
Bayesian Experience Reuse for Learning from Multiple Demonstrators

Michael Gimelfarb∗ , Scott Sanner∗ and Chi-Guhn Lee
Department of Mechanical and Industrial Engineering, University of Toronto

mike.gimelfarb@mail.utoronto.ca, ssanner@mie.utoronto.ca, cglee@mie.utoronto.ca

Abstract
Learning from Demonstrations (LfD) is a power-
ful approach for incorporating advice from experts
in the form of demonstrations. However, demon-
strations often come from multiple sub-optimal ex-
perts with conflicting goals, rendering them dif-
ficult to incorporate effectively in online settings.
To address this, we formulate a quadratic program
whose solution yields an adaptive weighting over
experts, that can be used to sample experts with rel-
evant goals. In order to compare different source
and target task goals safely, we model their uncer-
tainty using normal-inverse-gamma priors, whose
posteriors are learned from demonstrations using
Bayesian neural networks with a shared encoder.
Our resulting approach, which we call Bayesian
Experience Reuse, can be applied for LfD in static
and dynamic decision-making settings. We demon-
strate its effectiveness for minimizing multi-modal
functions, and optimizing a high-dimensional sup-
ply chain with cost uncertainty, where it is also
shown to improve upon the performance of the
demonstrators’ policies.

1 Introduction
Learning from demonstrations (LfD) is a powerful approach
for incorporating advice from experts in the form of demon-
strations to accelerate the learning of new skills. However,
existing work in LfD often assume that demonstrations are
generated from a single agent with a single goal [Argall et
al., 2009]. In practice, data can be available from multiple
sub-optimal agents with conflicting goals. For example, when
learning to operate a vehicle autonomously from demonstra-
tors [Bojarski et al., 2016], different drivers can have different
goals (destinations), needs (safety) and experience levels. Re-
lying on demonstrators whose goals are misaligned with the
new target task can lead to unintended or dangerous behav-
iors, and can be minimized by actively learning to trust the
most relevant demonstrators.

In this paper, we focus on LfD with multiple conflict-
ing demonstrators for solving static and dynamic optimiza-

∗Affiliate to Vector Institute, Toronto, Canada.

tion problems. Following existing work [Gao et al., 2018],
demonstrations in our setting also contain immediate rewards,
e.g. (s, a, r, s′), an instance of LfD referred to as reinforce-
ment learning from demonstrations (RLfD). Our setting also
differs from traditional work in LfD, in that the goal is to
improve upon the demonstrator rather than simply mimic its
behaviors. In order to measure the similarity between demon-
strators’ reward functions, we parameterize them as linear
functions in a common feature space. Furthermore, we take
a Bayesian approach by modeling their uncertainty using
Normal-Inverse-Gamma priors. These quantities are mod-
eled as Bayesian neural networks with a shared encoder, and
trained end-to-end from demonstrations in an online manner.
We then formulate a quadratic program whose solution yields
a probability distribution over the demonstrators. This allows
demonstrators to be sampled directly, while incorporating un-
certainty in the estimates of their reward functions. Further-
more, being Bayesian allows us to avoid premature conver-
gence, be more robust to non-stationary, sparse or limited data
[Bishop, 2006], and trade off the mean and variance of the re-
ward estimates in a principled way (Theorem 1).

In order to transfer demonstrations to new tasks in LfD, one
approach is to pre-train the learner directly on the source data
[Cruz Jr et al., 2017], or learn and reuse auxiliary representa-
tions from the source data such as policies [Fernández et al.,
2010]. However, the former can be ineffective when demon-
strations assume conflicting goals, while meaningful policies
can be difficult to solicit from the latter when demonstrators
are limited, sub-optimal or exploratory in nature [Nicolescu
and Mataric, 2003]. On the other hand, experience collected
from a failed or inexperienced demonstrator can be just as
valuable as an experienced one [Grollman and Billard, 2011].
We present an algorithm called Bayesian Experience Reuse
(BERS), for directly reusing multiple demonstrations in a
way that is consistent with the learned weighting over the
source and target task goals (Algorithm 1). While tailored
for LfD, our approach is quite general and can be applied in
other areas such as multi-task learning.

2 Background
2.1 Reinforcement Learning
Decision-making in this paper can be summarized in a
Markov decision process (MDP), formally defined as a five-

tuple 〈S,A, P,R, γ〉, where: S is a set of states, A(s)
is a set of possible actions in state s, P (·|s, a) gives the
next-state s′ distribution upon taking action a in state s,
R(s, a, s′) is the corresponding reward, and γ ∈ [0, 1] is a
discount factor. The objective of an agent is to find a pol-
icy µ : S → A that maximizes the long-run expected re-
turn Qµ(s, a) = E[

∑∞
t=0 γ

tR(st, at, st+1) | s0 = s, a0 = a],
where at = µ(st) and st+1 ∼ P (·|st, at).

In the reinforcement learning (RL) setting, neither P norR
are known. Instead, the agent interacts with the environment
using a randomized exploration policy µe, collecting rewards
and observing state transitions. In order to learn optimal poli-
cies, temporal difference methods first learn Q(s, a) and use
it to recover an optimal policy, while policy gradient meth-
ods parameterize and recover an optimal policy µ∗ directly.
Actor-critic methods learn a critic Q(s, a) and actor policy
µ(s) simultaneously [Sutton and Barto, 2018].

2.2 Common Feature Representations
In our problem setting, each task is associated with an un-
known function y : X → R on some domain X . In the RL
setting for example, y(x) = R(s, a, s′) are reward functions.
Given a feature map φ : X → Rd, a function y can be ex-
pressed as a linear combination y(x) = φ(x)>w, ∀x ∈ X ,
where w ∈ Rd is a fixed vector.

We are interested in the problem of transferring demonstra-
tions (s, a, r, s′) between tasks in a domain Mφ on a com-
mon X ,

Mφ =
{
y : ∃w ∈ Rd s.t. y(x) = φ(x)>w, ∀x ∈ X

}
.
(1)

In the RL setting, Mφ could include all MDPs with shared
dynamics and different rewards Ri. In (1), we have explic-
itly assumed that the (unknown) state features φ are shared
among tasks. This is not a restrictive assumption in practice,
as given a set of tasks T1, T2 . . . Tn ∈ Mφ, we may trivially
define φk(x) = yTk

(x), ∀x ∈ X for each k = 1, 2 . . . n. In
practice, however, different rewards may share common fea-
tures. Pooling different sets of basis functions into a common
basis in this way will also allow us to represent, and thus com-
pare, conflicting goals consistently. The challenge is to learn
suitable common embeddings φ and posterior distributions
for y(x), and leverage them for measuring task similarity.

3 Bayesian Experience Reuse
The agent is presented with sets of demonstrations
D1,D2, . . .DN sampled from respective source tasks
T1, T2, . . . TN ∈ Mφ, that are represented as collections of
labeled pairs (xt, yt). The agent would like to leverage these
demonstrations to solve a new task, Ttarget ∈Mφ, for which
a limited but gradually growing set of demonstrationsDtarget
is available.

In order to make optimal use of the source tasks during
training, the agent should learn to favor demonstrators whose
underlying reward representation is closest to the target task
reward. By actively learning to trust relevant demonstra-
tors and avoiding the irrelevant ones, an agent can maximize
the benefit associated with pre-training on the correspond-
ing demonstrations. Furthermore, reward representations are

more natural and more robust for measuring task similarity
than discounted value functions, because values are more sen-
sitive to small changes in rewards. For instance, given a con-
stant perturbation in rewards of ∆R, the corresponding value
function will change by ∆R

1−γ that is considerably greater than
∆R in the non-myopic setting.

3.1 Bayesian Regression with Common Features
In order to facilitate the learning of reward representations,
we learn a shared feature space φ, together with Bayesian
regressions P(wi|Di) and P(wtarget|Dtarget) for the source
and target tasks respectively, such that yit ≈ φ(xit)

>wi for
all i and (xit, y

i
t) ∈ Di and ytargett ≈ φ(xtargett)>wtarget

for all (xtargett , ytargett) ∈ Dtarget. As we will show, the
shared feature representation φ is critical in order to allow
meaningful comparisons between source wi and target w.

In order to tractably learn the features φ as well as the cor-
responding posterior distributions, we parameterize φ(x) ≈
φθ(x) using a deep neural network (encoder) with weight pa-
rameters θ, and model w1, . . .wN ,wtarget using the normal-
inverse-gamma conjugate prior:

yi(x) = φθ(x)>wi + εi, εi ∼ N (0, σ2
i)

wi ∼ N (µi, σ
2
iΛ
−1
i), σ2

i ∼ InvGamma(αi, βi).
(2)

We note that a Gaussian prior on the rewards is quite rea-
sonable, and has been successfully applied in other areas
such as exploration [Janz et al., 2019]. The joint posterior
P(wi, σ

2
i |Di) now factors as

P(wi, σ
2
i |Di) ∝ P(wi|σ2

i ,Di)P(σ2
i |Di), (3)

where wi|σ2
i ,Di ∼ N (µi, σ

2
iΛ
−1
i) and σ2

i |Di ∼
InvGamma(αi, βi), where:

Λi = Λ0
i + Φ>i Φi, µi = Λ−1

i

(
Λ0
iµ

0
i + Φ>i yi

)
,

αi = α0
i +

1

2
|Di|,

βi = β0
i +

1

2

(
y>i yi + (µ0

i)
>Λ0

iµ
0
i − µ>i Λiµi

)
,

(4)

and where Φi is the matrix of state features φθ(xit) and yi is
the vector of observations yit in Di [Bishop, 2006]. We have
also assumed that, conditioned on data Di, the weights wi

and variances σ2
i are mutually independent between tasks, a

very mild assumption in practice. Adapting the neural-linear
approach of [Ober and Rasmussen, 2019; Snoek et al., 2015],
we update θ by gradient ascent on the marginal log-likelihood
function for each head i,

logP(yi|Di) = |Di|π + log Γ(α0
i)− a0

i log β0
i

+
1

2
log det Λ0

i − log Γ(αi) + αi log βi −
1

2
log det Λi,

(5)
where the key quantities are provided by (4) and depend im-
plicitly on θ through Φi.

Now, parameter sharing allows φ to be learned, refined and
transferred seamlessly from source to target tasks, and pro-
vides a form of transfer in its own right. However, our main
contribution is to use the posterior distributions over experts’
goals, wi and wtarget, to transfer demonstrations.

3.2 Expert Selection via Quadratic Programming
In order to derive a Bayesian decision rule for source task se-
lection, we first observe that source tasks that are most similar
to the target task — and hence those that lead to better trans-
fer — should have wi closest to the true target wtarget. In
our setting, we instead have uncertain estimates for wi and
wtarget modelled as random variables. We therefore look for
a weighting

∑N
i=1 aiwi that is closest to wtarget, while fac-

toring in the uncertainty in these estimates.
More specifically, suppose that the posterior distributions

of wi for each i = 1, 2 . . . N and wtarget have been esti-
mated from past data. Our goal is to weight the wi in such
a way that the weighted sum,

∑
i aiwi, is closest to wtarget

in expectation. In other words, we seek a that minimizes the
following optimization problem:

min
a∈P
L(a) = E

[
‖wtarget −

N∑
i=1

aiwi‖22
∣∣∣D] , (6)

where D =
⋃
iDi ∪ Dtarget is the union of all source and

target demonstrations, and P is a convex polyhedron. Specif-
ically, our goal is to sample source tasks according to a, so
we restrict a to a discrete probability distribution by setting
P = {a ∈ RN : 1>a = 1, a ≥ 0}. In other applications,
such as regression problems [Pardoe and Stone, 2010], we
may set P = RN , or incorporate other constraints on expert
selection depending on the problem.

The following result will facilitate the optimization of (6)
under our previous assumptions.
Theorem 1. Suppose w1 . . .wN and wtarget are defined by
the posterior (3). Then, for every a ∈ RN ,

L(a) ∝ ‖µtarget −
N∑
i=1

aiµi‖22 +

N∑
i=1

a2
i

(
βi

αi − 1

)
tr(Σi),

(7)
with equivalence up to terms constant in a.

Hence, we have shown that optimizing the expected er-
ror (6) is equivalent to optimizing the error in the posterior
means plus a penalty equal to the product of the noise and
posterior variances. The penalty term prevents the poste-
rior a from concentrating all its probability mass on a single
demonstrator, whose benefit is demonstrated experimentally.

To simplify (7) further, we define M = [µ1 . . .µN] ∈
Rd×N and S ∈ RN×N the diagonal matrix with entries
βi

αi−1 tr(Σi), i = 1, 2 . . . N . Rewriting (7) in this new no-
tation and invoking Theorem 1, we obtain the following
quadratic program (QP):

min
a

− µ>Ma +
1

2
a>(M>M + S)a

subject to 1>a = 1, a ≥ 0.
(8)

Here, M>M+S is positive definite, since it is the sum of the
positive semi-definite matrix M>M and the positive definite
matrix S. Hence, the above QP can be formulated and solved
exactly using an off-the-shelf solver in polynomial time inN ,
independent of the dimension d and the number of demon-
strations |Di|. Hence, (8) remains tractable when the do-
main complexity is high or the number of demonstrations is

x
...

φ1
φ2

φd
φθ(x)

µ1, Σ1α1, β1
w1σ2

1
...

...
µN, ΣNαN, βN

wNσ2
N

µ, Σα, β

wtargetσ2
target

...

ŷ1(x)

ŷN(x)

ŷtarget(x)

mina − µTMa + 1
2aT (MTM + S)a

s.t. 1Ta = 1,
a � 0.

a

−∇θ log P(yi|Xi)

Figure 1: Bayesian multi-headed neural-linear model with shared
encoder (MLP) and aggregated QP decision layer.

large. This is no longer the case when the second order term
S is omitted, since (8) can become rank-deficient and lack a
unique solution.

In the case of very large N , warm starts could be effec-
tive since the posterior changes smoothly over time (as we
demonstrate experimentally), to use neural networks [Amos
and Kolter, 2017], or optimize (8) directly via gradient de-
scent. Our framework is agnostic to how (8) is solved, so we
leave these investigations for future work.

The full architecture is summarized conceptually in
Figure 1. Here, Bayesian heads with parameters
{(µi,Λi, αi, βi)}Ni=1 and (µ,Λ, α, β) are maintained for
source and target tasks respectively, while sharing the encoder
parameters θ. Periodically, these estimates are used to con-
struct and solve (8). The outputs ŷi and ŷtarget can also be
used for making predictions, such as in regression problems.
In this paper, our goal instead is to use the posterior distribu-
tions over task goals, and the corresponding QP solution, to
rank and transfer the most relevant source demonstrations.

3.3 Bayesian Experience Reuse
A simple, yet effective, approach for transferring demonstra-
tions from a single source is to pre-train the learning agent on
the demonstrations [Cruz Jr et al., 2017]. However, when data
originates from multiple demonstrators with differing goals,
some interaction or prior knowledge about the target environ-
ment is necessary in order to determine which data to use for
pre-training. Without assuming any prior knowledge about
the target environment, we train the agent on the source data
in an offline manner while concurrently learning the target
task online. Thus, the source demonstrations provide an ef-
fective exploration bonus, by enriching the agent’s training
data with novel experiences that might otherwise never be ob-
served in the target task.

More specifically, in each episode of target task learning
m, we sample a source task Ti ∈ Mφ according to a ob-
tained from (8), and train the agent on experiences drawn
from the corresponding data Di. In order for the target agent
to improve beyond the demonstrator and generalize correctly
to the target task, the agent must eventually learn from tar-
get demonstrations rather than source data. So, we adapt the
sample annealing idea in [Fernández et al., 2010], by grad-

Algorithm 1 Bayesian Experience Reuse (BERS)

Require: {Di}Ni=1, TN+1 = Ttarget ∈ Mφ, Obase,
DN+1 = Dtarget = ∅, θ, {µi,Λi, αi, βi}N+1

i=1 , pm, a
pre-train θ, {µi,Λi, αi, βi}Ni=1 on {Di}Ni=1 using (4), (5)
for episode m = 1, 2, . . . do

for step t = 1, 2, . . . T of episode m do
explore Ttarget using Obase and collect d = (x, y)
Dtarget = Dtarget ∪ d
sample train on source data ∼ Bernoulli(pm)
if train on source data = true then

sample it ∼ a and experience B ⊂ Dit
else

sample experience B ⊂ Dtarget
end if
train Obase on B

end for
train θ, {µi,Λi, αi, βi}N+1

i=1 on {Di}N+1
i=1 using (5)

solve QP (8) to obtain the solution a
end for
return Obase

ually decreasing the fraction of time pm ∈ [0, 1] that the
agent trains on source data. The resulting approach, which
we call Bayesian Experience Reuse (BERS), is outlined in
Algorithm 1.

In particular, we define Obase as a learning algorithm for
solving the target task, assumed to be a static or dynamic op-
timization problem in this work. Hence, Obase is either a
static optimization algorithm or an reinforcement learning al-
gorithm. We first pre-train the N source heads on the source
demonstrations to learn φ and the posteriors for w1 . . .wN .
In each episode, we explore the target task and collect data,
putting them in Dtarget. At each time step, the agent either
trains on a batch of source demonstrations from task i ∼ a
with probability pm, or a batch of target demonstrations with
probability 1 − pm. At the end of each episode, we refine
φ and the posterior distributions for all tasks and recompute
a. With simple modifications, BERS can be applied in multi-
task settings by maintaining a separate QP solution per task.

4 Empirical Evaluation
In order to demonstrate the effectiveness of BERS, we con-
sider two problems: (1) the search for the minimum of
static but high-dimensional multi-modal functions, and (2)
the dynamic control of a complex supply chain network with
stochastic demand1.

4.1 Static Optimization of Multi-Modal Functions
We first consider the problem of finding the minimum of a
smooth but highly complex multi-modal function. LfD can
be useful in this setting because the known solution of one
function can be used as an initial “guess” when starting the
search for the minimum of another similar function.

1The appendix can be found at https://github.com/mike-
gimelfarb/bayesian-experience-reuse.

AB

C

D E

F

Scenario 1

AB

C

D E

F

Scenario 2

AB

C

D E

F

Scenario 3

AB

C

D E

F

Target

Figure 2: Supply chain source and target task configurations.

More specifically, we use the 10-dimensional Rosenbrock,
Ackley and sphere functions as source tasks, and the Rastri-
gin function as the target task (please see appendix for defi-
nitions and processing). We also consider the simpler setting
in which one of the source functions is the ground truth. As
the base learning agent Obase, we use Differential Evolution
(DE) (please see appendix for details)2. The search is lim-
ited to xi ∈ [−4, 4] for all i = 1, 2 . . . 10. The global mini-
mums of the functions are: x∗Rosenbrock = 1, x∗Ackley = 0,
x∗Sphere = −2 and x∗Rastrigin = −2. Since the sphere
and Rastrigin functions are locally similar around the min-
imum point, a successful LfD experiment should exploit the
structure of the functions when optimizing the Rastrigin func-
tion. We also consider the multi-task setting by optimizing
the Rastrigin function simultaneously with the other source
functions, to demonstrate the versatility of BERS. In the lat-
ter setting, we maintain a separate QP solution per task. In
both cases, the best solution found for each source task to
date is transferred directly toObase (the appendix details how
the solutions are transferred).

We consider the following set of baselines in order to com-
pare the performance of BERS (Ours): (1) the UCB algo-
rithm [Auer, 2002] with asymptotically optimal convergence
(UCB), in which the reward is the improvement in the func-
tion value after transferring a solution from one of the source
functions, (2) the equally-weighted prior a = [1

N , . . .
1
N]

(Equal), (3) individual demonstrators (S1, S2. . .), and (4)
standard DE without transfer (None). Figure 3 illustrates the
function value of the best solution found to date, and the value
of a, after each iteration.

4.2 Dynamic Control of a Supply Chain
A supply chain network for the production and distribution
of a single product consists of a central factory and K = 6
warehouses, denoted A, B . . . F. The factory can manufacture
up to 35 units of inventory per day, and the factory and the
warehouses can each store up to 50 units of inventory at any
given time. A very large fleet of trucks is available to move
inventory between points in the network. Each truck can de-
liver up to 4 units of inventory between any two points in the
network, and takes a single day regardless of location.

Demand for each warehouse A, B . . . F, in units per day,
is Poisson-distributed with respective means {7, 6, 6, 5, 5, 5}.
Demand that cannot be fulfilled is lost forever. The selling
price per unit of inventory is 0.6, the production cost is 0.1,

2Another option is to use Bayesian optimization (BO). How-
ever, this is more suitable for expensive functions with relatively low
numbers of local optima, such as for hyper-parameter optimization.

0.0 0.5 1.0 1.5
batch number 1e2

0

1

2

3

4

5
be

st
fit
ne

ss
ob

ta
in
ed

Ours
Equal
None
Rosenbrock
Ackley
Sphere
UCB

0 1 2 3 4 5
batch number 1e2

0.0

0.2

0.4

0.6

0.8

pr
ob

ab
ili
ty

Rosenbrock
Ackley
Sphere

(a) Rosenbrock

0.0 0.5 1.0 1.5 2.0
batch number 1e2

0

1

2

3

4

5

be
st

fit
ne

ss
ob

ta
in
ed

Ours
Equal
None
Rosen.
Ackley
Sphere
UCB

0 1 2 3 4 5
batch number 1e2

0.0

0.2

0.4

0.6

0.8
pr
ob

ab
ili
ty

Rosenbrock
Ackley
Sphere

(b) Ackley

0.0 0.5 1.0 1.5
batch number 1e2

0

1

2

3

4

be
st

fit
ne

ss
ob

ta
in
ed

Ours
Equal
None
Rosen.
Ackley
Sphere
UCB

0 1 2 3 4 5
batch number 1e2

0.0

0.2

0.4

0.6

0.8

1.0

pr
ob

ab
ili
ty

Rosenbrock
Ackley
Sphere

(c) Sphere

0 1 2 3 4 5
batch number 1e2

0

2

4

6

8

10

be
st

fit
ne

ss
ob

ta
in
ed

Ours
Equal
None
Rosen.

Ackley
Sphere
UCB

0 1 2 3 4 5
batch number 1e2

0.0

0.2

0.4

0.6

0.8

pr
ob

ab
ili
ty

Rosenbrock
Ackley
Sphere

(d) Rastrigin (T)

1 2 3 4 5
batch number 1e2

0

2

4

6

be
st

fit
ne

ss
ob

ta
in
ed

Ours
Equal
None
UCB

0 1 2 3 4 5
batch number 1e2

0.0

0.2

0.4

0.6

0.8

pr
ob

ab
ili
ty

Rosenbrock
Ackley
Sphere

(e) Rastrigin (MT)

Figure 3: Best function values (top row) and weights a (bottom row) in the transfer (T) and multi-task (MT) learning settings for static
function optimization, with each source and target task as ground truth. Averaged over 20 trials with shaded standard error bars.

and the storage cost per unit per day is 0.03 for the factory and
each warehouse. However, the cost of dispatching a truck is
not fixed, but depends on the source and destination node.

There are two kind of routes: cheap routes are easy to nav-
igate and incur a cost of 0.03 per truck, whereas expensive
routes have difficult terrain and tariffs and cost 1.50 or 3.00,
depending on source or destination. The company does not
know the cost of each route in advance, but has identified
three likely scenarios, summarized in Figure 2. Here, cheap
routes are indicated with lighter arrows, while more expen-
sive routes are indicated with darker arrows. As before, we
will take the company’s estimates as source tasks and as the
ground truth, and also consider the setting where the target
task is different from any of the source tasks. Please note that
this problem is quite similar to the one in [Kemmer et al.,
2018], but our version is considerably more challenging.

We solve this problem using reinforcement learning, where
the state is the current stock in the factory and warehouses,
and actions are modelled as follows: (1) one continuous ac-
tion for production as a proportion of the maximum; (2)K+1
actions for proportions of factory stock to ship to each ware-
house (including to keep at the factory); and (3) K actions
per warehouse, for proportions of warehouse stocks to ship
to all other warehouses (including itself). This leads to a
2 + K + K2 = 44-dimensional continuous action space. In
order to tractably solve this problem, we use the actor-critic
algorithm DDPG [Lillicrap et al., 2016] as Obase (further de-
tails are provided in the appendix).

We evaluate BERS (Ours) against: (1) prioritized experi-
ence replay initialized with demonstrations from all source
tasks [Hou et al., 2017] (PER), and (2) a state-of-the-art pol-
icy reuse algorithm [Li and Zhang, 2018] (PPR). In the latter
choice, a source policy is trained using the same architecture
as the actor network for DDPG for 50 epochs using the cross-
entropy loss, and used for exploration. Figure 4 illustrates the

total profit achieved during each episode of testing using the
greedy policy, and the corresponding QP weights.

4.3 Discussion
On the static optimization task, BERS performs compara-
tively similar to the single best demonstrator, because it is
able to identity the most suitable source task after observing
a small number of target demonstrations (Figure 3). While
UCB is a strong baseline, BERS finds the solution in less it-
erations while incurring less variability. As postulated, the
solution to (8) favours the Sphere function when solving the
Rastrigin function, because they are structurally the most sim-
ilar, and this leads to a quicker identification of the global
minimum for the Rastrigin function.

On the supply chain task, BERS also achieves results simi-
lar to the single best expert, and does slightly better than PPR.
While their asymptotic performance on Scenario 1 is similar,
BERS achieves better jump-start performance on Scenario 1
and better asymptotic performance on Scenarios 2 and 3. One
reason for this is that PPR, despite being trained on the same
data as BERS, must learn a policy from noisy observations.
Despite this, both BERS and PPR are able to quickly surpass
the performance of the policy that originally generated the
source data (horizontal line in Figure 4). On the other hand,
PER was not able to obtain satisfactory performance, because
PER prioritizes experiences by TD error that is not suitable
for ranking demonstrations with different rewards. On the
other hand, BERS learns a common feature embedding that
allows for consistent comparison between tasks (Appendix).

Finally, on the target scenario, we can see that the weights
assigned to Scenarios 1 and 2 are roughly equal, which makes
sense as the target task shares some similarities with both
of the aforementioned scenarios (Figure 2). By mixing two
source tasks, BERS is able to perform substantially better on
the target task than the two source tasks (S2 and S3) in isola-

0 1 2 3 4 5
batch number 1e4

0

500

1000

1500

2000
to
ta
lp

ro
fit

Ours
PER
PPR

Equal
S1
S2

S3
None
Source

0 1 2 3 4 5
batch number 1e4

0.0

0.2

0.4

0.6

0.8

pr
ob

ab
ili
ty

Scenario 1
Scenario 2
Scenario 3

(a) Scenario 1 as Ground Truth

0 1 2 3 4 5
batch number 1e4

0

500

1000

1500

2000

to
ta
lp

ro
fit

Ours
PER
PPR
Equal
S1

S2
S3
None
Source

0 1 2 3 4 5
batch number 1e4

0.0

0.2

0.4

0.6

0.8

pr
ob

ab
ili
ty

Scenario 1
Scenario 2
Scenario 3

(b) Scenario 2 as Ground Truth

0 1 2 3 4 5
batch number 1e4

0

500

1000

1500

2000

to
ta
lp

ro
fit

Ours
PER
PPR
Equal
S1

S2
S3
None
Source

0 1 2 3 4 5
batch number 1e4

0.0

0.2

0.4

0.6

0.8

pr
ob

ab
ili
ty

Scenario 1
Scenario 2
Scenario 3

(c) Scenario 3 as Ground Truth

0 1 2 3 4 5
batch number 1e4

0

500

1000

1500

2000

to
ta
lp

ro
fit

Ours
PER
PPR
Equal
S1

S2
S3
None
Source

0 1 2 3 4 5
batch number 1e4

0.0

0.2

0.4

0.6

pr
ob

ab
ili
ty

Scenario 1
Scenario 2
Scenario 3

(d) Target Task

Figure 4: Total testing reward per episode (left) and weights assigned to source tasks (right) over epochs using DDPG for the Supply Chain
problem, with each source and target task as ground truth. Averaged over 5 trials with shaded standard error bars.

tion. Also, by adopting a Bayesian treatment, it enjoys stable
convergence of the task weights a on all experiments.

5 Related Work
Most work in LfD incorporates demonstrations from a single
expert [Argall et al., 2009]. Some papers in the area of RLfD
relax this assumption to a single sub-optimal demonstrator
and use pre-training [Gao et al., 2018; Hester et al., 2018],
reward shaping [Suay et al., 2016], ranking [Wang and Tay-
lor, 2017], or other approaches. However, these papers can-
not learn from multiple demonstrators with conflicting goals.
Papers on this topic typically assume multiple near-optimal
demonstrators, so that recovering policies [Barreto et al.,
2017; Fernández et al., 2010; Madarasz and Behrens, 2019] is
possible. While our paper shares some similarities with these,
it is fundamentally different. First, this stream of literature
studies policy transfer, whereas we study LfD. BERS does
not learn auxiliary representations for source demonstrators’
behaviors (e.g. value functions or policies), allowing it to in-
corporate sub-optimal exploration data. Furthermore, BERS
learns a latent representation of the task goals in an online
setting not studied in prior work.

More generally, our approach is related to multi-modal
learning, in which a common representation of multiple het-
erogeneous data sources is learned [Hausman et al., 2017;
Tsai et al., 2019]. However, to our knowledge, papers on
this topic have not been applied to our problem setting. Fur-
thermore, our learned weightings over demonstrators could
be seen as a form of attention [Zadeh et al., 2018]. The idea
of learning shared features is inspired by both encoder sharing
[Flet-Berliac and Preux, 2019] and uncertainty quantification
[Azizsoltani et al., 2019; Brown et al., 2020]. Finally, our
approach shares some of the similarities of Bayesian policy

reuse [Rosman et al., 2016], by formulating the problem of
policy selection as a Bayesian choice problem. However, our
work differs in that we apply Bayesian inference for LfD in-
stead of policy transfer. Our work is the first to apply these
ideas towards LfD from multiple demonstrators.

6 Conclusion
We studied the problem of LfD with multiple sub-optimal
demonstrators with different goals in a Bayesian setting. We
proposed a multi-headed Bayesian neural network to effi-
ciently learn consistent representations of the source and
target reward functions from the demonstrations. Reward
functions were parameterized as linear models, whose un-
certainty was modeled using Normal-Inverse-Gamma priors
and updated using Bayes’ rule. A QP formulation ranked
the demonstrators while trading off the mean and variance
of the uncertainty in the learned reward representations, and
Bayesian Experience Reuse (BERS) was proposed to incor-
porate demonstrations directly when learning new tasks. Em-
pirical results show that BERS can successfully transfer ex-
perience from conflicting demonstrators.

References
[Amos and Kolter, 2017] Brandon Amos and J Zico Kolter.

Optnet: Differentiable optimization as a layer in neural
networks. In ICML, pages 136–145, 2017.

[Argall et al., 2009] Brenna D Argall, Sonia Chernova,
Manuela Veloso, and Brett Browning. A survey of robot
learning from demonstration. Robotics and autonomous
systems, 57(5):469–483, 2009.

[Auer, 2002] Peter Auer. Using confidence bounds for
exploitation-exploration trade-offs. Journal of Machine
Learning Research, 3(Nov):397–422, 2002.

[Azizsoltani et al., 2019] Hamoon Azizsoltani, Yeo Jin Kim,
Markel Sanz Ausin, Tiffany Barnes, and Min Chi. Un-
observed is not equal to non-existent: using gaussian pro-
cesses to infer immediate rewards across contexts. In IJ-
CAI, pages 1974–1980, 2019.

[Barreto et al., 2017] André Barreto, Will Dabney, Rémi
Munos, Jonathan J Hunt, Tom Schaul, Hado P van Hasselt,
and David Silver. Successor features for transfer in rein-
forcement learning. In NeurIPS, pages 4055–4065, 2017.

[Bishop, 2006] Christopher M Bishop. Pattern recognition
and machine learning. springer, 2006.

[Bojarski et al., 2016] Mariusz Bojarski, Davide Del Testa,
Daniel Dworakowski, Bernhard Firner, Beat Flepp, Pra-
soon Goyal, Lawrence D Jackel, Mathew Monfort, Urs
Muller, Jiakai Zhang, et al. End to end learning for self-
driving cars. arXiv:1604.07316, 2016.

[Brown et al., 2020] Daniel Brown, Russell Coleman, Ravi
Srinivasan, and Scott Niekum. Safe imitation learning via
fast bayesian reward inference from preferences. In ICML,
pages 1165–1177. PMLR, 2020.

[Cruz Jr et al., 2017] Gabriel V Cruz Jr, Yunshu Du, and
Matthew E Taylor. Pre-training neural networks with
human demonstrations for deep reinforcement learning.
arXiv:1709.04083, 2017.

[Fernández et al., 2010] Fernando Fernández, Javier Garcı́a,
and Manuela Veloso. Probabilistic policy reuse for inter-
task transfer learning. Robotics and Autonomous Systems,
58(7):866–871, 2010.

[Flet-Berliac and Preux, 2019] Yannis Flet-Berliac and
Philippe Preux. Merl: Multi-head reinforcement learning.
In NeurIPS Workshop, 2019.

[Gao et al., 2018] Yang Gao, Huazhe Xu, Ji Lin, Fisher Yu,
Sergey Levine, and Trevor Darrell. Reinforcement learn-
ing from imperfect demonstrations. ICLR Workshop,
2018.

[Grollman and Billard, 2011] Daniel H Grollman and Aude
Billard. Donut as i do: Learning from failed demonstra-
tions. In ICRA, pages 3804–3809. IEEE, 2011.

[Hausman et al., 2017] Karol Hausman, Yevgen Chebotar,
Stefan Schaal, Gaurav Sukhatme, and Joseph J Lim.
Multi-modal imitation learning from unstructured demon-
strations using generative adversarial nets. In NeurIPS,
pages 1235–1245, 2017.

[Hester et al., 2018] Todd Hester, Matej Vecerik, Olivier
Pietquin, Marc Lanctot, Tom Schaul, Bilal Piot, Dan Hor-
gan, John Quan, Andrew Sendonaris, Ian Osband, et al.
Deep q-learning from demonstrations. In AAAI, 2018.

[Hou et al., 2017] Yuenan Hou, Lifeng Liu, Qing Wei,
Xudong Xu, and Chunlin Chen. A novel ddpg method
with prioritized experience replay. In SMC, pages 316–
321. IEEE, 2017.

[Janz et al., 2019] David Janz, Jiri Hron, Przemysław
Mazur, Katja Hofmann, José Miguel Hernández-Lobato,

and Sebastian Tschiatschek. Successor uncertainties: ex-
ploration and uncertainty in temporal difference learning.
In NeurIPS, pages 4509–4518, 2019.

[Kemmer et al., 2018] Lukas Kemmer, Henrik von Kleist,
Diego de Rochebouët, Nikolaos Tziortziotis, and Jesse
Read. Reinforcement learning for supply chain optimiza-
tion. In EWRL, pages 1–9, 2018.

[Li and Zhang, 2018] Siyuan Li and Chongjie Zhang. An op-
timal online method of selecting source policies for rein-
forcement learning. In AAAI, 2018.

[Lillicrap et al., 2016] Timothy P Lillicrap, Jonathan J Hunt,
Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with
deep reinforcement learning. In ICLR, 2016.

[Madarasz and Behrens, 2019] Tamas Madarasz and Tim
Behrens. Better transfer learning with inferred successor
maps. In NeurIPS, volume 32, pages 9029–9040, 2019.

[Nicolescu and Mataric, 2003] Monica N Nicolescu and
Maja J Mataric. Natural methods for robot task learning:
Instructive demonstrations, generalization and practice. In
AAMAS, pages 241–248, 2003.

[Ober and Rasmussen, 2019] Sebastian W Ober and
Carl Edward Rasmussen. Benchmarking the neural linear
model for regression. arXiv:1912.08416, 2019.

[Pardoe and Stone, 2010] David Pardoe and Peter Stone.
Boosting for regression transfer. In ICML, pages 863–870,
2010.

[Rosman et al., 2016] Benjamin Rosman, Majd Hawasly,
and Subramanian Ramamoorthy. Bayesian policy reuse.
Machine Learning, 104(1):99–127, 2016.

[Snoek et al., 2015] Jasper Snoek, Oren Rippel, Kevin Swer-
sky, Ryan Kiros, Nadathur Satish, Narayanan Sundaram,
Mostofa Patwary, Mr Prabhat, and Ryan Adams. Scal-
able bayesian optimization using deep neural networks. In
ICML, pages 2171–2180, 2015.

[Suay et al., 2016] Halit Bener Suay, Tim Brys, Matthew E
Taylor, and Sonia Chernova. Learning from demonstra-
tion for shaping through inverse reinforcement learning.
In AAMAS, pages 429–437, 2016.

[Sutton and Barto, 2018] Richard S Sutton and Andrew G
Barto. Reinforcement learning: An introduction. MIT
press, 2018.

[Tsai et al., 2019] Yao-Hung Hubert Tsai, Paul Pu Liang,
Amir Zadeh, Louis-Philippe Morency, and Ruslan
Salakhutdinov. Learning factorized multimodal represen-
tations. In ICLR, 2019.

[Wang and Taylor, 2017] Zhaodong Wang and Matthew E
Taylor. Improving reinforcement learning with
confidence-based demonstrations. In IJCAI, pages
3027–3033, 2017.

[Zadeh et al., 2018] Amir Zadeh, Paul Pu Liang, Soujanya
Poria, Prateek Vij, Erik Cambria, and Louis-Philippe
Morency. Multi-attention recurrent network for human
communication comprehension. In AAAI, page 5642,
2018.

Appendix
Proof of Theorem 1
Proof. Given the true values of the variances v = [σ2

1 , . . . σ
2
N , σ

2
target], and given D , the vectors w1, . . .wN ,wtarget are

normally distributed with respective means µ1 . . .µN ,µtarget and covariances σ2
1Σ1, . . . σ

2
NΣN , σ

2
targetΣtarget (equation

(3)). Then, for any a ∈ RN ,

wtarget −
∑
i

aiwi |v,D ∼ N (µtarget −
∑
i

aiµi, σ
2
targetΣtarget +

∑
i

a2
iσ

2
iΣi)

and ignoring terms independent of a,

E
[
‖wtarget −

∑
i

aiwi‖22 |v,D
]

= tr(σ2
targetΣtarget +

∑
i

a2
iσ

2
iΣi) + ‖µtarget −

∑
i

aiµi‖22

∝
∑
i

a2
iσ

2
i tr(Σi) + ‖µtarget −

∑
i

aiµi‖22.

Then, taking expectation with respect to v,

E
[
‖wtarget −

∑
i

aiwi‖22
∣∣D] = E

[
E
[
‖wtarget −

∑
i

aiwi‖22
∣∣v,D] ∣∣∣D]

∝
∑
i

a2
i E[σ2

i |Di] tr(Σi) + ‖µtarget −
∑
i

aiµi‖22

=

N∑
i=1

a2
i

(
βi

αi − 1

)
tr(Σi) + ‖µtarget −

N∑
i=1

aiµi‖22,

where in the last step we used (3) again and the expectation of InvGamma(αi, βi).

Hyper-Parameters for the Neural-Linear Model
Architecture: We set wi ∼ N (0, I), σ2

i ∼ InvGamma(1, 1). For the encoder, we set d = 20, use L2 regularization with
penalty λ = 10−4, a learning rate of 10−4, and initialize weights using Glorot uniform. The encoder has two hidden layers
with 200 ReLU units each (300 in the first layer for the supply chain problem), and tanh outputs. We also include a constant
bias term in the feature map φ when learning w.
Training: Prior to transfer, we first train the neural linear model on 4000 batches of size 64 sampled uniformly from source
data. During target training, we train on batches of size 64 sampled from source and target data after each iteration (generation
for optimization, episode for supply chain) to avoid catastrophic forgetting of features (one batch for optimization and 20 for
supply chain). QPs are solved from scratch at the end of each iteration using the cvxopt package [1].

Details for the Static Function Optimization Benchmark
Functions: We consider both transfer and multi-task learning settings. For the transfer experiment, we use the Rosenbrock,
Ackley and Sphere functions as the source tasks,

fRosenbrock(x) =

9∑
i=1

100[(xi+1 − x2
i)

2 + (1− xi)2]

fAckley(x) = −20 exp

−0.2

√√√√ 1

10

10∑
i=1

x2
i

− exp

(
1

10

10∑
i=1

cos(2πxi)

)
+ 20 + exp (1)

fSphere(x) =

10∑
i=1

(xi + 2)2,

and the Rastrigin function

fRastrigin = 100 +

10∑
i=1

[(xi + 2)2 − 10 cos(2π(xi + 2))],

as the target task. We also consider each of the source tasks as the ground truth to see whether we can identify the correct
source task in an ideal controlled setting. In the multi-task setting, we did not observe any advantages of our algorithm nor the
baselines when solving the Rosenbrock, Ackley or Sphere functions, so we focus on the quality of solution obtained for the
Rastrigin function only in the main paper.

Data Processing: For Rosenbrock, sphere and Rastrigin functions, we transform outputs using y 7→ √y so they become
approximately equally scaled. For Rosenbrock, we subsequently also divide outputs by 10. This ensures that the outputs of all
functions are approximately equally-scaled, to demonstrate whether we can actually “learn” each function from the data rather
than distinguish them according to scale alone.

Solver Settings: To optimize all functions, we use the Differential Evolution (DE) algorithm [2]. The pseudo-code of this
algorithm is outlined in Algorithm 2. Here,CR is the crossover probability and denotes the probability of replacing a coordinate
in an existing solution with the candidates (crossover), F is the differential weight and controls the strength of the crossover,
and NP is the size of the population (larger implies a more global search). We use standard values CR = 0.7, F = 0.5 and
NP = 32 for reporting experimental results, unless indicated otherwise. The search bounds are also set to [−4,+4] for all
coordinates; all points that are generated during the initialization of the population and the crossover are clipped to this range.

Algorithm 2 Differential Evolution (DE)

Require: f : RD → R, CR ∈ [0, 1], F ∈ [0, 2], NP ≥ 4
initialize NP points P uniformly at random in the search space
for generation m = 1, 2, . . . do

for agent x ∈ P do
randomly select three candidates a,b, c ∈ P that are distinct from each other and from x
pick a random index R ∈ {1, 2 . . . D}
for i = 1, 2 . . . D do

pick ri ∼ U(0, 1)
if ri < CR or i = R then

set yi = ai + F (bi − ci)
else

set yi = xi
end if
if f(y) ≤ f(x) then

replace x in P with y
end if

end for
end for

end for
return the agent in P with the least function value

Transfer Learning: We first generate demonstrations (xi, f(xi)) from each source function f using DE (Algorithm 2) and
configuration above until a fitness of 0.15 is achieved. Respectively, these have sizes 17693, 6452 and 5853 for each source task.
We further transform outputs for training and prediction with the neural-linear model using a log-transform y 7→ log(1 + y)
to limit the effects of outliers and stabilize the training of the model. When solving the target task, the batch B is a singleton
set containing the best solution from the source data, and Obase is trained by replacing the first of the three sampled candidates
prior to crossover with probability pm = 0.99m, where m is the index of the current generation (following the structure of
Algorithm 1). This guarantees that the new swarm will possess the traits of the source solutions with high probability, but still
maintain diversity so the solution can be improved further.

Multi-Task Learning: We solve all source and target functions simultaneously, sharing the best solutions between them using
the mechanisms outlined above for the transfer learning experiment. One QP is maintained for each task to learn weightings
over the other tasks excluding itself. Here, we set pm = 0.3, so that the best obtained solutions can be consistently shared
between tasks over time.

Details for the Supply Chain Benchmark
Solver Settings: We use the Deep Deterministic Policy Gradient (DDPG) Algorithm [3] to solve this problem. The critic
network has 300 hidden units per layer. We also use L2 penalty λ = 10−4, learning rates 10−4 and 2×10−4 for actor and critic
respectively, U(−3 × 10−3, 3 × 10−3) initialization for weights in output layers, discount factor γ = 0.96, horizon T = 200,
randomized replay with capacity 10000, batch size of 32, and explore using independent Gaussian noiseN (0, σ2

t), where σt is
annealed from 0.15 to 0 linearly over 50000 training steps.

Transfer Learning: We considered the transfer from multiple source tasks (Scenarios 1, 2 and 3) to a single target task (Target
Task) as indicated in Figure 2. We also consider each source task as a ground truth. To collect source data, we train DDPG
with the above hyper-parameters on each source task for 30000 time steps, then randomly sub-sample 10000 observations.
This last step demonstrates whether our approach can learn stable representations with limited data and incomplete exploration

...

qfactory
qWH 1
qWH 2

qWH K

State st

1
0
...
0

0
0
...
1

...
0
1
...
0

...
...

Fully-connected
2 hidden layers
300 neurons
ReLU

SoftmaxK+1

SoftmaxK+1

SoftmaxK+1

...
SoftmaxK+1

AB

C

D E

F

AB

C

D E

F

AB

C

D E

F

...
AB

C

D E

F

aproduce

afactory → WH 1 . . . K

aWH 1 → WH 1. . . K

aWH 2 → WH 1. . . K

...
aWH K → WH 1. . . K

Figure 5: Actor network.

trajectories. Since regression is sensitive to outliers, when training the neural linear model, we remove 2.5% of the samples
with the highest and lowest rewards (we also exclude observations collected from the target task that lie outside any of these
bounds when training the neural-linear model). In order to implement transfer, we set pm = 0.95m, where m is the current
episode number. This provides a reasonable balance between exploration of source data and exploitation of target data. In
accordance with Algorithm 1, we sample batches B of size 32 uniformly at random from the source data.

Prioritized Experience Replay: We evaluated the performance of Prioritized Experience Replay (PER) [4] on the Supply
Chain benchmark. In summary, PER is a replay buffer that ranks experiences using the Bellman error, defined for the DDPG
algorithm for a transition (s, a, r, s′) as

δ = r + γQ′(s′, µ′(s′))−Q(s, a),

where Q is the critic network, and Q′ and µ′ are the target critic and target actor networks, respectively.
The source demonstrations are combined into a single data set and shuffled. The capacity of the buffer is also fixed to the

total number of source demonstrations from all tasks (around 28,000 examples). We then load all source demonstrations into
the replay buffer prior to target task training with initial Bellman error δ = 1. During target training, observed transitions are
immediately added to the replay buffer and override the oldest experience. In this way, the agent is able to maximize the use of
the source data at the beginning of training but eventually shift emphasis to target task data.

Figure 6 demonstrates the composition of each batch (of size 32) according to source (Scenario 1, Scenario 2, Scenario
3, Target Task) for each ground truth. As illustrated in all four plots, in early stages of training, batches are predominantly
composed of source data, while in later stages, they consist entirely of target data. Figure 6 shows that PER is unable to favor
demonstrations from the source task that correspond to the ground truth, in all four problem settings. One possible explanation
of this is that an implicit assumption of PER is violated, namely that experiences are drawn from the same distribution of
rewards, whereas in our experiment, experiences can come from tasks with contradictory goals. In this case, experiences
corresponding to the ground truth do not necessarily have larger Bellman error (in fact, the opposite may be true).

Latent Space Analysis
We include several plots that couldn’t go in the main paper due to space limitations. In particular, we analyze the learned latent
reward functions w for source and target tasks for both the function optimization and supply chain problems.

The analysis for the function optimization problem is illustrated in Figure 7 in which we set the latent dimension d = 2
for ease of illustration. Similarly, the analysis for the supply chain problem using the original value of d = 20 (we tried
smaller values of d, but did not obtain satisfactory results due to the complexity of the true reward function for this problem) is
illustrated in Figure 8. In both problem settings, BERS is able to learn a meaningful latent representation of the demonstrators’
goals.

Additional Experiment for the Reacher Domain
Domain Description: The reacher domain consists of a two-jointed robotic arm that must be controlled to hover above a fixed
target location. The state is 4-dimensional and consists of the angle and angular velocities of the two joints. At the beginning
of each episode, the angular velocities are set to zero, while the central joint angle is sampled uniformly from [−π,+π] and
the outer joint angle is sampled uniformly from [−π/2,+π/2]. The 2-dimensional continuous action space represents the

0 10K 20K 30K

batch number

0

32so
ur

ce

S1
S2
S3
Target

(a) Scenario 1

0 10K 20K 30K

batch number

0

32so
ur

ce

S1
S2
S3
Target

(b) Scenario 2

0 10K 20K 30K

batch number

0

32so
ur

ce

S1
S2
S3
Target

(c) Scenario 3

0 10K 20K 30K

batch number

0

32so
ur

ce

S1
S2
S3
Target

(d) Scenario 4

Figure 6: The composition of each batch over time sampled from the prioritized replay (PER) according to whether the sample came from
the source or target task data, for each ground truth. PER is unable to rank experiences correctly to match the context.

w1

1 2 3 4 5 6 7 8

w 2

5.0
2.5
0.0

2.5
5.07.510.012.5

w
3

0.5

1.0

1.5

2.0

2.5

Rosen.

Ackley

Sphere

Target

(a) Rosenbrock

w1

10 8 6 4 2 0

w 2

6
4

2
0

2
4

w
3

0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

Rosenbrock

Ackley

Sphere

Target

(b) Ackley

w1

6 4 2 0 2 4 6 8
w 2

12
10

8
6

4
2

w
3

0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

Rosenbrock

Ackley
Sphere

Target

(c) Sphere

w1

1 2 3 4 5 6 7 8 9

w 2

12.5
10.0

7.55.02.50.02.55.0

w
3

0.5

1.0

1.5

2.0

2.5

Rosen.

Ackley

Sphere

Target

(d) Rastrigin

Figure 7: For function optimization with each source and target task as the ground truth, shows the evolution of the posterior mean of each wi

and wtarget during training for the simplified experiment with latent dimension d = 2. As shown here, the target mean eventually converges
to the correct source task mean.

S1 S2 S3 Target
task

10

5

0

5

10

fe
at

ur
e

we
ig

ht
s

(a) Scenario 1

S1 S2 S3 Target
task

10

5

0

5

10

15

20

fe
at

ur
e

we
ig

ht
s

(b) Scenario 2

S1 S2 S3 Target
task

10

5

0

5

10

fe
at

ur
e

we
ig

ht
s

(c) Scenario 3

S1 S2 S3 Target
task

15

10

5

0

5

10

fe
at

ur
e

we
ig

ht
s

(d) Target

Figure 8: For Supply Chain control with each source and target task as the ground truth, shows the posterior marginal distributions of wi and
wtarget during training on the target task (after 0, 10, 50, 100 and 200 episodes). Over time, the target features begin to concentrate on the
corresponding values for the correct source task.

possible torques that can be applied to each joint, and are discretized into 3 possible actions per dimension (corresponding to
minimum, maximum, and zero torques) for a total of 9 possible actions. Following [Barreto et al., 2017], we initialize 4 source
task instances whose target locations are indicated as colored circles in Figure 9, that are used to train each demonstrator. We

define 2 additional task instances as target tasks whose target locations are indicated as gray circles. The target task whose
goal position is located close to the top-right corner of the map is similar to the demonstrator associated with the yellow goal
position, whereas the target task whose goal position is in the bottom-left is considerably different from any of the source tasks.
The reward is defined as 1− 4δ, where δ is the Euclidean distance between the arm tip and the target location.

Figure 9: The reacher domain. The
4 colored circles indicate target lo-
cations used to train the demonstra-
tors. The target locations for the
target tasks are indicated in gray
circles.

Solver Settings: All tasks are solved using the DQN algorithm [5]. The Q-value function
is parameterized as a feedforward neural network containing two hidden layers of size 256
with tanh activation functions, followed by a linear output layer of size 9 to represent the
Q-value of each action. The Adam optimizer with a learning rate of 10−3 is used to train the
network, on batches of size 32 sampled at random from a replay buffer of infinite capacity.
We use a discount factor γ = 0.9 and horizon T = 500 during training. The epsilon-greedy
policy with ε = 0.1 is used for training and ε = 0.03 for testing. The neural-linear model
for BERS uses the same parameters indicated above, except that the activation function for
hidden units is replaced by tanh and the learning rate is changed to 5× 10−4.
Transfer Learning: The demonstrators are trained on each of the 4 training target lo-
cations for 30000 time steps. The training data is saved, and a random sample of 3200
transitions is used to pre-train BERS and PPR. The neural-linear models are trained on
these subsets of demonstrations by sampling 20000 batches of size 32. The policy network
for PPR has the same structure as the Q-value network described above, except the output
layer uses a softmax activation function. The Adam optimizer is used to train the policy
networks using each of the 4 training task demonstrations data sets, and uses a learning rate
of 10−3. These networks are pre-trained on batches of size 32 for a total of 1000 epochs.
Similar to the supply chain problem, we set pm = 0.95m, where m is the current episode
number. A budget of 30000 time steps is allocated for training on each of the target task
locations for BERS and PPR.

We compare BERS to PPR and standard DQN, and report the results in Figure 10. Here, we see that the performance of
BERS is better than PPR on both test tasks. Interestingly, while the performance improvement on the top-right target location
is relatively insignificant, the benefits of BERS are quite substantial on the more difficult target task with the bottom-left target.
Looking at the plot of the posterior weights w, we see that BERS was able to identify two demonstrators – with target locations
located at the bottom and the left of the space – as being the most relevant. As previously demonstrated on the supply chain
domain, BERS is once again able to select a combination of two relevant demonstrators. By mixing the demonstrations from
a subset of the most relevant demonstrators, it is possible to obtain better performance than training on a single policy or
demonstrator.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
steps 1e4

100
150
200
250
300
350
400
450

re
tu
rn

BERS
PPR
DQN

0.0 0.5 1.0 1.5 2.0 2.5 3.0
steps 1e4

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

pr
ob

ab
ili
ty source 1

source 2
source 3
source 4

(a) Top-right target.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
steps 1e4

100

150

200

250

300

350

400

re
tu
rn

BERS
PPR
DQN

0.0 0.5 1.0 1.5 2.0 2.5 3.0
steps 1e4

0.0

0.1

0.2

0.3

0.4

0.5

pr
ob

ab
ili
ty source 1

source 2
source 3
source 4

(b) Bottom-left target.

Figure 10: Total testing reward per episode (left) and weights assigned to source tasks (right) over epochs using DQN for the reacher domain,
for the two target positions. Averaged over 5 trials with shaded standard error bars.

References
[1] Andersen, Martin S., Joachim Dahl, and Lieven Vandenberghe. ”CVXOPT: A Python package for convex optimization.”
abel. ee. ucla. edu/cvxopt (2013).
[2] Storn, Rainer, and Kenneth Price. ”Differential evolution–a simple and efficient heuristic for global optimization over
continuous spaces.” Journal of global optimization 11.4 (1997): 341-359.
[3] Lillicrap, Timothy P., et al. ”Continuous control with deep reinforcement learning.” ICLR (Poster). 2016.
[4] Wang, Ziyu, et al. ”Dueling network architectures for deep reinforcement learning.” International conference on machine
learning. PMLR, 2016.
[5] Mnih, Volodymyr, et al. ”Human-level control through deep reinforcement learning.” nature 518.7540 (2015): 529-533.

	Introduction
	Background
	Reinforcement Learning
	Common Feature Representations

	Bayesian Experience Reuse
	Bayesian Regression with Common Features
	Expert Selection via Quadratic Programming
	Bayesian Experience Reuse

	Empirical Evaluation
	Static Optimization of Multi-Modal Functions
	Dynamic Control of a Supply Chain
	Discussion

	Related Work
	Conclusion

