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Abstract
Weighted model integration (WMI) extends weighted
model counting (WMC) to the integration of functions
over mixed discrete-continuous probability spaces. It has
shown tremendous promise for solving inference prob-
lems in graphical models and probabilistic programs. Yet,
state-of-the-art tools for WMI are generally limited ei-
ther by the range of amenable theories, or in terms of
performance. To address both limitations, we propose the
use of extended algebraic decision diagrams (XADDs)
as a compilation language for WMI. Aside from tackling
typical WMI problems, XADDs also enable partial WMI
yielding parametrized solutions. To overcome the main
roadblock of XADDs – the computational cost of integra-
tion – we formulate a novel and powerful exact symbolic
dynamic programming (SDP) algorithm that seamlessly
handles Boolean, integer-valued and real variables, and
is able to effectively cache partial computations, unlike
its predecessor. Our empirical results demonstrate that
these contributions can lead to a significant computational
reduction over existing probabilistic inference algorithms.

1 Introduction
Weighted model counting (WMC) is the problem of com-
puting the mass of a function over the set of models of a
propositional theory and lies at the heart of probabilistic ar-
tificial intelligence, where a core issue is to quantify uncer-
tainty over logically-structured worlds. Many state-of-the-art
algorithms dealing with discrete Bayesian networks [Chavira
and Darwiche, 2008], factor graphs [Choi et al., 2013], prob-
abilistic programs [Fierens et al., 2013], and probabilistic
databases [Suciu et al., 2011] reduce their inference problem
to a WMC computation. While a typical WMC inference task
is to compute the partition functions and marginals of factored
probability distributions, it has also been used as a subroutine
for more general tasks such as automated planning [Domshlak
and Hoffmann, 2007].

Many of these successes have been powered by the de-
velopment of 1) efficient model counting strategies and 2)
efficient data structures for manipulating Boolean theories that
support WMC. Inference in continuous and mixed discrete-
continuous theories, however, had neither enjoyed fast algo-

rithms, nor was it known whether there are efficient data struc-
tures for manipulation, until recently. Progress on the algo-
rithmic front accelerated with the introduction of weighted
model integration (WMI) [Belle et al., 2015] which extends
the usual WMC setting by including real-valued variables,
linear real-arithmetic (LRA) theories and symbolic weight
functions. WMI (or closely related formulations) have recently
been applied to a number of non-trivial graphical modeling
and probabilistic programming tasks [Chistikov et al., 2015;
Albarghouthi et al., 2017; Morettin et al., 2017; Belle, 2017;
Braz et al., 2016]. On the data structure front, an extension
of algebraic decision diagrams (ADDs) to piecewise polyno-
mial functions over continuous linear and Boolean theories,
so-called extended ADDs (XADDs), was proposed in Sanner
et al. (2011) and when combined with symbolic dynamic pro-
gramming techniques has proven successful for probabilistic
planning as well as probabilistic inference [Sanner and Ab-
basnejad, 2012]. In the software verification community, a
subset of XADDs dealing with piecewise-constant functions
was independently developed under the name linear decision
diagrams (LDDs) [Chaki et al., 2009].

Although impressive, progress in the mixed discrete-
continuous domain on both the algorithmic and data struc-
ture front is still far from its Boolean counterpart. Most WMI
solvers are based on the so-called block-clause strategy, which
naively enumerates the models of a LRA theory and is of-
ten prohibitive in practice. Finally, most solvers, including
improved variants such as the predication abstraction solver
introduced by Morettin et al. (2017), do not consider partial
WMI and the efficient storage of intermediate results of com-
putation, which can speed up computing repeated conditional
queries, occurring in tasks such as parameter estimation from
data. Indeed, Belle et al. (2016) considered component caching
but is restricted to interval formulas. From the data-structure
perspective, current XADD methods suffer from an extremely
high cost for integration in WMI; this has severely limited their
application to problems with only a handful of variables and
formulas [Sanner and Abbasnejad, 2012]. Finally, many prob-
abilistic programming problems, see e.g. the argument of Braz
et al. (2016), involve Boolean, real-valued but also integer-
valued variables, however, both existing state-of-the-art WMI



solvers and XADDs currently do not support integer-valued
variables. An exception is actually the work of Braz et al.,
which is probably closest to our work in terms of functionality.
It supports both integer and real values, but does not repre-
sent and cache intermediate results, and Morettin et al. (2017)
showed that their solver achieved better performance.

In this paper, we address both shortcomings of XADDs
and provide additional extensions. Our contribution is cen-
tered around a novel and powerful symbolic dynamic pro-
gramming algorithm for marginalization and integration. Con-
cretely, we make the following contributions: 1) we explore the
use of XADDs [Sanner et al., 2011] as a compilation language
for WMI and show how to structure WMI problems as sym-
bolic dynamic programming over XADDs; 2) we contribute a
novel marginalization and integration algorithm for XADDs
that efficiently computes partial integrations, improving the
state-of-the-art integration algorithms [Sanner and Abbasne-
jad, 2012] by exploiting shared substructures in the XADD’s
directed acyclic graph through caching and we additionally
show how to handle integer-valued variables; and 3) we show
that the algorithm can be adapted for volume computations
and, moreover, that XADDs can be used to compute partial
WMI through partial integration, obtaining parametrized solu-
tions that can be used for repeated query computations or, for
example, computing the argmax for the remaining variables.

Our empirical results show that our novel WMI solver can
lead to an exponential to linear computational reduction over
previous state-of-the-art solvers for problem domains contain-
ing high levels of mutually exclusive or XOR structure, and
that its performance exceeds or matches existing WMI solvers.

We remark that the decision versions of both #SAT and
Bayesian inference are #P-complete. Nonetheless, the caching
of partial computations and memoization schemes have been
shown to achieve strong time-space tradeoffs, and are often
very effective in practice [Bacchus et al., 2009].

2 Background
Foundations of Weighted Model Integration We assume
that the reader is familiar with propositional logic and the SAT
problem. Satisfiability Modulo Theories (SMT) generalizes
SAT to determining the satisfiability of a formula with respect
to a decidable background theory. We consider the background
theories LRA and LIA, which are first-order logic fragments
restricting the interpretation of numbers, inequalities and oper-
ators (sum, product) to their semantics in linear real and integer
arithmetic, respectively, as in, e.g., a ∧ (b ∨ (u+ v ≤ 5)).

Model counting (#SAT) refers to the task of counting the
number of models that satisfy a given formula. Weighted
model counting (WMC) generalizes this task by summing
the weights assigned to models satisfying a formula. Cor-
responding to the generalization of SAT to hybrid domains,
weighted model integration (WMI) generalizes WMC to sup-
port SMT(LRA) formulas and real variables [Belle et al.,
2015]. We, additionally, extend the WMI formulation to also
support linear arithmetic over integers (LIA). Formulas are
then Boolean combinations of Boolean literals, inequalities
over real variables and inequalities over integer variables,
which we will refer to as LA formulas.

Given n real variables x, m Boolean variables A, p integer
variables I , an LA formula θ(x, A, I) over x, A and I and a
weight function w(x, A, I) that maps variable assignments to
real weights, the weighted model integral (WMI), following
its most recent definition [Morettin et al., 2017], is defined as
(using WMI (θ, w) to abbreviate WMI (θ, w|A,x, Z)):

WMI (θ, w) =
∑

µA∈Bm

∑
µZ∈Zp

∫
θ(x,µA,µZ)

w(x, µA, µZ)dx

That is, the WMI is obtained by summing over every pair of
total truth assignments µA and µZ to the Boolean- and inte-
ger variables, substituting every Boolean or integer variable
in θ and w with its truth value in µA or µZ , and integrat-
ing w(x, µA, µZ) over the values {x∗|θ(x∗, µA, µZ)}.

In order to obtain algorithmic results we restrict w to the
class of piecewise-polynomial case functions, i.e.,

f = {θ1 : f1, . . . , θn : fn} , (1)

where the fi are polynomial functions over real and integer
variables and the case conditions θi are LA formulas that par-
tition the underlying space. This class strictly generalizes the
class of polynomial under LRA conditions functions [Morettin
et al., 2017]. As input language for defining polynomial case
functions, we fix the language of nested arithmetic and ite
compositions, i.e., a single case φ = {θ : f,¬θ : 0} is a case
function; if φ1, φ2 are case functions, then so are φ1 + φ2,
φ1 ∗ φ2, and, ite(θ, φ1, φ2), where θ is a sentence from one
of B, LRA or LIA, and ite expands to if-then-else understood
in the usual manner. This language corresponds to the one
implemented in the well-known PySMT package [Gario and
Micheli, 2015]. A case function is identified by its PySMT
abstract syntax tree.

Decision diagrams DDs or arithmetic circuits are used to
compactly represent logical formulas by compiling them into
directed acyclic graphs (DAGs) whose internal nodes are la-
beled by atoms and whose leaf nodes are labeled by expres-
sions. Every internal node has two edges labeled with true (>)
and false (⊥) (traditionally called high and low) that corre-
spond to the atom of the internal node being satisfied or not.
We denote the label of an internal node f by fC or C(f), its
two child nodes as f> and f⊥, following the high and low edge
respectively, the label of an edge e as v(e) and the expression
of a leaf node l as exp(l).

Binary decision diagrams (BDDs) use Boolean variables as
atoms and truth values ({>,⊥} or {1, 0}) as expressions. Any
propositional logical formula can be compiled into a BDD
and decision diagrams support various efficient operations.
E.g., computing SAT for a formula represented by a BDD
corresponds to determining if there is a path from the root to
1. We consider three extensions of BDDs: LDDs, ADDs and
XADDs (Table 1). LDDs support LRA atoms over continuous
variables in internal nodes while ADDs allow an arbitrary
number of leaf expressions labeled with real numbers. XADDs
extends both by allowing LRA atoms in internal nodes as well
as arbitrary symbolic polynomial functions over continuous
variables in leaf nodes. Some XADD operations restrict the
leaf nodes to be, e.g., linear functions.



BDD LDD ADD XADD
Bn 7→ B Bn × Rm 7→ B Bn 7→ R Bn × Rm 7→ R
Boolean Boolean + LRA Boolean Boolean + LRA
{0, 1} {0, 1} c ∈ R Polynomial

Table 1: Overview of decision diagrams showing the type of labels for
internal nodes and leaf nodes. While BDDs, LDDs, and ADDs have
constants as leaves, XADDs have symbolic polynomials as leaves.

XADDs [Sanner et al., 2011] represent case functions with
linear inequality conditions and polynomial values. Every
path in an XADD corresponds to a case and its DAG structure
allows compact representation of multiple cases with common
structure (see Fig. 1 for an example XADD). For a path p =
n1 →e1 ...→en−1

nn →en l, the case condition and function
can be obtained by taking the conjunction of the labels of the
nodes and the expression of the leaf node l, respectively:

θ(p) =
∧

ni∈p
ite(v(ei), C(ni),¬C(ni)), f(p) = exp(l)

One of the advantages of DDs is that they allow operations to
be performed on them. The if-then-else (ite) construct allows
DDs to be combined. E.g., given two decision diagrams d1
and d2 and a condition atom c, we can construct a new dia-
gram d = ite(c, d1, d2). The new diagram introduces a new
internal node n with nC = c, n> = d1 and n⊥ = d2, i.e., it
behaves as d1 if c is fulfilled and as d2 otherwise. By using
the so-called apply operation we can apply a binary operator
to two decision diagrams. This operation constructs a new
DD that corresponds to the composition of the two functions
represented by the input diagrams. For BDDs and LDDs, dia-
grams are combined using ∧ and ∨, for ADDs and XADDs,
diagrams can also be combined using element-wise sum and
product, and both support marginalization for Boolean vari-
ables. In addition, XADDs also support integration for real
variables. We refer to marginalization through summation
and integration (based on the variable type) as SO, short for
sum-out. For real variable x, integer variable i, Boolean vari-
able b and an XADD Xf corresponding to a polynomial case
function f over x, i, b, we obtain SO(x,Xf ) =

∫∞
−∞ f(x)dx,

SO(i,Xf ) =
∑∞
i=−∞ f and SO(b,Xf ) =

∑
b∈{⊥,>} f . We

write SO(b,SO(i,SO(x,Xf ))) as SO∗({x, i, b}, Xf ).

3 XADD Compilation for WMI
We propose a top-down compilation scheme to convert an
SMT(LA) formula or polynomial case function from a nested
arithmetic and ite abstract syntax tree to a valid XADD with
a consistent node ordering. Our scheme recursively applies
a set of grammar rules defined inductively in Table 2. The
three base cases convert polynomials (including constants)
to equivalent single-leaf XADDs and SMT(LA) literals a
or ¬a to 0-1 XADDs with a single test on a corresponding
to ite(a, 1, 0) or ite(a, 0, 1), respectively. For composite ex-
pressions, the terms are recursively compiled and combined
using the XADD apply operator [Sanner et al., 2011] that
automatically collapses paths sharing sub-diagrams.
Example 1. The XADD depicted left in Fig. 1 is obtained by
compiling the WMI problem with θ = x ≥ v∧(x < y∨x ≤ z)
and w = ite(x ≤ z ∧ x ≥ w, 3x2, 2x).

Expression e Compiled expression comp(e)

val leaf (val)
a ite(a, 1, 0)
¬a ite(a, 0, 1)
θ1 ∧ θ2 apply(∧, comp(θ1), comp(θ2))
θ1 ∨ θ2 apply(∨, comp(θ1), comp(θ2))
¬(θ1 ∧ θ2) apply(∨, comp(¬θ1), comp(¬θ2))
¬(θ1 ∨ θ2) apply(∧, comp(¬θ1), comp(¬θ2))
f1 + f2 apply(+, comp(f1), comp(f2))
f1 ∗ f2 apply(∗, comp(f1), comp(f2))
ite(θ, f1, f2) apply(+, apply(∗, comp(θ), comp(f1)),

apply(∗, comp(¬θ), comp(f2)))

Table 2: Compilation rules for XADDs using a for SMT(LA) atoms,
i.e., Boolean variables or inequalities, θ for arbitrary SMT(LA) formu-
las, val for polynomial functions and f for polynomial case functions.

v >= z

y >= v y >= z

y^2 - z^2 0 y^2 - v^2

Figure 1: Illustration of two XADDs. The colors highlight different
paths used in examples and are not part of the XADD data structure.
Integrating out x from the red path results in the right XADD.

Marginalization for XADDs is currently supported for tests
over Boolean variables, LRA atoms and difference arithmetic
atoms, i.e., over a subset of LIA. In this paper we consider
marginalization through summation and integration, leaving
other operations, such as maximization, as future work.
Theorem 1. Given an SMT(LA) formula θ and a polynomial
case function w both over Boolean, integer and real vari-
ables A,Z and x, then, using Xψ = comp(ψ):

WMI (θ, w|A,Z,x) = exp(SO∗(A ∪ Z ∪ x, Xθ ∗Xw)).

Proof. Any case function defined by the input language of
nested ite and arithmetic combinations can be compiled to an
XADD by recursively applying the rules of Table 2. Similarly,
every SMT(LA) function can be compiled to a 0-1 case func-
tion by the same procedure. Since Xθ ∗Xw = Xite(θ,w,0) and
WMI (θ, w) = WMI (>, ite(θ, w, 0)), summing out all vari-
ables from Xθ ∗Xw yields the weighted model integral.

4 Novel XADD Partial Integrator
Having clarified that WMI-amenable theories of interest can be
compiled to XADDs, we now discuss the WMI computation.

The computational cost of the XADD marginalization (SO)
algorithm introduced by Sanner et al. (2012) is often pro-
hibitive even for relatively simple models. We identify the



main issue as the inability to effectively cache intermediate re-
sults of the integration process in the XADDs DAG and in this
section we aim to develop more efficient alternatives. In the
following, we: 1) review Sanner et al.’s algorithm that is based
on path enumeration; 2) introduce and discuss two variants of
a novel algorithm based on bound resolution that introduce
caching to SO; 3) conclude with an extension of XADDs and
the marginalization algorithms to integer theories.

Every internal node containing a numeric variable x im-
poses an upper-bound on one child and a lower bound on the
other. For the sake of brevity, we assume in our algorithms and
discussions that upper bounds are always imposed on the high
child and that all numeric variables are continuous (not inte-
ger). In practice, the algorithm would detect if an internal node
test imposes a lower or upper bound and swap the child nodes
if necessary. Note that w.r.t. integrating continuous variables
strict and non-strict inequalities are equivalent.

4.1 Path Enumeration
Sanner et al. ’s SO algorithm is summarized in Alg. 1. Essen-
tially, it works like a symbolic version of DPLL, expanding
the XADD DAG into an XADD tree, i.e., it recursively tra-
verses every path in the XADD, collecting all expressions that
can bound the integration variable x along the way. Reach-
ing a leaf, the recursion returns the leaf integral

∫
x∈C f(x)dx,

where the set C is the intersection of bounds on x collected
during the descent. Since C may depend parametrically on
all non-integrated variables, the integral is computed sym-
bolically as follows. For each bound pair u ∈ U, l ∈ L, we
consider the case where u is the smallest of all possible upper
bounds and l is the largest of all lower bounds, described by
the formula θul :=

∧
u′∈U (u ≤ u′)

∧
l′∈L(l ≥ l′) ∧ (u ≥ l) ,

where the last atom ensures consistency (the upper bound
must be at least as large as the lower bound for the integral
to be well-defined). These formulas partition the space com-
pletely, so the integral of {θ : f} is then the case function
{θul :

∫ u
x=l

f(x)dx | ul ∈ U × L}. Let us quickly illustrate
this with an example.
Example 2. Consider the case function corresponding to the
red path of Fig. 1 (omitting the cases where the result is 0):

f = {x ≥ v ∧ x < y ∧ x > z : 2x}; then∫ ∞
−∞

fdx = {y ≥ v ≥ z : y2 − z2, y ≥ z > v : y2 − v2}

The XADD of that integral is illustrated in Fig. 1, right.
The computational disadvantage of this algorithm is that it

does not exploit the DAG structure of the XADD. This is re-
flected in the fact that the SO function receives all upper/lower
bounds accumulated so far as an argument, hence the out-
put of each recursive call depends on the entire context from
which it is called. This eliminates any opportunity for caching,
and what looks as dynamic programming is essentially a tree-
structured recursion which must always traverse exponentially
many paths. This renders the algorithm inapplicable on any-
thing but toy models.

This is also akin to the depth-first PRAiSe algorithm [Braz
et al., 2016] which explicitly uses a symbolic extension of
DPLL but not XADDs to represent piecewise functions.

Algorithm 1 Integration using path enumeration.
1: procedure SO(var x, XADD f , U , L)
2: . U : upper-bounds, L: lower-bounds
3: if f is terminal then
4: return integrate(x, f, U, L)

5: if x ∈ fC then
6: (l, u)← get bounds(x, fC)
7: return SO(x, f>, U ∪ {u}, L)

+SO(x, f⊥, U, L ∪ {l})
8: return ite(fC ,SO(x, f>, U, L),SO(x, f⊥, U, L))

4.2 Bound Resolution
We will now develop two alternatives of this algorithm that
introduce increasing amounts of caching. The main idea is as
follows: instead of collecting all candidate bounds until the
bottom of the recursion and then introducing cases to compare
among them, we maintain a single upper and lower bound
candidate. As soon as a new potential upper or lower bound
appears due to some test, the recursion introduces two cases:
1) if the new upper bound is greater than the current one, we
keep the current bound and descend on child node; 2) if the
new upper bound is less than the current one, it replaces the
current bound before we descend on the child node. In the
latter case, a consistency test is added to enforce that the new
upper bound is greater than the current lower bound. For our
first version, Alg. 2, we end up with the following recursive
rule for the upper bound:

fu ← ite(unew > u,SO(x, f>, u, l),

(unew ≥ l) ∗ SO(x, f>, unew, l)) .

The output of this algorithm is identical to the output of Alg. 1,
however, the context influence is reduced to only the upper
and lower bound candidate. Hence, the triple u, l, f can serve
as the key for caching the result.
Example 3. Reconsider the left XADD from Fig. 1. Both the
green path and the blue path will at some point encounter
the call SO(x, 3, z, v) as on both paths z and v appear as
upper- and lower bound to x, respectively, and both paths
go through node 3. However, since the two paths go through
different branches of node 2, the recursion for green also
invokes SO(x, 3, v, y), whereas the recursion for blue invokes
SO(x, 3, y, z). The latter two calls cannot profit from caching
even though the paths generating them rejoin in the diagram.

Finally, we consider the version of Alg. 2b which is com-
pletely context-independent. The key idea is that instead of
calling SO(x, f>, unew, l), the same result is obtained by call-
ing SO(x, f>, uS , lS), where uS and lS are symbolic vari-
ables, and then substituting uS by unew and lS by l in the
resulting XADD. Similarly, we obtain SO(x, f>, u, l)) by
substituting uS by u and lS by l. Notice that while unew
is available at the time of the recursion call, as it comes from
the current node, we want to eliminate u from the list of ar-
guments. Hence, the second branch of the ite expression is
left with the dummy variable uS as a placeholder. This will
be substituted with the various upper bounds as the algorithm
emerges from the recursion. We end up with the following



Algorithm 2 Integration using bound resolution
(2a) Algorithm for bound-pair caching

1: procedure SO(var x, XADD f , u, l)
2: . u: current upper-bound, l: current lower-bound
3: if f is terminal then
4: return integrate(x, u, l, f)

5: if x /∈ fC then
6: return ite(fC ,SO(x, f>, u, l),SO(x, f⊥, u, l))

7: (lnew, unew)← get bounds(x, fC)
8: fu ← ite(unew > u,SO(x, f>, u, l),

(unew ≥ l) ∗ SO(x, f>, unew, l))
9: fl ← ite(lnew < l, SO(x, f⊥, u, l),

(lnew ≤ u) ∗ SO(x, f⊥, u, lnew))
10: return fu + fl

(2b) Algorithm for symbolic caching

1: procedure SO(var x, XADD f )
2:
3: if f is terminal then
4: return integrate(x, f)

5: if x /∈ fC then
6: return ite(fC ,SO(x, f>),SO(x, f⊥))

7: (lnew, unew)← get bounds(x, fC)
8: fu ← ite(unew > uS ,SO(x, f>),

(unew ≥ lS) ∗ SO(x, f>){uS/unew})
9: fl ← ite(lnew < lS ,SO(x, f⊥),

(lnew ≤ uS) ∗ SO(x, f⊥){lS/lnew})
10: return fu + fl

recursive step:
fu ← ite(unew > uS ,SO(x, f>),

(unew ≥ lS) ∗ SO(x, f>){uS/unew}) ,
where uS/unew denotes the substitution of the dummy vari-
able uS by the concrete bound unew. We have now eliminated
any context information from the call to SO, and the result
of SO(x, f) depends only on f . This algorithm is able to
reuse any partial computation, exactly as the marginalization
algorithm on ADDs, and can be implemented in bottom-up
message-passing style, as is characteristic for dynamic pro-
gramming algorithms. To see the difference with the previous
version, note that the entire computation of the integral under
node 3 on Fig. 1 can be reused for both green and blue paths.

It is important to note that the second version of the algo-
rithm does not subsume the first. Unlike the Boolean setting,
where more caching almost universally improves performance,
for linear theories this is not always the case. Having con-
crete bounds allows us to prune the diagram early by detecting
conflicting bounds, e.g., if unew ≥ l can be detected to be
unsatisfiable, the recursion can be terminated. In practice, the
first version seems to be the most versatile.

4.3 Theory-specific considerations
We currently support XADDs that, aside from Boolean vari-
ables, can contain either real or integer variables. For integer
variables symbolic summation is used instead of symbolic
integration.1 In order to guarantee that (symbolic) summation
bounds are integral, we need to restrict the language of the
tests. One amenable sub-theory of LIA is difference arithmetic.
Additionally, for the integration of real variables, strict and
weak inequalities are equivalent (the set of boundary points
has measure zero), hence negation is obtained by simply flip-
ping the inequality. However, for integer variable this is not the
case, e.g., the inverse of x ≤ 5 is x > 5 or x ≥ 6, which leads
to some implementation differences. Finally, a pruning routine
for inconsistent paths in XADDs is implemented using linear
programming for real variables, while for integer variables
we currently use SMT(LIA) solvers as an oracle for testing
inconsistency, as well as linear programming for a relaxed
version of inconsistency.

1Implemented in Python using sympy [Meurer et al., 2017].

5 XADD Integration for WMI
We can now show how WMI can be realized using XADD
based SO-algorithms. Specifically, we introduce two tech-
niques for solving single WMI problems and then propose a
partial-WMI algorithm for computing probabilities of sets of
WMI queries efficiently.

5.1 WMI using Repeated SO
Calculating the WMI corresponds to summing out a set of
variables from an XADD, i.e., SO∗(vars, X). The simplest
way to compute the outcome is to reuse an SO algorithm for
XADDs, e.g., path enumeration or bound resolution, and sum
out variables one by one.

5.2 WMI using Mass-SO
Alternatively, we can tweak our recursive bound-resolution
algorithm to immediately sum-out all variables before emerg-
ing. This algorithm requires an variable-ordered XADD in
which the ordering of tests in the XADD depends on the vari-
ables occurring in them. Specifically, given a variable ordering
O = v1, v2, ..., vn we call an XADD variable-ordered with
respect to O if any test whose last variable has rank i, i.e., it
has position i in the ordering, occurs deeper in the diagram
than any test whose last variable has a lower rank j < i. The
last variable of a test is the variable in the test with the highest
rank. The modified algorithm now proceeds by first summing
out the variable v1 with the lowest rank using the original
bounds-resolve algorithm (Alg. 2) and, whenever a test is en-
countered whose last variable vj is ranked higher than the
current variable vi, summing out variables vi+1, ..., vj−1, vj
recursively before proceeding to sum out vi from the resulting
diagram. The ordering guarantees that after summing out a
variable with rank i, the resulting diagram contains no variable
with rank j ≥ i.

5.3 Partial WMI for Computing Query
Probabilities

In practice, weighted model integration is used to compute
query probabilities, where queries are arbitrary SMT(LA)
formulas over both Boolean and numeric variables. Given



Figure 2: The execution time (top: mutual ex-
clusivity, bottom: XOR) grows much slower
for our algorithm (BR) than for path enumer-
ation (PE) and the WMI solver (PA) both of
which time out for larger numbers of terms.

Figure 3: Both SO and mass-SO using bound
resolution (BR, BR-ALL) are competitive
with the WMI solver (PA) on the number of
problems solved below increasing time limits.
The path enumeration approach (PE) fails to
solve several problems within 60s.

Figure 4: The ratios between the cumulative
execution times to solve a number of queries
using our bound resolution algorithm (BR)
and the WMI solver (PA) decrease to below 1,
even if the initial queries were slower to com-
pute. Our algorithm timed out while comput-
ing the partial WMI for problems 4 and 7.

a query q over variables vars(q) ⊆ D, its probability is ob-
tained by computing the ratio WMI (θ∧q,w|D)

WMI (θ,w|D) . Current solvers
obtain this answer by computing both volumes separately and
dividing the results. For a set Q of n queries, this requires
n + 1 WMI computations. By exploiting symbolic SO, we
propose a new technique for computing probabilities for sets
of queries. This approach can drastically reduce the execution
time when the number of variables DQ occurring in any query
is much lower than the number of variables in the domain. The
algorithm WMI ∗ consists of three steps: 1) it pre-computes
a temporary diagram XQ by summing out variables D \DQ

that do not occur in any query; 2) it computes WMI (θ, w) by
summing out variables VQ from XQ; and 3) for every query q
it computes WMI (θ ∧ q, w) by summing out variables VQ
from XQ ∗Xq .

Theorem 2. Given θ, Q and w over variables D, as before,
then WMI ∗ computes {WMI (θ∧q,w|D)

WMI (θ,w|D) |∀q ∈ Q}.

Proof. The algorithm computes WMI (θ ∧ q, w|D) and
WMI (θ, w|D), where q = >, using SO. Since WMI (θ ∧
q, w|D) = SO∗(D,Xθ ∗ Xq ∗ Xw) and Xq is independent
of D \ DQ it follows that the WMI can be computed as
SO∗(DQ,SO

∗(D \DQ, Xθ ∗Xw) ∗Xq).

XQ is the result of partial WMI, i.e., WMI (θ, w|D \DQ),
and it should be clear that this can also be used to compute,
e.g., argmaxDQ

XQ, which is a standard XADD operation.

6 Empirical Evaluations
We analyze the performance of our improved SO algorithm
and how XADDs can be used to tackle WMI problems. First,
we demonstrate our algorithms ability to exploit caching in
very structured diagrams. Second, we compare our algorithm
to the current XADD-based SO algorithm [Sanner and Ab-
basnejad, 2012] and the state-of-the-art WMI solver [Moret-
tin et al., 2017] (PA) on WMI computation for synthetic
benchmark problems from the paper by Morettin et al. Third,
we show how partial integration for XADDs can be lever-
aged to repeatedly compute query probabilities and compare

this approach to the PA solver. We generally use the order-
ing in which literals (or variables for mass-SO) appear dur-
ing compilation. The code for the implementations used in
our evaluation can be found at: https://github.com/
xadd-wmi/xadd-wmi.github.io.

6.1 Structured diagrams
Our SO algorithm exploits caching in order to avoid redundant
computations when sub-diagrams can be reached by multiple
paths. We investigate the performance of our algorithm on
two common types of heavily structured problems: 1) mutual-
exclusivity (also called exactly one) formulas; and 2) XOR
formulas.

These structured constraints arise naturally in data and in
modeling multi-valued attributes using arithmetic circuits,
where each multi-valued attribute is converted into multiple
binary variables with mutual exclusivity constraints.

For both problem types, given a number of terms n, we
introduce n + 1 variables V = {c1, ..., cn, x}, n + 1 terms
that introduce real-valued bounds for the variables (e.g., bx =
((lx ≤ x) ∧ (x ≤ ux)) where lx, ux ∈ R ∧ (lx < ux)) and
n terms T = {x ≤ c1, ..., x ≤ cn}. Then we compute the
mutual-exclusivity formula fME and the XOR formula fXOR
as follows:

fME = (
∧
v∈V bv) ∧ exactly_one((x ≤ c1), ..., (x ≤ cn))

fXOR = (
∧
v∈V bv) ∧ ((x ≤ c1) Y ... Y (x ≤ cn)).

We compute WMI (fXOR, 1|V ) and WMI (fME , 1|V ) for
increasing n using bound resolution, path enumeration, and
the state-of-the-art WMI solver.

For both the XOR- and mutual-exclusivity-problems, our
algorithm is able to compute the volume in well under 120 sec-
onds as its execution time grows slowly with the problem size.
Therefore, it outperforms the state-of-the-art approaches that
both exhibit exponentially growing execution times, see Fig. 2.

6.2 Predicate-abstraction solver benchmark
In the paper [Morettin et al., 2017], the authors demonstrate
that their approach outperforms Praise [Braz et al., 2016] and
block-clause based approaches [Belle et al., 2015] using a



set of synthetically generated problems. Using the publicly
available code for the PA solver we generated 50 such WMI
problems and compared the performance of: 1) SO using path
enumeration; 2) SO using bound-resolution; 3) mass-SO using
bound-resolution; and 4) the PA solver. For every problem we
record the execution time per solver, with a time-out of 60s.

Both bound-resolution based algorithms and the PA solver
can compute any of the problems within 60 seconds, while
the path enumeration based algorithm times out for many of
the problems (Fig 3). Both bound-resolution based algorithms
outperform the predicate-abstraction based solver by solving
more problems faster. Additionally, the mass-SO approach
solves all but one problem within a second.

6.3 Answering sets of WMI queries
As described earlier, computing the probabilities of a set
of queries can be sped up using XADDs. We compare our
approach to the state-of-the-art WMI solver by comparing
the time required to solve an increasing number of queries
for a set of benchmark WMI problems consisting of ran-
dom pairs of nested SMT formulas and polynomial case
functions in the form of PySMT ASTs, generated using the
predicate-abstraction solver software package. For every prob-
lem 100 queries were generated consisting of different inequal-
ities over the variable of interest.

Our experiments show that our partial integration approach
can achieve large speedups as the number of queries in-
creases (Fig. 4). Since only few variables occur in the queries,
our approach results in much lower execution times per query
as it avoids repeatedly computing the WMI for all variables.
Time-outs can occur since, for arbitrary XADDs, operations
may lead to exponential numbers of nodes, however, in prac-
tice variable-reordering strategies can help alleviate this prob-
lem. Reordering schemes based on sifting have shown to be
effective for arithmetic based diagrams [Chaki et al., 2009].

7 Conclusion
Weighted model integration (WMI) is a promising and general
approach to reasoning about mixed discrete and continuous
spaces needed for probabilistic inference. We proposed the
first XADD-based WMI solver that can cache partial compu-
tations, smartly exploit DAG structure in integration, and han-
dle integer-valued variables. Empirical results show this new
WMI solver performs comparable to state-of-the-art solvers
and often drastically better. We also showed that XADDs are a
suitable compilation language for WMI and we hope it serves
as a step towards making WMI as versatile a tool as WMC.
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