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Abstract Variational Autoencoders (VAEs) are a popular generative model, but
one in which conditional inference can be challenging. If the decomposition into
query and evidence variables is fixed, conditionally trained VAEs provide an
attractive solution. However, to efficiently support arbitrary queries over pre-
trained VAEs when the query and evidence are not known in advance, one is
generally reduced to MCMC sampling methods that can suffer from long mixing
times. In this paper, we propose an idea of efficiently training small conditional prior
networks to approximate the latent distribution of the VAE after conditioning on
an evidence assignment; this permits generating query samples without retraining
the full VAE. We experimentally evaluate three variations of conditional prior
networks showing that (i) they can be quickly optimized for different decompositions
of evidence and query and (ii) they quantitatively and qualitatively outperform
existing state-of-the-art methods for conditional inference in pre-trained VAEs.

Keywords Variational Autoencoder · Conditional Inference · Prior Network

1 Introduction

Variational Autoencoders (VAEs) [10] are a popular deep generative model with
numerous extensions including variations for planar flow [15], inverse autoregres-
sive flow [9], importance weighting [1], ladder networks [14], and discrete latent
spaces [17] to name just a few. Unfortunately, existing methods for conditional
inference in VAEs rely on an a priori fixed decomposition of evidence and query and
can thus be prohibitively slow for arbitrary queries. However, the ability to make
fast arbitrary queries is critical for tasks such as inference of occluded portions of an
image, where one does not know the occluded portion (query) and observed portion
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(evidence) in advance. Both Conditional VAEs (CVAEs) [21] as well as extensions
made in Bottleneck Conditional Density Estimation (BCDE) [20] require full VAE
training for a fixed decomposition of query and evidence – this is computationally
impractical when VAE training alone can take over one day of computation time.
Alternatively, Markov Chain Monte Carlo methods such as Hamiltonian Monte
Carlo (HMC) [4,3] are difficult to adapt to these problems and empirically suffer
from long mixing times.

To remedy the limitations of existing methods for conditional inference in VAEs,
we aim to approximate the distribution over the latent variables after conditioning
on an evidence assignment through a variational Bayesian methodology. In doing
this, we reuse the decoder of the VAE and show that the error of the distribution
over query variables is controlled by that over latent variables. This avoids the
computational expense of re-training the decoder as done by the CVAE and BCDE
approaches. We term the network that generates the conditional latent distribution
the conditional prior network as it only takes Gaussian noise as input. We remark
that the conditional prior networks that generate the conditional latent distribution
correctly approximate the query density simply by “warping” the standard Gaussian
distribution of a VAE through a small set of parameters and optimization epochs.

We experiment with two conditional prior network alternatives: Gaussian
variational inference via a linear transform (GVI) and Normalizing Flows (NF).
We also provide comparison to a fully connected network (FCN), which suffers
from some technical and computational issues but provides a useful point of
reference for experimental comparison purposes. Overall, our results show that the
GVI and NF variants of conditional prior networks can be optimized quickly for
arbitrary decompositions of query and evidence and compare favorably against
a ground truth provided by rejection sampling for low latent dimensionality. For
high dimensionality, we observe that HMC often fails to mix despite our systematic
efforts to tune its parameters and hence demonstrates poor performance compared
to conditional prior networks in both quantitative and qualitative evaluation.

In summary, an outline of our novel contributions follows. While previous works
have examined conditional training in VAEs [21,20], no paper has currently taken
our fast and simple approach of freezing the decoder of a pre-trained VAE and
efficiently training a relatively small conditional prior network given evidence; we
remark that doing so requires us to derive a novel Conditional ELBO (C-ELBO)
training objective that extends the well-known ELBO for training VAEs. We
compare the performance of various classes of conditional prior networks ranging
from GVI to NF to FCNs (as outlined above) on a variety of datasets vs. MCMC
and a fixed-point alternation approach suggested by Rezende et al [16]. Our results
first show that Rezende’s method simply does not work well with sparse evidence
(< 40% of variables observed), whereas MCMC easily outperforms it, hence we
focus on MCMC methods for further comparison. We then proceed to our main
results showing that conditional training of conditional prior networks is very
fast (a few seconds compared to 24 hours or more for full VAE training in some
cases) and demonstrate that conditional prior networks based on GVI and NF
generally outperform Hamiltonian MCMC across a variety of quantitative and
qualitative metrics. Overall, our work suggests that our simple, intuitive, and fast
conditional prior network training allows high-performance conditional inference
for arbitrary queries in pre-trained VAEs and offers a novel and efficient alternative
to state-of-the-art methods including MCMC.
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Fig. 1: Graphical model of the proposed framework. (a) Decoder pθ(z, t) =
p(z)pθ(t|z), representing the generative model. This is exactly the standard VAE
model. (b) Encoder qφ(z|t). Since exact maximum-likelihood learning is intractable,
VAE training uses this to bound the likelihood using the ELBO (Eq. 2). (c) Infer-
ence with conditional prior network: qψ,θ(ε, z,x,y) = q(ε)qψ(z|ε)pθ(x,y|z). This
re-uses the decoder parameters θ, but ψ is optimized (for the particular input x)
by the C-ELBO (Eq. 5). Here, t is “split” as t = (x,y).

2 Background

2.1 Variational Auto-encoders

One way to define an expressive generative model pθ(t) is to introduce latent
variables z as outlined in the latent generative model of Fig. 1(a). Variational
Auto-Encoders (VAEs) [10] model p(z) as a simple fixed Gaussian distribution.
Then, for real t, pθ(t|z) is a Gaussian with the mean determined by a “decoder”
network as

pθ(t|z) = N (t; Decoderθ(z), σ
2I). (1)

If t is binary, a product of independent Bernoulli’s is parameterized by a sigmoidally
transformed decoder. If the decoder network has high capacity, the marginal
distribution pθ(t) can represent a wide range of distributions. In principle, one might
wish to train such a model by (regularized) maximum likelihood. Unfortunately,
the marginal pθ(t) is intractable. However, a classic idea [19] is to use variational
inference to lower-bound it. For any distributions pθ and qφ,

log pθ(t) = log

∫
z

pθ(t, z)dz = Eqφ(Z) log
pθ(Z, t)

qφ(Z)︸ ︷︷ ︸
ELBO[qφ(Z)‖pθ(Z,t)]

+KL[qφ(Z)||pθ(Z|t)]. (2)

Since the KL-divergence is non-negative, the "evidence lower bound" (ELBO)
lower bounds log pθ(t). Thus, as a surrogate to maximizing the likelihood over θ
one can maximize the ELBO over θ and φ simultaneously.

VAEs define qφ(z) as the marginal of q(t)qφ(z|t) where q(t) is simple and fixed
and qφ(z|t) = N (z; Encoderφ(t)) is a Gaussian with a mean and covariance both
determined by an “encoder” network; this is depicted in Figure 1(b).
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Algorithm 1 Conditional Inference via Conditional Prior Networks.
Input (a) Pre-trained VAE p(z)pθ(t|z) with pθ(t|z) based on Decoderθ(z). (Encoder ignored.)
(b) Single evidence x (any subset of t) for which to predict query y. (Rest of t.)

Optimize Define q(ε)qψ(z|ε) with qψ(z|ε) based on Priorψ(ε). Find ψ to maximize
C-ELBO[qψ(Z)‖pθ(Z,x)] (Defined in Theorem 2). Estimate stochastic gradients by drawing
random ε ∼ q(ε) and using the reparameterization trick.

Predict Draw a sample {zm}Mm=1 ∼ qψ(z) by setting zm = Priorψ(εm) for εm ∼ q(ε). Predict
pθ(y|x) ≈ 1

M

∑M
m=1 pθ(y|zm). (Justified since the optimization phase tightened a bound

(Lemma 1) on the divergence between
∫
qψ(z)pθ(y|z)dz and pθ(y|x).)

evidence

Fig. 2: Proposed conditional Prior network framework for conditional inference with
Variational Auto-encoders. Arrow and text colors are aligned with the description
in Algorithm 1, where the full image t = (x,y). (input phase) We are provided
with a pre-trained VAE and evidence x of observed image pixels. (optimization
phase) We optimize the Prior network via stochastic gradient descent to learn a
modulated z predictive of evidence x. (prediction phase) Once the Prior network
has been learned, we use it to generate samples of the query y conditioned on x.

2.2 The conditional inference problem

In this paper, we assume a VAE has been pre-trained. Then, at test time, some
arbitrary subset x of t is observed as evidence, and the goal is to predict the
distribution of the non-observed query y where the decomposition t = (x,y) is
unpredictable. If this decomposition of t into evidence and query variables is fixed
and known ahead of time, a natural solution is to train an explicit conditional
model, the approach previously mentioned that is taken by CVAEs [21] as well
as BCDE [20]. However, methods that would train a full conditional CVAE or
BCDE model for each possible query decomposition t = (x,y) can be infeasible
considering that large VAEs (such as the ones we work with in this article) can
take longer than a day to train. In this work, we focus on supporting queries with
arbitrary evidence for pre-trained VAEs, where conditional training and inference
completes in seconds per query. We next describe the framework that allows us to
achieve such fast conditional inference.
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2.3 Image completion as a conditional inference task

While our overall conditional inference approach is intended for any VAE (image-
oriented or not), one particularly relevant application for conditional inference is
the task of image completion. Specifically, the image completion task aims to restore
the missing parts of occluded images. Many powerful algorithms [23,6,27,26] can
produce image reconstructions that humans cannot distinguish in quality from the
original uncorrupted images. For example, work on the Deep Image Prior (DIP) [23]
conducts image inpainting through a U-net architecture [18] with parameter prior
optimization, whereas GLCIC [6] use Generative Adversarial Networks (GANs) [5].

All of these aforementioned algorithms implicitly assume that there exists a
single prediction for each restoration task, which is ideal for image in-painting tasks
where we aim to edit or remove objects from images. However, this assumption
becomes questionable when most of the image is inaccessible – in this setting,
multiple diverse completions may visually cohere with the observed evidence and
thus it may be desirable to produce a variety of samples of such completions. In
this sense, conditional probabilistic inference that can estimate the query (i.e.,
occluded image) distribution can be highly advantageous in this scenario. This
motivates our proposed conditional inference VAE model for fast generation of
diverse completion samples given a high quality pre-trained deep generative model.

3 Conditional Inference on Variational Auto-encoders

We now turn to the details of our conditional inference framework. We assume we
have pre-trained a VAE pθ(t|z) and we now wish to approximate the distribution
pθ(y|x), where x is some arbitrary new “test” input (i.e., evidence) not known at
VAE training time.

Unfortunately, exact inference is difficult, since computing pθ(y|x) exactly would
require marginalizing out z. Consequently, for each decomposition of variables t
into query y and evidence x, we propose the idea of efficiently training a small
conditional prior network qψ(z|ε) to approximate pθ(z|x) by leveraging the pre-
trained VAE with frozen weights for pθ(t|z). Technical details of this Conditional
ELBO (C-ELBO) training method will follow.

Then, given this small conditional prior network qψ(z|ε) efficiently trained for
evidence x, we can easily generate samples of the intended conditional distribution
pθ(y|x). Specifically, we first use qψ(z|ε) to sample z and then use the part of the
original pre-trained VAE decoder for pθ(y|z) to sample y given z.

The overall graphical model for this framework is shown in Figure 1(c). However,
to make this abstract framework more concrete, we summarize the approach in
Algorithm 1 and Figure 2. In the following subsections, we proceed to show the
detailed technical derivation of this proposed framework.

3.1 Exploiting Factorization in the Output

To begin our derivation, we first need to establish conditional independence of
x and y given z. One helpful property comes from the fact that in a VAE, the
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conditional distribution over the output (Eq. 1) has a diagonal covariance, which
leads to the following decomposition:

Observation 1 The distribution of a VAE can be factorized as pθ(x,y, z) =
p(z)pθ(x|z)pθ(y|z).

Since x and y are conditionally independent given z, the conditional of y given
x can be written as

pθ(y|x) =
∫
z

pθ(z,y|x)pθdz =

∫
z

pθ(z|x)pθ(y|z)dz. (3)

Here, pθ(y|z) can easily be evaluated or simulated. However pθ(z|x) is much
more difficult to work with since it involves "inverting" the decoder. This factor-
ization can also be exploited by Markov chain Monte Carlo methods (MCMC),
such as Hamiltonian Monte Carlo (HMC) [4,3]. In this case, it allows the Markov
chain to be defined over z alone, rather than z and y together. That is, one can
use MCMC to attempt sampling from pθ(z|x), and then draw exact samples from
pθ(y|z) just by evaluating the decoder network at each of the samples of z. The
experiments using MCMC in Section 4 use this strategy.

3.2 Variational Inference Bounds

The basic idea of variational inference (VI) is to posit some distribution qψ, and
optimize ψ to make it match the target distribution as closely as possible. So,
in principle, the goal of VI would be to minimize KL[qψ(Y)‖pθ(Y|x)]. For an
arbitrary distribution qψ this divergence would be difficult to work with due to the
need to marginalize out z in pθ as in Eq. 3.

However, if qψ is chosen carefully, then the above divergence can be upper-
bounded by one defined directly over Z. Specifically, we will choose qψ so that the
dependence of y on z under qψ is the same as under pθ (both determined by the
“decoder”).

Lemma 1. Suppose we choose qψ(z,y) = qψ(z)pθ(y|z). Then

KL[qψ(Y)‖pθ(Y|x)] ≤ KL[qψ(Z)‖pθ(Z|x)]. (4)

Proof of Lemma 1. To show this, we first note that the joint divergence over Y
and Z is equivalent to one over Z only.

KL[qψ(Y,Z)‖pθ(Y,Z|x)] = KL[qψ(Z)‖pθ(Z|x)] +KL[qψ(Y|Z)‖pθ(Y|Z,x)]
by the chain rule of KL-divergence

= KL[qψ(Z)‖pθ(Z|x)] +KL[qψ(Y|Z)‖pθ(Y|Z)]
since Y⊥X|Z in both qψ and pθ

= KL[qψ(Z)‖pθ(Z|x)]
since qψ(y|z) = pθ(y|z)

Then, the result follows just from observing (again by the chain rule of KL-
divergence) that

KL[qψ(Y)‖pθ(Y|x)] ≤ KL[qψ(Y,Z)‖pθ(Y,Z|x)].
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The result follows from using the chain rule of KL-divergence [2] to bound the
divergence over y by the divergence jointly over y and z. Then the common factors
in qψ and pθ mean this simplifies into a divergence over z alone.

Given this Lemma, it makes sense to seek a distribution qψ such that the
divergence on the right-hand side of Eq. 4 is as low as possible. To minimize this
divergence, consider the decomposition

log pθ(x) = Eqφ(Z) log
pθ(Z,x)

qψ(Z)︸ ︷︷ ︸
C-ELBO[qψ(Z)‖pθ(Z,x)]

+KL[qψ(Z)||pθ(Z|x)], (5)

which is analogous to Eq. 2. Here, we call the first term the “conditional ELBO”
(C-ELBO) to reflect that maximizing it is equivalent to minimizing an upper bound
on KL[qψ(Y)‖pθ(Y|x)].

3.3 Inference via Conditional Prior Networks

The previous section says that we should seek a distribution qψ to approximate
pθ(z|x) as depicted in Figure 1(c). Although the latent distribution p(z) may
be simple, the conditional distribution pθ(z|x) is typically complex and often
multimodal (cf. Fig. 4).

To define a variational distribution satisfying the conditions of Lemma 1, we
propose to draw ε from some fixed base density q(ε) and then use a network with
parameters ψ to map to the latent space z so that the marginal qψ(z) can represent
a complex output distribution. The conditional of y given z is exactly as in p. The
full variational distribution is therefore

qψ(ε, z,y) = q(ε)qψ(z|ε)pθ(y|z) with qψ(z|ε) = δ(z− Priorψ(ε)), (6)

where δ is a multivariate delta function. We call the network Priorψ a “conditional
prior network” to emphasize that the parameters ψ are fit so that qψ(Z) matches
pθ(Z|x), and so that z, when “decoded” using θ, will predict y given x.

Theorem 2. If qψ is as defined in Eq. 6 and Priorψ(ε) is one-to-one for all ψ,
the C-ELBO from Eq. 5 becomes

C-ELBO[qψ(Z)‖pθ(Z,x)] = Eq(ε) [log pθ(Priorψ(ε),x) + log |∇Priorψ(ε)|]+H[q(ε)],

where H[q(ε)] is the (fixed) entropy of q(ε), ∇ is the Jacobian with respect to ε,
and | · | is the determinant.

Proof of Theorem 2. Firstly, since the latent density qψ(z) is projected from some
fixed base density q(ε), in order to preserve total probability, the change of qψ(z)
along interval dz must be equivalent to the change of q(ε) along interval dε:

qψ(z)dz = q(ε)dε

This property requires the change of variables theorem [8] such that

qψ(Priorψ(ε)) |∇Priorψ(ε)| = q(ε)
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where
Priorψ(ε) = z and ∇Priorψ(ε) =

∂z

∂ε
.

Thus, we can write

C-ELBO[qψ(Z)‖pθ(Z,x)] = Eqψ(Z) log
pθ(Z,x)

qψ(Z)

= Eq(ε) log
pθ(Priorψ(ε),x)

qψ(Priorψ(ε))

= Eq(ε) log
pθ(Priorψ(ε),x)

q(ε)/ |∇Priorψ(ε)|
= Eq(ε) [log pθ(Priorψ(ε),x) + log |∇Priorψ(ε)|] +Hq[ε].

This objective is related to the "triple ELBO" used by [24] for a situation
with a small number of fixed decompositions of t into (x,y). Algorithmically, the
approaches are quite different since they pre-train a single network for each subset
of t, which can be used for any x with that pattern, and a further product of
experts approximation is used for novel missing features at test time. We assume
arbitrary queries and so pre-training is inapplicable and novel missing features
pose no issue. Still, our bounding justification may provide additional insight for
their approach.

3.4 Conditional Prior Network Alternatives

We explore the following two candidiate conditional prior network options:

Gaussian Variational Inference (GVI): The GVI Priorψ linearly warps a
spherical Gaussian over ε into an arbitrary Gaussian z:

Priorψ(ε) = Wε+ b, where log |∇Priorψ(ε)| = log |W| , (7)

where ψ = (W,b) for a square matrix W and a mean vector b. While projected
gradient descent can be used to maintain invertibility of W , we did not encounter
issues with non-invertible W requiring projection during our experiments.

Normalizing Flows (NF): A normalizing flow [15] projects a probability density
through a sequence of easy computable and invertible mappings. By stacking mul-
tiple mappings, the transformation can be complex. We use the special structured
network called Planar Normalizing Flow:

hi = fi(hi−1) = hi−1 + uig(h
T
i−1wi + bi), (8)

for all i, where h0 = ε, i is the layer id, w and u are vectors, and the output dimension
is exactly same with the input dimension. Using ◦ for function composition, the
conditional prior networkψ is given as

Priorψ(ε) = fk ◦ fk−1 · · · f1(ε), where log |∇Priorψ(ε)| =
k∑
i=1

log |∇fi|.

(9)
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The bound in Theorem 2 requires that Priorψ is invertible. Nevertheless, we find
Fully Connected Networks (FCNs) useful for comparison in low-dimensional
visualizations. Here, the Jacobian must be calculated using separate gradient calls
for each ouput variable, and the lack of invertibility prevents the C-ELBO bound
from being correct.

We summarize our approach in Algorithm 1. In brief, we define a variational
distribution qψ(ε, z) = q(ε)qψ(z|ε) and optimize ψ so that qψ(z) is close to pθ(z|x).
The variational distribution includes a "Prior" as qψ(z|ε) = δ(z− Priorψ(ε)). The
algorithm uses stochastic gradient decent on the C-ELBO with gradients estimated
using Monte Carlo samples of ε and the reparameterization trick [10,22,16]. After
inference, the original VAE distribution q(y|z) = pθ(y|z) gives samples over the
query variables.

4 Experiments

Having defined our conditional prior networks methodology for conditional inference
with pre-trained VAEs, we now proceed to empirically evaluate our three previously
defined conditional prior network instantiations and compare them with (Markov
chain) Monte Carlo (MCMC) sampling approaches on three different pre-trained
VAEs. Below we discuss our datasets and methodology followed by our experimental
results.

4.1 Datasets and Pre-trained VAEs

MNIST is the well-known benchmark handwritten digit dataset [11]. We use a
pre-trained VAE with a fully connected encoder and decoder each with one hidden
layer of 64 ReLU units, a final sigmoid layer with Bernoulli likelihood, and 2 latent
dimensions for z.1 The VAE has been trained on 60,000 black and white binary
thresholded images of size 28 × 28. The limitation to 2 dimensions allows us to
visualize the conditional latent distribution of all methods and compare to the
ground truth through a fine-grained discretization of z.

Anime is a dataset of animated character faces [7]. We use a pre-trained VAE
with convolutional encoder and deconvolutional decoder, each with 4 layers. The
decoder contains respective channel sizes (256, 128, 32, 3) each using 5× 5 filters of
stride 2 and ReLU activations followed by batch norm layers. The VAE has a final
tanh layer with Gaussian likelihood, and 64 latent dimensions for z.2 The VAE
has been trained on 20,000 images encoded in RGB of size 64× 64× 3.

CelebA dataset [13] is a benchmark dataset of images of celebrity faces. We
use a pre-trained VAE with a structure that exactly matches the Anime VAE
provided above, except that it uses 100 latent dimensions for z.3 The VAE has
been trained on 200,000 images encoded in RGB of size 64× 64× 3.

1 https://github.com/kvfrans/variational-autoencoder
2 https://github.com/wuga214/IMPLEMENTATION_Variational-Auto-Encoder
3 https://github.com/yzwxx/vae-celebA

https://github.com/kvfrans/variational-autoencoder
https://github.com/wuga214/IMPLEMENTATION_Variational-Auto-Encoder
https://github.com/yzwxx/vae-celebA
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4.2 Methods Compared

For sampling approaches, we evaluate rejection sampling (RS), which is only
feasible for our MNIST VAE with a 2-dimensional latent embedding for z. We
also compare to the MCMC method of Hamiltonian Monte Carlo (HMC) [4,3].
Both sampling methods exploit the VAE decomposition and sampling methodology
described in Section 3.1.

We went to great effort to tune the parameters of HMC. For MNIST, with
low dimensions, this was generally feasible, with a few exceptions as noted in
Figure 5(b). For the high-dimensional latent space of the Anime and CelebA VAEs,
finding parameters to achieve good mixing was often impossible, leading to poor
performance. Section 7.3 of the Appendix discusses this in detail.

For the conditional prior networks methods, we use the three conditional prior
network variants described in Section 3.3: Gaussian Variational Inference (GVI),
Planar Normalizing Flow (NF), and a Fully Connected Neural Network (FCN).
By definition, the latent dimensionality of ε must match the latent dimensionality
of z for each pre-trained VAE. Given evidence as described in the experiments, all
conditional prior networks were trained as described in Algorithm 1. We could not
train the FCN conditional prior network for conditional inference in Anime and
CelebA due to the infeasibility of computing the Jacobian for the respective latent
dimensionalities of these two VAEs.

In preliminary experiments, we considered the alternating sampling approach
suggested by [16, Appendix F], but found it to perform very poorly when the
evidence is ambiguous. We provide a thorough analysis of this in Section 7.2 of the
Appendix comparing results on MNIST with various fractions of the input taken as
evidence. In summary, Rezende’s alternation method produces reasonable results
when a large fraction of pixels are observed, so the posterior is highly concentrated.
When less than around 40% of pixels are observed, however, performance rapidly
degrades.

4.3 Evaluation Methodology

We experiment with a variety of evidence sets to demonstrate the efficiency and
flexibility of our conditional prior networks methodology for arbitrary conditional
inference queries in pre-trained VAEs. All conditional prior networks optimization
and inference takes (typically well) under 32 seconds per evidence set for all
experiments running on an Intel Xeon E5-1620 v4 CPU with 4 cores, 16Gb of
RAM, and an NVIDIA GTX1080 GPU. A detailed running time comparison is
provided in Section 4.6.

Qualitatively, we visually examine the 2D latent distribution of z conditioned
on the evidence for the special case of MNIST, which has low enough latent
dimensionality to enable us to obtain ground truth through discretization. For
all experiments, we qualitatively assess sampled query images generated for each
evidence set to assess both the coverage of the distribution and the quality of
match between the query samples and the evidence, which is fixed in the displayed
images.

Quantitatively, we evaluate the performance of the proposed framework and
candidate inference methods through the following two metrics.
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C-ELBO: As a comparative measure of inference quality for each of the conditional
prior network methods, we provide pairwise scatterplots of the C-ELBO as defined
in 5 for a variety of different evidence sets.

Query Marginal Likelihood: For each conditional inference evaluation, we
randomly select an image and then a subset of that image as evidence x and
the remaining pixels y as the ground truth query assignment. Given this, we can
evaluate the marginal likelihood of the query y as follows:

log p(y) = logEZ[p(y|Z)]

Average Structural Similarity (SSIM): The Structural Similarity Index Mea-
sure (SSIM) [25] is a perception-based model for comparing images. In our case,
we would like to assess the average SSIM between the original image and the
reconstructions for N samples from a conditional query over occluded portions of
the image. Specifically, for each query we compute:

1

N

N∑
i

SSIM(si, o),

where si denotes the reconstruction of sample i and o denotes the original image.

Average Standard Deviation of Samples: The ultimate goal of our proposed
inference method for VAEs is to produce a distribution over conditional queries,
which we’ve argued previously can be advantageous over deterministic methods
for image completion in the case that there are multiple plausible completions. To
understand just how diverse our image completions are, we compute the per-pixel
standard deviation of sampled images and report the average standard deviation
over pixels for each query. Clearly, a value of 0 would indicate deterministic
completion and higher values indicate more variation (diversity) in sampled images.

4.4 Conditional Inference on MNIST

(x,y) y

x

(a) Data (b) GVI (c) NF (d) FCN (e) HMC (f) RS (Exact)

Fig. 3: One conditional inference example for MNIST. (a) The original digit t, the
subset selected for evidence x, and the remaining ground truth query y. (b–f) Nine
sample queries from each of five methods. In all plots, the evidence subset has
white replaced with orange and black replaced with blue.

For conditional inference in MNIST, we begin with Figure 3, which shows
one example of conditional inference in the pre-trained MNIST model using the
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different inference methods. While the original image used to generate the evidence
represents the digit 3, the evidence is very sparse allowing the plausible generation
of other digits. It is easy to see that most of the methods can handle this simple
conditional inference, with only GVI producing some samples that do not match
the evidence well in this VAE with 2 latent dimensions.
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Fig. 4: p(z|x) for the MNIST example in Figure 3. The contour plot (left) shows
the true distribution. The remaining plots show samples from each method overlaid
on the true distribution.

To provide additional insight into Figure 3, we now turn to Figure 4, where we
visually compare the true conditional latent distribution p(z|x) (leftmost) with the
corresponding distributions of each of the inference methods. At a first glance, we
note that the true distribution is both multimodal and non-Gaussian. We see that
GVI covers some mass not present in the true distribution that explains its relatively
poor performance in Figure 3(b). All remaining methods (both conditional prior
network and sampling) do a reasonable job of covering the irregular shape and
mass of the true distribution.

We now proceed to a quantitative comparison of performance on MNIST over
50 randomly generated queries. We summarize our observations as follows:

1. In Fig. 5(a), we present a pairwise comparison of the performance of each
conditional prior network method on 50 randomly generated evidence sets.
Noting that higher is better, we observe that FCN and NF perform comparably
and generally outperform GVI.

2. In Fig. 5(b), we examine the Query Marginal Likelihood distribution for the
same 50 evidence sets from (a) with each likelihood expectation generated from
500 samples. Again, noting that higher is better, here we see that RS slightly
edges out all other methods with all conditional prior networks generally
performing comparably. HMC performs worst here, where we remark that
inadequate coverage of the latent z due to poor mixing properties leads to
over-concentration on y leading to a long tail in a few cases with poor coverage.

3. In Fig. 5(c), we evaluate the structural similarity between reconstructed con-
ditional inference samples and the original digit images. Here, a higher value
indicates higher similarity of the reconstruction to the original. RS has a signif-
icant advantage over the others since it is exact (though only computable for
this 2D example), whereas GVI shows worst performance in terms of recovering
the original image. NF, HMC and FCN show comparable performance to each
other due to their ability to capture more complex latent distributions than
GVI’s simple latent Gaussian model.

4. In Fig. 5(d), we estimate diversity of the generated samples for the conditional
inference by evaluating the average standard deviation as previously described.
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Fig. 5: Quantitative Analysis for MNIST dataset. (a) Pairwise C-ELBO comparison
of different conditional prior network methods evaluated over the 50 randomly
generated evidence sets for MNIST. (b) Violin (distribution) plots of the Query
Marginal Likelihood for the same 50 evidence sets from (a), with each likelihood
expectation generated from 500 samples. (c) Box plots of the Structural Similarity
between samples of conditional inference and original image. (d) Average Standard
Deviation of the conditional inference samples. For all metrics, higher is better.

It shows that all of the algorithms are able to provide a variety of predictions
for the queried portion of the image. In terms of relative comparison, GVI
shows a significant advantage over all other methods in terms of producing
diverse predictions, which reflects our previous observation in Fig. 3 that GVI
may occasionally produce results conflicting with the evidence due to lack of
expressivity in its latent distribution model. In this sense the increased diversity
may be due to this out-of-evidence generalization.

We will see that these issues with HMC mixing become much more pronounced
as we move to experiments in VAEs with higher latent dimensionality in the next
section.

4.5 Conditional Inference on Anime and CelebA

Now we proceed to our larger VAEs for Anime and CelebA with respective latent
dimensionality of 64 and 100 that allow us to work with larger and more visually
complex RGB images. In these cases, FCN could not be applied due to the
infeasibilty of computing the Jacobian and RS is also infeasible for such high
dimensionality. Hence, we only compare the two conditional prior networks GVI
and NF with HMC.
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Fig. 6: One conditional inference example for Anime. (a) The original image t, the
subset selected for evidence x, and the remaining ground truth query y. (b–d) 20
samples from each method with the evidence superimposed on each image. (c,d)
NF and HMC demonstrate poor coverage.
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Fig. 7: (a)Pairwise C-ELBO comparison of GVI vs. FCN, (b) Violin plots of the
Query Marginal Likelihood, (c) Box plots of the Structural Similarity and (d)
Average Standard Deviation of Samples for Anime. Evaluation details match those
of Fig. 5 except with 50 conditional inference queries. For all metrics, higher is
better.

We start with a qualitative and quantitative performance analysis of conditional
inference for the Anime dataset. Qualitatively, in Fig. 6, we see that inference for
HMC shows little identifiable variation and seems to have collapsed into a single
latent mode. In contrast, GVI appears to show better coverage, generating a wide
range of faces that generally match very well with the superimposed evidence. NF
also shows some degree of generalization ability as its examples have not collapsed
although it does not show significant diversity over its examples. It is also worth
noting that all of the candidate algorithms (GVI, NF, and HMC) successfully
capture the observed evidence with less than 5% coverage of the original image.

Quantitatively, Fig. 7 strongly reflects the qualitative visual observations above.
We summarize our observations as follows:

1. For the conditional prior networks, GVI and NF are comparable in terms of
maximizing the C-ELBO.
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2. In Fig. 7(b), for all methods evaluated on Query Marginal Likelihood, we
observe that both GVI and NF outperform HMC on Anime due to HMC’s
mode collapse.

3. In Fig. 7(c), we evaluate the structural similarity between conditional inference
samples and the original Anime images for each inference method. The results
indicate that NF slightly outperforms GVI and HMC, which is due to GVI’s
lack of expressive latent modeling and HMC’s mode collapse.

4. In Fig. 7(d), we estimate the diversity of the samples as the average standard
deviation over pixels given each query, as measured for all inference methods.
As before, GVI is most diverse, which reflects our visual intuition from Fig. 6(b);
notably GVI appears to be consistent with the evidence for this dataset. HMC
has lowest diversity simply due to its observed mode collapse as also reflected
in Fig. 6(d). NF shows quantitative diversity closer to GVI, which is reflected
in the variation of images in Fig. 6(c) as compared to HMC in Fig. 6(d).

(x,y)

y

x

(a) Data (b) GVI Samples (c) NF Samples (d) HMC Samples

Fig. 8: One conditional inference example for CelebA. (a) The original image t,
the subset selected for evidence x, and the remaining ground truth query y. (b–d)
20 samples from each method with the evidence superimposed on each image. (d)
HMC demonstrates poor coverage due to mode collapse.

We now continue to a qualitative and quantitative performance analysis of
conditional inference for the CelebA. Qualitatively, in Fig. 8, HMC still performs
poorly, but NF appears to perform much better, with both conditional prior
networks GVI and NF generating a wide range of faces that match the superimposed
evidence, with perhaps slightly more face diversity for GVI.

Quantitatively, Fig. 9 strongly reflects the qualitative visual observations above.
In short, for the conditional prior networks, GVI solidly outperforms NF on the
C-ELBO comparison. For all methods evaluated on Query Marginal Likelihood,
GVI outperforms both NF and HMC on Anime, while for CelebA, GVI performs
comparably to (if not slightly worse) than NF, with both solidly outperforming
HMC. Finally, as observed previously, HMC suffers from mode collapse since the
samples generated from it have near-zero diversity (per pixel standard deviation
over samples) for all of the 50 random conditional inference queries.

We remark that GVI does empirically encounter some numerical instability
in maintaining a valid log determinant as part of our objective function. As a
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Fig. 9: (a)Pairwise C-ELBO comparison of GVI vs. FCN, (b) Violin plots of the
Query Marginal Likelihood, (c) Box plots of the Structural Similarity and (d)
Average Standard Deviation of Samples for CelebA. Evaluation details match those
of Fig. 5 except with 50 conditional inference queries. For all metrics, higher is
better.

consequence, we observe multiple cases where GVI inference halts prematurely
due to numerical instability (i.e., an NaN from the log determinant calculation).
Specifically, in over 50 inference instances from a total of 5000 inference epochs, we
note that only 15% of the GVI inferences finish all epochs without encountering
numerical error.4 This overall observation leads us to a strong preference for using
Normalizing Flow (NF) for prior-based conditional inference in VAEs in practice
due to its empirically observed strong performance and overall numerical stability.

4.6 Comparison of Running Time

We do not evaluate the time for training VAEs here since all of the methods we
empirically compare rely on a pre-trained VAE. Indeed, as noted in the experimental
section, we simply used pre-trained VAEs from various online repositories for our
experiments. With that in mind though, it is important to note that when we
experimented with training some of the larger VAEs from scratch (namely Anime
and CelebA), it required over one day on the hardware used for our experimentation
as described in Section 4.3.

The running time of conditional inference varies with the complexity of condi-
tional prior networks, the optimization algorithm used, and the complexity of the
pre-trained Decoder. We found that L-BFGS [12] consistently converged fastest
and with the best results in comparison to SGD, Adam, Adadelta, and RMSProp.

Table 1 shows the computation time for each of the three candidate conditional
prior networks (FCN is only applicable to MNIST) as well as HMC and Rejection
Sampling (RS is only applicable for MNIST). Here we note that HMC burn-in can
take an order of magnitude more time than conditional network optimization. HMC
can also take an order of magnitude more time for prediction, with our conditional
network method generating all required prediction samples in under one second in
all cases. As a final remark, we observe that the running times here for HMC do

4 While GVI inference is halted when an NaN log determinant is encountered, its inference
is still valid in the last epoch before the numerical error cutoff. Hence, all experimental results
for GVI use the last valid epoch in the event that numerical error is encountered.
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Table 1: Average running Time (in seconds) of experiments. We use L-BFGS
for conditional prior networks in this table. For HMC, we predefine the burn-
in (optimization) iterations to be 10,000 for all datasets. For all methods, the
prediction sample size is 500.

Period MNIST Anime CelebA

- GVI NF FCN HMC RS GVI NF HMC GVI NF HMC

Optimization 0.36 2.79 5.26 34.92 - 2.52 4.22 81.3 31.45 9.95 224.5
Prediction < 0.04 < 0.04 < 0.04 2 0.19 < 0.08 < 0.08 2 < 0.37 < 0.37 2

not reflect the substantial effort that went into tuning its parameters for Anime
and CelebA as described in Section 7.3 of the Appendix.

5 Conclusion

We introduced conditional prior networks, a novel variational inference method for
performing fast arbitrary conditional inference in pre-trained VAEs that does not
require retraining the decoder for every decomposition of query and evidence. Using
three VAEs pre-trained on different datasets used for image completion queries, we
demonstrated that the Gaussian Variational Inference (GVI) and Normalizing Flows
(NF) conditional prior networks generally outperform Hamiltonian Monte Carlo
both qualitatively and quantitatively on a variety of evaluation metrics. Moreover,
NF empirically tends to be more numerically stable than GVI for inference. As
discussed, other methods proposed in the literature for the same task are either
computationally prohibitive or cannot handle sparse evidence sets. In sum, our
work suggests that our simple and intuitive conditional prior network training
enables fast conditional inference for arbitrary queries in pre-trained VAEs and
provides an efficient and effective alternative to existing state-of-the-art methods
for this task.
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7 Appendix

7.1 Preliminary Check of Inference Methods
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Fig. 10: Comparison of different inference methods on modeling a Gaussian mixture
model distribution. The true distribution samples are directly sampled from a
Gaussian mixture model. Maximum mean discrepancy (MMD) values given in the
plot titles are generated relative to the true sample distribution.

In this experiment, we do not use a VAE, but instead simply model a complex
latent 2D multimodal distribution over z as a Gaussian mixture model to evaluate
the ability of each conditional inference method to accurately draw samples from
this complex distribution. In general, Fig. 10 shows that while the conditional
prior networks NF and FCN work well here, GVI (by definition) cannot model this
multimodal distribution and HMC draws too few samples from the disconnected
mode compared to the true sample distribution, indicating slight failure to mix
well.

7.2 Comparison to Rezende Alternation

We compare to the alternating sampling approach of [16] (Appendix Section F)
which is essentially an approximation of block Gibbs sampling. We call it the
“Rezende method" in the following. This method does not asymptotically sample
from the conditional distribution since the step sampling the latent variables given
the query variables are approximated using the encoder.

Fig. 11(a) shows one experiment comparing all candidate algorithms including
the Rezende method. We noticed that it fails to generate images that match the
evidence when less than 40% of pixels are observed as evidence, while it makes
reasonable predictions when the observation rate is higher. Fig. 11(b) shows this
result is consistent over 50 randomly selected queries.

7.3 Systematic HMC Tuning Analysis for Anime and CelebA

While tuning HMC in lower dimensions was generally feasible for MNIST with a
few exceptions noted in previous discussion of Fig. 5(b), we observed that HMC
becomes very difficult to tune in the Anime and CelebA VAEs with higher latent
dimensionality. To illustrate these HMC tuning difficulties, we present a summary
of our systematic efforts to tune HMC on Anime and CelebA in Figure 12 with
boxplots of the acceptance rate distribution of HMC for 30 Markov Chains vs
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Fig. 11: Comparison of different conditional inference methods include the Rezende
method on the MNIST dataset. (a) Shows one intuitive example. The first row
shows the evidence observed, and the following rows show the mean of generated
samples from the different algorithms. We note that with very high evidence, the
posterior becomes extremely concentrated, meaning the rejection rates for rejection
sampling become impractical. (b) The mean squared error between query variables
of the original image and the generated samples of different algorithms. The results
and standard deviations at each observation percentage come from 50 independent
randomly selected queries.
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Fig. 12: Boxplots of acceptance rate distribution of HMC for 30 Markov Chains
vs different ε on (a) Anime and (b) CelebA. Each Markov chain ran for 10,000
burn-in samples with 10 leapfrog steps per iteration.

different ε on (a) Anime and (b) CelebA. We ran each Markov chain for 10,000
burn-in samples with 10 leapfrog steps per iteration; we tried 3 different standard
leapfrog step settings of {5, 10, 30}, finding that 10 leapfrog steps provided the best
performance across a range of ε and hence chosen for Fig. 12.

In short, Fig. 12 shows that only a very narrow band of ε lead to a reasonable
acceptance rate for good mixing properties of HMC. Even then, however, the
distribution of acceptance rates for any particular Markov Chain for a good ε is still
highly unpredictable as given by the quartile ranges of the boxplot. In summary,
we found that despite our systematic efforts to tune HMC for higher dimensional
problems, it was difficult to achieve a good mixing rate and overall contributes to
the generally poor performance observed for HMC on Anime and CelebA that we
discuss next.
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7.4 Quality of the Pre-trained VAE Models

To assess the quality of the pre-trained VAE models, we show 100 samples from
each in Fig. 13.

(a) MNIST (b) Anime (c) CelebA

Fig. 13: Samples from each of the pre-trained VAE models.

7.5 More Inference Examples

From Fig. 14 to Fig. 19, we show multiple additional examples of conditional
inference matching the structure of experiments shown in Fig. 6 and 8 in the main
text. Note that all of the inferences are conducted on the same trained VAE models
used in the main paper. Overall, we observe the same general trends as discussed
in the main text for Fig. 6 and 8.

(x,y)

y

x

(a) Data (b) GVI Samples (c) NF Samples (d) HMC Samples

Fig. 14: Another conditional inference example on Anime dataset. Evidence includes
eyeball color and face direction information.
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Fig. 15: Another conditional inference example on Anime dataset. Evidence includes
style of eyes.
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(a) Data (b) GVI Samples (c) NF Samples (d) HMC Samples

Fig. 16: Another conditional inference example on Anime dataset. Evidence includes
hair style and eyeball color.
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(a) Data (b) GVI Samples (c) NF Samples (d) HMC Samples

Fig. 17: Another conditional inference example on CelebA dataset. Evidence
includes hair color. Note HMC inference fails to capture the evidence.
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Fig. 18: Another conditional inference example on CelebA dataset. Evidence
includes nose and mouth shape.
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Fig. 19: Another conditional inference example on CelebA dataset. Evidence
includes nose and forehead information.
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