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Abstract

Search results of spatio-temporal data are often displayed on a map, but when the number of matching search

results is large, it can be time-consuming to individually examine all results, even when using methods such

as filtered search to narrow the content focus. This suggests the need to aggregate results via a clustering

method. However, standard unsupervised clustering algorithms like K-means (i) ignore relevance scores that

can help with the extraction of highly relevant clusters, and (ii) do not necessarily optimize search results for

purposes of visual presentation. In this article, we address both deficiencies by framing the clustering problem

for search-driven user interfaces in a novel optimization framework that (i) aims to maximize the relevance

of aggregated content according to cluster-based extensions of standard information retrieval metrics and

(ii) defines clusters via constraints that naturally reflect interface-driven desiderata of spatial, temporal,

and keyword coherence that do not require complex ad-hoc distance metric specifications as in K-means.

After comparatively benchmarking algorithmic variants of our proposed approach – RadiCAL – in offline

experiments, we undertake a user study with 24 subjects to evaluate whether RadiCAL improves human

performance on visual search tasks in comparison to K-means clustering and a filtered search baseline.

Our results show that (a) our binary partitioning search (BPS) variant of RadiCAL is fast, near-optimal,

and extracts higher-relevance clusters than K-means, and (b) clusters optimized via RadiCAL result in

faster search task completion with higher accuracy while requiring a minimum workload leading to high

effectiveness, efficiency, and user satisfaction among alternatives.

Keywords: Visual Information Retrieval; Relevance-driven Clustering; Visual Search User Study;

Clustering via Filter Optimization.

1. Introduction

Search results of spatio-temporal data are often displayed on a map or other visual interface [1, 2, 3, 4,

5, 6]. However, given the massive volume of available information in many applications (e.g., thousands of

geolocated tweets matching a query), displaying all relevant results would often result in a saturated and

unreadable display [7, 8, 9].
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(a) Baseline display showing all results. (b) K-means based clustered results.

(c) Relevance-driven clustered results.

Figure 1: (a) An interface for visual information retrieval in a multiyear Twitter corpus showing all geolocated tweets that match

a query related to natural disasters. (b) A K-means clustered version of the same matching search results, but only showing

the top three clusters of tweets delineated by bounding boxes. Since K-means uses a compound distance metric that must trade

off distance in time, space, and keyword content, its clusters often include unrelated content that is further exacerbated by the

fact that K-means does not take into account relevance scores of content w.r.t. the query. For these reasons, while K-means

does manage to find reasonable clusters in the data, one can see that the spatial and content coherency of the clusters can be

improved. (c) A relevance and interface-driven clustered version of the same search results given by the proposed approach in

this article (again only showing the top three clusters, which are notably more concise than K-means). In this case, one can

readily identify three well-defined natural disasters from the clusters: (i) a blizzard in Boston in February 2014, (ii) a tornado

in Oklahoma in May 2013, and (iii) an earthquake in California in August 2014.

In many settings, it is natural to assume that search results cluster into spatially, temporally, and topically

related content that can be aggregated and presented as a single unit rather than individual results [10].

Such approaches leverage the cluster hypothesis of Information Retrieval (IR) [11, 12, 13, 10], which posits

that documents in the same cluster should behave similarly with respect to information needs.

For an example visual search use case, consider the task of searching a multiyear Twitter corpus for

content related to natural disasters.1. Visual Twitter search is chosen here due to the availability of high

volume spatio-temporal data and it’s general familiarity to our test subjects. A conventional IR list ranking

approach based only on the textual content of the tweets would flood the user with an extremely long list

of tweets — such simple ranked listings fail to effectively impart the spatial-temporal distribution of search

1While this example involves visual Twitter search, the methods defined in this article are not specific to this application

but are generally intended for any user task involving a query-driven visual search interface with a large volume of matching

search results and content that naturally clusters along spatial, temporal, and keyword content dimensions
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results. However, as shown in Figure 1a, a typical spatial-temporal-content visualization approach that

would provide all matching tweets in a map-based display will similarly take the user a large amount of time

to sift through; while content is now spatially distributed, there is still too much matching content to sift

through. To help reduce this visual information overload, filtering and faceted search [14, 15, 16, 17] can

be used here to help the user manually narrow the large set of tweets using filter settings defined for each

tweet aspect (location, posting time, keywords). Although such navigation systems are commonly used and

hence comprise a baseline in our user study, a large amount of effort is still required on behalf of the user to

manually read through results and adjust filters appropriately.

To deal with this latter problem and ease the task of browsing search results, a clustered results display

like that shown in Figure 1b can be used to restrict the displayed information such that similar tweets

appear together. Most existing work on aggregation for visual search that has sought to exploit the cluster

hypothesis has focused on K-means and related unsupervised clustering methods [18, 8, 2, 1, 19, 20, 21, 22]

that do not necessarily guarantee that clusters of matching search results are highly relevant. Moreover, the

use of clustering algorithms such as K-means requires the design of a complex distance metric; for example,

consider that space is often measured by Euclidean distance while keyword content is often measured by cosine

distance and both of these distances need to be combined into a single distance metric for K-means. Such

ad-hoc metric specifications do not necessarily guarantee the coherence of clusters from a visual, temporal

and keyword content perspective. In contrast, as demonstrated in Figure 1c, we will contribute a clustering

algorithm that is actively aware of the relevance probability of each tweet to the search query and thus can

automatically generate highly relevant clusters covering a large fraction of relevant content while explicitly

optimizing for interface-driven desiderata of spatial, temporal, and keyword coherence without requiring any

ad-hoc specification of a complex distance metric that requires trading off distances in each dimension.

In this article, we realize the vision discussed above and demonstrated in the example of Figure 1c by

addressing clustering for visual search in a novel relevance- and interface-driven optimization framework.

Specifically, we make key novel contributions that span both the user-focused design of a novel visual-search

driven interface as well as numerous technical innovations required to realize this design. We also contribute

quantitative and qualitative evaluations of both our technical contributions and their overall benefit to end

users in a visual search task for Twitter.

We summarize these numerous contributions as well as an outline of the article as follows:

1. To better satisfy end-user task needs for clustering in visual search interfaces, we present a novel

relevance-driven clustering objective that extends standard information retrieval metrics to clustering.

Specifically, in light of relevance uncertainty, we derive expected metrics for precision and recall of

clusters, but ultimately argue that a good cluster must balance both and thus focus on a derivation of

expected F1-score (EF1) of cluster relevance as our key objective. Two key features of EF1 are that

(a) it automatically extracts coherent clusters in terms of space, time, and content for presentation in

a visual search interface and that (b) optimizing it does not require the specification of complex ad-hoc
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distance metrics required by other unsupervised clustering algorithms such as K-means.

2. Through a series of transformations, we demonstrate that the globally optimal solution to EF1 max-

imization of clusters can be cast as a Mixed Integer Linear Program (MILP), which is unfortunately

NP-hard and thus computationally expensive to solve. To improve the algorithmic efficiency of op-

timization, we present two algorithms: Greedy and Binary Partitioning Search (BPS). Referring to

our Relevance-driven Clustering Algorithm as RadiCAL, this leads to three variants: RadiCAL-MILP,

RadiCAL-Greedy, and RadiCAL-BPS. We quantitatively evaluate and compare all RadiCAL variants

and K-means on a search-driven tweet clustering task and demonstrate that RadiCAL-BPS provides

the best overall tradeoffs in terms of performance and efficiency.

3. Returning to our end-user visual search task motivation, we conclude the experimental evaluation of

this work with a user study to evaluate whether this new relevance-driven clustering method improves

human performance in comparison to K-means clustering and a multiple filter search baseline.2 Our

results show that clusters derived in our relevance- and interface-driven optimization framework result

in faster search task completion with higher accuracy while requiring a minimum workload leading

to high effectiveness, efficiency, and user satisfaction among alternatives. These results coincide with

our offline evaluation that also demonstrate the superiority of our relevance-driven clustering approach

over competing methods.

As a final remark, all the algorithms described throughout this paper have been integrated into a tool

called Visual Twitter Information Retrieval (Viz-TIR) [23]. Although RadiCAL-BPS presented here is briefly

described in [23], in this article, we provide its detailed description along with its simpler RadiCAL-Greedy

variant and the derivation of the optimal RadiCAL-MILP solution; we also comparatively benchmark all

RadiCAL variants and K-Means. We further provide extensive offline and human user evaluation results

and analysis that substantially expands on the results presented in [23].

2. Related work

There is a substantial body of research related to visual search and clustering. Below, we review the

major works related to clustering, filtering, optimization, and visualization in information retrieval. Because

our research focus is not specifically on visual Twitter search or disaster informatics (this was simply a use

case amenable to user experimentation as discussed previously), these topics are too narrowly focused to

2While there are a large number of unsupervised clustering algorithms in the literature, we had limited user interaction

time in our user study and thus could only choose one clustering algorithm for comparison in addition to the non-aggregation

baseline. We chose K-means since it is arguably the most commonly used clustering algorithm – not only in general, but also

specifically in our coverage of related work on clustering in information retrieval and visual search.
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warrant an exhaustive discussion here, though many related citations occur in the topics discussed below.

Spatio-temporal clustering: A lot of research has been done on the clustering of spatio-temporal data

points [24, 25], and this has been done for different applications including crime discovery [26], Twitter data

mining [27, 28, 29, 30], geo-tagged photo exploration [31, 32], traffic accident monitoring [31], and epidemi-

ology monitoring [33]. Most proposed techniques are based on clustering methods such as K-means [34],

BIRCH [35], OPTICS [36], or DBSCAN [37]. DBSCAN is a widely used method for finding arbitrarily

shaped clusters of spatial points based on the density of points, which has been extended to temporal data

in ST-DBSCAN [38]. More recently, Choi and Chung [39] proposed a modified version of the K–means

clustering algorithm for spatio-textual as opposed to spatio-temporal data.

We note that all of these clustering methods fail to jointly address our goals for visual search clustering as

stated in the introduction. Namely, these methods (i) ignore relevance signals (beyond the initial search), (ii)

ignore the joint combination of spatial, temporal, and keyword constraints, and/or (iii) ignore definitions of

clusters that pertain to their presentation in a visual display medium, all of which are key jointly intertwined

contributions of the clustering approach proposed in this work.

Clustering in IR: Clustering is an active research field as evidenced by recent work [39, 40, 41, 42, 43, 44]

and even the specialization of clustering for IR remains an active area of research [45, 46]. Clustering in

IR has been used in a variety of applications, which differ in terms of the set of elements clustered and the

overall aim of clustering. Clustering of search results themselves has been investigated for more effective

information presentation to users [46, 47, 48, 49]. For example, Kurland et al [50, 51] use clustering of top

search results to improve relevance scoring models for ranking. On the other hand, collection clustering

has been used for effective information presentation and for exploratory browsing [45, 52, 53], for improving

search results [54, 55], and for speeding up search [11, 56, 57]. In yet another vein, Scatter-Gather, which

consists of repetitively clustering and selecting clusters, has been proposed as an alternative user interface

to explore elements without using explicit queries [58, 59].

When considering our search-based clustering needs in this article, all of these methods (i) do not explicitly

use the relevance signal during cluster optimization to ensure high relevance of extracted clusters, and (ii) do

not specifically formulate clusters in terms of spatial, temporal, and content constraints to ensure coherence

and succinct presentation in a visual search display. Both of these requirements are addressed in our proposed

contributions.

Filtering and Faceted Search in IR: Belkin and Croft [60] defined information filtering as a counterpart

to IR, albeit with a few key differences. Namely, information filtering often occurs in the context of a long-

term standing interest (represented implicitly through a relevance measure), as well as continuing interaction

with the filtering system over a long period of time. Most work on information filtering displays has so far

focused on unsupervised approaches such as dynamic adjustment of parameters [18, 19, 61], (hierarchical)

clustering [62, 1, 22], topic classification [2, 63, 64], and layout algorithms [21, 65, 66, 67].

5



Since our cluster definition is based on constraints, it may be natural to think of our clusters as Belkin

and Croft’s information filters for interactive visual search. However, the similarity more or less ends there.

In this work, we have an explicit query that drives construction of our filters. Further, we directly optimize

our filter settings w.r.t. a relevance-based objective to maximize the expected F1-Score given a probabilistic

measure of relevance. While these techniques may be used to extend work in information filtering, no existing

information filtering work performs the same relevance-driven cluster (or filter) optimization that we propose

in this work.

Separately from Belkin and Croft [60], others have defined filtering and faceted search methods [14, 15,

16, 17] — the idea that one should be able to restrict the content shown by adjusting multiple filters to

restrictions on different dimensions of meta-data (e.g., time stamp or location). While our methods arguably

build on ideas in multiple filter search and we compare to a filtered search baseline, the key distinction is

that existing filtered search has focused on the user interface design and user studies, whereas our work

focuses explicitly on automatically extracting clusters (where an individual cluster corresponds to a setting

of multiple filters) to maximize relevance-driven optimality criteria.

Explicit Optimization of IR Metrics: In this work, we focused on clustering as an explicit optimization

of an IR-derived metric. While no other existing work has proposed an expected F1-Score relevance-driven

optimization approach to clustering as we do here, it is still worthwhile to explore what other explicit

optimization approaches have been taken in IR. In that context, Wang and Zhu [68] proposed to use an

expected score approximation to optimize Average Precision, Discounted Cumulative Gain, and Reciprocal

Rank. However, the authors did not propose a way to optimize Boolean metrics such as recall and F1-Score,

which are critical for our cluster optimization objective. Separately, machine learning has been explored to

optimize different metrics such as NDCG or MAP through Learning to Rank (L2R) [69]. However, L2R

cannot be applied in our cluster optimization problem because we do not have labeled data to train with

— while we have a relevance signal, true cluster labels are not known for any data. Moreover, the task we

address is to find cluster settings that optimize an expected Boolean metric of expected F1-Score – not to

optimize metrics for ranking.

3. Framework and notation

In this section, we first define the problem we address and then the mathematical notation we use.

3.1. Problem definition

To define the “ingredients” we have for the visual search clustering problem, we begin by adopting

the standard information retrieval (IR) setting for both querying and retrieving information elements (e.g.,

documents or tweets) [69], but in a visual search interface capable of displaying clusters as shown in Figures 1b

and 1c. Specifically, assuming a given corpus of text-based information elements with both time stamp and

2D spatial location meta-data, the retrieval process can be initiated as follows: The user first specifies a
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Boolean “or” query consisting of a list of keywords. For each retrieved document, a score is then computed

indicating the probability of relevance to the user’s information need as specified via their query.3

Our next task is to visually cluster the search results according to the following criteria. As motivated in

the introduction, a key desiderata is that we do not want our clustering solution to require the specification of

a joint distance metric between two information elements in terms of text content, time, and space. Instead,

we only assume the search results have three display attributes that can be used to define coherent clusters

in terms of spatial, temporal, and topical criteria. We define a coherent cluster as a group of elements that

are topically similar to each other (i.e., similar text content) and that are similar in both their time and

space dimensions. We remark that coherency in the spatial dimension forms a key requirement for clusters

that can be easily (i.e., compactly) visualized. Specifically, we consider the following attribute constraints

to define a cluster:

• Space: limits clusters content with 2D spatial annotations (e.g., latitude and longitude) according to

four parameters for the upper left and lower right bounding box coordinates. These cluster constraints

define the bounding box that is visually displayed to the user, cf. Figure 1c.

• Time: limits cluster content with time-stamps according to two parameters for the lower and upper

time bound. Time can be displayed via cluster labels, and/or through settings of a time slider in the

interface.

• Keyword (or Discrete Attribute): limits cluster content with text annotations according to in-

cluded or excluded keywords (or general discrete attributes of an information element). Explicitly

included and excluded keywords can be used to label the cluster.

We note that this clustering work is not limited to these three display attributes – any continuous or

discrete cluster attributes that naturally constrain the search results can be accommodated by our framework.

Nonetheless, we believe time, space, and content constitute three of the most common information display

attributes in practice and hence are the ones we focus on in this work.

Given the above ingredients, cluster specification constraints, and desiderata for our search-based visual

clustering problem, we now have three research questions to answer in this article: (1) How can we formulate

an optimization objective to extract clusters that satisfy all criteria above? (2) How can we efficiently

optimize this objective for use in real-time visual search on large corpora? (3) How we can we evaluate the

effectiveness of these visual search clustering algorithms compared to commonly used alternatives through

both offline evaluations and user studies?

3In this paper, we adopt an IR interpretation of relevance, which refers to how well a document or a cluster meets the

user’s information need. An information need is defined as the information that satisfies a conscious or unconscious need of the

user and is formally expressed by the user’s keyword-based query [69]. In this paper we will specifically use a language model

definition of probabilistic relevance w.r.t. a user’s Boolean “or” query [70].
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3.2. Mathematical Notation

With the cluster definitions above, we now define formal mathematical notation used throughout the

remainder of the article:

• An information element j (i.e., a search result) may have three types of associated metadata: (i)

position coordinates (xj , yj), (ii) a timestamp tj , which may represent the creation date of j, and (iii)

textual content, which is composed of a set of unique terms {t1, . . . , tn} of size n (to reduce notational

clutter, we assume the element j containing these terms will be clear from context).

• Three variables Iq(j) ∈ {0, 1}, Bq(j) ∈ {0, 1} and Sq(j) ∈ [0, 1] are associated with each information

element j and a query q: Iq(j) is an indicator referring to whether an element j is retrieved and

displayed (true=1) given a query q; Bq(j) is a Boolean random variable indicating the (ground truth)

relevance of an element j (relevant = 1) w.r.t. a query q; Sq(j) is a relevance score indicating the

probability relevance of an element j w.r.t. a query q. Bq(j) follows a Bernoulli distribution with

parameter Sq(j), and hence, the expectation of Bq(j) is Sq(j), i.e., E[Bq(j)] = Sq(j).

• We label GC as the global set of all information elements j with total size |GC| = m. Eq is the set

of retrieved information elements that match a user query q, where Eq ⊆ GC. We use E∗q to refer to

further subsets of elements of clusters, i.e., E∗q ⊆ Eq. Note that |Eq| is the count of retrieved Iq(j)

among the global collection GC. Therefore, we have |Eq| =
∑m
j=1 Iq(j).

• We label the set of ground truth relevant information elements for a query q as the relevant set RSq

consisting of |RSq| elements. Note that |RSq| is the count of relevant Bq(j) among the global collection

GC. Therefore, we have |RSq| =
∑m
j=1Bq(j).

4. Relevance-driven clustering

First, we proceed to motivate and derive a new expected F1-Score we use to optimize for cluster extraction.

Following this, we describe two efficient greedy algorithms to (approximately) optimize it.

4.1. Motivating and Deriving Expected F1-Score (EF1)

Existing multidimensional clustering methods such as K-means commonly used in search visualization

largely ignore relevance signals. In contrast, our objective in this article is to take an “information retrieval

first” approach, i.e., to reconceive information retrieval if the goal was to present results as visual clusters as

opposed to the more usual ranked list. Because clusters are the manner by which we return search results

and clusters correspond to a Boolean selection of information elements, we will argue in this section that

(expected) F1-Score of clusters is the only standard Boolean relevance criteria that balances all of our cluster

desiderata and is hence the information retrieval objective we should optimize.
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To proceed with the formal derivation, we adopt the Boolean relevance framework in information re-

trieval [69] and thus assume that an information element j has a ground truth relevance assessment Bq(j)

w.r.t. q available at evaluation time. Because clustering implies a Boolean retrieval model (clusters either

contain or do not contain elements) and we have a probabilistic estimate of relevance Sq(j), we propose to

evaluate expected variants of standard precision, recall, and F1-score of these clusters.4,5

However, as standard for both precision and recall, we note that precision and recall alone can be

trivially optimized by undesired solutions. That is, the cluster that selects all information elements (i.e.,

all time, all space, no excluded keywords) would trivially maximize (expected) recall. Similarly, the cluster

that selects the highest probability singleton information element would maximize expected precision. This

leaves expected F1-score as the only of these three objectives commonly used in Boolean information retrieval

that does not have an undesired solution.

To formally define expected F1-Score, we first begin with definitions of expected precision and recall.

Recalling our previous definitions, given a set of information elements Eq that match a user query q and a

relevant set RSq, the precision of Eq is defined as follows:

P (Eq) =

∑
j∈Eq

Bq(j)

|Eq|
=

∑m
j=1Bq(j)Iq(j)∑m

j=1 Iq(j)
(1)

Given that Bq(j) is a Boolean random variable, we can take the expectation of P (Eq) leading to the following

definition of expected precision EP (Eq):

EP (Eq) = ES

[∑m
j=1Bq(j)Iq(j)∑m

j=1Iq(j)

]
=

∑m
j=1ES[Bq(j)]Iq(j)∑m

j=1Iq(j)
=

∑m
j=1Sq(j)Iq(j)∑m

j=1Iq(j)
(2)

Similarly the recall of a retrieved set R(Eq) is defined as:

R(Eq) =

∑
j∈RSq

Bq(j)

|RSq|
=

∑m
j=1Bq(j)Iq(j)∑m

j=1Bq(j)
(3)

Taking a 1st order Taylor expansion, we have the following expectation approximation E(X/Y ) ≈

E(X)/E(Y ) for two dependent random variables X and Y [72]. Hence, we can now define an approximated

expected recall as follows:

ER(Eq) = ES

[∑m
j=1Bq(j)Iq(j)

|RSq|

]
≈

∑m
j=1ES[Bq(j)]Iq(j)∑m

j=1ES[Bq(j)]
=

∑m
j=1Sq(j)Iq(j)∑m

j=1Sq(j)
(4)

4We remark that since all existing clustering algorithms for information retrieval reviewed in Section 2 are unsupervised

and thus focus on minimizing co-similarity of all retrieved documents within a cluster, we believe that our alternative Boolean

relevance-based definitions of optimal clusters are a novel and distinct contribution to clustering in information retrieval.
5We note that we are not the first to consider probabilistic or expected variants of Boolean metrics. One notable work by

Goutte and Gaussier [71] proposes a probabilistic re-interpretation of Boolean metrics assuming the availability of ground truth

relevance since their primary purpose is to compute a Bayesian posterior estimate of Precision and Recall at evaluation time.

However, in our case, we are not using the expectation for experimental evaluation purposes but rather for computing Boolean

metrics under probabilistic uncertainty over the relevance of each document that occurs in the absence of ground truth at search

retrieval time. Hence, we have a very different use and definition for our variants of these expected Boolean metrics.
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Figure 2: Scatterplot with best fit linear regression showing predicted EF1-Score vs. ground truth F1-Score as the amount of

noise λ varies from 0.6 (high noise) to 1.0 (no noise). EF1 correlates with F1, hence ranking documents similarly to F1.

Finally, we define the approximated expected F1-Score (EF1) using the expected precision and the approxi-

mated expected recall as follows:

EF1(Eq) ≈
2× EP × ER
EP + ER

=
2×

∑m
j=1 Sq(j)Iq(j)∑m

j=1 Iq(j) +
∑m
j=1 Sq(j)

(5)

We focus on F1-score in this paper, however expected Fβ scores that vary the relative weight of the

precision and recall components according to β follow directly from the above definitions.

To validate that EF1 provides a strong surrogate metric for F1 in the absence of ground truth relevance

judgments, we show a scatterplot of ground truth F1 scores vs. EF1 scores for sets of 100 elements in

Figure 2. Specifically, for each element set, we set the {0, 1} relevance indicator Bq(j) for element j uniformly

randomly and then assign the relevance probability Sq(j) according to a noisy corruption of the ground truth:

Sq(j) = λBq(j) + (1 − λ)rand(), where rand() is a random noise value chosen with uniform distribution in

the range [0, 1], and λ is a weighting parameter (0.5 ≤ λ ≤ 1) that controls the signal-to-noise ratio in the

final probability value; λ = 1.0 represents no noise while λ = 0.6 represents high noise. Here we can see that

maximizing EF1 score is strongly correlated with maximizing F1 score across a wide range of noise levels.

Specifically, while the EF1 and F1 scores are not perfectly calibrated along the diagonal, there is a clear

linear correlation indicating that EF1 and F1 will both rank information elements in a similar order. We

will further study the effect of a noisy classifier in Section 6.

Finally, we address the key question of whether the EF1 objective should include additional coherence

criteria. In short, we argue that coherence corresponds to “tight” constraint settings in all dimensions

(spatial, temporal, keyword); while Precision and Recall arguably lead to incoherent clusters (respectively,

too small or too large), F1-Score balances these two to return moderately sized clusters. If an F1-Score

cluster shrinks unnecessarily, it’s Recall component would decrease and make it suboptimal, while if it

expands unnecessarily, it’s Precision component will decrease and also make it suboptimal. Hence, optimizing

clusters for EF1 does correspond to some locally optimal notion of temporal, semantic, and spatial coherence

when considering expansions or contractions of the selected cluster. These claims of coherence for relevance-

driven clustering based on EF1 are directly evidenced when we observe that the relevance-driven clusters of
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Figure 1c are much more “tight” in terms of time span (a few days to a month), spatial extent (well localized),

and top keyword content (words are coherent) than K-means shown in Figure 1b which has non-localized

spatial extent, unnecessarily large time spans of 11 months or more, and incoherent top keywords in a single

cluster (“Blizzard”, “Earthquake”, and “Tornado” together in the right-most cluster).

4.2. Greedy relevance-driven clustering

We now specify an algorithm to efficiently optimize clusters for relevance according to the previously

defined EF1 metric. Specifically, a single cluster E∗q is specified as all information elements {j ∈ E∗q |Iq(j) =

1, j ∈ Eq} in the intersection of (i) keyword inclusion or exclusion, (ii) time interval, and (iii) spatial bounding

box constraints. Given an estimated probability of relevance of each information element in the cluster Sq(j),

we can compute the EF1 of the cluster defined by constraints (i)–(iii) according to (5). Through a series of

transformations, this EF1 optimization problem can be reduced to an optimal Mixed Integer Linear Program

(MILP) solution, which we outline in Appendix A; however, we remark that a MILP-based approach is NP-

Hard and only practical in real-time for small element sets, thus we can only use it for benchmarking other

algorithms in Section 6. Hence, in pursuit of a more tractable solution, in the following we describe how to

greedily optimize the parameters of each constraint to approximately optimize clusters according to EF1.

In greedy optimization, we would have the option to start with a singleton element cluster and expand,

or start with a cluster including all elements and prune. While the former has a non-deterministic choice of

which singleton to start with, the latter has an unambiguous initial starting condition. Thus we choose the

latter pruning approach starting with initial spatial bounding box, time interval, and keyword constraints

set to include all of Eq.

4.2.1. Greedy Keyword Selection algorithm

Given a set of candidate information elements matching a query, this algorithm greedily selects a set of

keywords to exclude (i.e., prune) to maximize EF1.

Formally, the algorithm aims to select an optimal subset of k terms T ∗k ⊂ V (where V is a vocabulary of

keywords for the document corpus) to exclude elements containing these keywords to optimize EF1. This is

achieved by building T ∗k in a greedy manner by choosing the next optimal term t∗k given the previous set of

optimal term selections T ∗k−1 = {t∗1, . . . , t∗k−1} (assuming T ∗0 = ∅) using the following selection criterion

t∗k = arg max
tk /∈T∗k−1

[EF1(E∗q that don’t contain {t∗1, . . . t∗k})] (6)

that terminates at k when no T ∗k+1 can improve the EF1 of E∗q .

4.2.2. Greedy Time Selection algorithm

The idea behind the time-based greedy selection algorithm is to start with the maximal time range and

greedily contract it to an open sub-interval of time (tstart, tend) that maximizes EF1. In this case, given

a list of currently selected elements E∗q = {jt1 , . . . , jtn} ordered by timestamp, where jti for 1 ≤ i ≤ n is
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Algorithm 1: Binary Partition Search (BPS) Algorithm

input : A set of ordered elements Eq = {jv1 . . . jvn} (ordered with respect to vk);

output: A value v for the (possibly contracted) upper bound;

1 vmin = v1; vmax = vn; vmid = v1+vn
2 ;

2 while vmin 6= vmid 6= vmax do

/* Note: the initial index for EF1 comparison is always v1 -- only the upper

bound is contracted, hence the reason why BPS is called once for ascending and

descending order of each dimension. */

3 if [EF1({jv1 . . . jvmid
}) ≥ EF1({jv1 . . . jvmax})] then

4 vmax = vmid; vmid = vmin+vmid

2 ;

5 else

6 vmin = vmid; vmid = vmin+vmax

2 ;

7 end

8 end

9 return vmid;

the ith information element in this order with timestamp ti, we propose two different greedy approaches to

iteratively contract (i.e., prune) the time window of E∗q in order to maximize EF1:

(a) Naive Greedy algorithm: Let tmin and tmax respectively correspond to the current minimum and

maximum timestamps in E∗q . If setting tstart = tmin improves the EF1 of E∗q then this lower bound contraction

is accepted. Similarly if setting tend = tmax improves the EF1 of E∗q then this upper bound contraction is

accepted. This repeats until no lower or upper bound contraction improves EF1.

(b) Binary Partition Search (BPS) algorithm: Large datasets will cause the previous Greedy algorithm

to take a large number of iterations to terminate. A more efficient way to address this problem is to use

the binary partitioning search (BPS) subroutine shown in Algorithm 1. Consider a list of n information

elements; instead of removing a single element j at a time requiring O(n) iterations, BPS leverages an

approach motivated by binary search over the current elements in E∗ to efficiently obtain a new bound that

improves EF1 score in O(log2 n) iterations.

From an implementation perspective of the BPS approach for time selection, the algorithm first sorts the

current E∗q according to time stamps in increasing order (line 1 of Algorithm 2). The BPS algorithm then

calls the BPS subroutine (line 2 of Algorithm 2) to find a new upper bound if it improves the EF1 score

through an approach motivated by binary search. The resulting E∗q (line 3 of Algorithm 2) is then sorted

according to time stamps in decreasing order (line 4 of Algorithm 2) and the same BPS strategy is used to

find a new lower bound if it improves the EF1 score (lines 5-6 of Algorithm 2). While the binary search

in this approach does not check all contractions and thus serves as an approximation to the Naive Greedy

12



Algorithm 2: BPS Time Bound Contraction Algorithm

input : A set of retrieved elements E∗q ;

output: A set of elements E∗
′

q (such that E∗
′

q ⊆ E∗q );

1 Sort E∗q in increasing timestamp order;

2 tbestend = BinaryPartitionSearch(E∗q );

3 E∗q ← {j ∈ E∗q |tj < tbestend };

4 Sort E∗q in decreasing timestamp order;

5 tbeststart = BinaryPartitionSearch(E∗q );

6 E∗q ← {j ∈ E∗q |tbeststart < tj < tbestend };

7 return E∗q ;

approach, it is substantially faster (O(log2 n) instead of O(n)) and a reasonable approximation, especially if

the EF1 score changes relatively monotonically as the time bounds are contracted from each side.

4.2.3. Greedy Spatial Selection algorithm

The aim of this algorithm is to return coordinates [(xmin, ymin), (xmax, ymax)] representing the EF1

maximizing spatial bounding box represented by the lower and upper bound coordinates – respectively

(xmin, ymin) and (xmax, ymax). This 2D spatial interval contraction problem is similar to the previous 1D

problem of finding the best time window. Therefore, the two algorithms described above (Greedy and

BPS) can be adapted for this problem by first applying each algorithm on the x-axis to determine the best

(xmin, xmax) (lines 1-6 of Algorithm 3), then on the y-axis to determine the best (ymin, ymax) (lines 7-12 of

Algorithm 3).

4.2.4. Overall Relevance-driven Clustering (RadiCAL) algorithm

To obtain a cluster E∗q combining the above (i) keyword, (ii) time, and (iii) spatial constraints, we propose

a greedy round-robin algorithm, which at each iteration applies the selection pruning algorithms for (i), (ii),

and (iii) in order. Iterations terminate when no selection algorithm can unilaterally improve EF1 and the

final cluster is returned.

Finally, we note that our Relevance-driven Clustering ALgorithm (RadiCAL) can use the Greedy

keyword selection algorithm with either the naive Greedy time and spatial selection algorithms, which we

refer to experimentally as RadiCAL-Greedy, or the BPS time and BPS spatial variants, which we refer

to experimentally as RadiCAL-BPS.

4.3. Multiple Cluster Selection Wrapper

In practice, a single cluster of information elements E∗q chosen by the previously described algorithms

will provide the user with one temporal, spatial, and content coherent cluster covering one information

perspective. However, just as K-means allows one to select the number of clusters K, let us assume that
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Algorithm 3: BPS Spatial Bound Contraction Algorithm

input : A set of retrieved elements E∗q ;

output: A set of elements E∗
′

q (such that E∗
′

q ⊆ E∗q );

1 Sort E∗q in increasing order w.r.t. the location x-axis;

2 xbestmax = BinaryPartitionSearch(E∗q );

3 E∗q ← {j ∈ E∗q |xj < xbestmax};

4 Sort E∗q in decreasing order w.r.t. the location x-axis;

5 xbestmin = BinaryPartitionSearch(E∗q );

6 E∗ ← {j ∈ E∗|xbestmin < xj < xbestmax};

7 Sort E∗ in increasing order w.r.t. the location y-axis;

8 ybestmax = BinaryPartitionSearch(E∗);

9 E∗ ← {j ∈ E∗|xbestmin < xj < xbestmax ∧ yj < ybestmax};

10 Sort E∗ in decreasing order w.r.t. the location y-axis;

11 ybestmin = BinaryPartitionSearch(E∗);

12 E∗ ← {j ∈ E∗|xbestmin < xj < xbestmax ∧ ybestmin < yj < ybestmax};

13 return E∗;

we wanted to show K = 3 clusters extracted through relevance-driven optimization methods as shown in

Figure 1c. Here, we provide a greedy approach for providing a ranked list of such clusters that works with

any of the previously defined algorithms – RadiCAL-Greedy or RadiCAL-BPS.

The algorithm itself is quite simple and simply wraps the algorithm of Section 4.2.4. After the first cluster

is produced, all selected elements in that cluster have their scores Sq(j) zeroed out. The relevance-driven

clustering algorithm is then run again, where it will inherently focus on a different content set. As each

cluster is added (up to a user-defined limit K), coverage of high relevance content monotonically improves.

5. Experimental setup

We now describe the dataset and baselines to be used by our experimental evaluation in Sections 6 and 7.

5.1. Dataset description

The scenario we have chosen to evaluate our algorithms is related to the detection of natural disasters

discussed in a collection of tweets chosen due to the availability of high volume spatio-temporal data and

it’s general familiarity to our human test subjects. We started with a corpus of approximately 1 billion

tweets crawled from the Twitter streaming API during 2013 and 2014 [73] with the following restrictions:

(1) the dataset was restricted to users located within the US, (2) non-English tweets were filtered out, (3) we

extracted tweets related to the 12 actual natural disasters described in Table 1 – which are temporally and

geographically disjoint – to use as ground truth clusters, and (4) we removed tweets related to other known
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Table 1: Details of the events included in the dataset.

Type Location Date #tweets

1 Flood Colorado Sep, 2013 100

2 Storm Florida June, 2013 181

3 Earthquake California (L.A.) Mar, 2014 98

4 Earthquake California (Napa) Aug, 2014 206

5 Tornado Oklahoma May, 2013 319

6 Hurricane North Carolina July, 2014 98

7 Blizzard New York (NYC) Feb, 2014 243

8 Blizzard New York (Buffalo) Nov, 2014 99

9 Blizzard Massachusetts (Boston) Feb, 2014 201

10 Drought California Dec, 2013 100

11 Tornado Mississippi Feb, 2013 50

12 Flood Michigan Aug, 2014 49

natural disasters, which was necessary to create unambiguous correct answers for purposes of our user study.

The final dataset6 consists of 1,744 positive examples (tweets related to the 12 natural disasters we selected)

as well as 34,411 negative examples (other tweets). We remark that the tasks of identifying each of the 12

natural disasters in the dataset were chosen to be of comparable difficulty — or, at the very least, there was

no explicit intent to curate easy vs. difficult tasks since algorithm order and assignment of natural disasters

to algorithm trials are necessarily randomized in the user study.

5.2. Baselines description

Our experiments use the following two baseline clustering algorithms:

Optimal solution: To benchmark the performance of RadiCAL-Greedy and RadiCAL-BPS on small

datasets, we use an exact Mixed Integer Linear Progamming (MILP) optimization-based formulation to

maximize EF1. In brief, the formulation of EF1 in (5) can be transformed into a fractional MILP formulation

with constraints corresponding to each of the cluster attribute selection criteria (space, time, and content).

The parameters of these constraints are then chosen to optimize the EF1 objective. While there are no direct

solvers for fractional MILPs, we can transform the problem into a pure MILP formulation using the Charnes-

Cooper method [74] and Glover linearization method [75] for which we have optimal (albeit slow) solvers. A

6https://github.com/D3Mlab/viz-ir/tree/master/twitter_dataset
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detailed description of this optimal solution is given in Appendix A, referred to as RadiCAL-MILP.

K-means clustering: We use the X-means [76] variant of K-means as a baseline method to cluster

matching search results. X-means is a simple extension of K-means [34] that automatically determines

the number of clusters. Starting with only one cluster, the X-means wrapper applies after each run of K-

means, making local decisions about which subset of the current centroids should split themselves in order to

better fit the data. In order to provide X-means with spatial, temporal, and content coherence, the distance

metric we have used for X-means is a linear combination of the following: (i) the Euclidean distance of time,

(ii) the Euclidean distance of location, and (iii) the cosine distance of the textual content. This distance

metric is formally defined as follows:

d(i, j) = α× [time dist.] + β × [location dist.] + γ × [text cosine] (7)

where α, β, and γ are weights that sum to 1, and set respectively to 0.1, 0.8, and 0.1 in the user study —

the parameters were tuned through a manual grid search over the discrete set {0.0, 0.1, . . . , 0.9, 1.0} for α

and β (γ = 1 − α − β) to obtain the most coherent clusters across all natural disasters. While the weight

we used notably places heavy emphasis on distance in the spatial dimension, we note that other values (e.g.,

balanced weights) led to clusters with more extreme overlapping spatial dimensions that cluttered the user

interface, hence justifying the higher weighting for the spatial dimension. Once clusters are extracted by

X-means, we use the EF1 metric to extract the top clusters as required by our interface.

6. Study 1: Offline evaluation

While our online user study will allow us to evaluate whether our relevance-driven approach to clustering

enhances user performance in a visual search task (compared to K-means clustering and a multiple filter

search baseline), we first wish to understand how our greedy algorithm compares to other clustering methods

(including the optimal MILP solution) as we vary properties of the data and relevance score noise. Because

this evaluation requires thousands of independent trials for each possible experimental configuration of data

size size, noise level, and label balance level that would have prohibitive time and resource requirements

for a user study, we opt to perform these evaluations through offline methods. To perform this offline

study, we remark that we optimize clusters via EF1 that is based on the probabilistic relevance scores of

the elements obtained at query time (Sq(j)), whereas we experimentally evaluate the actual quality of the

clusters generated using F1 based on the known ground truth (Bq(j)), which is standard procedure in an

offline evaluation of conventional IR tasks.

Our main objective in this section is to benchmark and intuitively understand the performance of

RadiCAL-Greedy, RadiCAL-BPS, and K-means algorithms w.r.t. clusters obtained via the RadiCAL-

MILP solution (optimizing EF1 using a MILP) through an offline empirical evaluation. As an additional

control, we also include an evaluation of the Initial maximal cluster of all information elements E that is
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the initial starting condition for RadiCAL-Greedy, RadiCAL-BPS, RadiCAL-MILP, and K-means.

By definition, Initial is a trivial recall-maximizing (but low precision) baseline that all algorithms should

ideally improve on.

Because we aim to evaluate the impact of noisy relevance evaluations on cluster quality w.r.t. actual

ground truth F1-score (not the estimated EF1), it is critical to explicitly control noise levels, which we

achieve through a noisy corruption of ground truth. Hence, for each tweet j, we assign the probability

Sq(j) to that tweet to indicate its relevance probability by introducing a random noise signal as follows:

Sq(j) = λ×Bq(j) + (1−λ)× rand(), where Bq(j) is the boolean ground truth relevance, rand() is a random

noise value chosen with uniform distribution in the range [0, 1], and λ is a weighting parameter (0.5 ≤ λ ≤ 1)

that controls the signal-to-noise ratio in the final probability value. Note that for λ = 1, Sq(j) is a perfect

predictor of ground truth probability, whereas for λ = 0.5, Sq(j) is extremely noisy (i.e., the signal-to-noise

ratio is 1).

We explicitly vary the number of relevant information elements in our ground truth to assess performance

variation as a function of class imbalance. In our experimental comparison, we only evaluate RadiCAL-

MILP up to #data=150 since the MILP solver could not scale to a larger data set. While we do experiment

without RadiCAL-MILP up to #data=104, the smallest positive rate that we can practically evaluate for

all algorithms in these experiments is 1% given the data size restrictions of RadiCAL-MILP.

Each evaluation was carried out by averaging over 10 independent runs that each select random relevant

documents according to the designated #data size and positive rate. We report the average ground truth

F1-Score (i.e., ground truth is known in the experimental setting) for the EF1-maximizing cluster produced

by each method. We report and discuss the main results of the experimental evaluation, considering both

the accuracy and the effectiveness of the described algorithms. The configuration options that we have

evaluated are the following: F1-Score vs. #data ∈ {10, . . . , 150, . . . , 104} × λ ∈ {0.6, 0.7, 0.8, 0.9, 1.0} × rate

of positive data ∈ {1%, 2%, 10%, 50%}.

Varying #data: Here we aim to understand how the different F1-Score optimization algorithms perform

as the amount of data varies for differing noise levels. This analysis is provided in Figure 3 while fixing the

rate of positive data to 2% and λ ∈ {0.6, 0.9, 1.0}, and varying the size of the data.
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Figure 3: Clustering algorithm performance vs. varying #data for 2% of positive data.

In Figure 3, we observe that beyond a certain #data threshold, the best F1 score decreases since clusters

will inevitably include some irrelevant elements in large datasets. Nonetheless, we observe that for relatively

low noise (λ = 0.9 and λ = 1.0), RadiCAL-BPS and K-Means perform comparably for large data

sizes, while K-Means performs poorly for smaller data sizes, but RadiCAL-BPS performs better for

moderate data sizes and is in fact provably optimal (i.e., it overlaps with RadiCAL-MILP) for the data sizes

that RadiCAL-MILP can solve. Quite interestingly, RadiCAL-BPS generally outperforms RadiCAL-

Greedy since the small incremental EF1 improvement steps of RadiCAL-Greedy are prone to local

optima.

While it may seem concerning that RadiCAL-BPS performs poorly for λ = 0.6, we note that this is an

extremely high level of noise and thus the relevance estimates are highly unreliable. In this case, a clustering

method such as K-Means is clearly better off in that it simply ignores the unreliable relevance scores. This

leads to the obvious but important conclusion that the relevance-driven clustering methods proposed in this

article should only be used when it is believed that the relevance signal is reasonably reliable; this should be

the case in many domains where modern information retrieval scoring techniques are already used.

Varying relevance noise (λ): Here we aim to understand how the different clustering algorithms perform

as the amount of noise λ (defined previously) in the relevance prediction varies. The results of this analysis

are shown in Figure 4 while having the rate of positive data in {1%,10%,50%}, #data=150 (for comparison

to RadiCAL-MILP), and varying the amount of noise λ ∈ [0.6, 1.0].

In Figure 4, we observe that for a low rate of positive data the problem becomes easier (higher F1-Score

value) as λ increases because EF1 becomes closer to the ground truth F1-Score. Here, K-Means performs

poorly for higher λ since it ignores the relevance signal, while RadiCAL-BPS performs near to RadiCAL-

MILP; RadiCAL-Greedy matches it only in the zero noise case where RadiCAL-Greedy cannot get

stuck in local optimal.

It is interesting to analyze the boundary case for high rates of positive data (10% and 50%), which is

plausible if clustering is applied to the top-ranked search results of an unambigious query. In this case, the

relevance noise level has little impact on the F1-score of the algorithms as information elements are more
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Figure 4: Clustering algorithm performance vs. varying relevance noise (λ) for #data=150.

often relevant than not. Nonetheless, it is telling that K-Means does so poorly: it appears to focus on low

relevance, but highly self-similar clusters of irrelevant data – a critical caveat of ignoring relevance scores.

In conclusion, the evaluations have shown that the RadiCAL-Greedy and RadiCAL-BPS algorithms

are a good approximation of the Optimal MILP formulation (RadiCAL-MILP) and may outperform

the RadiCAL-MILP in high noise settings — especially the RadiCAL-BPS approach which tends to

overfit less to noise. While this offline evaluation methodology allows direct head-to-head comparison of

clustering algorithm properties and demonstrates potential advantages of RadiCAL-BPS, what we need

to experiment with next is whether RadiCAL-BPS and our relevance-driven clustering approach enhance

actual user performance in an online end-to-end visual search task.

7. Study 2: User study

To complement and validate the results of the offline evaluation, we ran a user study with 24 subjects

to measure the performance and preference of users with different clustering algorithms for a visual search

interface. In the following, we first briefly describe the way we estimate the relevance probability of each

tweet in the visual search interface of the user study, then we describe the full user study methodology, and

finally we end with an analysis of user performance.

7.1. Relevance Scoring

The underlying search and relevance scoring tool we developed for this user study was built on top of the

Lucene IR System7. As shown in Figure 5, the interface allows users to enter a multi-term search query q,

which retrieves the set Eq of top-ranked 1,000 tweets according to their probability of relevance. As we previ-

ously defined in our relevance-driven clustering approach, terms (a.k.a. keywords) can be included/excluded

by the clustering algorithm during the cluster extraction process. However, in this user study, terms also

7http://lucene.apache.org/
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Figure 5: Clustering-based visual search interface. The results of the query “tornado, blizzard, earthquake” are shown using

clusters of K-means. The top bar provides both a search box as well as buttons to explicitly hide or show clusters in the map

display that allow the user to navigate and analyze clusters even when they overlap (e.g., as occurs with the yellow and blue

clusters). The left sidebar is used to provide answers in our experimental user study evaluated in this section.

enable us to derive the probability of relevance of a tweet to the user query. Specifically, we used the stan-

dard information retrieval Language Model relevance scoring method as defined in [70] for estimating the

relevance score of a tweet j w.r.t. a user query q as follows:

Sq(j) = p(q|j) =

n∏
i=1

p(qi|j) . (8)

Here, p(qi|j) is a unigram language model based on the tweet content j calculated according to a Bayesian

smoothing language model using Dirichlet priors as described in Section 3 of [70]. The relevance score

provides the probability of relevance for each tweet that is subsequently used to compute and optimize the

expected F1-Score cluster extraction for our relevance-driven clustering.

7.2. Research Hypotheses and Evaluation Methodology

Designing a user study for Interactive IR (IIR) is a complex and challenging task, but fortunately one for

which there is excellent guidance in the literature [77, 78]. Beyond standard randomization protocols that

we describe in the following methodology, a key recommendation for IIR evaluation is to construct simulated

scenarios and tasks in order to engage participants in the search in a way that is as close as possible to actual

information searching and IR processes; this guiding principle is a cornerstone of the interactive visual search

task that we have designed in this study. We further remark that we have intentionally designed independent

trials with non-dynamic information needs to avoid more complex IIR evaluation considerations, cf. [77].
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The main goal of this user study was to comparatively evaluate human performance and visual search

interface preference using three different search interfaces for identifying facts about natural disaster data in

the previously described Twitter dataset. The primary two hypotheses that we aimed to evaluate with human

subjects were the following: (H1) a clustering-based interface leads to better search performance and is more

preferred than a non-clustering Baseline interface, and (H2) the relevance- and interface-driven clustering

of RadiCAL-BPS leads to better search performance and is more preferred by users than K-means.

Over a sequence of three trials, each using a randomized (non-overlapping) selection of three natural

disasters chosen from Table 1, each of our users was asked to use one of the following three different search

approaches (with the order of the three search approaches randomized for the three trials of each user):

1. A Baseline multiple filter search method which displays all results that match the query. An

example of the map portion of the display is shown in Figure 1a with relevance shown as a gray-level

shading. While pan and zoom modulate the spatial filter, a time range adjustment filter is provided

in addition to a keyword search filter to control inclusion/exclusion of content with specific terms.

2. The K-means algorithm discussed previously in the offline evaluation (using X-means to automatically

identify the best K), which displays the largest 6 clusters for results matching a query (an

example is shown in Figure 5).

3. The ]RadiCAL-BPS algorithm we proposed for relevance-driven clustering that substantially outper-

formed the Greedy approach in the offline experimentation. To match the presentation of K-means,

RadiCAL-BPS displays the top 6 EF1-scoring clusters for results matching a query (an

example with 3 clusters is shown in Figure 1c).

Overall, we believe that the K-means and multiple filter Baseline represent ideal methods for comparison to

RadiCAL-BPS since the first is arguably the most commonly used clustering method used in practice and

the latter represents the manually-driven multiple filter search approach that RadiCAL-BPS is attempting

to automate through optimized relevance-based extraction of clusters defined by filter criteria. Though use

of the Baseline method would be visually apparent to users, users were not aware of which clustering

algorithm they were using in a trial that used either K-means or RadiCAL-BPS clustering.

For each search approach, the interface allows users to enter a multi-term search query. In the Baseline

search approach, these tweets are displayed on a Google Maps display used to browse the results. The

tweets that match a query were represented using circles with a grayscale color range corresponding to the

probability of relevance – light gray circles represented low probability relevance tweets, and dark gray circles

represented high probability relevance tweets. The user was able to interact with the map by panning and

zooming and also by clicking on tweets to see their content. The clustering search approaches (K-means

and RadiCAL-BPS) were identical to the Baseline search approach, except that instead of showing all

matching results, they showed six clickable clusters of results as illustrated in Figure 5 (clicking a cluster

displays a summary view and clicking a tweet in the cluster displays the specific tweet content). In all search

approaches, the user could use a time slider bar to restrict the results to tweets matching the query in a
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Figure 6: The mean user performance and 95% confidence intervals for each of the three search interfaces/algorithms are

measured using cumulative recall for the type and location of the natural disasters and the absolute error for the first date of the

natural disaster. On average, users achieved higher recall and lower error faster using relevance-driven clustering (RadiCAL-

BPS) in comparison to K-means and the Baseline.

specific time window.

Before starting the experiment, each user was provided with simple instructions to turn off all personal

devices for the duration of the experiment and then shown a training video describing the visual search

interface and how to interact with the clusters (i.e., how they could change their search queries, pan/zoom,

use the time slider, and enter their answers). Then, each user was tested on their ability to find each of three

natural disasters from Table 1 using both the Baseline non-clustering interface as well as the K-means

clustering interface in two training trials. In each of the two training trials and the three experimental trials,

the user was asked to enter information related to each natural disaster they identified, including the type

of the natural disaster (e.g., earthquake, hurricane, flood, etc.) selected from a drop-down list, its location

(US state) selected from a drop-down list, and the date (day) on which they think the disaster first occurred

selected from a calendar chooser; the area where this information is entered can be seen on the left-hand

bar in Figure 5. It is important to reiterate that none of the three experimental trials reused data from

a previous trial. A total of 24 users participated in the user study, for which the full experiment took on

average 50 minutes per user.

We collected detailed interaction logs to record different behaviors and actions of the user. Moreover, each

user was asked to answer NASA Task Load Index (NASA-TLX) [79] and System Usability Scale (SUS) [80]

questionnaires after each trial. Finally, at the end of the experiment, each user was asked to fill out an exit

survey, which included a preference ranking of the algorithms.

7.3. Quantitative performance analysis

The performance of the users for each algorithm was measured using cumulative recall for the type and

location of the natural disasters in each trial. Since there were three distinct natural disasters per trial, perfect
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Figure 7: NASA Task Load Index (MD: Mental Demand, PD: Physical Demand, TD: Temporal Demand, OP: Own Performance,

FR: Frustration, EF: Effort). Higher numbers indicate higher perceived workload.

recall would require getting all three natural disaster types or locations correct. Mean performance across

all users with 95% confidence intervals for cumulative recall of disaster type and location are respectively

shown in Figures 6(a) and 6(b). Users also had to enter their estimated starting date of each natural disaster,

which we measure by absolute error assuming the maximum error for natural disasters that have not been

submitted yet. The mean performance of time estimation error across all users with 95% confidence intervals

is reported in Figure 6(c).

Regarding the quantitative portion of hypotheses H1 and H2, there are very consistent user performance

trends that emerge after 150 seconds into the trial in Figure 6. In the first 150 seconds, it would appear

that all users were adjusting to the given task and some users were able to identify some of the most salient

natural disasters that would have been obvious regardless of the interface type. It seems that it is beyond

this initial stage when users are searching for the remaining less salient natural disasters when the interface

helps differentiate human performance. Specifically, after 150 seconds in Figure 6, we observe the general

trend that, on average, users achieved higher task recall and lower error faster when using the RadiCAL-

BPS algorithm for clustering in comparison to K-means and the Baseline. Furthermore, we clearly notice

that with the RadiCAL-BPS algorithm, participants were able to achieve a higher average “asymptotic”

performance at an earlier stage of the experiment than using the two other search algorithms. Such results

quantitatively support both of our experimental hypotheses H1 and H2 from Section 7.2 that motivated our

study.

7.4. Survey analysis

With the previous quantitative measures of user performance indicating the advantage of relevance-driven

clustering, we next proceed to evaluate the users’ own opinions of each interface/algorithm as collected in

the user surveys discussed in the methodology. During the user study, each participant answered 7 different

questionnaires – a NASA Task Load Index (NASA-TLX) [79] and a System Usability Scale (SUS) [80]
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questionnaire after using each algorithm, plus a final questionnaire. We report key results below.

7.4.1. NASA-TLX analysis

The NASA-TLX questionnaire rates perceived workload in order to assess a task, system effectiveness

or other aspects of performance. The questionnaire includes questions on mental demand (MD), physical

demand (PD), temporal demand (TD), performance (OP), frustration (FR), and effort (EF). NASA-TLX

items are rated on a 20-point scale (1 = low workload, 20 = high workload, except for OP where 1 = perfect

and 20 = failure). Overall, we hypothesize that the three most important factors for this visual search task

are temporal demand (reduced time to complete the search task owing to better clusters), mental demand

(the ability to focus analysis at the cluster level of abstraction as opposed to the tweet level), and effort

(reduced effort to analyze clusters due to clear keyword summaries). We conjecture that all of these task

load reductions would follow from the increased coherence of the RadiCAL-BPS relevance-driven cluster

extraction compared to unsupervised K-means clustering and the lack of any automatic clustering in the

Baseline.

We show the NASA-TLX results obtained (a) for each subscale and (b) for the overall ratings in Figure 7.

Briefly, the mean overall NASA-TLX rating was 45.91 ± 8.86 for RadiCAL-BPS, 54.75 ± 7.41 for K-

means, and 70.41 ± 8.27 for the Baseline. A Friedman’s test revealed an overall significant difference

(χ2(3) = 16.113, p = 0.003 < 0.05). Holm-Bonferroni corrected post-hoc analyses with Wilcoxon signed-

rank tests revealed that the difference between all pairs was significant (p < 0.05).

We note that participants overall perceived the RadiCAL-BPS algorithm to be more effective at helping

them complete their search task in comparison to using K-means or the Baseline. Considering each of the

three aforementioned key factors (TD, MD, EF) deemed most relevant to the innovations of the RadiCAL-

BPS clustering algorithm, we remark that RadiCAL-BPS recorded the lowest median load on all three

factors with K-means somewhat behind in second place (indicating that some form of clustering still aided

the visual search task) and the non-clustering Baseline further afield with the highest loads. Considering

additional factors, global median rates of frustration and mental effort were around 10, which indicates that

the task was neither too difficult, nor too easy. Also, as the median rates of these two factors were lower for

the two clustering methods than the baseline, we conclude that participants overall felt that clustering-based

search provided a less frustrating and less mentally demanding interface for this task in comparison to the

baseline, which displayed all search results. Finally, based on the task load rates where the RadiCAL-BPS

algorithm performed the best, it seems apparent that relevance-driven RadiCAL-BPS clustering provided

the most effective approach for carrying out this kind of spatio-temporal search task, which is supported by

the overall rating of Figure 7(b).

7.4.2. SUS analysis

The SUS questionnaire gives a global view of subjective assessments of usability. The questionnaire

contains questions related to the global effectiveness, efficiency, and satisfaction. The SUS items are rated
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Figure 9: Ranking of the algorithm preference by participants who voted by trial ID (not algorithm name). The number of users

who placed each algorithm at the specified ranking is shown. Clearly, relevance-driven clustering (RadiCAL-BPS) received

the bulk of first place preference, K-means the bulk of second place preference, and Baseline the least preference at third place.

on a 5-point scale (0 = strong disagreement and 5 = strong agreement). In Figure 8, we show the results

obtained over all SUS scores with 95% confidence interval. The mean SUS score was 72.39 ± 9.77 for

RadiCAL-BPS, 70.83± 7.61 for K-means, and 51.77± 9.07 for the Baseline. A Friedman’s test revealed

an overall significant difference (χ2(3) = 9.053, p = 0.010 < 0.05). Holm-Bonferroni corrected post hoc

analyses with Wilcoxon signed-rank tests revealed that the difference between the two clustering methods

and the baseline was significant (p < 0.05). The difference between RadiCAL-BPS and K-means wasn’t

significant and hence we can only infer from the SUS survey that the users preferred the clustering interface

(i.e., RadiCAL-BPS and K-means) over the Baseline.

7.4.3. Final questionnaire analysis

The final questionnaire that the users had to answer included questions on the advantages and disad-

vantages of each algorithm, plus a global ranking of the three algorithms. The ranking of the algorithms

provided by users is shown in Figure 9. We note that 18 users out of 24 ranked RadiCAL-BPS as being

the best algorithm, and 19 users out of 24 ranked the Baseline approach as being the least helpful for

the task. Hence there is strong evidence for user preference of RadiCAL-BPS over K-means and for

both RadiCAL-BPS and K-means over the Baseline. In the free response survey section, several users

also specifically reported the ease and precision provided by the trial with the RadiCAL-BPS algorithm

assigned, while no users indicated this for the trials with K-means or RadiCAL-BPS assigned.
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Combined with the quantitative performance analysis of Figure 6 discussed in Section 7.3 and the NASA-

TLX workload and SUS usability survey results discussed in Section 7.4 that both corroborate these pref-

erence findings, we remark that all of the experimental evidence strongly supports hypotheses H1 and H2

from Section 7.2 that motivated our user study.

8. Discussion

In this section, we discuss a summary of our key contributions and results, the main limitations of this

research, and possible directions for future work.

8.1. Summary

In this article, we began by observing that unsupervised clustering methods have often been used to

aggregate data in visual search interfaces, but approaches like K-means do not make effective use of query

relevance signals during this aggregation task and do not necessarily optimize for purposes of visual presen-

tation in the user interface. To address these deficiencies, we introduced novel and efficient relevance-driven

clustering approximate optimization algorithms for expected F1-Score based on two different greedy strate-

gies (RadiCAL-Greedy and RadiCAL-BPS).

The offline evaluations we performed show that the binary partitioning search (RadiCAL-BPS) algo-

rithm we have proposed is relatively efficient, performs comparably to or exceeds K-means performance

when the relevance signal is moderately reliable, and provides a good approximation of the optimal MILP

solution in small instances where comparison is possible.

The user study we carried out on 24 users confirmed the outcome of the offline evaluation and has

demonstrated that our novel relevance-driven clustering based on BPS (RadiCAL-BPS) is highly effective

for our search scenario. Specifically we confirmed quantitatively that users achieved generally faster search

task completion, higher recall, and lower error using relevance-driven clustering compared to K-means and

a non-aggregation baseline. Users also indicated that the RadiCAL-BPS approach yielded lower perceived

workload on the NASA-TLX survey and higher usability on the SUS survey. And finally, to corroborate

all of these findings, users ultimately indicated a strong first preference for the relevance and interface-

driven clustering approach that comprises the novel contribution of this article. All the algorithms described

throughout this paper have been integrated into a tool called Visual Twitter Information Retrieval (Viz-

TIR) [23].8

8.2. Limitations

While we believe this work has made a number of significant contributions to both visual search interfaces

as well as the novel area of relevance-driven clustering, it is critical to acknowledge the following potential

limitations of the present work:

8https://github.com/D3Mlab/viz-ir

26



• The limitation of a pure relevance-driven clustering approach for visual search interfaces. While we

believe that clustering algorithms for visual search interfaces should include relevance as part of their

clustering criteria, it is likely that there are additional qualities of a “good” cluster for end users in

visual search interfaces (e.g., dense clusters) that could be folded into an enhanced clustering objec-

tive. Introducing such additional criteria in the objectives inherently raise multiobjective optimization

concerns regarding optimal trade-offs among all objective criteria [81].

• Unintended study participant variation due to lack of context regarding natural disasters in the US.

We chose US natural disasters due to the prevalence of tweet content on this topic. However, we

remark that we ran our study with University students residing in Toronto, Canada. Even though

instructions and suggestions were given to the participants regarding the possible natural disasters to

search, some participants mentioned the difficulty to come up with the right queries, mostly because

of their unfamiliarity with the US context.

• The limited number of users. We ran our user study with the maximum number of users that we

could run under time and budget constraints. For this reason, we could not compare a large number of

algorithms and furthermore we were unable to draw conclusions in our user study with a high degree of

statistical significance. Hence, we believe that our user study and its conclusions should be reinforced

with more participants as well as more clustering algorithms to be compared.

• Limitation of use cases to low noise queries. One key limitation of our relevance-driven clustering

algorithm was evidenced in our offline study of Section 6 when we noted that high noise in the relevance

score led to K-Means clustering outperforming the RadiCAL variants since in this case, ignoring the

relevance signal was advantageous. For this reason, we chose natural disasters in our dataset curation

that are concrete events whose associated queries tend to have relatively low noise in their relevance

scores. However, visual search use cases where queries are difficult to formulate and relevance harder

to predict (e.g., searches for public sentiment on political topics) may prove difficult for the relevance-

driven clustering techniques proposed here and require alternatives or enhancements to work well.

• Adding more clustering dimensions to the algorithm may not be trivial. Although we mentioned pre-

viously that we are not limited to the three display attributes of space, time, and keyword content, it

is not immediately clear how our efficient greedy approximation algorithms will perform for additional

meta-data dimensions. In particular, such dimensions may violate the property that the clustering

objective changes relatively monotonically as each cluster dimension bound is adjusted, which was an

assumption underlying the application of the highly efficient BPS approach.

8.3. Future Work

Overall, we believe this work underscores the importance of relevance-driven clustering optimization

methods specifically targeted for presentation in interactive visual search interfaces. However, there is still
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much more work to be done to fully explore the space of optimization objectives and algorithms for interactive

visual search. Interesting areas of future work include the following:

• Augmenting the relevance-focused F1-Score with additional cluster criteria to enhance word-level, spa-

tial, and temporal coherence. While we argued and empirically demonstrated that our expected F1-

Score cluster optimization objective does lead to coherently interpretable clusters, there is certainly the

possibility to explore more complex objectives that may further enhance coherency for end users. For

example, research could explore novel application-specific objectives that take into account physical

constraints of the display device as well as user cognitive constraints and preferences for cluster display

that could be used to augment (or even replace) the existing F1-Score relevance-based objective.

• Considering a ranking perspective of cluster relevance and optimization as opposed to a Boolean per-

spective. In this initial work, we did not want to address ranking aspects of visual clustering that

might entail showing each result in a cluster as a different size since this would require consideration of

psychovisual aspects of human information processing that are beyond the scope of the present article.

Nonetheless, such an extension is certainly possible in future work and would better leverage additional

degrees of freedom in the search results display to distinguish results by their level of relevance. A key

challenge in such an extension would involve developing new optimization algorithms that could deal

with the increased complexity of a ranking-style evaluation metric of cluster relevance.

• Considering a topic modeling perspective in place of a clustering perspective. While clustering attempts

to aggregate similar documents with the assumption that each document belongs to one cluster, topic

modeling methods such as (probabilistic) LSA [82, 83] or LDA [84] assume that a document is composed

of multiple topics and try to estimate the degree or probability of relevance that a document has to

each topic. While topic modeling provides a more granular view of document content, such approaches

pose a number of significant challenges for use with visual search interfaces. Specifically, this would

require highly effective spatio-temporal extensions of topic models, novel methods to visually display

topics as opposed to clusters, extensions to topic modeling that explicitly consider relevance-based

optimization criteria, and novel computational methods to effectively optimize within this extended

framework. Nonetheless, the benefits of a more granular topic modeling perspective may certainly

motivate extensions of this work to relevance-driven topic modeling for visual search interfaces.

In sum, we hope that this article provides a first stepping stone to a wide range of exciting future work on

the topic of relevance- and interface-driven clustering to help create the next generation of enhanced visual

information retrieval systems.
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scale cluster-based retrieval experiments on turkish texts. In Proceedings of the 30th Annual Inter-

national ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’07,

pages 891–892, New York, NY, USA, 2007. ACM.

[56] Rani Qumsiyeh and Yiu-Kai Ng. Clustering retrieved web documents to speed up web searches. In

Osvaldo Gervasi, Beniamino Murgante, Sanjay Misra, Marina L. Gavrilova, Ana Maria Alves Coutinho

Rocha, Carmelo Torre, David Taniar, and Bernady O. Apduhan, editors, Computational Science and

Its Applications – ICCSA 2015, pages 472–488, Cham, 2015. Springer International Publishing.

33



[57] Jonathan Dimond and Peter Sanders. Faster exact search using document clustering. In Costas Iliopou-

los, Simon Puglisi, and Emine Yilmaz, editors, String Processing and Information Retrieval, pages 1–12,

Cham, 2015. Springer International Publishing.

[58] Douglass R. Cutting, David R. Karger, Jan O. Pedersen, and John W. Tukey. Scatter/gather: A

cluster-based approach to browsing large document collections. In Proceedings of the 15th Annual

International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR

’92, pages 318–329, New York, NY, USA, 1992. ACM.

[59] Peter L. T. Pirolli. Information Foraging Theory: Adaptive Interaction With Information. Oxford

University Press, 2007.

[60] Nicholas J. Belkin and W. Bruce Croft. Information filtering and information retrieval: Two sides of

the same coin? Commun. ACM, 35(12):29–38, December 1992.

[61] Degi Young and Ben Shneiderman. A graphical filter/flow representation of boolean queries: A prototype

implementation and evaluation. J. Am. Soc. Inf. Sci., 44(6):327–339, July 1993.

[62] A. Nocaj and U. Brandes. Organizing search results with a reference map. IEEE Transactions on

Visualization & Computer Graphics, 18:2546–2555, 12 2012.

[63] Shixia Liu, Michelle X. Zhou, Shimei Pan, Yangqiu Song, Weihong Qian, Weijia Cai, and Xiaoxiao

Lian. Tiara: Interactive, topic-based visual text summarization and analysis. ACM Trans. Intell. Syst.

Technol., 3(2):25:1–25:28, February 2012.

[64] Shixia Liu, Michelle X. Zhou, Shimei Pan, Weihong Qian, Weijia Cai, and Xiaoxiao Lian. Interactive,

topic-based visual text summarization and analysis. In Proceedings of the 18th ACM Conference on

Information and Knowledge Management, CIKM ’09, pages 543–552, New York, NY, USA, 2009. ACM.

[65] Mathieu Jacomy, Tommaso Venturini, Sebastien Heymann, and Mathieu Bastian. Forceatlas2, a con-

tinuous graph layout algorithm for handy network visualization designed for the gephi software. PLOS

ONE, 9(6):1–12, 06 2014.

[66] K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understanding of hierarchical system struc-

tures. IEEE Transactions on Systems, Man, and Cybernetics, 11(2):109–125, Feb 1981.

[67] Tomihisa Kamada and Satoru Kawai. An algorithm for drawing general undirected graphs. Information

Processing Letters, 31(1):7 – 15, 1989.

[68] Jun Wang and Jianhan Zhu. On statistical analysis and optimization of information retrieval effec-

tiveness metrics. In Proceedings of the 33rd International ACM SIGIR Conference on Research and

Development in Information Retrieval, SIGIR ’10, pages 226–233, 2010.

34



[69] Ricardo A Baeza-Yates and Berthier Ribeiro-Neto. Modern Information Retrieval. Addison-Wesley

Longman Publishing Co., Inc., 2 edition, 2010.

[70] John Lafferty and Chengxiang Zhai. A study of smoothing methods for language models applied to ad

hoc information retrieval. In Proceedings of the 24th Annual International ACM SIGIR Conference on

Research and Development in Information Retrieval, SIGIR ’01, pages 334–342, New York, NY, USA,

2001. ACM.

[71] Cyril Goutte and Eric Gaussier. A probabilistic interpretation of precision, recall and f-score, with

implication for evaluation. In David E. Losada and Juan M. Fernández-Luna, editors, Advances in

Information Retrieval, pages 345–359, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

[72] G.M.P. van Kempen and L.J. van Vliet. Mean and variance of ratio estimators used in fluorescence

ratio imaging. Cytometry, 39(4):300–305, 2000.

[73] Zahra Iman, Scott Sanner, Mohamed Reda Bouadjenek, and Lexing Xie. A longitudinal study of topic

classification on twitter. In Proceedings of the 11th International AAAI Conference on Web and Social

Media a (ICWSM-17), pages 552–555, 2017.

[74] A. Charnes and W. W. Cooper. Programming with linear fractional functionals. Naval Research Logistics

Quarterly, 9(3-4):181–186, 1962.

[75] Fred Glover. Improved linear integer programming formulations of nonlinear integer problems. Man-

agement Science, 22(4):455–460, 1975.

[76] Dan Pelleg and Andrew W. Moore. X-means: Extending k-means with efficient estimation of the number

of clusters. In Proceedings of the Seventeenth International Conference on Machine Learning, ICML

’00, pages 727–734, San Francisco, CA, USA, 2000. Morgan Kaufmann Publishers Inc.

[77] Pia Borlund. The iir evaluation model: a framework for evaluation of interactive information retrieval

systems. Information research, 8(3):8–3, 2003.

[78] Diane Kelly. Methods for evaluating interactive information retrieval systems with users. Foundations

and Trends in Information Retrieval, 3(1-2):1–224, 2009.

[79] Sandra G. Hart and Lowell E. Staveland. Development of nasa-tlx (task load index): Results of em-

pirical and theoretical research. In Peter A. Hancock and Najmedin Meshkati, editors, Human Mental

Workload, volume 52 of Advances in Psychology, pages 139 – 183. North-Holland, 1988.

[80] John Brooke et al. Sus-a quick and dirty usability scale. Usability evaluation in industry, 189(194):4–7,

1996.

35



[81] Kalyanmoy Deb. Multi-objective optimization. In Edmund K. Burke and Graham Kendall, editors,

Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques, pages

403–449. Springer US, Boston, MA, 2014.

[82] S. Deerwester, S.T. Dumais, G.W. Furnas, T.K. Landauer, and R.A. Harshman. Indexing by latent

semantic analysis. Journal of the American Society for Information Science 41, pages 391–407, 1990.

[83] Thomas Hofmann. Probabilistic latent semantic indexing. In Proceedings of the 22Nd Annual Inter-

national ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’99,

pages 50–57, New York, NY, USA, 1999. ACM.

[84] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent dirichlet allocation. J. Mach. Learn. Res.,

3:993–1022, March 2003.

Appendix A. Optimal MILP Solutions for Benchmarking

In this Appendix, we outline the details of an exact Mixed Integer Linear Programming (MILP) optimization-

based formulation to maximize EF1 that provides a benchmark for evaluating the two proposed relevance-

driven algorithms (RadiCAL-Greedy and RadiCAL-BPS) proposed in Section 4 intended to approxi-

mately optimize EF1.

Appendix A.1. Fractional MILP Formulation

Leveraging notation defined in Section 3, we begin by reformulating the EF1 objective to prepare for further

optimization steps by replacing the global sum of scores of all information elements with a constant C =∑m
j=1 Sq(j):

EF1 =
2×

∑m
j=1 Sq(j)Iq(j)∑m

j=1 Iq(j) +
∑m
j=1 Sq(j)

=
2×

∑m
j=1 Sq(j)Iq(j)∑m

j=1 Iq(j) + C
(A.1)

In order to obtain the EF1-optimal cluster, we let binary variables Ifilter(j) ∈ {0, 1} indicate whether an

information element j is selected in by each cluster parameter and constrain that to be selected in the Global

cluster (i.e., Iq(j) = 1), j must be selected by all cluster parameters (i.e., a conjunction). This leads to the

following fractional MILP formulation with cluster parameter constraints to be defined later:

maximize
Icluster (j)

∑m
j=1 Sq(j)Iq(j)∑m
j=1 Iq(j) + C

s.t Iq(j) =
∧
Icluster (j)

(A.2)
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Appendix A.2. Transformation to a MILP

While there are no direct solvers for fractional MILPs, we can transform (A.2) into a pure MILP form for

which we have efficient and optimal solvers. To do this, we use the Charnes-Cooper method [74] and Glover

linearization method [75] with big-M constraints, where auxiliary variables w(j) and u are introduced9. Here,

w(j) is defined as w(j) = Iq(j)× u with u defined as follows:

u =
1∑m

j=1 Iq(j) + C
(A.3)

Then, the EF1 optimization problem is able to be transformed into the following MILP problem:

maximize
w,u

m∑
j=1

Sq(j)w(j)

s.t

m∑
j=1

w(j) + uC = 1

w(j) 6 u, w(j) 6M × Iq(j)

w(j) > u−M × [1− Iq(j)]

u > 0, Iq(j) ∈ {0, 1}, w(j) > 0

(A.4)

Appendix A.3. Additional MILP constraints for cluster definitions

As our goal is to select information elements through cluster parameters that define spatial, temporal, and

keyword coherence, we add three constraints to the above optimization to define each of these cluster criteria:

1. Time Selection Constraint: a two-element tuple (tstart, tend) indicating respectively the start and

the end of the time window.

Itime(j) =

1, if (tstart 6 t(j)) ∧ (t(j) 6 tend)

0, otherwise

(A.5)

2. Spatial Selection Constraint: a four-element tuple (xmin, ymin, xmax, ymax) to create a bounding

box selection in visualization interface.

Ipos(j) =


1, if (xmin 6 x(j)) ∧ (x(j) 6 xmax)∧

(ymin 6 y(j)) ∧ (y(j) 6 ymax)

0, otherwise

(A.6)

9https://optimization.mccormick.northwestern.edu/index.php/Mixed-integer_linear_fractional_programming_

(MILFP)
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3. Keyword Selection Constraint: a boolean vector of terms t∗k with size m - the size of the dictionary

of the global collection.

Iterm(j) =
∧
t∗k∈j

t∗k for k = 1, 2, · · · , m (A.7)

All terms with Iterm = 0 are included in the negation query.

4. Global Selection Constraint: for information element j to be selected globally, it must be simulta-

neously selected by the three selection parameters.

Iq(j) = Itime(j) ∧ Ipos(j) ∧ Iterm(j) (A.8)

We refer to the above MILP formulation in (A.4) with all selection constraints (A.5)–(A.8) as the Optimal

relevance-driven cluster denoted RadiCAL-MILP.
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