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Abstract
In this paper, we leverage the efficiency of Bina-
rized Neural Networks (BNNs) to learn complex
state transition models of planning domains with
discretized factored state and action spaces. In or-
der to directly exploit this transition structure for
planning, we present two novel compilations of
the learned factored planning problem with BNNs
based on reductions to Boolean Satisfiability (FD-
SAT-Plan) as well as Binary Linear Programming
(FD-BLP-Plan). Experimentally, we show the ef-
fectiveness of learning complex transition models
with BNNs, and test the runtime efficiency of both
encodings on the learned factored planning prob-
lem. After this initial investigation, we present an
incremental constraint generation algorithm based
on generalized landmark constraints to improve the
planning accuracy of our encodings. Finally, we
show how to extend the best performing encoding
(FD-BLP-Plan+) beyond goals to handle factored
planning problems with rewards.

1 Introduction
Deep neural networks have significantly improved the abil-
ity of autonomous systems to perform complex tasks, such as
image recognition [Krizhevsky et al., 2012], speech recogni-
tion [Deng et al., 2013] and natural language processing [Col-
lobert et al., 2011], and can outperform humans and human-
designed super-human systems in complex planning tasks
such as Go [Silver et al., 2016] and Chess [Silver et al., 2017].

In the area of learning and online planning, recent work on
HD-MILP-Plan [Say et al., 2017] has explored a two-stage
framework that (i) learns transitions models from data with
ReLU-based deep networks and (ii) plans optimally with re-
spect to the learned transition models using mixed-integer lin-
ear programming, but did not provide encodings that are able
to learn and plan with discrete state variables. As an alter-
native to ReLU-based deep networks, Binarized Neural Net-
works (BNNs) [Hubara et al., 2016] have been introduced
with the specific ability to learn compact models over discrete
variables, providing a new formalism for transition learning
and planning in factored [Boutilier et al., 1999] discrete state
and action spaces that we explore in this paper. However

planning with these BNN transition models poses two non-
trivial questions: (i) What is the most efficient compilation of
BNNs for planning in domains with factored state and (con-
current) action spaces? (ii) Given that BNNs may learn in-
correct domain models, how can a planner repair BNN com-
pilations to improve their planning accuracy?

To answer question (i), we present two novel compilations
of the learned factored planning problem with BNNs based
on reductions to Boolean Satisfiability (FD-SAT-Plan) and
Binary Linear Programming (FD-BLP-Plan). Over three fac-
tored planning domains with multiple size and horizon set-
tings, we test the effectiveness of learning complex state tran-
sition models with BNNs, and test the runtime efficiency of
both encodings on the learned factored planning problems.
While there are methods for learning PDDL models from
data [Yang et al., 2007; Amir and Chang, 2008] and excel-
lent PDDL planners [Helmert, 2006; Richter and Westphal,
2010], we remark that BNNs are strictly more expressive than
PDDL-based learning paradigms for learning concurrent ef-
fects in factored action spaces that may depend on the joint
execution of one or more actions. Furthermore, while Monte
Carlo Tree Search (MCTS) methods [Kocsis and Szepesvári,
2006; Keller and Helmert, 2013] including AlphaGo [Silver
et al., 2016] and AlphaGoZero [Silver et al., 2016] could
technically plan with a BNN-learned black box model of tran-
sition dynamics, unlike this work, they would not be able
to exploit the BNN transition structure and they would not
be able to provide optimality guarantees with respect to the
learned model.

To answer question (ii), we introduce an incremental al-
gorithm based on generalized landmark constraints from the
decomposition-based cost-optimal classical planner [Davies
et al., 2015], where during online planning we detect and con-
strain invalid sets of action selections from the decision space
of the planners and efficiently improve their planning accu-
racy. Finally, building on the above answers to (i) and (ii),
we extend the best performing encoding to handle factored
planning problems with general rewards (FD-BLP-Plan+).

In summary, this work provides the first planner capable of
learning complex transition models in domains with mixed
(continuous and discrete) factored state and action spaces as
BNNs and capable of exploiting their structure in satisfiabil-
ity (or optimization) encodings for planning purposes. Em-
pirical results demonstrate strong performance in both goal-



oriented and reward-oriented planning in both the learned and
original domains, and provide a new transition learning and
planning formalism to the data-driven model-based planning
community.

2 Preliminaries
Before we present the SAT and BLP compilation of the
learned planning problem, we review the preliminaries mo-
tivating this work.

2.1 Problem Definition
A deterministic factored planning problem is a tuple Π =
〈S,A,C, T, I,G〉 where S = {Sd, Sc} is a mixed set of
state variables with discrete Sd and continuous Sc domains,
A = {Ad, Ac} is a mixed set of action variables with discrete
Ad and continuous Ac domains, C : S × A → {true, false}
is a function that returns true if action a ∈ A and state
s ∈ S pair satisfies constraints that represent global con-
straints on state and action variables, T : S × A → S de-
notes the stationary transition function between time steps
t and t + 1, T (st,at) = st+1 if c(st,at) = true for all
global constraints c ∈ C, and is undefined otherwise. Finally,
I ⊂ C is the initial state and G ⊂ C is the goal state con-
straints over the set and subset of state variables S, respec-
tively. Given a planning horizon H , a solution (i.e. plan)
to Π is a value assignment to action at and state st vari-
ables such that T (st,at) = st+1 and c(st,at) = true for
all global constraints c ∈ C and time steps t ∈ {1, . . . ,H}.
The RDDL [Sanner, 2010] formalism is extended to handle
goal-specifications and used to describe the problem Π.

2.2 Factored Planning with Deep-Net Learned
Transition Models

Factored planning with deep-net learned transition models
is a two-stage framework for learning and solving nonlinear
factored planning problems as first introduced in HD-MILP-
Plan [Say et al., 2017]. Given samples of state transition data,
the first stage of the framework learns the transition function
T̃ using a deep-neural network with Rectified Linear Units
(ReLUs) [Nair and Hinton, 2010] and linear activation units.
The data is sampled from the RDDL-based domain simulator
RDDLsim [Sanner, 2010]. In the second stage, the learned
transition function T̃ is used to construct the factored plan-
ning problem Π̃ = 〈S,A,C, T̃ , I,G〉. That is, the trained
deep-neural network with fixed weights is used to predict the
state st+1 at time t+1 for free state st and action at variables
at time t such that T̃ (st,at) = st+1. As visualized in Fig-
ure 1, the learned transition function T̃ is sequentially chained
over horizon t ∈ {1, . . . ,H}, and compiled into a Mixed-
Integer Linear Program yielding the planner HD-MILP-Plan.
Since HD-MILP-Plan utilizes only ReLUs and linear acti-
vation units in its learned transition models, the state vari-
ables s ∈ Sc are restricted to have only continuous domains
Sc ⊆ S.

2.3 Binarized Neural Networks
Binarized Neural Networks (BNNs) are neural networks with
binary weights and activation functions [Hubara et al., 2016].

Figure 1: Visualization of HD-MILP-Plan, where blue circles rep-
resent state variables s ∈ S, red circles represent action variables
a ∈ A, gray circles represent hidden units (i.e., ReLUs and linear ac-
tivation units) and w represent the weights of a deep-neural network.
During the learning stage, the weights w are learned from data. In
the planning stage, the weights are fixed and HD-MILP-Plan opti-
mizes a given reward function with respect to the free action a ∈ A
and state variables s ∈ S.

During inference, BNNs reduce memory requirements of a
system by replacing most arithmetic operations with bit-wise
operations. BNN layers are stacked in the following order:

Real or Binary Input Layer: Binary units in all layers, with
the exception of the first layer, receive binary input. When
the input of the first layer has real-valued domains x ∈ R,
m bits of precision can be used for a practical representation
such that x̃ =

∑m
i=1 2i−1xiwi [Hubara et al., 2016].

Binarization Layer: Given input xj,l of binary unit j ∈ J(l)
at layer l ∈ {1, . . . , L} the deterministic activation function
used to compute output yj,l is: yj,l = 1 if xj,l ≥ 0, −1
otherwise, where L denotes the number of layers and J(l)
denotes the set of binary units in layer l ∈ {1, . . . , L}.

Batch Normalization Layer: For all layers l ∈ {1, . . . , L},
Batch Normalization [Ioffe and Szegedy, 2015] is a method
for transforming the weighted sum of outputs at layer l− 1 in
∆j,l =

∑
i∈J(l−1) wi,j,l−1yi,l−1 to input xj,l of binary unit

j ∈ J(l) at layer l such that: xj,l =
∆j,l−µj,l√
σ2
j,l+εj,l

γj,l+βj,l where

parameters wi,j,l−1, µj,l, σ2
j,l, εj,l, γj,l and βj,l denote the

weight, input mean, input variance, numerical stability con-
stant (i.e., epsilon), input scaling and input bias respectively,
where all parameters are computed at training time.

2.4 Boolean Satisfiability Problem

The Boolean Satisfiability Problem (SAT) is the problem of
determining whether there exists a value assignment to the
variables of a Boolean formula such that the formula eval-
uates to true (i.e., satisfiable) [Davis and Putnam, 1960].
While the theoretical worst-case complexity of SAT is NP-
Complete, state-of-art SAT solvers are shown to scale exper-
imentally well for large instances with millions of variables
and constraints [Biere et al., 2009].

Boolean Cardinality Constraints

Boolean cardinality constraints describe bounds on the num-
ber of Boolean variables that are allowed to be true, and are in
the form of AtMostk(x1, . . . , xn) =

∑n
i=1 xi ≤ k. An effi-

cient encoding of AtMostk(x1, . . . , xn) in conjunctive nor-



mal form (CNF) [Sinz, 2005] is presented below:

(
∧

1<j≤k

(¬s1,j)) ∧ (
∧

1≤i<n

(¬xi ∨ si,1))

∧ (
∧

1<i<n

∧
1≤j≤k

(¬si−1,j ∨ si,j)) ∧ (
∧

1<i≤n

(¬xi ∨ ¬si−1,k))

∧ (
∧

1<i<n

∧
1<j≤k

(¬xi ∨ ¬si−1,j−1 ∨ si,j))

Here, si,j are auxiliary Boolean variables implicitly de-
fined in the constraints above. Note that the cardinality con-
straint

∑n
i=1 xi ≤ k is equivalent to

∑n
i=1 ¬xi ≥ n − k.

For notational clarity, we use AtLeastk(x1, . . . , xn) to de-
note the cardinality constraint

∑n
i=1 xi ≥ k, which is equiv-

alent to AtMostn−k(¬x1, . . . ,¬xn).

2.5 Binary Linear Programming Problem
The Binary Linear Programming (BLP) problem requires
finding the optimal value assignment to the variables of a
mathematical model with linear constraints, linear objective
function, and binary decision variables. Similar to SAT, the
theoretical worst-case complexity of BLP is NP-Complete.
The state-of-the-art BLP solvers [IBM, 2017] utilize branch-
and-bound algorithms and can handle cardinality constraints
efficiently in the size of its encoding.

2.6 Generalized Landmark Constraints
A generalized landmark constraint is a linear inequality in the
form of

∑
a∈L(xa ≥ ka) ≥ 1 where L ⊂ A denotes the set

of action landmarks and ka denotes counts on actions a ∈ L,
that is, the minimum number of times an action must occur
in a plan [Davies et al., 2015]. Davies et al. introduced a
decomposition-based planner, OpSeq, that incrementally up-
dates generalized landmark constraints to find cost-optimal
plans to classical planning problems.

3 SAT Compilation of the Learned Factored
Planning Problem

In this section, we show how to reduce the learned factored
planning problem Π̃ with BNNs into SAT which we denote
as Factored Deep SAT Planner (FD-SAT-Plan).

3.1 Propositional Variables
First, we describe the set of propositional variables used in
FD-SAT-Plan. We use three sets of propositional variables:
action variables, state variables and BNN binary units, where
variables use a bitwise encoding.

• Xi
a,t denotes if i-th bit of action a ∈ A is executed at

time t ∈ {1, . . . ,H}.
• Y is,t denotes if i-th bit of state s ∈ S is true at time
t ∈ {1, . . . ,H + 1}.
• Zj,l,t denotes if binary unit j ∈ J(l) at layer l ∈
{1, . . . , L} is activated at time t ∈ {1, . . . ,H}.

3.2 Parameters
Next we define the additional parameters used in FD-SAT-
Plan.
• Iis is the initial (i.e., at t = 1) value of the i-th bit of state

variable s ∈ S.
• SG is the set of state variables SG ⊆ S specified by the

goal constraints G.
• Gis is the goal (i.e., at t = H + 1) value of the i-th bit of

state variable s ∈ SG.
• In(x, i) is the function that maps the i-th bit of a state or

an action variable x ∈ S∪A to the corresponding binary
unit in the input layer of the BNN such that In(x, i) = j
where j ∈ J(1).
• Out(s, i) is the function that maps the i-th bit of a state

variable s ∈ S to the corresponding binary unit in the
output layer of the BNN such that Out(s, i) = j where
j ∈ J(L).

3.3 The SAT Compilation
Below, we define the SAT encoding of the learned factored
planning problem Π̃ with BNNs.

Initial and Goal State Constraints∧
1≤i≤m

((
∧
s∈S

(Y is,1 ↔ Iis)) ∧ (
∧
s∈SG

(Y is,H+1 ↔ Gis))) (1)

where clause (1) set the initial and goal values of the state
variables at times t = 1 and t = H + 1, respectively.

BNN Constraints∧
1≤t≤H

∧
s∈S

∧
1≤i≤m

(Y is,t ↔ ZIn(s,i),1,t) (2)

∧
1≤t≤H

∧
a∈A

∧
1≤i≤m

(Xi
a,t ↔ ZIn(a,i),1,t) (3)

∧
1≤t≤H

∧
s∈S

∧
1≤i≤m

(Y is,t+1 ↔ ZOut(s,i),L,t) (4)

∧
1≤t≤H

∧
2≤l≤L

(Zj,l,t →

AtLeastk(Zi,l−1,t wi,j,l−1 = 1, i ∈ J(l − 1),

¬Zi,l−1,t wi,j,l−1 = −1, i ∈ J(l − 1))) (5)∧
1≤t≤H

∧
2≤l≤L

(¬Zj,l,t →

AtLeastk′(¬Zi,l−1,t wi,j,l−1 = 1, i ∈ J(l − 1),

Zi,l−1,t wi,j,l−1 = −1, i ∈ J(l − 1))) (6)

where k in the cardinality constraints is the binary activation
threshold computed at training time such that:

k =

⌈
|J(l − 1)|+ µj,l −

βj,l

√
σ2
j,l+εj,l

γj,l

2

⌉
for binary unit j ∈ J(l) in layer l ∈ {2, . . . , L}, where |x|
denotes the size of set x, and k′ = |J(l− 1)| − k+ 1 Clauses



(2-3) map the binary units at the input layer of the BNN (i.e.,
l = 1) to a unique state or action variable, respectively. Sim-
ilarly, clause (4) maps the binary units at the output layer of
the BNN (i.e., l = L) to a unique state variable. Clauses (5-6)
encode the binary activation of every unit in the BNN.

Global Constraints∧
c∈C

(c(Y is,t 1 ≤ t ≤ H + 1, s ∈ S, 1 ≤ i ≤ m,

Xi
a,t 1 ≤ t ≤ H, a ∈ A, 1 ≤ i ≤ m)) (7)

where clause (7) represents domain-dependent global con-
straints on state and action variables. Some common exam-
ples of global constraints c ∈ C such as mutual exclusion on
Boolean action variables and one-hot encodings for the out-
put of the BNN (i.e., exactly one Boolean state variable must
be true) are respectively encoded below by clauses (8-9):

AtMost1(Xa,t a ∈ A) (8)

AtMost1(Ys,t s ∈ S) ∧ (
∨
s∈S

Ys,t) (9)

In general, linear global constraints in the form of∑
i aixi ≤ k, such as bounds on state and action variables,

can be encoded in SAT where ai are positive integer coeffi-
cients and xi are decision variables with non-negative integer
domains [Abı́o and Stuckey, 2014].

4 BLP Compilation of the Learned Factored
Planning Problem

Given FD-SAT-Plan, we present the BLP compilation of the
learned factored planning problem Π̃ with BNNs, which we
denote as Factored Deep BLP Planner (FD-BLP-Plan).

4.1 Binary Variables and Parameters
FD-BLP-Plan uses the same set of decision variables and pa-
rameters as FD-SAT-Plan.

4.2 The BLP Compilation
FD-BLP-Plan replaces clauses (1-9) with equivalent linear
constraints. Clauses (1-4) are replaced by the following
equality constraints:

Y is,1 = Iis ∀s∈S,1≤i≤m (10)

Y is,H+1 = Gis ∀s∈SG,1≤i≤m (11)

Y is,t = ZIn(s,i),1,t ∀1≤t≤H,s∈S,1≤i≤m (12)

Xi
a,t = ZIn(a,i),1,t ∀1≤t≤H,a∈A,1≤i≤m (13)

Y is,t+1 = ZOut(s,i),L,t ∀1≤t≤H,s∈S,1≤i≤m (14)

Clause (5) is replaced by the following linear constraint:

kZj,l,t ≤
∑

wi,j,l−1=1
i∈J(l−1)

Zi,l−1,t +
∑

wi,j,l−1=−1
i∈J(l−1)

(1− Zi,l−1,t)

(15)

for all 1 ≤ t ≤ H, 2 ≤ l ≤ L. Similarly, clause (6) is
replaced by the following linear constraint:

k′(1− Zj,l,t) ≤
∑

wi,j,l−1=−1
i∈J(l−1)

Zi,l−1,t +
∑

wi,j,l−1=1
i∈J(l−1)

(1− Zi,l−1,t)

(16)

for all 1 ≤ t ≤ H, 2 ≤ l ≤ L. Finally, clauses (7-9) are
replaced by linear constraints in the form of

∑
i aixi ≤ k.

5 Incremental Factored Planning Algorithm
for FD-SAT-Plan and FD-BLP-Plan

Now we introduce an incremental algorithm for excluding in-
valid plans from the search space of FD-SAT-Plan and FD-
BLP-Plan. Similar to OpSeq [Davies et al., 2015], we update
our planners with generalized landmark constraints∑

a∈A
(

∑
1≤t≤H

(a,t)∈Ln

(1−Xa,t) +
∑

1≤t≤H
(a,t) 6∈Ln

Xa,t) ≥ 1 (17)

where Ln is the set of actions a ∈ A executed at time 1 ≤
t ≤ H at the n-th iteration of the algorithm outlined below.

Algorithm 1 Incremental Factored Planning Algorithm for
FD-SAT-Plan and FD-BLP-Plan
1: n = 1, planner = FD-SAT-Plan or FD-BLP-Plan
2: Ln ← Solve planner.
3: if Ln is ∅ or Ln is a plan for Π then
4: return Ln

5: else planner← Constraint (17)
6: n← n + 1, go to line 2.

For a given horizon H , Algorithm 1 iteratively computes
a set of actions Ln, or returns infeasibility for the learned
factored planning problem Π̃. If the set of actions Ln is non-
empty, we evaluate whether Ln is a valid plan for the original
factored planning problem Π (i.e., line 3) either in the actual
domain or using a high fidelity domain simulator – in our case
RDDLsim. If the set of actions Ln constitutes a plan for Π,
Algorithm 1 returns Ln as a plan. Otherwise, the planner is
updated with the new set of generalized landmark constraints
to exclude Ln and the loop repeats. Since the original ac-
tion space is discretized and represented upto m bits of pre-
cision, Algorithm 1 can be shown to terminate in no more
than n = 2|A|×m×H iterations by constructing an inductive
proof similar to the termination criteria of OpSeq where ei-
ther a feasible plan for Π is returned or there does not exist a
plan to both Π̃ and Π for the given horizon H .

6 Experimental Results
In this section, we evaluate the effectiveness of factored plan-
ning with BNNs. First, we present the benchmark domains
used to test the efficiency of our learning and factored plan-
ning framework with BNNs. Second, we present the accuracy
of BNNs to learn complex state transition models for factored
planning problems. Third, we test the efficiency and scalabil-
ity of planning with FD-SAT-Plan and FD-BLP-Plan on the



learned factored planning problems Π̃ across multiple prob-
lem sizes and horizon settings. Fourth, we demonstrate the
effectiveness of Algorithm 1 to find a plan for the factored
planning problem Π. Finally we test the effectiveness of fac-
tored planning with the best performing encoding over the
benchmark domains with reward specifications.

6.1 Domain Descriptions
The deterministic RDDL domains used in the experiments,
namely Navigation [Sanner and Yoon, 2011], Inventory Con-
trol (Inventory) [Mann and Mannor, 2014], and System Ad-
ministrator (SysAdmin) [Guestrin et al., 2001; Sanner and
Yoon, 2011] are described below.

Navigation models an agent in a two-dimensional (m-by-
n) maze with obstacles where the goal of the agent is to move
from the initial location to the goal location at the end of hori-
zon H . The transition function T describes the movement of
the agent as a function of the topological relation of its cur-
rent location to the maze, the moving direction and whether
the location the agent tries to move to is an obstacle or not.
This domain is a deterministic version of its original from
IPPC2011 [Sanner and Yoon, 2011]. Both the action and the
state space is Boolean. We report the results on instances with
two maze sizes m-by-n and three horizon settings H where
m = 3, 4, n = 3, H = 4, 6, 8.

Inventory describes the inventory management control
problem with alternating demands for a product over time
where the management can order a fixed amount of units to
increase the number of units in stock at any given time. The
transition function T updates the state based on the change in
stock as a function of demand, the current order quantity, and
whether an order has been made or not. The action space is
Boolean (either order a fixed positive integer amount, or do
not order) and the state space is non-negative integer. We re-
port the results on instances with two demand cycle lengths d
and three horizon settings H where d = 2, 4 and H = 4, 6, 8.

SysAdmin models the behavior of a computer network P
where the administrator can reboot a limited number of com-
puters to keep the number of computers running above a spec-
ified safety threshold over time. The transition function T
describes the status of a computer which depends on its topo-
logical relation to other computers, its age and whether it has
been rebooted or not, and the age of the computer which de-
pends on its current age and whether it has been rebooted or
not. This domain is a deterministic modified version of its
original from IPPC2011 [Sanner and Yoon, 2011]. The ac-
tion space is Boolean and the state space is a non-negative
integer where concurrency between actions are allowed. We
report the results on instances with two network sizes |P | and
three horizon settings H where |P | = 3, 4 and H = 2, 3, 4.

6.2 Transition Learning Performance
In Table 1, we present test errors for different configurations
of the BNNs on each domain instance where the sample data
was generated using a simple stochastic exploration policy.

For each instance of a domain, state transition pairs were col-
lected and the data was treated as independent and identically
distributed. After random permutation, the data was split into
training and test sets with 9:1 ratio. The BNNs were trained
on MacBookPro with 2.8 GHz Intel Core i7 16 GB mem-
ory using the code available [Hubara et al., 2016]. Over-
all, Navigation instances required the smallest BNN struc-
tures for learning due to their purely Boolean state and ac-
tion spaces, while both Inventory and SysAdmin instances
required larger BNN structures for accurate learning, owing
to their non-Boolean state and action spaces.

Table 1: Transition Learning Performance Table measured by error
on test data (in %) for all domains and instances.

Domain Network Structure Test Error (%)
Navigation(3,3) 12:64:64:9 2.12
Navigation(4,3) 16:80:80:12 6.59
Inventory(2) 7:96:96:5 5.51
Inventory(4) 8:128:128:5 4.58
SysAdmin(3) 12:128:128:9 3.73
SysAdmin(4) 16:96:96:96:12 8.99

6.3 Planning Performance on the Learned
Factored Planning Problems

We compare the effectiveness of using a SAT-based encod-
ing against a BLP-based encoding, namely FD-SAT-Plan and
FD-BLP-Plan to find plans for the learned factored planning
problem Π̃. We ran the experiments on MacBookPro with 2.8
GHz Intel Core i7 16GB memory. For FD-SAT-Plan and FD-
BLP-Plan, we used Glucose [Audemard and Simon, 2014]
and CPLEX 12.7.1 [IBM, 2017] solvers respectively, with 30
minutes total time limit per domain instance.

Overall Performance Analysis
In Figure 2, we present the runtime performance of FD-SAT-
Plan (Red Bar) and FD-BLP-Plan (Blue Bar) over Navigation
(Figure 2a), Inventory (Figure 2b) and SysAdmin (Figure 2c)
domains. The analysis of the runtime performances across
all three domains show that the increase in the size of the
underlying BNN structure (as presented in Table 1) signif-
icantly increases the computational effort required to find a
plan. Similarly for both planners, we observed that increas-
ing the size of the horizon, with the exception of instance
(Nav,3,8), increases the cost of computing a plan.

Comparative Performance per Encoding
The pairwise comparison of FD-SAT-Plan and FD-BLP-Plan
over all problem settings show a clear dominance of FD-
BLP-Plan over FD-SAT-Plan in terms of runtime perfor-
mance. Overall, FD-SAT-Plan computed plans for 15 out
of 18 instances while FD-BLP-Plan successfully found plans
for all instances. Moreover, with the exception of instances
(Nav,4,6) and (Nav,4,8), FD-BLP-Plan found plans for the
learned factored planning problems under 20 seconds. On
average, FD-BLP-Plan is two orders of magnitude faster than
FD-SAT-Plan.



(a) Navigation (b) Inventory (c) SysAdmin

Figure 2: Timing comparison between FD-SAT-Plan (Red Bar) and FD-BLP-Plan (Blue Bar). Over all problem settings, the BLP encoding
of the learned factored planning problem consistently outperformed its SAT equivalent.

(a) Navigation (b) Inventory (c) SysAdmin

Figure 3: Timing comparison between FD-BLP-Plan (Blue Bar) and FD-BLP-Plan+ (Green Bar). The additional computational resources
required to solve the factored planning problem with reward specifications varied across different domains where the computational effort for
finding a plan increased minimally, moderately and significantly in Inventory, Navigation and SysAdmin domains, respectively.

6.4 Planning Performance on the Factored
Planning Problems

We test the planning efficiency of the incremental factored
planning algorithm using the best performing planner, that is
FD-BLP-Plan, for solving the factored planning problem Π.
Overall only three instances, namely (Inv,4,8), (Sys,4,3) and
(Sys,4,4), required constraint generation to find a plan where
the maximum number of constraints required was equal to
one. The instances that required the generation of landmark
constraints, the runtime performance of FD-BLP-Plan was al-
most identical to the results presented in Figure 2.

6.5 Planning Performance on the Factored
Planning Problems with Reward Specifications

Finally, we extend FD-BLP-Plan to handle domains with re-
ward specifications. Hereby, we extend the definition of the
factored planning problem Π to include the reward function
Q : S×A→ R such that Π+ = 〈S,A,C, T, I,G,Q〉. Given
a planning horizonH , an optimal solution to Π+ is a plan that
maximizes the total reward function over all time steps such
that

∑H
t=1Q(st+1,at). Similar to HD-MILP-Plan [Say et

al., 2017], we assume the knowledge on the reward function
Q and add Q as an objective function to our BLP encoding,
which we denote as FD-BLP-Plan+.

In Figure 3, we show results for solving the factored plan-
ning problems with reward specifications using Algorithm
1. The pairwise comparison of FD-BLP-Plan and FD-BLP-
Plan+ over all domain instances shows that the additional

computational effort required to solve Π+ is minimal, mod-
erate and significant in Inventory, Navigation and SysAdmin
domains, respectively. Especially in (Sys,4,3) and (Sys,4,4)
instances, FD-BLP-Plan ran out of time at its fifth iteration of
Algorithm 1, as the solver could not prove the optimality of
the incumbent solution found.

7 Conclusion
In this work, we utilized the efficiency and ability of BNNs
to learn complex state transition models of factored planning
domains with discretized state and action spaces. We intro-
duced two novel compilations, a SAT (FD-SAT-Plan) and a
BLP (FD-BLP-Plan) encoding, that directly exploit the struc-
ture of BNNs to plan for the learned factored planning prob-
lem, which provide optimality guarantees with respect to the
learned model if they successfully terminate. We further in-
troduced an incremental factored planning algorithm based
on generalized landmark constraints that improve planning
accuracy of both encodings. Finally, we extended the best
performing encoding to handle factored planning problems
with reward specifications (FD-BLP-Plan+). Empirical re-
sults showed we can accurately learn complex state transition
models using BNNs and demonstrated strong performance
in goal-oriented and reward-oriented planning in both the
learned and original domains. In sum, this work provides a
novel and effective factored state and action transition learn-
ing and planning formalism to the data-driven model-based
planning community.
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