
Symbolic Dynamic Programming for Continuous State MDPs
with Linear Program Transitions

Jihwan Jeong∗1 , Parth Jaggi∗1 , Scott Sanner1,2
1Department of Mechanical & Industrial Engineering, University of Toronto, Canada

2Vector Institute, Toronto, Canada.
jhjeong@mie.utoronto.ca, parth.jaggi@mail.utoronto.ca, ssanner@mie.utoronto.ca

Abstract

Recent advances in symbolic dynamic program-
ming (SDP) have significantly broadened the class
of MDPs for which exact closed-form value func-
tions can be derived. However, no existing solu-
tion methods can solve complex discrete and con-
tinuous state MDPs where a linear program deter-
mines state transitions — transitions that are often
required in problems with underlying constrained
flow dynamics arising in problems ranging from
traffic signal control to telecommunications band-
width planning. In this paper, we present a novel
SDP solution method for MDPs with LP transitions
and continuous piecewise linear dynamics by intro-
ducing a novel, fully symbolic argmax operator. On
three diverse domains, we show the first automated
exact closed-form SDP solution to these challeng-
ing problems and the significant advantages of our
SDP approach over discretized approximations.

1 Introduction
Many real-world stochastic planning problems naturally in-
volve some component of continuous state such as resources,
time, or spatial configurations. A specialized and important
subclass of these problems require linearly constrained op-
timization in order to compute their transitions. For exam-
ple, in traffic signal control problems, it is often customary to
model flows of traffic according to a linear program (LP) that
tries to advance all cars as far as possible subject to flow con-
straints and queue capacities [Lin and Wang, 2005]. In an-
other example, telecommunications companies need to plan
bandwidth purchases from providers to serve user demand at
every time step [Adler et al., 2011]; here, the company se-
lects providers and capacities (edges in the graph). Then, a
max flow problem [Cormen et al., 2001] — cast as an LP —
computes the maximum traffic routed through the network.

Existing exact solutions fall short of addressing MDPs with
such LP transitions. For a discrete state space, it is possi-
ble in principle to compute an exact solution by enumerat-
ing all state-action pairs and solving an LP for each [Nicol

∗Authors contributed equally.

et al., 2013]. In discrete and continuous state MDPs (DC-
MDPs), such an enumeration is obviously impossible for an
infinite state space. While we might consider an approximate
discretized state approach, this suffers from the well-known
curse of dimensionality. I.e., for n continuous variables dis-
cretized into K segments, the Bellman backup would scale
as O(K2n × |A|) where |A| is the size of the action space;
for n = 2 and K = 100, this would require 100 million LP
evaluations! As we will demonstrate empirically, coarse dis-
cretizations lead to high approximation error, leaving us to
search for alternative non-discretization solution techniques.

An alternative to discretization is to take a more symbolic
approach. To this end, a recently developed class of methods
known as symbolic dynamic programming (SDP) has pro-
vided exact closed-form solutions to DC-MDPs [Sanner et
al., 2011] and their extension to continuous action parame-
ters [Zamani et al., 2012]. The latter introduced the symbolic
max operation over continuous parameters. The LP transi-
tion, however, specifically requires a symbolic multivariate
arg max operator that does not exist in the present literature.

This work aims to extend the symbolic max operator to the
multivariate arg max operator that can be leveraged for exact,
closed-form SDP solutions of DC-MDPs with LP transitions.
To be more concrete about our contributions, let us formalize
a SIMPLE TRAFFIC MANAGEMENT problem1:

Example 1 (SIMPLE TRAFFIC MANAGEMENT). Figure 1
shows a road configuration where an Eastbound road (r1)
intersects a Southbound road (r4). r1 diverges into r2 and
r3 after the intersection, and r4 transitions to r5. Each road
is one-way, and the state of the environment consists of traf-
fic volumes on the roads, i.e. s = (q1, q2, q3, q4, q5). For
simplicity, we assume cars do not leave r2, r3 and r5. The
controller needs to decide which traffic approach to give a
green light: r1 (a = 0) or r4 (a = 1). A positive reward is
received for each vehicle transitioning through the intersec-
tion. The max capacities of roads r1, r2, r3, r4 and r5 are
100, 120, 100, 100 and 100 respectively. The max number of
cars leaving r1 and r4 are capped at 20 and 15, respectively.

Notice that the ∆q∗i terms in the transition equations (Fig-

1For purposes of concise exposition and explanation of the opti-
mal value function and policy, this DC-MDP example uses contin-
uous states and deterministic transitions; the empirical results will
later discuss a range of DC-MDPs with stochastic transitions.

LP FORMULATION :

LP FORMULATION :

Figure 1: SIMPLE TRAFFIC MANAGEMENT. δ[·] is the Dirac function, and ∆qi (i = 2, 3, 4) is the volume of traffic entering or leaving ri.

ure 1) are the arg max solutions of the LP transition. Since
the state transitions depend on the arg max of the LP, we
have to symbolically obtain closed-form optimal solutions of
the LP to provide an exact closed-form solution to the over-
all MDP. Hence, as our primary technical contribution in this
work, we develop a multivariate symbolic arg max operator
by breaking it into respective arg and max operations and
showing that each can be computed in closed-form.

After preliminaries in Section 2, we first describe a univari-
ate arg max operation in Section 3, followed by the extension
to the multivariate case. The arg max operation facilitates a
novel and exact closed-form SDP approach that we evaluate
in Section 4 on problems from the Operations Research do-
main: SIMPLE TRAFFIC MANAGEMENT, RESERVOIR MAN-
AGEMENT and BANDWIDTH OPTIMIZATION. We also com-
pare our SDP approach with a discretized approximation
showing that the SDP approach is more efficient and scalable
without the error inherently induced by discretization.

2 Discrete and Continuous State MDPs
In a DC-MDP, vectors of variables (~b, ~x) = (b1, . . . , bn,
x1, . . . , xm) represent a state. Each state variable bi (1 ≤
i ≤ n) is boolean s.t. bi ∈{0, 1} and each xj (1 ≤ j ≤ m) is
continuous s.t. xj ∈[Lj , Uj] for Lj , Uj ∈ R. We also assume
a finite set of actions A = {a1, . . . , a|A|}.

We define a DC-MDP by the following: (1) a transition
model P (~b′, ~x′|~b, ~x, a) which specifies the probability of the
next state (~b′, ~x′) conditioned on the current state and action
a; (2) a reward function R(~b, ~x, a) which specifies the imme-
diate reward obtained by taking action a in state (~b, ~x); and
(3) a discount factor γ, 0 ≤ γ ≤ 1. A policy π specifies
the action π(~b, ~x) to take in each state (~b, ~x). Then, our goal
is to find an optimal sequence of horizon-dependent policies
Π∗ = (π∗,1, . . . , π∗,H) that maximizes V Π∗(s0), the expected
sum of discounted rewards over a horizon h;H ≥ 0:

V Π∗(s0) = EΠ∗

[H∑
h=0

γh · rh
∣∣∣~b0, ~x0

]
, (1)

Here rh is the reward obtained at horizon h while following
Π∗, and we assume a starting state s0 =(~b0, ~x0) at h = 0.

DC-MDPs as defined above are naturally factored in terms
of state variables (~b, ~x) [Boutilier et al., 1999]; as such a tran-
sition structure can be exploited in the form of a dynamic
Bayes net (DBN) [Dean and Kanazawa, 1989] where the indi-
vidual conditional probabilities P (b′i| · · · , a) and P (x′j | · · · , a)

condition on a subset of the current and next state variables.
We disallow synchronic arcs (variables conditioning on each
other in the same time step) within the binary ~b and contin-
uous variables ~x, but we allow synchronic arcs from ~b to ~x
(note: these conditions enforce the directed acyclic graph re-
quirements of DBNs). We write the joint transition model as

P (~b′, ~x′|~b, ~x, a) =

n∏
i=1

P (b′i|~b, ~x, a)

m∏
j=1

P (x′j |~b,~b′, ~x, a) (2)

where P (b′i|~b, ~x, a) may condition on a subset of ~b and ~x, and
P (x′j |~b,~b′, ~x, a) may condition on a subset of ~b,~b′ and ~x.

We refer to the conditional probabilities P (b′i|~b, ~x, a) for bi-
nary variables bi (1 ≤ i ≤ n) as conditional probability func-
tions (CPFs) — not tabular enumerations because these func-
tions can condition on both discrete and continuous states.
For continuous variables xj (1 ≤ j ≤ m), we represent the
CPFs P (x′j |~b, ~b′, ~x, a) as piecewise linear equations (PLEs)
with three properties: (1) PLEs can only condition on the ac-
tion, current state, and previous state variables; (2) PLEs are
deterministic meaning that to be represented by probabilities,
they must be encoded using Dirac δ[·] functions; and (3) PLEs
are piecewise linear, where the piecewise conditions may be
arbitrary logical combinations of ~b, ~b′ and linear inequalities
over ~x. Example PLEs are in Figure 1 where the use of the δ[·]
function ensures that this is a conditional probability function
that integrates to 1 over x′j . PLEs allow modeling of contin-
uous variable transitions as a mixture of δ functions used in
continuous state MDP solutions [Meuleau et al., 2009].

2.1 Dynamic Programming Solution
A continuous state generalization of value iteration [Bellman,
1957] is a dynamic programming algorithm for computing
the optimal value function V Π∗ in Eq.1. It proceeds by con-
structing a series of h-stage-to-go value functions V h(~b, ~x).
Specifically, initializing V 0(~b, ~x) (e.g., to V 0(~b, ~x) = 0) we
repeatedly compute the following for h ∈ {0, . . . ,H − 1}:

Qh+1
a (~b, ~x) = R(~b, ~x, a) + γ· (3)∑
~b′

∫
~x′

(
n∏

i=1

P (b′i|~b, ~x, a)

m∏
j=1

P (x′j |~b,~b′, ~x, a)

)
V h(~b′, ~x′)d~x′

V h+1(~b, ~x) = max
a∈A

{
Qh+1

a (~b, ~x)
}

(4)

2.2 Linear Program (LP) Transitions
In this paper, we consider DC-MDPs with LP transitions. In
this set of problems, the state transition function over contin-
uous state variables and the reward function depend on a p-
dimensional intermediate vector ~y∗, that is, P (~x′|~b, ~b′, ~x, a, ~y∗)
and R(~b, ~x, a, ~y∗); whereas the transition over binary state
variables remains as in Eq.2. Here, ~y∗ is determined by the
following LP given a fixed state and action~b, ~x, a:

~y∗ = arg max
~y∈Dy

f(~b, ~x, a, ~y) s.t. φi(~b, ~x, a, ~y), ∀i ∈ {1, . . . , k}

(5)
where Dy ∈ Rp is the domain of the continuous vector ~y; φi
(1 ≤ i ≤ k) and f are respectively the linear constraints and
the linear objective of the LP.

3 Symbolic Dynamic Programming
In this section, we review and extend the symbolic dynamic
programming (SDP) framework of value iteration (VI) for
DC-MDPs [Sanner et al., 2011] to accommodate LP transi-
tions. Continuous action [Zamani et al., 2012; Zamani et al.,
2013] extensions are straightforward but omitted for clarity.

3.1 Case Operators and SDP
In SDP, we assume that all symbolic functions can be repre-
sented in case form [Boutilier et al., 2001]:

f =

φ1 : f1

...
...

φk : fk

(6)

Here φi are logical formulae defined over the state s =

(~b, ~x) and the intermediate variable ~y from Eq.5, which
can include arbitrary logical (∧,∨,¬) combinations of (1)
boolean variables and (2) linear inequalities (≥, >,≤, <)
over continuous variables. Each φi will be disjoint from the
other φj (j 6= i); however, φi may not exhaustively cover
the entire domain, so f may be undefined for some variable
assignments. In this work, we assume the fi are also linear
in the continuous variables. Furthermore, we require f to be
continuous (including no discontinuities at partition bound-
aries); case operations will then preserve this property.

Unary operations such as scalar multiplication c·f (c ∈ R)
or negation−f on case statements are simply applied to each
fi (1 ≤ i ≤ k). To perform a binary operation on two case
statements, we take the cross-product of the logical parti-
tions of each case statement and perform the operation on
the resulting paired partitions. Letting each φi and ψj denote
generic first-order formulae, we can perform the “cross-sum”
⊕ of two (unnamed) cases in the following manner:

{
φ1 : f1

φ2 : f2
⊕

{
ψ1 : g1

ψ2 : g2
=

φ1 ∧ ψ1 : f1 + g1

φ1 ∧ ψ2 : f1 + g2

φ2 ∧ ψ1 : f2 + g1

φ2 ∧ ψ2 : f2 + g2

Likewise, we perform 	 and ⊗ by, respectively, subtract-
ing or multiplying partition values to obtain the result. Some
partitions resulting from case operators may be infeasible and
removed.

Next, we define symbolic case maximization whose result
is still piecewise linear:

−∞ Δ𝑞!+Δ𝑞"

𝑞! +Δ𝑞! ≤ 120

𝑞"+ Δ𝑞" ≤ 100

Δ𝑞! + Δ𝑞" ≤ 𝑞#

Δ𝑞! + Δ𝑞" ≤ 20

Figure 2: The LP in SIMPLE TRAFFIC MANAGEMENT when a = 0
(see Figure 1). Satisfying all the constraints leads to the objective
function of the LP; otherwise it leads to the -∞ leaf node.

casemax
({φ1 :f1

φ2 :f2
,

{
ψ1 :g1

ψ2 :g2

)
=

φ1 ∧ ψ1 ∧ f1 > g1 : f1

φ1 ∧ ψ1 ∧ f1 ≤ g1 : g1

φ1 ∧ ψ2 ∧ f1 > g2 : f1

φ1 ∧ ψ2 ∧ f1 ≤ g2 : g2

...
...

Another important operation is symbolic substitution. The
operation takes a set σ of variables and their substitutions,
e.g., σ = {x′1/(x1 + x2), x′2/(x1 − x2)} where the LHS
of / represents the substitution variable and the RHS of / is
the expression that should be substituted in. Then, we write
the substitution of a non-case function fi with σ as fiσ. We
can also substitute into case partitions φj by applying σ to
each inequality operand. Then, we can define the substitution
operation for case statements in general:

f =

φ1 : f1

...
...

φk : fk

, fσ =

φ1σ : f1σ
...

...
φkσ : fkσ

With the insight that integration over PLEs reduces to sym-
bolic substitution [Sanner et al., 2011], SDP simply executes
value iteration in Eqs. 3 and 4 using the DC-MDP definition
defined previously and the case operators defined above to
yield a closed-form, exact symbolic derivation of the value
function [Sanner et al., 2011].

3.2 Multivariate Symbolic max Operator
Before we proceed to extend SDP to DC-MDPs with LP tran-
sitions, we first have to understand how to represent and ma-
nipulate an LP in the symbolic case notation. To this end,
note that an LP (Eq. 5) has a natural case structure and can be
represented even more compactly in XADD form [Sanner et
al., 2011] shown in Figure 2: every leaf shows a value fi and
every path from root to leaf is uniquely associated with one
partition φi (a conjunction of decisions) and the value fi. A
solid line from a decision node to another node indicates the
true branch of the parent node, while a dotted line shows the
false branch. Each decision node corresponds to a constraint
of the LP, and false branches lead to the −∞ node. This is
an intuitive way to specify LP infeasibility as we are solving
a maximization problem. We denote the LP as f(~x,~b, ~y).

Symbolically solving an LP amounts to symbolically max-
imizing out continuous variables from the case statement.
Thus, we adopt the approach in [Zamani et al., 2012] to make
three observations: (1) multivariate maximization can be de-
composed into a series of univariate maximizations; (2) to
maximize a case statement w.r.t. a variable yl (1 ≤ l ≤ p), we

need to perform a symbolic maxyl
on each case partition then

combine results via casemax; (3) a partition φi defines lower
(LB i) and/or upper (UB i) bounds over yl. Since fi is linear,
the max of fi has to occur at one of the bounds. I.e.,

max
yl

φ1 : f1

...
...

φk : fk

= max
yl

casemax
i=1,...,k

{
φi : fi
¬φi : −∞

(7)

= casemax
i=1,...,k

max
yl

{
φi : fi
¬φi : −∞

= casemax
i=1,...,k

{
φi,ind : casemax

(
fiσ

lb
i , fiσ

ub
i

)
¬φi,ind : −∞

where φi,ind includes LB i ≤ UB i and decisions in φi that
are independent of yl. σlb

i = {yl/LB i} and σub
i = {yl/UB i}

represent substitution of the lower and upper bounds to yl in
fi, respectively. Note that LB i and UB i are also symbolic
case functions (see the example in the following section).

3.3 Multivariate Symbolic argmax Operator
We now introduce the novel symbolic arg max operation that
will allow us to analytically solve for the solution of our LP
transitions in Eq.5, substitute this symbolic LP solution to
reduce our transitions to a standard DC-MDP, and then apply
the known SDP solution for this reduced DC-MDP.

For each (φi, fi), either yl = LBi or UBi will output
the max in Eq.7. So, we annotate fi accordingly to keep
track of which yl value has resulted in the max for the par-
ticular logical partition. Let f(~x,~b, ~y−l) = maxyl f(~x,~b, ~y).
If we assume — for the sake of simplicity — the values of
casemax(fiσ

lb
i , fiσ

ub
i) are different for all i (1 ≤ i ≤ k)2,

then every function value of f(~x,~b, ~y−l) can be uniquely
traced back to an annotated yl as follows:

f(~x,~b, ~y−l) =

ψ1 : f(1,−yl), o1

...
...

ψk′ : f(k′,−yl), ok′

(8)

Here, each partition ψj (1 ≤ j ≤ k′) has an associated func-
tion value f(j,−yl) and annotation oj .

The trick is to split arg max into arg and max. Once we
obtain f(~x,~b, ~y−l) from max, we perform arg on it to retrieve
the annotations and to build a symbolic case statement repre-
senting arg maxyl

f(~x,~b, ~y) as in Eq.9.

y∗l = argyl
f(~x,~b, ~y−l) =

ψ1 : o1

...
...

ψk′ : ok′

(9)

The arg operation removes f(j,−yl) from ψj and leaves oj
only. Note that oj can be a case function, in which case the
partitions in oj are combined with ψj and simplified.

For the multivariate arg max, let’s assume we maximize
y1, . . . , yp in this order, namely max~y f(~x,~b, ~y) = maxyp · · ·
maxy1 f(~x,~b, ~y). Then, we repeat the following steps p times:

2When the two arguments are the same for some i, we can
have multiple optimal solutions. As often done by off-the-shelf LP
solvers, we simply select one optimal solution in this case.

1. Compute the innermost maximization f(~x,~b, ~y−(1:l)) =

maxyl f(~x,~b, ~y−(1:l−1));
2. Perform arg operation on f(~x,~b, ~y−(1:l)) to get y∗l .
This way, we obtain y∗l for all l = 1, . . . , p in case form.

Note that y∗l will still contain ‘outer’ variables yl′ (l + 1 ≤
l′ ≤ p) in its case statement. However, in order to get a closed-
form symbolic solution to MDPs with LP transitions, we need
to be able to express each y∗l only with ~b, ~b′, ~x.

Removing outer variables from the case statement of y∗l
involves repeated substitution of y∗l′ . Observe that y∗p contains
only ~b, ~b′, ~x, while y∗p−1 additionally has yp. Therefore by
substituting y∗p into y∗p−1, it now contains ~b, ~b′, ~x only. For
y∗p−2, we need to substitute both y∗p and the modified y∗p−1.
This process should be repeated for all yl (1 ≤ l ≤ p− 1).

However, we cannot substitute y∗l+1 into y∗l via the sym-
bolic substitution since y∗l+1 is also a case statement. Instead,
we merge two case statements as described in Example 2.
Example 2. Define g(x, y) and y = h(x) as follows:

g(x, y) =

{
ν1 : x+ y

¬ν1 : x− y
, y = h(x) =

{
ν2 : 3x

¬ν2 : 2x

When we substitute y = h(x) into g(x, y), we get

g(x, h(x)) =

ν2 ∧ ν1 : x+ 3x = 4x

ν2 ∧ ¬ν1 : x− 3x = −2x

¬ν2 ∧ ν1 : x+ 2x = 3x

¬ν2 ∧ ¬ν1 : x− 2x = −x

So, we take the cross-product of the logical partitions and
substitute an appropriate value of y into g(x, y).

We summarize in four major steps how to get a closed-form
arg max solution to an LP using the a = 0 case in Example
1. We denote the LP in case form as f(q1, q2, q3,∆q2,∆q3).
1. Univariate maximization with annotation. In Figure 2, the

feasible partition consists of {(∆q2 + ∆q3 ≤ 20) ∧ (q2 +
∆q2 ≤ 120)∧ (q3 + ∆q3 ≤ 100)∧ (∆q2 + ∆q3 ≤ q1)}. Call
this partition φi, then we have φi : fi = ∆q2 + ∆q3 and
φj : −∞ (j 6= i). When we maximize out ∆q2, decisions
in φi and a domain bound ∆q2 ∈ [0, 20] define UB and LB
of ∆q2. For example, UB = casemin(20, 20 − ∆q3, 120 −
q2, q1−∆q3), which becomes the following case statement:

(q2 −∆q3 ≥ 100) ∧ (q1 + q2 −∆q3 ≥ 120) : 120− q2
(q2 −∆q3 ≥ 100) ∧ (q1 + q2 −∆q3 < 120) : q1 −∆q3
(q2 −∆q3 < 100) ∧ (q1 ≤ 20) : q1 −∆q3
(q2 −∆q3 < 100) ∧ (q1 > 20) : 20−∆q3

The maximum of fi occurs either at ∆q2 = UB or LB .
Hence, we take casemax to determine the max, that is,

max
∆q2

fi = casemax(fi{∆q2/LB}, fi{∆q2/UB})

Then, we incorporate independent decisions: LB ≤ UB
and q3 + ∆q3 ≤ 100. We refer readers to [Zamani et al.,
2012] for the step-by-step walk-through. The difference is
that we annotate values with either LB or UB .

2. Annotation preserving casemax. Once continuous max is
done, we take casemax and obtain f(q1, q2, q3,∆q3). This
step preserves the annotations from Step 1.

3. Application of arg operator. We then compute ∆q∗2 =
arg∆q2

f(q1, q2, q3,∆q3) (Eq.9).
We repeat Step 1-3 on f(q1, q2, q3,∆q3) to maximize over
∆q3, producing f(q1, q2, q3). Then, ∆q∗3 is a case function
of q1, q2, q3, while ∆q∗2 is a case function of q1, q2, q3,∆q3.

4. Case substitutions. Finally, we substitute the case state-
ment ∆q∗3 into ∆q∗2 . Both are now functions of q1, q2, q3

and are used in defining the state transition function.

3.4 SDP with LP Transitions
Having introduced the symbolic arg max operator, we can
symbolically solve Eq.5, resulting in a case function u(~b, ~x, a)
in Eq.10. This step only has to occur once. Subsequently, we
define a symbolic substitution σ~y∗ to substitute the solution
into the transition and reward functions (as in Eq.11-13).

~y∗ = u(~b, ~x, a) (10)

σ~y∗ = {~y/u(~b, ~x, a)} (11)

P (~x′|~b′,~b, ~x, a) = P (~x′|~b′,~b, ~x, a, ~y) σ~y∗ (12)

R(~b, ~x, a) = R(~b, ~x, a, ~y) σ~y∗ (13)

Overall, we have reduced a DC-MDP with LP transitions to
a standard DC-MDP, which can be solved in closed-form by
leveraging its SDP solution (Section 3.1).

4 Empirical Results
We now apply our methodology for exact SDP with LP tran-
sitions to SIMPLE TRAFFIC MANAGEMENT, RESERVOIR
MANAGEMENT, and BANDWIDTH OPTIMIZATION.3

We also compare to approaches that discretize the state
space of the DC-MDP as discussed in Section 1. While LP
transitions may suggest some form of mixed integer linear
program (MILP) solution, we note that existing MILP-based
solutions for finite horizon DC-MDPs (with no LP transi-
tions) [A. Raghavan et al., 2017] provide no error guarantees
and only solve for a known starting state, whereas our SDP
approach provides an exact value function for all states.

SIMPLE TRAFFIC MANAGEMENT Figure 3 (left) shows
the symbolic and approximate value function, V 13(q1, q4) for
H = 13. We observe that locations in the state space where
all available vehicles in roads r1 and r4 can be accommo-
dated within destination lanes show a much higher slope in
the value function. These are regions where q1 and q4 are
closer to their lower domain limits. As q1 reaches a threshold
value, all available spaces in q2 and q3 have filled, and there
is no consequent gain in value with increase in q1. A simi-
lar observation can also be made for q4. The value function
maxes out when all destination lanes have reached capacity.

The approximate value function can only be obtained for a
maximum discretization of 14 before it’s no longer feasible to
solve for a finer granularity due to a memory explosion as ev-
ident in Figure 4. This shows the accuracy and computational
limitations of approximate discretization solutions.

3Implementations can be found at https://github.com/
jihwan-jeong/xadd-inference/. Additional information
regarding the empirical evaluations can also be found in Appendix.

RESERVOIR MANAGEMENT In a Reservoir management
problem [Mahootchi, 2009; Yeh, 1985], we examine a 2-
reservoir system with one upstream reservoir (r1) having no
electricity generation facility and one downstream reservoir
(r2) with a hydroelectric power generator. The decision is
whether to allow or block the flow of water between the two
reservoirs. Water is always discharged from r2 within its op-
erating bounds to produce maximum electricity according to
an LP optimization. Water evaporates from a reservoir with
the amount proportional to the water level li. When the water
level is close to its lower limit, we allow a small amount of
water to flow into a reservoir to make the LP in Eq.14 feasi-
ble. Finally, the stochastic rainfall is described in Eq.15.

The state vector consists of two continuous variables and
one binary variable, i.e. s = (l1, l2, r). The associated transi-
tion LP and the resulting state transitions are as follows:

max
q1,q2

q2 (14)

s.t. 1000 ≤ 0.98 · l1 − q1 + 200 · r ≤ 3000

700 ≤ 0.98 · l2 + q1 − q2 + 200 · r ≤ 1500

0 ≤ q1 ≤ 250 · a, 0 ≤ q2 ≤ 300

P (r′ = 1|r = i) = 0.4, i ∈ {0, 1} (no-rain/rain) (15)

P (l′1|l1, l2, r) = δ
(
l′1 −

{
0.98 · l1 − q∗1 + 200 · r

})
P (l′2|l1, l2, r) = δ

(
l′2 −

{
0.98 · l2 + q∗1 − q∗2 + 200 · r

})
R(l1, l2, r, a) = q∗2

where the water flow is blocked when a = 0, and allowed
within a limit when a = 1. q∗1 , q

∗
2 are arg max of Eq.14, and

we can see that q∗1 , q
∗
2 are case functions of l1, l2, r and a.

Figure 3 (middle) shows the value function for the RESER-
VOIR MANAGEMENT problem for H = 4, V 4(l1, l2, r =
False). We can see that regions where q1 and q4 are close to
their domain upper limits correspond to areas with the high-
est values. The symbolic and the approximate solution have
similar surface contours but approximation error still creeps
in, especially in regions where l1 is high and l2 is low.
BANDWIDTH OPTIMIZATION In a bandwidth optimiza-
tion problem [Adler et al., 2011], a service provider is given a
network traffic demand from users, and the company needs to
purchase bandwidths from ISPs (Internet service providers).
In each time period, the company subscribes to a different
set of links (with differing costs) offered by different ISPs to
meet the current demand and residual demand from previous
time steps while minimizing operating costs.

Now, consider a simple network with 5 links (L =
{o1, o2, 12, 1e, 2e}) and 3 paths (o → 1 → e, o → 1 →
2→ e, o→ 2→ e) from the origin (o) to the edge server (e).
The company has 7 buying options (|A| = 7), each of which
corresponds to purchasing a different combination of paths.
We firstly define the associated max flow problem:

max
xij ,ij∈L

xo1 + xo2 (16)

s.t. xo1 = x12 + x1e, (17)
x2e = xo2 + x12

0 ≤xij ≤ bij ·Kij , ∀ij ∈ L (18)

where xij is the max flow on link ij and Kij is its capacity.
Eq.17 enforces the balance in flow at every node. Also, given

https://github.com/jihwan-jeong/xadd-inference/
https://github.com/jihwan-jeong/xadd-inference/

q10
40

80
q4 0

30
60

90

V
13

0

40

80

0

25

50

75

100

20

40

60

80

100

l11000

2000
3000

l2 800

1200

V
4

0

600

1200

0

250

500

750

1000

600

800

1000

1200

2500 5000 7500 10000
DemDnd (d)

30000

40000

50000

V
7 ASSrox. D 10

ASSrox. D 50
ASSrox. D 5000
Symbolic

Figure 3: SIMPLE TRAFFIC MANAGEMENT(left): Value function V 13(q1, q4) when q2, q3 and q5 are 85, 85 and 50 respectively. Plot
includes symbolic (red) and approximate solution (blue) where the latter was obtained with the discretization of 14. RESERVOIR MANAGE-
MENT(middle): Symbolic value function V 4(l1, l2, r = 0) alongside approximate value function with the discretization of 500. Both values
have similar surfaces except when l1 nears its lower domain limit due to LP infeasibility. In both examples, differences in the surfaces arise
due to the approximation error of the discretized solution. BANDWIDTH OPTIMIZATION(right): Symbolic and approximate value functions
V 7(d, l = 0) with different discretizations D. The values match with high discretizations, but they differ when using coarser discretization.

a buying option, bij = 1 for the links on the paths. Otherwise,
bij = 0, thereby restricting xij to 0.

We assume the following pricing policy: the provider pays
(i) mij for purchasing the bandwidth on link ij and (ii) a fee
as per the actual traffic routed on the link (c·xij with unit cost
c). Then the states, actions and rewards are defined as below:

• State s = (d, l) where d ∈ R+ is the remaining demand
and l ∈ {0, 1} (low, high) is the level of new demand.

• Action {a1, . . . , a7}.
• Reward: R(d, l, a) = r · xd − p · (d − xd) − c · xd −∑

i,j∈Nmij ·bij . Here, xd = min(d, x∗o1+x∗o2) is the ac-
tual routed traffic to meet the demand d. r and p are the
unit revenue for the traffic delivered and the unit penalty
for unmet demands, respectively.

The state transition is defined as the following, where dnew =
2500 when l = high and dnew = 1200 otherwise:

d′ =

{
(d > x∗o1 + x∗o2) : d− (x∗o1 + x∗o2) + dnew

(d ≤ x∗o1 + x∗o2) : dnew.

P (l′ = α|l = α) = 0.7, ∀α ∈ {high, low}

In Figure 3 (right), we can clearly see the value function
is piecewise. This suggests that in each interval there is a
different optimal policy. However, the approximate solution
misses some intervals when the discretization size is small.

Time and Space Note that our solution presolves for the
closed-form ~y∗ in Eq.5 and substitutes the analytical solution
into transition and reward functions before starting VI. This
way, we only need to solve the symbolic LP argmax once.
Figure 4 shows the time and space complexity of approximate
solutions along with that of the symbolic solutions. As be-
fore, we see an exponential blowup for the approximate dis-
cretized solution as the discretization granularity increases.
We also note that as the number of state variables vary be-
tween different problems, the discretization-based approach
suffers from the curse of dimensionality with respect to mem-
ory requirements, while in stark contrast, the SDP solution
size is independent of the number of state variables.

For problems with a long horizon, the SDP approach may
need to compute larger and more complex symbolic value
functions (cf. Figure 5 in Appendix), depending on the char-
acteristics of the problem. While approximate discretization
methods demonstrate some computational advantages in this

Figure 4: Memory and time vs. discretization. We observe exponen-
tial increases in memory as discretization gets finer, with the rates of
increase being determined by the number of variables. Horizontal
lines show average memory (over iterations) and total time required
by the symbolic solutions, which are generally found to be much
lower in memory use than their discretized counterpart.

setting, their limited accuracy may make it harder to use the
approximate solution when quality guarantees are required.

5 Related Work and Concluding Remarks
Building on a long line of work in solving continuous state
MDPs [Boyan and Littman, 2001; Feng et al., 2004; Li and
Littman, 2005] culminating in expressive symbolic dynamic
programming (SDP) approaches [Sanner et al., 2011], we
proposed a novel SDP method for exactly solving DC-MDPs
with LP transitions. Specifically, we extended the symbolic
max operator [Zamani et al., 2012] to an arg max operator
via annotation augmentations to the case notation and its op-
erations. Overall, this work provides the first exact solution
method for DC-MDPs with LP transitions, and hence opens
up a new class of challenging MDPs for research exploration.

For future work, one could leverage initial state focused
techniques [Meuleau et al., 2009; Vianna et al., 2015] to
reduce solution scope and size. Recent advances from
Weighted Model Integration (WMI) [Kolb et al., 2018] may
speed up computation of the symbolic max and arg max.
Finally, methods for approximately bounding optimal value
function structure [St-Aubin et al., 2000; Vianna et al., 2013]
or further afield [Remi Munos, 2002; Kveton et al., 2006;
Marecki et al., 2007] may improve scalability.

References
[A. Raghavan et al., 2017] A. Raghavan, S. Sanner, P. Tade-

palli, A. Fern, and R. Khardon. Hindsight optimization for
hybrid state and action mdps. In Proceedings of the 31st
AAAI Conference on Artificial Intelligence (AAAI-17), San
Francisco, USA, 2017.

[Adler et al., 2011] Micah Adler, Ramesh Sitaraman, and
Harish Venkataramani. Algorithms for optimizing the
bandwidth cost of content delivery. Computer Networks,
55:4007–4020, 12 2011.

[Bellman, 1957] Richard E. Bellman. Dynamic Program-
ming. Princeton University Press, Princeton, NJ, 1957.

[Boutilier et al., 1999] Craig Boutilier, Thomas Dean, and
Steve Hanks. Decision-theoretic planning: Structural as-
sumptions and computational leverage. JAIR, 11:1–94,
1999.

[Boutilier et al., 2001] Craig Boutilier, Ray Reiter, and Bob
Price. Symbolic dynamic programming for first-order
MDPs. In IJCAI-01, pages 690–697, Seattle, 2001.

[Boyan and Littman, 2001] Justin Boyan and Michael
Littman. Exact solutions to time-dependent MDPs. In
Advances in Neural Information Processing Systems
NIPS-00, pages 1026–1032, 2001.

[Cormen et al., 2001] Thomas H. Cormen, Charles E. Leis-
erson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms. The MIT Press, 2 edition, 2001.

[Dean and Kanazawa, 1989] Thomas Dean and Keiji
Kanazawa. A model for reasoning about persistence and
causation. Computational Intelligence, 5(3):142–150,
1989.

[Feng et al., 2004] Zhengzhu Feng, Richard Dearden, Nico-
las Meuleau, and Richard Washington. Dynamic program-
ming for structured continuous markov decision problems.
In Uncertainty in Artificial Intelligence (UAI-04), pages
154–161, 2004.

[Kolb et al., 2018] Samuel Kolb, Martin Mladenov, Scott
Sanner, Vaishak Belle, and Kristian Kersting. Efficient
symbolic integration for probabilistic inference. In IJCAI,
pages 5031–5037, 2018.

[Kveton et al., 2006] Branislav Kveton, Milos Hauskrecht,
and Carlos Guestrin. Solving factored mdps with hybrid
state and action variables. Journal Artificial Intelligence
Research (JAIR), 27:153–201, 2006.

[Li and Littman, 2005] Lihong Li and Michael L. Littman.
Lazy approximation for solving continuous finite-horizon
mdps. In National Conference on Artificial Intelligence
AAAI-05, pages 1175–1180, 2005.

[Lin and Wang, 2005] Wei-Hua Lin and Chenghong Wang.
An enhanced 0–1 mixed-integer lp formulation for traffic
signal control. Intelligent Transportation Systems, IEEE
Transactions on, 5:238 – 245, 01 2005.

[Mahootchi, 2009] Masoud Mahootchi. Storage System
Management Using Reinforcement Learning Techniques
and Nonlinear Models. PhD thesis, University of Water-
loo,Canada, 2009.

[Marecki et al., 2007] Janusz Marecki, Sven Koenig, and
Milind Tambe. A fast analytical algorithm for solving
markov decision processes with real-valued resources. In
International Conference on Uncertainty in Artificial In-
telligence IJCAI, pages 2536–2541, 2007.

[Meuleau et al., 2009] Nicolas Meuleau, Emmanuel Benaz-
era, Ronen I. Brafman, Eric A. Hansen, and Mausam. A
heuristic search approach to planning with continuous re-
sources in stochastic domains. Journal Artificial Intelli-
gence Research (JAIR), 34:27–59, 2009.

[Nicol et al., 2013] Sam Nicol, Olivier Buffet, Takuya Iwa-
mura, and Iadine Chadès. Adaptive management of mi-
gratory birds under sea level rise. In International Confer-
ence on Uncertainty in Artificial Intelligence IJCAI, pages
2955–2957, 08 2013.

[Remi Munos, 2002] Andrew Moore Remi Munos. Vari-
able resolution discretization in optimal control. Machine
Learning, 49, 2–3:291–323, 2002.

[Sanner et al., 2011] Scott Sanner, Karina Valdivia Delgado,
and Leliane Nunes de Barros. Symbolic dynamic pro-
gramming for discrete and continuous state mdps. In
Proceedings of the 27th Conference on Uncertainty in AI
(UAI-2011), Barcelona, 2011.

[St-Aubin et al., 2000] Robert St-Aubin, Jesse Hoey, and
Craig Boutilier. APRICODD: Approximate policy con-
struction using decision diagrams. In NIPS-2000, pages
1089–1095, Denver, 2000.

[Vianna et al., 2013] L. G. Rocha Vianna, S. Sanner, and
L. N. de Barros. Bounded approximate symbolic dynamic
programming for hybrid MDPs. In Proceedings of the 29th
Conference on Uncertainty in Artificial Intelligence (UAI-
13), Bellevue, USA, 2013.

[Vianna et al., 2015] L. G. Rocha Vianna, L. N. de Barros,
and S. Sanner. Real-time symbolic dynamic programming
for hybrid MDPs. In Proceedings of the 29th AAAI Con-
ference on Artificial Intelligence (AAAI-15), Austin, USA,
2015.

[Yeh, 1985] William G Yeh. Reservoir management and op-
erations models: A state-of-the-art review. Water Re-
sources research, 21,12:1797–1818, 1985.

[Zamani et al., 2012] Z. Zamani, S. Sanner, and C. Fang.
Symbolic dynamic programming for continuous state and
action mdps. In Proceedings of the 26th AAAI Conference
on Artificial Intelligence (AAAI-12), Toronto, Canada,
2012.

[Zamani et al., 2013] Z. Zamani, S. Sanner, K. Delgado, and
L. Barros. Robust optimization for hybrid mdps with state-
dependent noise. In IJCAI, 2013.

Appendix

Origin
(o)

Node 1

Node 2

Edge server (e)

𝑥 !" 𝑥"#

𝑥
!$

𝑥 $#

𝑥"$

Figure 5: The network used in the BANDWIDTH OPTIMIZATION
problem.

Details of BANDWIDTH OPTIMIZATION Figure 5 repre-
sents the network of the BANDWIDTH OPTIMIZATION prob-
lem, depicting how the origin, edge server and intermedi-
ate nodes are connected through links. There are 3 viable
paths (path1: o1 → 1e, path2: o1 → 12 → 2e, path3:
o2 → 2e) that the service provider can purchase and the
number of buying options (7) relates to the different ways in
which these paths can be purchased. That is, the action space
is A =

{
{path1}, {path2}, {path3}, {path1,path2},

{path2,path3}, {path1,path3}, {path1,path2,path3}
}

.
In our experiments, we use mo1,mo2,m12,m1e,m2e, c,

r, p = 1000, 800, 600, 750, 800, 1.3, 6, 2, respectively. Also,
the capacity of each link isKo1,Ko2, K12,K1e,K2e = 2100,
1800, 1000, 1500, 1700.

0

500

1000

Si
ze

 o
f V

h (
No

de
s)

Traffic Management
Reservoir Management
Bandwidth Optimization

0 2 4 6 8 10 12
Horizon (h)

0

20000

40000

Ti
m

e
(m

s)

Figure 6: Space and elapsed time vs. horizon for SIMPLE TRAFFIC
MANAGEMENT, RESERVOIR MANAGEMENT and BANDWIDTH
OPTIMIZATION. RESERVOIR MANAGEMENT solution sees large
increases in the number of nodes with increasing horizons, while
BANDWIDTH OPTIMIZATION solution has the highest values of
time elapsed in each iteration. SIMPLE TRAFFIC MANAGEMENT
needs much fewer resources and time, all the while reaching conver-
gence in the given iterations.

Space and time vs. horizon for the symbolic approach In
Figure 6, we show how the symbolic solution scales with
horizon for different classes of problems. We can see that the
number of horizons over which the problem can be solved
is dependent on the problem formulation itself. The SIMPLE
TRAFFIC MANAGEMENT problem has more continuous vari-
ables, but it is the RESERVOIR MANAGEMENT problem that
shows a comparative blow up in space and time. The fact that
the latter contains a stochastic binary variable may complicate
computations. BANDWIDTH OPTIMIZATION problem on the
other hand, only experiences blowups for the time elapsed per
iteration all the while staying steady in terms of memory us-
age. This figure in conjunction with Figure 4 shows us the
relative efficiency of the symbolic solution in terms of mem-
ory usage.

	Introduction
	Discrete and Continuous State MDPs
	Dynamic Programming Solution
	Linear Program (LP) Transitions

	Symbolic Dynamic Programming
	Case Operators and SDP
	Multivariate Symbolic max Operator
	Multivariate Symbolic argmax Operator
	SDP with LP Transitions

	Empirical Results
	Related Work and Concluding Remarks

