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Mitigating the Impact of Light Rail on Urban Traffic Networks
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Abstract

As urban traffic congestion is on the increase worldwide, many cities are increasingly looking to
inexpensive public transit options such as light rail that operate at street-level and require coordina-
tion with conventional traffic networks and signal control. A major concern in light rail installation is
whether enough commuters will switch to it to offset the additional constraints it places on traffic sig-
nal control and the resulting decrease in conventional vehicle traffic capacity. In this paper, we study
this problem and ways to mitigate it through a novel model of optimized traffic signal control subject
to light rail schedule constraints solved in a Mixed Integer Linear Programming (MILP) framework.
Our key results show that while this MILP approach provides a novel way to optimize fixed-time
control schedules subject to light rail constraints, it also enables a novel optimized adaptive signal
control method that virtually nullifies the impact of the light rail presence, reducing average delay
times in microsimulations by up to 58.7% vs. optimal fixed-time control.

1 Introduction

As urban traffic congestion is on the increase worldwide with estimated productivity losses in the hundreds
of billions of dollars in the U.S. alone and immeasurable environmental impact [1], many cities are
increasingly looking to public transit options such as light rail that are less expensive and often more
reliable than heavy rail in order to reduce the number of conventional traffic commuters [2]. Since light
rail often operates at street-level with exclusive right-of-way and requires coordination with conventional
traffic networks and signal control, a major concern in light rail installation is whether enough commuters
will switch to it to offset the additional constraints it places on traffic signal control.

Unfortunately, many large cities still use some degree of fixed-time control [3] even if they also use
actuated or adaptive control methods such as SCATS [4] or SCOOT [5]; while these methods may support
signal pre-emption for light rail crossing, they are unable to autonomously adapt the signal plan to the
light rail schedule, hence posing problems for their effective integration with conventional traffic signal
control. A more recent trend in the traffic signal control literature proposes the use of optimized controllers
(that incorporate elements of both adaptive and actuated control) as evidenced in a variety of approaches
including mixed integer linear programming (MILPs) [6, 7, 8, 9, 10, 11, 12, 13, 14], heuristic search [15, 16],
queuing delay optimization [17, 18], scheduling-driven control [19, 20], and reinforcement learning [3].
While these approaches hold out the promise of more highly optimized traffic control methods, to date,
none have studied the optimal integration of light rail schedule constraints with their respective methods
nor the impact that such integration would have on traffic delay.

Nonetheless, the sub-optimal integration of traffic signal optimization and light rail schedules has been
done before, such as in [21], which uses a genetic algorithm coupled with a microsimulator to optimize a
subset of traffic signal and transit priority request parameters. Due to the usage of a genetic algorithm,
this approach does not necessarily find the global optimum. Another example of signal plan optimization
taking into account a schedule of transit priority requests is [22] which represents this problem as a MILP
that minimizes a multi-modal delay objective. Additionally, this approach incorporates virtual priority
requests to represent vehicle platoon arrivals in order to improve coordination between intersections.
This approach is also not globally optimal since each intersection is solved separately. Moreover, while
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Figure 1: (a) Network 1, an arterial road with parallel light rail, used later to evaluate performance. (b)
Example of a traffic flow through Network 1 modelled with QTM, showing the state of the queue variable
for each link in green. QTM captures the physical queues that form at traffic signals, as well as spill
back, where here, q7 has spilled back into the upstream link forming q4.

the model includes queuing delay and clearance times, it does not consider start up lost time. Another
non-optimal MILP-based approach is introduced in [23] and their MILP represents platoon-based flows
to optimize traffic signals with transit priority requests, but not the signal preemption associated with
rail transit. The obtained MILP is then solved progressively on pairs of intersections along an arterial
route and does not necessarily find the global optimum.

To address the deficiencies of these sub-optimal approaches, we introduce a MILP-based algorithm for
optimizing traffic signals constrained by light rail schedules in which it is computationally feasible to find
the optimal solution. To the best of our knowledge, this is the first algorithm capable of finding the optimal
integration of light rail schedule constraints. In order to do so, we leverage the Queue Transmission Model
(QTM) [13], a recent MILP model of traffic signal optimization where expected traffic queues and flows
are continuous variables, traffic signals are discrete variables, and the overall optimization objective is
to minimize delay. Among alternative MILP-based control methods cited previously, the advantages of
QTM are high scalability and a focus on the accurate modeling of travel delay between intersections
critical for prioritizing light rail arrivals.

Our approach to modelling light rail schedules also allow us to compute optimal fixed-time control
policies with light rail constraints and is capable of finding the optimal splits, offsets and cycle time.
This is an improvement on previous approaches to this problem (e.g., [6, 9, 14]) which require the cycle
time to be fixed exogenously (i.e., a parameter of the algorithm) and are only able to optimize the splits
and offsets. Computing the optimal cycle times has an impact beyond fixed-time control since adaptive
controllers (e.g., [4]) also require cycle times to be known a priori and our method can be directly used
there.

We make the follow key contributions:

1. The first method to globally optimize traffic signals integrated with light rail schedule constraints.

2. We provide a novel fixed-time controller to optimize cycle times, phase splits and offsets. The
fixed-time control schedules can include light rail schedule constraints and common cycle length
constraints, and can be incorporated immediately into existing fixed-time traffic controller infras-
tructure.

3. We provide a novel way to model lost time directly as a signal timing constraint and we show that
it is critical to finding optimized signal plans.

4. We run a comprehensive suit of experiments using a microsimulator to validate the effectiveness
of these contributions, both quantitatively and through visual inspection of the simulation results.
Gaining insights into the optimal solution’s properties can also help to further improve existing
control strategies and provides a benchmark.

Our experiments show that optimal adaptive control can reduce traffic delay by up to 58.7% over
optimal fixed-time control when light rail is introduced, and virtually nullifies its impact when compared



to using fixed-time control before the introduction of light rail. Ultimately, these results demonstrate a
win-win situation where both vehicle traffic and light rail commuters benefit through the application of
MILP-based optimization to jointly manage both light rail schedule priority and traffic networks.

2 The Queue Transmission Model (QTM)

To investigate the impact of light rail schedules on conventional traffic networks we need a model of both
traffic flow and light rail constraints. As a model of traffic flow, we leverage the Queue Transmission
Model (QTM) [13]. Informally, we show an example of a traffic network and the state of the queue

variables in a QTM model in Figure 1. Formally a QTM is a tuple (Q,L, ~∆t, I), where Q and L are,

respectively, the set of queues and lights; ~∆t is a vector of size N representing the discretization of the
problem horizon [0,T] and the duration in seconds of the n-th time interval is denoted as ∆tn; and I is
a matrix |Q| ×T in which Ii,n represents the flow of cars requesting to enter queue i from the outside of
the network at time n.

A traffic light ` ∈ L is defined as the tuple (Ψmin
` ,Ψmax

` , P`, ~Φ
min
` , ~Φmax

` ), where:

• P` is the set of phases of `;

• Ψmin
` (Ψmax

` ) is the minimum (maximum) allowed cycle time for `; and

• ~Φmin
` (~Φmax

` ) is a vector of size |P`| and Φmin
`,k (Φmax

`,k ) is the minimum (maximum) allowed time for
phase k ∈ P`.

A queue i ∈ Q represents a segment of road that vehicles traverse at free flow speed; once tra-
versed, the vehicles are vertically stacked in a stop line queue. Formally, a queue i is defined by the
tuple (Qi,T

p
i ,F

out
i , ~Fi, ~Pri,QPi ) where:

• Qi is the maximum capacity of i;

• Tp
i is the time required to traverse i and reach the stop line;

• Fout
i represents the maximum traffic flow from i to the outside of the modeled network;

• ~Fi and ~Pri are vectors of size |Q| and their j-th entry (i.e., Fi,j and Pri,j) represent the maximum
flow from queue i to j and the turn probability from i to j (

∑
j∈Q Pri,j = 1), respectively; and

• QPi denotes the set of traffic light phases controlling the outflow of queue i.

2.1 Computing Traffic Flows with QTM

In this section, we review the QTM and how to compute traffic flows using QTM as a Linear Pro-
gram (LP). We assume for the remainder of this section that a valid control plan for all traffic lights is
fixed and given as a parameter; formally, for all ` ∈ L, k ∈ P`, and interval n ∈ {1, . . . , N}, the binary
variable p`,k,n is known a priori and indicates if phase k of light ` is active (i.e., p`,k,n = 1) or not on
interval n.

We represent the problem of finding the maximal flow between capacity-constrained queues as an LP
over the following variables defined for all intervals n ∈ {1, . . . ,N} and queues i and j:

• qi,n ∈ [0,Qi], traffic volume waiting in the stop line of queue i at the beginning of interval n;

• f in
i,n ∈ [0, Ii,n], inflow to the network via queue i during interval n;

• fout
i,n ∈ [0,Fout

i ], outflow from the network via queue i during interval n; and

• fi,j,n ∈ [0,Fi,j ], flow from queue i into queue j during interval n.
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Figure 2: An example of using Vi(x, y) for a queue i, to find the volume of traffic arriving at the stop
line during interval 6, and the total volume of traffic within the link.

The maximum traffic flow from queue i to queue j is enforced by constraints (C1) and (C2). (C1) ensures
that only the fraction Pri,j of the total internal outflow of i goes to j, and (C2) forces the flow from i to
j to be zero if all phases controlling i are inactive. (i.e., p`,k,n = 0 for all k ∈ QPi ).

fi,j,n ≤ Pri,j

|Q|∑

k=1

fi,k,n (C1)

fi,j,n ≤ Fi,j

∑

p`,k,n∈QP
i

p`,k,n (C2)

To simplify the presentation of the remainder of the LP, we define qin
i,n (C3) and qout

i,n (C4) to, respec-
tively, represent the volume of traffic to enter and leave queue i during interval n.

qin
i,n = ∆tn(f in

i,n +

|Q|∑

j=1

fj,i,n) (C3)

qout
i,n = ∆tn(fout

i,n +

|Q|∑

j=1

fi,j,n) (C4)

The volume of traffic that entered queue i between two time points x and y is denoted as Vi(x, y) and
defined in equation (1), where m and w are the indexes of the time intervals s.t. tm ≤ x < tm+1 and
tw ≤ y < tw+1, and is obtained by summing the segments of qin

i,n overlapping the interval [x, y].

Vi(x, y) = (tm+1−x)
qin
i,m

∆tm
+

(
w−1∑

k=m+1

qin
i,k

)
+ (y−tw)

qin
i,w

∆tw
(1)

Using these helper variables, (C5) represents the flow conservation principle for queue i where Vi(tn−1 −
Tp

i , tn − Tp
i ) is the volume of cars that reached the stop line during ∆tn−1, and tn represents the time

elapsed since the beginning of the problem until the start of interval n such that tn = tn−1 + ∆tn−1, and
t1 = 0. Notice that (C5) represents a non-first order Markovian update because the update considers
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Figure 3: Example of a total cumulative departure curve for a network. Total delay in vehicle seconds
is represented by the hatched region between the departure curve and its upper bound, the departure
curve with no delay. The first term of the objective function (O1) seeks to maximize the area under the
departure curve. This is equivalent to minimizing the area above the departure curve (shaded region)
and therefore (O1) minimizes delay.

the number of time steps spanned by Tp
i . To ensure that the total volume of traffic traversing i (i.e.,

Vi(tn −Tp
i , tn)) and waiting at the stop line does not exceed the capacity of the queue, (C6) is enforced.

See Fig. 2 for an example of the volume functions.

qi,n = qi,n−1 − qout
i,n−1 + Vi(tn−1 − Tp

i , tn − Tp
i ) (C5)

Vi(tn − Tp
i , tn) + qi,n ≤ Qi (C6)

QTM uses the objective function (O1) to minimize total delay in the network. By maximizing each
flow, fout

i,n , f in
i,n and fi,j,n against its upper bound, weighted by the time remaining until the end of the

problem horizon T, the optimizer is forced to allow as much traffic volume as possible into the network
and move traffic to the outside of the network as soon as possible.

max

N∑

n=1

|Q|∑

i=1

(T− tn)∆tnf
out
i,n +

N∑

n=1

|Q|∑

i=1

(T− tn)∆tnf
in
i,n

+β

N∑

n=1

|Q|∑

i=1

(T− tn)

|Q|∑

j=1

∆tnfi,j,n) (O1)

The first term of objective (O1) corresponds to minimizing delay. To see this, consider the objec-
tive transformation max J = −min−J and, after expanding, we have the equivalent minimization (2).
Without loss of generality, if we consider the case where all traffic clears the network, then the sum∑

n

∑
i T∆tnf

out
i,n is a constant and (2) can be reduced to (3). Since ∆tn is implicitly 1 in CTM, (3) is

equal to the objective function given in [9], which was shown to be the minimization of total delay.
Fig. 3 provides a graphical interpretation of (2) as the difference of areas, where the first term of (O1)

is the area below the cumulative departure curve for the network, the sum
∑

n

∑
i T∆tnf

out
i,n is the area



of the dotted rectangle enclosing the curve, and the shaded area above the curve is given by (3).

−min

N∑

n=1

|Q|∑

i=1

tn∆tnf
out
i,n −

N∑

n=1

|Q|∑

i=1

T∆tnf
out
i,n (2)

min

N∑

n=1

|Q|∑

i=1

tn∆tnf
out
i,n (3)

The second term of (O1) maximizes the inflow at the rate given by I, but allows for elasticity in the
case of any queue spill back that blocks an input.

The third term of (O1) ensures that the optimizer always moves vehicles from i to j when the
associated traffic phase is active and j is not full. As described in [9], the value of β should be sufficiently
small to avoid interfering with the main objective by giving too much priority to the internal flows.

3 Traffic Control with MILP-encoded QTM

In this section, we show how to compute the optimized adaptive control plan by extending the LP (O1, C1–
C6) into an Mixed-Integer LP (MILP). Formally, for all ` ∈ L, k ∈ P`, and interval n ∈ {1, . . . , N}, the
phase activation parameter p`,k,n ∈ {0, 1} becomes a free variable to be optimized. In order to obtain a
valid control plan, only one phase of traffic light ` is allowed to be active at any interval n (C7). Moreover,
phase changes follow a (cyclic) fixed ordered sequence indexed by k (C8), where (C8) assumes that k+ 1
equals 1 if k = |P`|.

|P`|∑

k=1

p`,k,n = 1 (C7)

p`,k,n−1 ≤ p`,k,n + p`,k+1,n (C8)

Next, the minimum and maximum phase durations (i.e., Φmin
`,k and Φmax

`,k ) for each phase k ∈ P` of traffic
light ` is enforced. To encode these constraints, we use the helper variable d`,k,n ∈ [0,Φmax

`,k ], defined by
constraint (C9), that: (i) holds the elapsed time since the start of phase k when p`,k,n is active; (ii) is
constant and holds the duration of the last phase until the next activation when p`,k,n is inactive; and
(iii) is restarted when phase k changes from inactive to active. (C9) is encoded using the big-M method
and Φmax

`,k as the large constant since d`,k,n ≤ Φmax
`,k and ∆tn ≤ Φmax

`,k . Similarly, constraint (C10) ensures
the minimum phase time of k and is not enforced while k is still active.

d`,k,n =





d`,k,n−1+∆tn−1, p`,k,n−1 =p`,k,n =1

0, p`,k,n−1 =0, p`,k,n =1

d`,k,n−1, otherwise

(C9)

d`,k,n ≥ Φmin
`,k (1− p`,k,n) (C10)

Lastly, QTM constrains the sum of all the phase durations for light ` to be within the cycle time
limits Ψmin

` and Ψmax
` (C11). Additionally, (C11) is enforced right after the end of the each cycle, i.e.,

when its first phase is changed from inactive to active.

Ψmin
` (p`,1,n−p`,1,n−1)≤d`,1,n−1+

|P`|∑

k=2

d`,k,n≤Ψmax
` (C11)

In order to allow the controller to optimize an initial phase offset at the start of the plan, C9 and C11
are only applied for n > 1.

The MILP (O1, C1–C11) encodes the problem of finding the optimized adaptive traffic control plan
in a QTM network without light rail.
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Figure 4: Signal timing for a crossroad intersection with two phases φNS and φEW controlling the north-
south and east-west approaches respectively. The intersection is modeled using a QTM light `, with four
consecutive phases: P` = {p`,1, p`,2, p`,3, p`,4} with QPNS = {p`,2}, QPEW = {p`,4} and p`,1, p`,3 are the lost
time phases of fixed duration TL

` . The active states of p`,2 and p`,4 represent the effective green time of
their corresponding approaches, where traffic flows at the free flow speed. The lost time is represented by
the active states of p`,1 and p`,3, which inhibit all traffic flow, forcing the solver to clear the intersection
between each signal change and incur lost time delay.

3.1 Lost Time

An additional delay experienced by traffic within a signalized network is the time lost during signal
changes. This lost time is made up of several components:

• Start up lost time: the time require for a driver waiting at the stop line to react to a green signal
and accelerate up to the free flow speed.

• Yellow lost time: the remaing time of a yellow signal where drivers react and come to a stop.

• All red time: the time preceding the start of every green signal where all approaches are held red
to allow vehicles from the previous phase to clear the intersection.

As with other MILP formulations, the active states of QTM phase variables represent the effective green
time of the associated traffic signal phases, i.e, the time during which vehicles are flowing at the free flow
speed, but switch instantaneously between phases in the cycle, without consideration for the lost time
associated with the signal change [24, 25]. We extend QTM to model lost time by inserting additional
fixed duration phase variables into the cycle at each signal change that inhibit the flow of traffic when
active. If the lost time per signal change for light ` is TL

` , then we fix the duration of lost time phase k
with Φmin

`,k = Φmax
`,k = TL

` , and the solver cannot transition from one signal state to the next without first

incurring a delay of TL
` . In general, a total of n additional phase variables are needed per cycle, where n

is the number of signal phases in the cycle.
To obtain a signal plan using only the original n phases, the solution of a QTM with lost time network

is post-processed by removing the lost time phases and adjusting the start (end) of each green time by
the start up (yellow) lost time, leaving an all red time between signal changes. Fig. 4 shows a signal
plan for a crossroad with two phases φNS and φEW , modeled using a QTM light ` with four phases.
The durations of p`,2 and p`,4 represent the effective green time of signal phases φNS and φEW , and are
optimized by the solver. The durations of p`,1 and p`,3 are fixed and represent the lost time associated
with the signal changes.

3.2 QTM as a Fixed-Time Controller

We can further extend QTM to compute an optimized control plan with fixed phase durations. For
all ` ∈ L, k ∈ P`, we introduce the new variable φfixed

`,k ∈ [Φmin
`,k ,Φ

max
`,k ] and replace the bounds constraints



on d`,k,n (that is, d`,k,n ≤ Φmax
`,k and C10) with fixed duration constraints (C12) and (C13).

d`,k,n ≤ φfixed
`,k (C12)

d`,k,n ≥ φfixed
`,k − Φmax

`,k p`,k,n (C13)

Similarly to the variable phase duration constraints, the big-M method is employed in (C12) and (C13),
using Φmax

`,k as the constant, to enforce d`,k,n = φfixed
`,k only while the phase is inactive. The constraints

(C9, C11, C12, C13), allow the fixed-time controller to optimize the phase splits, cycle length and offset
for each light `.

A further utility to aid coordination between intersections, is to enforce a common cycle length
among a set of lights. To force a common cycle length optimized by QTM, we introduce the new variable
ψfixed ∈ [max` {Ψmin

` }, min` {Ψmax
` }]. We can then replace (C11) with the new constraints (C14) and

(C15).

d`,1,n−1+

|P`|∑

k=2

d`,k,n ≤ ψfixed (C14)

d`,1,n−1+

|P`|∑

k=2

d`,k,n ≥ ψfixed −M(1− p`,1,n + p`,1,n−1) (C15)

(C14) and (C15) constrain the sum of all phase durations for light ` to equal ψfixed. Similar to (C11), con-
straint (C15) is enforced right at the end of each cycle using the big-M method, whereM = max` {Ψmax

` }.
We consider here a single global ψfixed for all ` ∈ L, however it would be trivial to have disjoint subsets
of L corresponding to different regions of the network, each with its own localized ψfixed.

With the addition of constraints (C12) to (C15), We now have four different controllers available to
us:

1. MILP (O1, C1–C11), a fully optimized adaptive controller.

2. MILP (O1, C1–C9, C11–C13), a fixed-time controller able to optimize the phase splits, cycle length
and offset for each light `.

3. MILP (O1, C1–C9, C12–C15), a fixed-time controller, but with the additional constraint of a
common cycle length between lights.

4. MILP (O1, C1–C10, C14, C15) an optimized adaptive controller but also with a fixed, common
cycle length.

3.3 Light Rail Constraints

As a novel extension of the QTM to incorporate a fixed-schedule light rail, we add constraints to the
MILP model to fix the free variable p`,k,n for all n s.t. the light rail uses phase k of ` at time n. Formally,
given a schedule S`(k, n) ∈ {0, 1} where 1 represents that the light rail uses phase k of ` at time n, we
replace (C9) and (C10) by (C16) and (C17) when

∑
k∈P`

S`(k, n) > 0.

p`,k,n = S`(k, n) (C16)

d`,k,n = d`,k,n−1 (C17)

(C16) enforces that the correct phase k is active when the light rail reaches the traffic light `, and
(C17) ensures that the light rail can pass through ` even if more than the maximum phase time Φmax

`,k is
necessary.
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Figure 5: Network 2, an urban grid with crisscrossing streets and light rail.

4 Empirical Evaluation

In this section we compare the solutions for traffic networks modeled using QTM with lost time before and
after the introduction of a light rail. We consider both fixed-time control, i.e., a non-adaptive control plan,
and optimized adaptive control obtained by solving the MILP (O1, C1–C11, C16, C17) for the optimized
controller, and the MILP (O1, C1–C9, C11–C13, C16, C17) for the fixed controller. For comparison, we
also use the optimized adaptive controller with common cycle time constraints, MILP (O1, C1–C10, C14–
C17), and the fixed controller with common cycle time constraints, MILP (O1, C1–C9, C12–C17).

All the computed controllers are simulated using an Intellegent Driver Model (IDM) based microsim-
ulator [26]. As a car following model, IDM will maintain a given safe time headway between vehicles,
while also trying to achieve the given desired velocity. Vehicles encountering red signals or stationary
vehicles will decelerate and stop. Upon a signal change from green to yellow, the simulator will apply
a given braking deceleration to any vehicles estimated not to cross the stopline within the time before
the red signal, if continuing at their current speed. The simulated total travel time and observed delay
distribution of each controller are used as comparison metrics. Our hypothesis is that our optimized
adaptive approach is able to mitigate the impact of introducing light rail w.r.t. both metrics.

Microsimulation Parameters: We choose IDM parameters similar to those suggested in [26], that
give realistic values for urban traffic with a flow capacity of 0.5 vehicles/s and a jam density of 0.15
vehicles/m. To simulate the average conditions, we give all vehicles the same parameter values: length

l = 4.67 m, desired velocity v0 = 15 m/s, safe time headway T = 1 s, maximum acceleration a = 2 m/s
2
,

desired deceleration b = 3 m/s
2
, acceleration exponent δ = 4, and jam distances s0 = s1 = 2 m. Fig. 7

shows flow-density samples from an IDM microsimulation with these values, and how the QTM flow
parameters used in the experiments are calibrated.

Network Parameters: We consider two networks of differing complexity: an arterial crossed by four
side streets (Fig. 1a) and a 3-by-3 grid (Fig. 5). The queues receiving vehicles from outside of the network
are marked in Figs. 1a and 5 and we refer to them as input queues. The maximum queue capacity (Qi)
is 60 vehicles for non-input queues and infinity for input queues to prevent interruption of the input
demand due to spill back from the stop line. The free flow speed vf = 13.2 m/s and the traversal time
of each queue i (Tp

i ) is set at 30s, except for the output queues on Network 1 where the traversal time
is 10s. For each street, flows are defined from the head of each queue i into the tail of the next queue
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Figure 6: Light rails schedules: (a) slow (long and infrequent) light rail; and (b) fast (short and frequent)
light rail. (c) Example of two different demand profiles (inflow rates) applied to the Network 1 inputs
corresponding to the letter labels in each plot, where Ω is the maximum inflow rate as annotated on each
input in vehicles per ∆t.
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Figure 7: Flow-density samples from an IDM microsimulation of Network 2 along q5, to q8,, showing how
QTM parameters Fi,j = 0.5 and Qi = 60 are calibrated to the simulation.

j; there is no turning traffic (Pri,j = 1), and the maximum flow rate between queues, Fi,j , is set at 0.5
vehicles/s. All traffic lights have two phases, north-south and east-west, and for each traffic light ` and
phase k, Φmin

`,k is 10s, Φmax
`,k is 60s, Ψmin

` is 40s, and Ψmax
` is 140s. Whenever lost time is considered, we

use TL
` = 10s for all ` ∈ L, made up of 6s of startup lost time, 2s of yellow lost time and 2s of all red.

Demand Profiles:
Each network is evaluated at increasing demand levels up to the point where f in

i,n becomes saturated.
For each demand level, traffic is injected into the network in bursts of 100s for a total of 600s, and the
number of vehicles entering the network through i at time n is defined as Ii,n = 1/∆tnmax(ξΩiwi(tn),Ωi)
where: wi is the weight function corresponding to the letter label of i in Figs. 1a and 5, and defined in
Appendix A; Ωi is the maximum inflow rate in vehicles per ∆tn, as annotated at the start of queue i in
Figs. 1a and 5; and ξ ∈ (0, 2] is the scaling factor for the demand level being evaluated.

Light Rail Parameters: we use two different light rail schedules: a slow light rail with a crossing
duration of 50s, a period of 200s, and a travel time of 100s between lights (Fig. 6a); and a fast light
rail with a crossing duration of 20s, period of 160s, and travel time of 80s between lights (Fig. 6b). On
Network 2, the North-South schedule is offset by 100s for the slow light rail and 80s for the fast light rail
to avoid a collision at l5.

Evaluation: We evaluate each network in two scenarios: before the introduction of light rail and
after, and in each scenario using both a fixed-time controller and an optimized adaptive controller. For
each experiment, we perform one or more runs where a run consists of: (i) generate a random demand
profile P using the algorithm presented in Appendix A; (ii) compute the signal plan using QTM configured
as either an optimized adaptive controller or a fixed-time controller for the demand profile P ; and (iii)
evaluate the obtained signal plan by microsimulation on the demand profile P using IDM. We use a
problem horizon T large enough, typically in the range 1000s – 1500s, to allow all traffic to clear the
network, that lets us measure the incurred delay in all the vehicles.

For the experiment on Network 1, we perform 10 runs and report their average delay, and we concate-
nate the observed delays and number of stops of all the 10 runs for the reported boxplots and cumulative
distributions. For Network 2, we report 2 different experiments: the first done in a single run (i.e., using a
single random demand profile for both the controller and microsimulation), and the second using a single
run in which the signal plan is further evaluated by microsimulating with 9 additional random profiles.



The latter experiment allows us to evaluate the robustness of the controllers w.r.t. changes to the assumed
input levels since the microsimulation will be performed using demand profiles that the controllers were
not optimized for.

For lost time comparison, we use two different configurations of each controller: one with QTM
incurring lost time delay and the other without. Before microsimulation, we adjust the green time of the
signal plan from the lost time controller to account for the start up and yellow lost time, as illustrated
in Fig. 4.

MILP Solver Parameters: For all experiments, we used Gurobi as the MILP solver with a MIP
gap accuracy of 0.01% and β = 0.0001 in constraint (O1). If the solver execution time reaches 144 h then
the solver is halted and the best solution found so far is used. Solution times range from typically real
time (less than 200s) for optimized adaptive solutions of Network 1, to over 100 h for fixed-time plans of
Network 2; however, once the fixed-time solution is found, it can be deployed indefinitely.

5 Results

What is the impact of modelling lost time delay? Fig. 8a shows, for Network 1 without light
rail, the average delay per vehicle as a function of demand level under optimized adaptive control. The
QTM predicted delay for the controller without lost time is considerably lower, but the policies found
with QTM incurring lost time show improved performance under microsimulation and closely match the
prediction. Figs. 8b and 8c show the microsimulation time-distance plots at demand level II for several
links along the arterial of Network 1. The y-axis of these plot shows the distance along the street, and the
x-axis shows the evolution over time. Each black trace represents the journey of a vehicle along the street.
Traffic signals at fixed distances down the street appear as red horizontal dashed lines, where a solid bar
represents that the phase is inactive (i.e., the light is red) and traffic cannot pass; otherwise the phase is
active. The time-distance plots capture the queueing behaviour of the traffic as each vehicle decelerates
when approaching congested traffic, or red or yellow light ahead. When a vehicle is stationary, its trace
becomes horizontal. Green represents QTM traffic flow prediction, where darker shades represent regions
of higher density. Fig. 8b shows the controller with QTM incurring lost time delay, and the prediction
closely matches the microsimulation. However, in Fig. 8c the QTM policy without lost time is unrealizable
and the microsimulation quickly diverges.

What is the impact of a common cycle time on the controller? Fig. 9 shows, for Network
1, with and without light rail, the average delay per vehicle as a function of demand for each of the
four controllers. With no light rail (Fig. 9a) both the optimized adaptive controllers have very similar
average delay, while the fixed controllers have the same average delay. An inspection of the fixed signal
plans shows them to be identical. With the introduction of the fast light rail (Fig. 9b) the controllers
without common cycle length constraints are able to reduce delay further by utilizing different cycle
lengths along the arterial. The same outcome was observed on Network 2 without light rail, however
with the introduction of the light rail, the controllers with common cycle length constraints were unable
to find a feasible solution that also satisfied the light rail schedule.

Considering the lower plots that show the distribution of delay and give an indication of the quality of
the solutions, we can see that at demand level II in Fig. 9a and Fig. 9b, both the optimized controllers find
policies with similar average delay. But the box plots show that the optimized controller with common
cycle length trades a lower median and upper quartile for a higher maximum delay.

These results corroborate with methods already employed by traffic engineers [25], that for regular
traffic networks, using a common cycle lengths between adjacent intersections is a useful aid for achieving
good coordination, especially with fixed-time control. However, when the network is not regular, or has
addition constraints such as lightrail, improved solutions may be found with mixed cycle lengths.

Is it possible to mitigate the impact of light rail on delay? Figs. 10a and 10b show, for
each network, the average delay per vehicle as a function of demand for both fixed-time and optimized
adaptive control approaches in three scenarios: before the light rail and after the installation of light rail
using the slow and the fast schedules. In all cases the controller models lost time. As we hypothesized,
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Figure 8: Lost time delay. (a) Upper plot shows QTM average delay, with and without lost time,
compared to microsimulation of Network 1 (no light rail) at increasing demand levels. Lower plot:
Box plots representing distribution of delay at three different demand levels. Policies found with QTM
incurring lost time show improved performance under microsimulation. (b,c) Time-distance plots at
demand level II, from q2 to q4. (b) QTM incurring lost time delay closely predicts microsimulation, but
in (c) QTM policies without lost time are unrealizable and the microsimulation quickly diverges.
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Figure 9: Comparison of the four controllers running on Network 1. (a) With no light rail: The optimized
controllers are very close in performance, while both the fixed controllers find the same solution (b) With
the fast light rail: The controllers without common cycle constraints are able to further reduce delay by
using different cycle lengths along the arterial.

optimized adaptive control is able to mitigate the impact of the introduction of light rail and it marginally
increases the average delay when compared with the average delay produced by the fixed-time controller
before the light rail. Moreover, as shown in Figs. 10c and 10d, the optimized adaptive controller also
produces better signal plans than the fixed-time controller, i.e., plans with smaller median, third quartile,
and maximum delay.

Table 1 shows the average delay in seconds of the optimized adaptive and fixed-time controllers for
both networks. In the scenarios with a light rail, the improvement obtained by the optimized adaptive
approach ranges from 20.4% to 58.7% w.r.t. the fixed-time approach. We can see that the optimized
adaptive controller successfully nullifies the impact of adding a light rail to the networks since the average
delay obtained by it is approximately the same as the average delay for the fixed-time controller with no
light rail, with the average delay increased by at most 17.8 s.

What is the impact of unexpected arrivals on the controller? Fig. 11 shows the average delay
per vehicle averaged over 10 demand profiles for Network 2, where the arrival rates in the simulation differ
over time from the profile used to generate the signal plan. The overall conclusion is still the same: the
optimized controller outperforms the fixed-time controller. Compared to the results in Fig. 10b, the
optimized controller shows a slight increase in the average delay at lower demand levels and almost no
change at higher demand levels while, for the fixed controller, the policy is more robust to the unexpected
arrivals and there is minimal change across all demand levels. The fixed controller is more robust to
unexpected arrivals because its policy is optimize for the average arrival rate as opposed to an exact
demand profile, thus any demand profile with the same or similar average arrival rate will have little
impact in the average delay. Since the optimized controller attempts to coordinate signal timings with
expected changes in inflow rate to form platoons, the changes in the simulated demand profile has an
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Figure 10: Microsimulation average delay by network demand for the Network 1 (a) and Network 2
(b). (c,d): Box plots representing the observed distribution of delay for 3 different values of demand for
each network, comparing delay distribution without the light rail with the impact of the fast and slow
schedules. Optimized adaptive control is able to mitigate the impact of light rail on average delay, while
also producing better signal plans (lower median, third quartile and maximum delay).

impact the average delay. The impact of unexpected arrivals at lower demand levels is small because
some vehicles may need to wait an additional cycle before joining a platoon coordinated by the policy,
while at higher demand levels, the residual queue build up at the inputs buffers any mismatch resulting
in a negligible impact in the average delay. In all cases, the box plots show the solution quality for each
controller is not impacted by the unexpected arrivals.

How many drivers must switch to using light rail to maintain the same average delay?
This is a question that will be asked by planners evaluating the impact of adding a light-rail to a traffic
network, along with an upgrade to the signal control system. Fig. 12 shows the percentage reduction in
average delay as a function of the percentage of vehicles who’s drivers are switching to traveling on the
light rail. In these plots, the demand level is fixed and higher values are better (i.e., there is a larger
decrease in the average delay) and zero means that there is no change after installing light rail. For
the three combinations of before and after policies presented, we can see that, while keeping the fixed-
time controller requires from 14.2% to 47% of the drives to switch to light rail in order to obtain the
same average delay as before its installation, the optimized adaptive approach requires only from 5.8%
to 13.1% of the drivers to switch when already using optimized adaptive control before the light rail.
When compared fixed-time before the light rail and optimized adaptive after, the gains are even greater
with only 3% to 9.6% of the drives required to switch to the light rail.

How does the quality of optimized adaptive policies compare with fixed policies? To
answer this we show in Figs. 13a to 13d the microsimulation time-distance plots for several streets in
Network 1. Figs. 13a and 13b show that both controllers balance between establishing coordinated “green
corridors” along the arterial, and servicing the side streets, where the combined density at times exceeds
that of the arterial. However, the fixed controller is forced to find a single repeating policy sized for the
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Figure 11: Microsimulation average delay for Network 2, averaged over 10 different demand profiles, where
the arrival rates differ from the profile used by each controller. Comparing these results (unexpected
arrivals) against Figs. 10b and 10d (arrivals as expected), we can see that the obtained policies are
robust.

Light Rail Fixed Opt. Adapt. Improv.

Arterial
(♣) @
3900
Veh/h

None 66.8 s 62.9 s 5.7%
Fast 96.3 s 74.5 s 22.7%
Slow 194.2 s 80.6 s 58.7%

Grid (♠)
@ 4800
Veh/h

None 87.3 s 81.5 s 6.7%
Fast 117.4 s 93.4 s 20.4%
Slow 192.9 s 105.1 s 45.5%

Table 1: Average delay computed via microsimulation in seconds and improvement of optimized adaptive
controller over fixed-time controller for both networks and the three light rail scenarios. The demand
level is fixed and correspond to the points ♣ and ♠ in Figs. 10a and 10b, respectively. The improvement
obtained by our optimized adaptive approach when a light rail is introduced, ranges from 20.4% to 57.8%
w.r.t. the fixed-time approach.



0 10 20 30 40 50
% traffic reduction

40

20

0

20

40

60

%
 re

du
ct

io
n 

in
 a

ve
ra

ge
 d

el
ay

 p
er

 v
eh

icl
e

8.6%

11.1%

44.9%

Slow Light Rail Delay Impact @ 3900 vehicles/hour ( )
Fixed vs Optimized Slow L. Rail
Optimized vs Optimized Slow L. Rail
Fixed vs Fixed Slow L. Rail

(a)

0 10 20 30 40 50
% traffic reduction

40

20

0

20

40

60

%
 re

du
ct

io
n 

in
 a

ve
ra

ge
 d

el
ay

 p
er

 v
eh

icl
e

9.6%

13.1%

47.0%

Slow Light Rail Delay Impact @ 4800 vehicles/hour ( )
Fixed vs Optimized Slow L. Rail
Optimized vs Optimized Slow L. Rail
Fixed vs Fixed Slow L. Rail

(b)

0 5 10 15 20 25 30
% traffic reduction

40

20

0

20

40

60

%
 re

du
ct

io
n 

in
 a

ve
ra

ge
 d

el
ay

 p
er

 v
eh

icl
e

3.3%

5.8% 14.2%

Fast Light Rail Delay Impact @ 3900 vehicles/hour ( )
Fixed vs Optimized Fast L. Rail
Optimized vs Optimized Fast L. Rail
Fixed vs Fixed Fast L. Rail

(c)

0 5 10 15 20 25 30
% traffic reduction

30

20

10

0

10

20

30

40

50

%
 re

du
ct

io
n 

in
 a

ve
ra

ge
 d

el
ay

 p
er

 v
eh

icl
e

3.0%

6.4% 17.0%

Fast Light Rail Delay Impact @ 4800 vehicles/hour ( )
Fixed vs Optimized Fast L. Rail
Optimized vs Optimized Fast L. Rail
Fixed vs Fixed Fast L. Rail

(d)

Figure 12: Impact on average delay for the Network 1 (first column) and Network 2 (second column) for
both light rail schedules (rows) in different scenarios (curves) of traffic control system before and after
installation of light rail. The x-axis is the percentage of vehicles switching to the public transportation
and the y-axis is the % reduction in delay after the light rail is installed. Negative % represents an
increase in average delay. The vehicle demand for (a-d) are marked as ♣ and ♠ in their respective plots
in Fig. 10.

average traffic density in the network. As a byproduct, the side street (Fig. 13c) under the fixed-time
controller suffers from accumulative queue build-up following each transit of the light rail. In Figs. 13b
and 13d, we see that the optimized adaptive controller is able to clear out the queue build up in the side
street by increasing the phase time of the side street for a cycle after the transit has passed through, and
then returns to a schedule that prioritizes the arterial depending on the changes in traffic density. When
the traffic density in the arterial is higher than the side streets, the optimized adaptive controller will
coordinate “green corridors” along the arterial.

Fig. 14 provides more details on the behavior of the signal plans for demand level II (Figs. 10a and 10b)
by showing the cumulative number of vehicles by number of observed stops. In all cases for Network
1 and 2 the optimized controller does better with less stops at higher frequencies. For Network 1, we
see that both controllers choose to prioritize the side streets over the arterial, with less stops at higher
frequencies in the side streets. But in the case of the slow light rail with the optimized controller, 94%
of the vehicles experience three or less stops along the arterial while for the fixed controller 100% of the
vehicles experience three stops or more.
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Figure 13: (a-b) Micro-simulation time-distance plots from Network 1 along the links from q2 to q13,
showing that both controllers find well coordinated solutions where the timing of green signals along
the link is offset at each intersection to maintain a continuous flow of traffic at the free flow speed, a
solution well known to traffic engineers. However, the optimized controller is able to dynamically adjust
the “width” of the bands to match the traffic volume along the link, allowing more green time to be
allocated to cross traffic. (c-d): Microsimulation time-distance plots of side street q5 to q6. While both
controllers can find coordinated policies along the arterial, the optimized adaptive controller is able to
clear out the queues (horizontal flow lines) in the side streets following the transit of the light rail.

6 Conclusion

In this paper, we introduced a new method to generate an adaptive controller that optimizes traffic signals
integrated with light rail schedule constraints. The obtained adaptive controllers are guaranteed to be
globally optimal and, to the best of our knowledge, this is the first globally optimal algorithm capable
of handling light rail schedule constraints. Our approach is based on the Queue Transmission Model of
traffic signal control which we extended to incorporate light rail schedule constraints. We also provided a
novel way to model lost time directly as a signal timing constraint and show that it is critical to finding
optimized signal plans.

We also introduced a novel approach to compute fixed-time controller plans that optimize cycle times,
phase splits and offsets. The obtained fixed-time controllers are also guaranteed to be globally optimal
and they can handle both light rail schedule constraints and common cycle length constraints. The
computed fixed-time control schedules can be incorporated immediately into existing fixed-time traffic
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Figure 14: Impact of controller on number of stops as a cumulative distribution. Top row is for the slow
light rail schedule. Bottom row is for the fast light rail schedule. In all cases the optimized controller
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controller infrastructure, yielding important benefits for those municipalities that prefer not to migrate
to a fully adaptive control.

Lastly, we have compared our optimal adaptive and fixed-time controllers in a comprehensive suit
of experiments using microsimulation as a realistic, finer-grained, nonlinear model of traffic flow. Our
results show that the optimal adaptive controller is able to minimize the impact of introducing light
rail on conventional traffic networks on the average delay with respect to fixed-time signal control. The
experiments also show that the adaptive controllers finds better quality solutions, i.e., solutions with
substantially lower third quartile and maximum observed delay. Our key results demonstrate for the first
time the potential of MILP-based QTM traffic signal control approaches to virtually nullify the impact
of installing light rail on conventional traffic — our model can reduce traffic delay by up to 58.7% over
optimal fixed-time control when light rail is introduced. Consequently, the use of MILP-based optimized
adaptive controllers like QTM could remove the critical public concern of increased traffic delay resulting
from light rail installation, and thus positively impact the environment, urban productivity, and commute
time reductions for all commuters.

For future work, a key question to resolve is how large we can scale the traffic and light rail network
before we need to investigate decomposition-based approaches to scaling the solution (e.g., MILP-based
methods like dual decomposition or region-based traffic network partitioning schemes). Future work
should also examine the (online) learnability of QTM parameters from different traffic sensor data, for
instance, conventional inductive (double) loop counters, radar, and video feeds. Finally, noting that
the nonlinear microsimulation model offers a higher-fidelity model of traffic behavior, future work should
consider expanding the QTM to model nonlinear traffic flows [27, 28, 29, 30] and investigating the benefits
of nonlinear optimization relative to the existing QTM.
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Appendix A

Demand Profiles

To simulate the effect of random arrivals, we use demand profiles with flow rates that vary randomly
every 100s for a total duration of 600s:

Ii,n =
1

∆tn
max(ξΩiwi(tn),Ωi)

wi(tn) =

{
~rk if 100(k − 1) ≤ tn < 100k and 1 ≤ k ≤ 6

0 if tn ≥ 600

~r =
1

2
+

1

4
RandIntVec(6, 0 . . 4, vi)

vi =





5 if i is labeled A

9 if i is labeled B

7 if i is labeled C

3 if i is labeled D

5 if i is labeled E

where:

• wi(tn) is the weight function for queue i at time tn



• Ωi is the maximum inflow rate in vehicles per ∆tn, as annotated at the start of queue i in Figs. 1a
and 5; and

• ξ ∈ (0, 2] is the scaling factor for the demand level being evaluated.

• vi is a constant for queue i corresponding to the letter label of i in Figs. 1a and 5

The function RandIntVec returns a vector of N random integers in the range [lo . . hi], which sum to v.
Forcing the random vector for queue i to sum to vi ensures that across all experiments, the total number
of vehicles entering i will be the same.

1: function RandIntVec( N , lo . . hi , v)
2: ~r← ~0 of length N
3: sum← 0
4: do
5: for each i = 1 . . N do:
6: ~ri ← random integer in the range [lo . . hi]
7: sum← sum +~ri
8: while sum 6= v
9: return ~r
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