiorE] in Table|5} We have annotated
tweets with symbols as follows:

e V: the tweet was labeled topical by our test hashtag set.

e X: the tweet was determined to be topical through manual evaluation even though it did not
contain a hashtag in our curated hashtag set (this corresponds to a mislabeled example due to the
non-exhaustive strategy used to label the data).

e X: the tweet was not topical.

In general, we remark that our topical classifier may perform slightly better than the quantitative results in
Table 4 would indicate: a few of the highly ranked tweets are mislabeled as non-topical in the test set
although a manual analysis reveals that they are in fact topical. Furthermore, even though we use hashtags
to label our training, validation, and testing data, our topical classifier has highly (and correctly) ranked
topical tweets that do not contain hashtags, indicating strong generalization properties from a relatively
small set of curated topical hashtags.

Though the reason why some non-topical tweets ranked highly is unclear, we see that many failure
cases appear to mention relevant features to the topic although they are in fact advertising or politicized
spam content. This indicates a limitation of the hashtag-based class labeling method, which cannot easily
distinguish spam from legitimate content. Nonetheless, we believe that a separate spam filter common
to all classifiers could mitigate these issues since the patterns of spam email such as an unusually large
number of hashtags or mentions are not topic-specific and can be easily detected.

Longitudinal Classification Performance

Now that we’ve examined the overall classification performance of different topical classifiers per topic
and per metric, we now turn to address the long-term temporal aspect of topic classification with two
questions: (1) Does classification performance degrade as time increases since training, and if so, by

3 Logistic Regression allows us to better understand failure cases for topical classifiers, i.e., Random Forest is likely to have
gotten all of the top-5 right.
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Figure 2. Longitudinal analysis of classifier generalization. (a-d) plots the performance of the topic
classifier (mean over all 10 topics with 95% confidence intervals) from 50 to 350 days after training,
evaluated according to (a) mean AP (MAP), (b) P@10, (c) P@100, and (d) P@1000. Best fit linear

regressions are shown as dashed lines. (e) Results averaged over time with 95% confidence intervals.

how much? (2) Does omission of training hashtags from the validation set encourage better long-term
generalization since, as hypothesized in the methodology, it discourages memorizing training hashtags?

To assess these questions, Figure a—d) plots the performance of the Logistic Regressiorﬁ topic
classifier (mean over all 10 topics) from 50 to 350 days after training, evaluated according to (a) mean
AP (MAP), (b) P@10, (c) P@100, and (d) P@1000. The purple line shows the proposed methodology,
where tweets with training hashtags are suppressed from the validation set, while the green line does not
suppress training hashtags (see the Methodology section for more details on both methods). To better
distinguish the overall performance of suppressing training hashtags in the validation set, we average
results over all time points in Figure 2{e).

Overall, we make a few key observations:

e Regarding question (1), it is clear that the classification performance drops over time — a roughly
35% drop in MAP from the 50th to the 350th day after training. Clearly, there will be topical drift
over time for most topics (e.g., Natural Disasters, Social Issues, Epidemics) as different events occur
and shift the focus of topical conversation. While there are more sophisticated training methods
for mitigating some of this temporal drift (e.g.,|Wang et al.|(2019)), overall, it would seem that the
most practical and effective method for long-term generalization would involve a periodic update
of training hashtags and data labels.

e Regarding question (2), Figure 2|e) clearly shows an overall performance improvement from
discarding training hashtags (and their tweets) from the validation set. In fact, for MAP alone, we
see roughly an 11% improvement. Hence, these experiments suggest there may be a long-term
generalization advantage to excluding training hashtags from the validation hashtags and data,

®We could not run these longitudinal experiments with Random Forest due to the significant computational expense of the
analysis in this section and the hyperparameter tuning that is required, thus we opted to perform this analysis with the much faster
and still strongly competitive Logistic Regression classifier.
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Mention | 0.53 1.33 4.68 0.22 3.8 0.52 EPE2iI 0.31 1.4 4.39 | 1.94

9.34 - 1.15 PL7058 4.49 7.51 2.08
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Figure 3. Matrix of mean Mutual Information values for different feature types vs. topics. The last
column and last row represent the average of mean values across all topics and all features respectively.
All values should be multiplied by 1078,

which we conjecture discourages hyperparameters that lead to hashtag memorization from the
training set.

With our comparative and longitudinal analysis of topic classifier performance now complete, we will
next investigate which features are most informative for topic classifiers.

Feature Analysis

In this section, we analyze the informativeness of feature sets defined in the Data Description section and
the effect of their attributes on learning targeted topical classifiers. To this end, our goal in this section is
to answer the following questions:

e What are the best features for learning classifiers and do they differ by topic?
e For each feature type, do any attributes correlate with importance?

To answer these questions, we use Mutual Information (MI) (Manning et al.| (2008)) as our primary
metric for feature evaluation. M1 is a general method for measuring the amount of information one random
variable contains about another random variable and is used to select predictive features in machine
learning. To calculate the amount of information that each feature j in the Candidate Features (CF)
defined previously provides w.r.t. each topic label € {Natural Disaster, Epidemics, ...}, MI is formally
defined as

1G,)="13% ) plin)log (zf(jj()]pt()r»

te{0,1} je{0,1}

with marginal probabilities of topic p(¢) and feature p(j) occurrence and joint probability p(¢, j) computed
empirically over the sample space of all tweets, where higher values for this metric indicate more
informative features j for the topic ¢.

In order to assess the overall best feature types for learning topical classifiers, we provide the mean
MI values for each feature type across different topics in Figure[3] The last column in Figure [3|shows the
average of the mean MI for each feature type and the last row shows the average of the mean MI for each
topic. From analysis of Figure[3] we make the following observations:

e Looking at the average MI values, the order of informativeness of feature types is the following:
Hashtag, Term, Mention, User, Location. The overall informativeness of Hashtags is not surprising
given that hashtags are used on Twitter to tag topics of interest. While the Term feature is not strictly
topical, it contains a rich vocabulary for describing topics that Mention, User, and Location lack.
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Figure 5. Box plots of Mutual Information values (y-axis) per feature type across topics (x-axis labels).

e The Location feature provides high MI regarding the topics of Human Disaster, LBGT, and Soccer

indicating that a lot of content in these topics is geographically localized.

Revisiting Table[d] we note the following ranking of topics from highest to lowest AP for Logistic
Regressio Iran, Tennis, Natural Disaster, Celebrity Death, Human Disaster, Space, Social Issue,
Soccer, Epidemics, LGBT. It turns out that this ranking is anti-correlated with the ranking of topics
according to average MI of features in Figure 3| To establish this relationship more clearly, in
Figure |4| we show a scatterplot of topics according to MI rank vs. AP rank. Clearly, we observe that
there is a negative correlation between the topic ranking based on AP and MI; in fact, the Kendall
7 rank correlation coefficient is —0.68 indicating a fairly strong inverse ranking relationship. To
explain this, we conjecture that lower average MI indicates that there are fewer good features for a
topic; however, this means that classifiers for these topics can often achieve high ranking precision
because there are fewer good features and the tweets with those features can be easily identified
and ranked highly, leading to high AP. The inverse argument should also hold.

To further analyze the relationship between the informativeness of feature types and topics, we refer
to the box plots of Figure[5] Here we see the quartiles and outliers of the distribution rather than just the

"The ranking for Random Forest only differs slightly.
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Figure 6. Top p% features ranked by Mutual Information.

average of the MI values in order to ensure the mean MI values were not misleading our interpretations.
Overall, the story of feature informativeness becomes much more complex, with key observations as
follows:

e The topic has little impact on which feature is most important, indicating stability of feature type
informativeness over topics.

e While Hashtag had a higher mean MI score than Term in the previous analysis, we see that Term
has the highest median MI score across all topics, indicating that the high mean MI of Hashtag is
mainly due to its outliers. In short, the few good Hashtag outliers are the overall best individual
features, while Term has a greater variety of strong (but not absolute best) features.

e Across all topics, User is often least informative. However, the distribution of Location and Mention
typically performs competitively with Hashtag, although their outliers do not approach the best
Hashtag features, explaining why Hashtag has an overall higher average in Figure[3]

Now we proceed to a more nuanced analysis of feature types for each topic according to the proportions
of their presence among the top p% percentiles of MI values for p% € {0.001%,0.01%,0.1%, 1%, 10%}
as shown in Figure[6] Here we make a few key observations:

o Overall, Hashtags dominate the top 0.001 percentile of features indicating that they account for the
most informative features overall.

e However, from percentiles 0.01 to 10, we largely see an increasing proportion of Term features
among each percentile. This indicates that while the most informative features are Hashtags, there
are relatively few of them compared to the number of high MI terms.

e Not to the same extent as Terms, we note that Mentions also start to become notably more present
as the percentile range increases, while Locations and Users appear least informative overall among
the 10th percentile and smaller.

As anecdotal evidence to inspect which features are most informative, we refer to Table |§|, which
displays the top five feature instances according to MI for each feature type and topic. For example the
term typhoon is the highest MI term feature with the topic Natural Disaster, the official UNICEFE| Twitter
account (@unicef) is the highest MI feature mention with the Human Disaster topic, and #worldcup is
(unsurprisingly) the highest MI hashtag feature for the topic Soccer. The top locations are also highly
relevant to most topics indicating the overall importance of these tweet features for identifying topical

8The United Nations Children’s Fund (UNICEF) is an organization that aims to provide emergency food and healthcare to
children and mothers in developing countries everywhere.
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tweets; for example, three variations of St. Louis, Missouri appear as top MI locations for topic Social
Issuesﬂ One general observation is that Hashtag and Term features are appear to be the most generic
(and hence most generalizable) features, providing strong intuition as to why these features figure so
prominently in terms of their informativeness

In order to answer the second question on whether any attributes correlate with importance for each
feature, we provide two types of analysis using the topic Celebrity Death — the other topics showed similar
patterns, thus we have chosen to omit them. The first analysis shown in Figure[7]analyzes the distributions
of Mutual Information values for features when binned by the magnitude of various attributes of those
features, outlined as follows:

e User vs.

Favorite count: # of tweets user has favorited.

Followers count: # of users who follow user.

Friends count: # of users followed by user.

Hashtag count: # of hashtags used by user.

Tweet count: # of tweets from user.

Hashtag vs.

— Tweet count: # of tweets using hashtag.

— User count: # of users using hashtag.

Location vs. User count: # of users using location.
e Mention vs. Tweet count: # of tweets using mention.

o Term vs. Tweet count: # of tweets using term.

As we can see in the boxplots of Figure[7] the general pattern is that the greater the number of tweets,
users, or hashtag count a feature has, the more informative the feature is in general. This pattern also
exists to some extent on the attributes of the From feature, although the pattern is less visible in general
and not clear (or very weak) for the follower or friend count. In general, the informativeness of a user
appears to have little correlation with their follower or friend count.

Figure[§|provides a further analysis by showing density plots of the tweet count attribute of the User,
Hashtag, Mention and Term features, and the user count attribute of the Hashtag feature. Here we can
clearly observe the positive linear correlation that exists between the attribute magnitude and the Mutual
Information value for all of the evaluated attributes. In short, the more tweets using User, Hashtag,
Mention and Term features and the more users using a Hashtag feature, the more informative that feature
typically is for the topic.

CONCLUSIONS

This work provides a long-term study of topic classifiers on Twitter that further justifies classification-
based topical filtering approaches while providing detailed insight into the feature properties most critical
for topic classifier performance. Our results suggest that these learned topical classifiers generalize well
to unseen future topical content over a long time horizon (i.e., one year) and provide a novel paradigm for
the extraction of high-value content from social media. Furthermore, an extensive analysis of features
and feature attributes across different topics has revealed key insights including the following two: (i)

9We remark that the original Black Lives Matter protests originated in St. Louis, Missouri in the aftermath of the police shooting
of Michael Brown on August 9, 2014.

101t should also be remarked that Mutual Information (MI) is very sensitive to frequency so a high MI feature must be both
informative and frequent to rank highly. This explains why the high MI features are so generic, i.e., they are frequent and hence
cover many more tweets than low MI features.
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Figure 7. Boxplots for the distribution of Mutual Information values (y-axis) of different features as a
function of their attribute values (binned on x-axis). Plots (a-e) respectively show attributes {favorite
count, follower count, friend count, hashtag count, tweet count} for From feature. Plots (f-j) respectively
show attributes tweetCount and userCount for Hashtag, userCount for Location feature, tweetCount for
Mention and Term features.
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Figure 8. Density plots for the frequency values of feature attributes (x-axis) vs. Mutual Information
(y-axis). Plots (a-e) respectively show the following attributes: number of tweets for the User feature,
number of tweets for the Hashtag feature, number of users using the Hashtag feature, number of tweets
for the Mention feature, and number of tweets for the Term feature.

largely independent of topic, hashtags are the most informative features followed by generic terms, and
(i1) the number of unique hashtags and tweets by a user correlates more with their informativeness than
their follower or friend count.

Among many interesting directions, future work might evaluate a range of topical classifier extensions:
(1) optimizing rankings not only for topicality but also to minimize the lag-time of novel content
identification, (2) optimizing queries for boolean retrieval oriented APIs such as Twitter, (3) identification
of long-term temporally stable predictive features, (4) utilizing more social network structure as graph-
based features, and (5) investigating classifier performance based on topic properties such as periodicity
over time or specificity to a very narrow audience. Altogether, we believe these insights will facilitate the
continued development of effective topical classifiers for Twitter that learn to identify broad themes of
topical information with minimal user interaction and enhance the overall social media user experience.
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