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Abstract

In many real-world hybrid (mixed discrete continu-
ous) planning problems such as Reservoir Control,
Heating, Ventilation and Air Conditioning (HVAC),
and Navigation, it is difficult to obtain a model of
the complex nonlinear dynamics that govern state
evolution. However, the ubiquity of modern sen-
sors allow us to collect large quantities of data from
each of these complex systems and build accurate,
nonlinear deep network models of their state transi-
tions. But there remains one major problem for the
task of control – how can we plan with deep net-
work learned transition models without resorting to
Monte Carlo Tree Search and other black-box tran-
sition model techniques that ignore model structure
and do not easily extend to mixed discrete and con-
tinuous domains? In this paper, we make the crit-
ical observation that the popular Rectified Linear
Unit (ReLU) transfer function for deep networks
not only allows accurate nonlinear deep net model
learning, but also permits a direct compilation of
the deep network transition model to a Mixed-
Integer Linear Program (MILP) encoding in a plan-
ner we call Hybrid Deep MILP Planning (HD-
MILP-PLAN). We identify deep net specific opti-
mizations and a simple sparsification method for
HD-MILP-PLAN that improve performance over a
naı̈ve encoding, and show that we are able to plan
optimally with respect to the learned deep network.

1 Introduction
In many real-world hybrid (mixed discrete continuous) plan-
ning problems such as Reservoir Control [Yeh, 1985], Heat-
ing, Ventilation and Air Conditioning (HVAC) [Agarwal et
al., 2010], and Navigation [Faulwasser and Findeisen, 2009],
it is difficult to obtain a model of the complex nonlinear dy-
namics that govern state evolution. For example, in Reser-
voir Control, evaporation and other sources of water loss are a
complex function of volume, bathymetry, and environmental
conditions; in HVAC domains, thermal conductance between
walls and convection properties of rooms are nearly impos-
sible to derive from architectural layouts; and in Navigation

problems, nonlinear interactions between surfaces and trac-
tion devices make it hard to accurately predict odometry.

A natural answer to these modeling difficulties is to instead
learn the transition model from sampled data; fortunately, the
presence of vast sensor networks often make such data inex-
pensive and abundant. While learning nonlinear models with
a priori unknown model structure can be very difficult in
practice, recent progress in Deep Learning and the availability
of off-the-shelf tools such as TensorFlow [Abadi et al., 2015]
make it possible to learn highly accurate nonlinear deep neu-
ral networks with little prior knowledge of model structure as
we will demonstrate experimentally in this paper.

However, the modeling of a nonlinear transition model as a
deep neural network poses non-trivial difficulties for the opti-
mal control task. Existing hybrid planners either are not com-
patible with nonlinear deep net transition models and con-
tinuous action input [Penna et al., 2009; Löhr et al., 2012;
Coles et al., 2013; Ivankovic et al., 2014; Piotrowski et al.,
2016; Scala et al., 2016a], or only optimize goal-oriented
objectives [Bryce et al., 2015; Scala et al., 2016b; Cash-
more et al., 2016]. Monte Carlo Tree Search (MCTS) meth-
ods [Coulom, 2006; Kocsis and Szepesvári, 2006; Keller and
Helmert, 2013] including AlphaGo [Silver et al., 2016] that
could exploit a deep net learned black box model of transi-
tion dynamics do not inherently work with continuous action
spaces due to the infinite branching factor. While MCTS with
continuous action extensions such as HOOT [Weinstein and
Littman, 2012] have been proposed, their continuous parti-
tioning methods do not scale to high-dimensional continuous
action spaces. Finally, offline model-free reinforcement learn-
ing with function approximation [Sutton and Barto, 1998;
Szepesvári, 2010] and deep extensions [Mnih et al., 2013]
do not directly apply to domains with high-dimensional con-
tinuous action spaces. That is, offline learning methods like
Q-learning require action maximization for every update, but
in high-dimensional continuous action spaces such nonlinear
function maximization is non-convex and computationally in-
tractable at the scale of millions or billions of updates.

Despite these limitations of existing methods, all is not lost.
First, we remark that our deep net is not a black-box but rather
a gray-box; while the learned parameters often lack human in-
terpretability, there is still a uniform layered symbolic struc-
ture in the deep models. Second, we make the critical obser-
vation that the popular Rectified Linear Unit (ReLU) [Nair



and Hinton, 2010] transfer function for deep networks al-
lows accurate nonlinear deep net model learning and per-
mits a direct compilation to a Mixed-Integer Linear Program
(MILP) encoding. Given other components such as a human-
specified objective function and a horizon, this permits di-
rect optimization in a method we call Hybrid Deep MILP
Planning (HD-MILP-PLAN). We evaluate HD-MILP-PLAN
on Reservoir Control, HVAC and Navigation domains, and
identify a number of domain-independent strengthening con-
straints and a simple sparsification approach that improve per-
formance over a naı̈ve encoding. Ultimately our results show
deep learning with MILP-based control is a promising new
direction for nonlinear hybrid planning problems.

2 Preliminaries
Before we discuss deep net transition learning, we review the
hybrid nonlinear planning problem motivating this work.

2.1 Hybrid Planning with Nonlinear Transitions
A hybrid planning problem is a tuple Π = 〈S,A,C, T, I,Q〉
where S = {Sd, Sc} is a mixed set of state variables (states)
with discrete Sd and continuous Sc domains, A = {Ad, Ac}
is a mixed set of action variables (actions) with discrete Ad

and continuous Ac domains, C : S × A → {true, false} is
a function that returns true if action a ∈ A and state s ∈ S
pair satisfies linear constraints that represent action precondi-
tions, T : S×A→ S denotes the transition function between
time steps t and t+1 (time is uniformly discretized) such that
T (st,at) = st+1 ifC(st,at) = true and is undefined other-
wise. Finally, I is the initial state andQ : S×A→ R denotes
the state-action reward function. Given a planning horizonH ,
an optimal solution to Π is a plan that maximizes the total re-
ward function over horizon H such that

∑H
t=1Q(st+1,at).

In many real-world problems, it is difficult to model the
exact dynamics of the complex nonlinear transition function
T that governs the evolution of states S over the horizon H .
Therefore in this paper, we do not assume a-priori knowledge
on T , but rather we learn it from data. We limit our model
knowledge to our reward function Q, horizon H and simple
action-precondition function C that specifies whether actions
a are applicable in state s at time t, or not, e.g., the outflow
from a reservoir must not exceed the present water level.

2.2 Deep Net Transition Learning
We model our state transition function as a deep neural net-
work as shown in Figure 1. This deep neural network is a
layered, acyclic, directed network structure with linear trans-
forms of the outputs from one layer to the input of the
next layer and potentially nonlinear transfer functions at each
layer. Specifically, the output layer uses a linear (identity)
transfer function while all hidden layers use nonlinear (piece-
wise linear) Rectified Linear Units (ReLUs) [Nair and Hin-
ton, 2010] of the form relu(x) = max(x, 0). In comparison
to the other activation functions, such as sigmoid and hyper-
bolic tangent, ReLUs can be trained efficiently and permit
direct compilation to a set of linear constraints.

We use a densely-connected network [Huang et al., 2016]
as shown in Figure 1, which in comparison to a standard fully
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Figure 1: Example 2 layer neural network transition model. Arrows
indicate full connections between all output and input nodes. Each
hidden layer output unit is passed through a ReLU unit. Dashed ar-
rows are optional dense connections.

connected network allows direct connections of each layer to
the output. This can be advantageous when a transition func-
tion has differing levels of nonlinearity — linear transitions
can pass directly from the input to the output layer, while non-
linear transitions may pass through one or more of the hidden
layers. Given a deep neural net configuration with L hidden
layers, state vectors S, S′ and an action vector A from data
D={(S1,A1,S1

′), . . . , (Sn,An,Sn
′)} and a hyperparam-

eter λ, the optimal weights W l for all layers {1, . . . , L} can
be found by solving the following optimization problem:

minimize
W l,bl,l∈{1,...,L}

∑
d∈{1,...,n}

∥∥∥S̃d
′−Sd

′
∥∥∥
F

+λ
∑

l∈{1,...,L}

‖W l‖2F

subject to

(1) Zl=relu((Sd||Ad||Z1||...||Zl−1)W T
l +bl)

∀l∈{1,...,L−1},d∈{1,...,n}

(2) S̃′=(Sd||Ad||Z1||...||ZL−1)W T
L+bL ∀d∈{1,...,n}

The objective minimizes squared reconstruction error of tran-
sitions in the data plus a regularizer. Constraints (1) and (2)
define the ReLU vector of Zl for each layer l∈{1,...,L−1}
and outputs S̃′, where || denotes the concatenation operation.

3 Hybrid Deep MILP Planning
Hybrid Deep MILP Planning (HD-MILP-PLAN) is a two-
stage framework for learning and optimizing nonlinear hybrid
planning problems. The first stage of HD-MILP-PLAN learns
the unknown transition function T using a densely-connected
deep neural network defined above. The learned transition
function T̃ is used to construct the model Π̃=〈S,A,C,T̃ ,I,Q〉,
which is provided to our MILP-based hybrid planner as a pa-
rameter. Given a planning horizon H , the second stage of
HD-MILP-PLAN finds an optimal plan to the learned-model
Π̃ using a Mixed Integer Linear Program (MILP). HD-MILP-
PLAN operates as an online planner where actions are op-
timized over the remaining planning horizon in response to
sequential state observations from the environment.



We now describe an initial MILP encoding of HD-MILP-
PLAN. Then, we strengthen the linear relaxation of our naı̈ve
MILP encoding and sparsify it for solver efficiency.

3.1 Naı̈ve MILP-based Hybrid Planner
We begin with all notation necessary for the specification:

Parameters
• VI(s) is the value of the initial state s∈S.
• R is the set of ReLUs in the neural network.
• B is the set of bias units in the neural network.
• O is the set of output units in the neural network.
• E is the set of synapsis in the neural network.
• W is the set of weights in the neural network.
• A(f) is the set of actions connected to unit f∈R∪O.
• S(f) is the set of states connected to unit f∈R∪O.
• U(f) is the set of units connected to f∈R∪O.
• O(s) specifies the output unit that predicts state s∈S.
• M is a large constant used in the big-M constraints.

Decision variables
• Xat denotes the value assignment to action a∈A from

its domain at time t. The domain of Xat can be either
discrete or continuous.
• Yst denotes the value of state s∈S at time t. The domain

of Yst can be either discrete or continuous.
• Pft denotes the output of unit f∈R at time t.
• P b

ft=1 if rectified linear unit f∈R is activated at time t,
0 otherwise (i.e., P b

ft is a boolean variable).

Naı̈ve MILP encoding
Next we define the MILP formulation of our planning opti-
mization problem that encodes the learned transition model.

maximize
Xt

H∑
t=1

Q(Yt+1,Xt)

subject to
(1) Ys1=VI(s) ∀s∈S
(2) Pft=1 ∀f∈B
(3) Pft≤MP b

ft ∀f∈R

(4) Pgt≤M(1−P b
gt)+

∑
f∈U(g)

wfgPft+
∑

s∈S(g)

wsgYst

+
∑

a∈A(g)

wagXat ∀g∈R

(5) Pgt≥
∑

f∈U(g)

wfgPft+
∑

s∈S(g)

wsgYst+
∑

a∈A(g)

wagXat

∀g∈R

(6) Yst+1=
∑

f∈U(g)

wfgPft+
∑

s∈S(g)

wsgYst+
∑

a∈A(g)

wagXat

∀g∈O(s),s∈S
(7) C(Yst,Xat) ∀s∈S,a∈A
for all time steps t=1,...,H except Constraint (1)

In the above MILP, the objective maximizes the sum of re-
wards over a given horizon H . Constraint (1) connects input

units of the neural network to the initial state of the planning
problem at time t=1. Constraint (2) sets all neurons that rep-
resent biases equal to 1. Constraint (3) ensures that a ReLU
f∈R is activated if the total weighted input flow into f is pos-
itive. Constraints (4)-(5) together ensure that if a ReLU f∈R
is active, the outflow from f is equal to the total weighted in-
put flow. Constraint (6) connects two states St and St+1 at two
consecutive times t and t+1 for all t=1,...,H . Constraint (7)
ensures that action preconditions are satisfied at every time t.

Note that Constraints (3)-(5) sufficiently encode the piece-
wise linear activation function of the ReLUs. However, the
positive unbounded nature of the ReLUs leads to a poor
linear relaxation of the big-M constraints, that is, when all
boolean variables (superscripted with b) are relaxed to con-
tinuous [0,1] in Constraints (3)-(4); this can significantly hin-
der the overall performance of standard branch and bound
MILP solvers that rely on the linear relaxation of the MILP
for heuristic guidance. Next, we strengthen our naı̈ve MILP
encoding with the addition of auxiliary decision variables and
linear constraints with the same solution as the naı̈ve MILP
encoding, but a tighter LP relaxation that we subsequently
observe to significantly improve MILP optimization time.

Strengthened MILP-based hybrid planner
In our naı̈ve MILP encoding, Constraints (4)-(6) encode the
piecewise linear activation function, relu(x)=max(x,0), us-
ing the big-M constraints for each ReLU f∈R. We strengthen
the linear relaxation of Constraints (5)-(6) by first separating
the input x into its positive x+ and negative x− components.
Using these auxiliary variables, we augment our naı̈ve MILP
encoding with an additional linear inequality in the form of
x+≥relu(x). This inequality is valid since the constraints x=
x+−x− and relu(x)=max(x,0)≤max(x+,0)=x+ hold for
all x+,x−≥0. The additional decision variables required to
implement our strengthened MILP are as follows:
• X+

at and X−at denote the positive and negative value as-
signments to action a∈A at time t, respectively.
• Y +

st and Y −st denote the positive and negative the values
of state s∈S at time t, respectively.
• Xb

at=1 if Xat is positive at time t, 0 otherwise.
• Y b

st=1 if Yst is positive at time t, 0 otherwise.
The additional constraints in the strengthened MILP are then

(8) Xat=X
+
at−X−at

(9) Xat≤UaX
b
at (10) Xat≥La(1−Xb

at)

(11) X+
at≤UaX

b
at (12) X−at≤−La(1−Xb

at)

for all actions a∈A where La<0, time steps t=0,...,H

(13) Yst=Y
+
st−Y −st

(14) Yst≤UsY
b
st (15) Yst≥Ls(1−Y b

st)

(16) Y +
st≤UsY

b
st (17) Y −st≤−Ls(1−Y b

st)

for all states s∈S where Ls<0, time steps t=1,...,H+1

Here, the pairs 〈La,Ua〉 and 〈Ls,Us〉 denote the lower and
upper bounds on the domains of action a∈A and state s∈S
decision variablesXat, Yst, respectively. Note that if either of
the upper bounds Ua or Us are negative, the planning problem
Π must be transformed into an equivalent problem Π′ where



upper bounds Ua,Us on every action a∈A and state s∈S are
non-negative. Given Constraints (8)-(17), Constraint (18) im-
plements our strengthening constraint which provides a valid
upper bound on each ReLU g∈R.

(18)
∑

s∈S(g),wsg>0,Ls≥0

wsgYst+
∑

s∈S(g),wsg>0,Ls<0

wsgY
+
st

−
∑

s∈S(g),wsg<0,Ls<0

wsgY
−
st +

∑
a∈A(g),wag>0,La≥0

wa,gXat

+
∑

a∈A(g),wag>0,La<0

wa,gX
+
at−

∑
a∈A(g),wag<0,La<0

wa,gX
−
at+∑

f∈U(g)∩R,wfg>0

wfgPft+
∑

f∈U(g)∩B,wfg>0

wfgP
b
gt≥Pgt

for all ReLU g∈R, time steps t=0,...,H

Network sparsification
In both naı̈ve and strengthened MILP encodings, Constraints
(4)-(6) are linear expressions often with very small weights
that do not contribute a significant amount to the output of
a unit. Computationally, MILP formulations with very small
constraint coefficients can be challenging to solve for state-
of-the-art solvers [D’Andreagiovanni and Gleixner, 2016].
To tackle this issue, we implement a sparsification approach
to remove connections to and from ReLUs with very small
weights. Given a sparsification parameter 0≤β≤1, we set
wij=0 if |wij| is less than the bβ×|W |c-th smallest element
from the set of absolute weight values.

4 Experimental Results
In this section, we introduce our three hybrid nonlinear
benchmark domains and then validate our HD-MILP-PLAN
framework with respect to the following experiments. First,
we evaluate the transition learning performance of ReLU-
based deep networks in each domain. Then, we evaluate
MILP planning efficacy based on the learned model by
comparing it to strong baseline manually coded policies.
As noted in the Introduction, MCTS and model-free re-
inforcement learning are not applicable as baselines given
our multi-dimensional concurrent continuous action spaces.
Since learning is the only method of estimating an arbitrary
nonlinear transition function from data, it is an open research
question how best to compile a deep network to the input of
PDDL+ [Fox and Long, 2006] hybrid planners.1 Finally, we
compare the efficiency of the naı̈ve and strengthened MILP
encodings, and measure the computational gains when using
sparsified transitions.

4.1 Illustrative Domains
Reservoir Control has a single state lr∈R for each reser-
voir, which denotes the water level of the reservoir r and a

1We see three ways of encoding a deep net in PDDL+: the net-
work can either be flattened into a single piecewise function which
will blow up exponentially in the network size, or the output of Re-
LUs could be encoded as derived predicates for planners that support
them, or each ReLU could be modeled as an exogenous event. It is
not clear how modern PDDL+ planners would perform under any of
the above encodings and we will investigate this in future work.

corresponding action for each r to permit a flow fr∈[0,rmax]
from reservoir r (with maximum allowable flow rmax) to the
next downstream reservoir. The transition is nonlinear func-
tion due to the evaporation er from each reservoir r, which is
defined by the formula

er
t=(1.0/2.0)·sin((1.0/2.0)·lrt)·0.1,

and the water level transition function is
lr
t+1=lr

t+
∑
rup

frup−f tr−ert,

where frup ranges over all upstream reservoirs of r. The re-
ward function minimizes the total absolute deviation from a
desired water level, plus a constant penalty for having water
level outside of a safe range (close to empty or overflowing),
which is defined for each time step t by the formula

Q(lt+1,f t)=−
∑
r

(0.1·
∣∣∣((mr+nr)/2.0)−lrt+1

∣∣∣
+100·max(mr−lrt+1,0)+5·max(lr

t+1−nr,0)),

where mr and nr define the upper and and lower desired
ranges for each reservoir r. We report the results on instances
with 3 and 4 reservoirs over planning horizons H=10,20.

Heating, Ventilation and Air Conditioning [Agarwal et al.,
2010] has a state variable pr∈R denoting the temperature of
each room r and an action br∈[0,bmax] for sending heated air
to each room r (with maximum allowable volume bmax) via
vent actuation. The bilinear transition function is then

pr
t+1=ptr+(∆t/Cr)(br+

∑
r′

(ptr′−prt)/Rrr′),

where Cr is the heat capacity of rooms, r′ represents an ad-
jacency predicate with respect to room r and Rrr′ represents
a thermal conductance between rooms. The reward function
minimizes the total absolute deviation from a desired temper-
ature for all rooms plus a linear penalty for having tempera-
tures outside of a range plus a linear penalty for heating air
with cost k, and is defined for each time step t by the formula

Q(pt+1,bt)=−
∑
r

(10.0·|((mr+nr)/2.0)−prt|+kbr

+0.1·(max(pr
t−nr,0)+max(mr−prt,0)).

We report the results on instances with 3 and 6 rooms over
planning horizons H=10,20.

Navigation is designed to test learning of a highly nonlinear
transition function and has a single state for the 2D location
of an agent pt+1 and a 2D action intended nominally to move
the agent ∆p. The new location pt+1 is a nonlinear function
of the current location pt due to higher slippage in the center
of the domain where the transition function is

pt+1=pt+∆p·2.0/(1.0+exp(−2·∆dp))−0.99.

where ∆dp is the Euclidean distance from p to the center of
the domain. The reward function minimizes the total Manhat-
tan distance from the goal location, which is defined for each
time step t by the formula

Q(pt+1,∆pt)=−
∑
d

|gd−prt|,



Table 1: Mean Squared Error Table for all domains and network
configurations with 95% Confidence Interval (in 10−6).

Domain Linear 1 Hidden 2 Hidden
Reservoir 46500000

±487000
343000
±7210

653000
±85700

HVAC 710±2.3 520±54 75200±7100
Navigation 30440±9.8 9420±29 1940±50

where gd defines the goal location for dimension d. We report
the results on instances with maze sizes 8-by-8 and 10-by-10
over planning horizons H=8,10.

4.2 Transition Learning Performance
In Table 1, we show the mean squared error of learning for
different configurations of the deep net on each domain. The
policy generating the sample data was a simple stochastic ex-
ploration policy and the deep nets were tested on a held-out
set of sample data. The sampled data was generated in the
sizes of 105 data points for all domains and treated as inde-
pendent and identically distributed. After random permuta-
tion, the sampled data was split into training and test sets with
4 to 1 ratio. Dense deep networks [Huang et al., 2016] strictly
dominated non-dense networks so we only report dense net-
work results. Overall, we see that Reservoir and HVAC could
be accurately learned with one layer (an additional layer did
not help) while Navigation benefited from having two layers
owing to the complexity of its transition. The lowest MSE
deep net was used as the deep net model for each domain in
subsequent planning experiments.

4.3 Planning Performance
In this section, we investigate the effectiveness of using a
MILP-based hybrid planner to optimize a learned-model Π̃.
We ran our experiments on a Linux system with two 20-
core CPUs, 256GB Memory. We optimized our MILP en-
codings using IBM ILOG CPLEX 12.6.3 with 32 threads
and a 1-hour total time limit per problem instance. We con-
nected HD-MILP-PLAN with the domain simulator and in-
teractively solved 12 problem instances where the instances
were generated from three domains with two different prob-
lem sizes and two different horizon lengths. For the sparsifi-
cation approach, we have picked the parameter to be β=0.15.

Comparative performance per domain
In Figure 2 (a), we compare HD-MILP-PLAN with two net-
work settings to a rule-based local Reservoir planner, which
measures the water level in reservoirs, and sets outflows to
release water above a pre-specified median level of reservoir
capacity. In this domain, we observe an average of 15% in-
crease in the total reward obtained by the plans generated by
HD-MILP-PLAN with a non-sparse network in comparison
to that of the rule-based local Reservoir planner. Similarly,
we find that HD-MILP-PLAN with a sparsified network out-
performs the rule-based local Reservoir planner by an average
of 8%. In Figure 3 (a), we see in the two subplots that HD-
MILP-PLAN with a non-sparse network was able to use its
model of evaporation to maintain a more stable water level
than the threshold-triggered manual policy.

In Figure 2 (b), we compare HD-MILP-PLAN with both
network settings to a rule-based local HVAC policy, which
turns on the air conditioner anytime the room temperature is
below the median value of a given range of comfortable tem-
peratures [20,25], and turns off otherwise. We observe that the
plans generated by HD-MILP-PLAN under both network set-
tings are almost identical to that of the locally optimal HVAC
policy. However, in Figure 3 (b), we observe that HVAC is
able to exploit its model of thermal conductivity to stop heat-
ing rooms (bottom two subplots, dashed blue line below red
line) before the manual policy cuts off.

Figure 2 (c) compares HD-MILP-PLAN under both net-
work settings to a greedy search policy, which uses a Man-
hattan distance-to-goal function to guide the agent towards
the direction of the goal (cf. Figure 3 (c)). The pairwise com-
parison of the total rewards obtained for each problem in-
stance per plan shows that HD-MILP-PLAN with both net-
work settings can outperform the manual policy upto 42%, as
observed in the problem instance Navigation,10,8 in Figure
2 (c). The investigation of the actual plans, as visualized by
Figure 3 (c), shows that the local policy ignores the nonlinear
region in the middle, and tries to reach the goal directly. In
contrast, HD-MILP-PLAN under both network settings can
find plans that move around the nonlinearity, due to its ability
to model the nonlinearity and find a plan that is optimal with
respect to the learned model over the complete horizon H .

Overall we observe that in 8 out of 12 problem instances,
the solution quality of the plans generated by HD-MILP-
PLAN with both network settings are significantly better than
the total reward obtained by the plans generated by the re-
spective domain-specific human-designed policies.

Comparative performance per MILP encoding
In Figures 4 (a)-(c), the black and blue bars give a run time
comparison of our naı̈ve MILP encoding to its strengthened
version given the time-limit of 1 hour. Figures 4 (a)-(c) show
moderate, none and significant run time improvement for the
strengthened encoding over our naı̈ve MILP encoding.

Comparative performance per network setting
The pairwise comparison of HD-MILP-PLAN with a sparsi-
fied network over a non-sparse network shows that the plan-
ning qualities were identical in HVAC and Navigation do-
mains and less than 5% worse in the Reservoir domain. In
11 out of 12 problem instances, our sparsification approach
improved the run time performance of HD-MILP-PLAN up
to 80% (see Navigation,10,8 in Figures 4 (c)).

5 Conclusion
In this paper, we have tackled the question of how we can plan
with expressive and accurate deep network learned transition
models that are not amenable to existing solution techniques.
We leveraged the insight that ReLU based deep networks of-
fer strong learning performance and permit a direct compila-
tion of the deep network transition model to a Mixed-Integer
Linear Program (MILP) encoding in a planner we called Hy-
brid Deep MILP Planning (HD-MILP-PLAN). To enhance
planning efficiency, we have strengthened the linear relax-
ation of the naı̈ve MILP encoding and simplified our deep
networks through sparsification.



Figure 2: The total reward comparison between domain-specific rule based planning (Red Bar) and two methods of MILP optimization
guided planning using i) a sparsified network (Green Bar) and ii) a non-sparse network (Blue Bar). Note that rewards in this paper represent
costs to minimize and hence smaller total reward indicates better performance. The domain notation shown in the bar labels of each figure
correspond to (DOMAIN NAME,SIZE,HORIZON). The handcoded policies were strong baselines intended to be near-optimal, but we see
greater performance separation as the domains become more nonlinear (most notably Reservoir and Navigation) and the optimal policies
become harder to manually encode.

Figure 3: Behavior comparison between the manually encoded rule-based policy (Red) and the optimized MILP policy using a non-sparsified
network (Blue). Performance on the sparsified network was visually indistinguishable from the current plots. Compared to the strong manually
coded policies, HD-MILP-PLAN makes more subtle nonlinear deviations in policy (Blue) in comparison to the manual policy (Red) that better
optimize the overall objective as shown in Figure 2.

Figure 4: Timing comparison between naı̈ve MILP algorithm (Black Bar), the strengthened MILP algorithm using i) a non-sparse network
(Blue Bar) and ii) a sparsified network (Green Bar). As the domains become more nonlinear (i.e., as measured by the learning quality of each
domain as presented in Table 1) and the deep net depth increases, the strengthened MILP encoding begins to dominate the naı̈ve encoding.
Deep net depth impacts performance of the strengthened MILP more than problem size.

We evaluated run time performance and solution quality
of the plans generated by HD-MILP-PLAN under both net-
work settings and MILP encodings over 12 problem instances
from three planning domains. We have shown that HD-MILP-
PLAN can accurately learn unknown transition functions and
find optimal plans with respect to the learned models. We
have shown that the plans generated by HD-MILP-PLAN
yield better solution qualities compared to strong domain-
specific human-designed policies. Finally we have shown that

both our strengthening constraints and network sparsification
improved the run time performance of HD-MILP-PLAN. In
conclusion, HD-MILP-PLAN represents a new class of data-
driven planning methods that can provide bounded optimal-
ity guarantees with respect to deep network learned transition
models and offers strong empirical performance over a vari-
ety of high-dimensional nonlinear hybrid planning domains.
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