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ABSTRACT

Offline reinforcement learning (RL) addresses the problem of learning a perfor-
mant policy from a fixed batch of data collected by following some behavior
policy. Model-based approaches are particularly appealing in the offline setting
since they can extract more learning signals from the logged dataset by learning
a model of the environment. However, the performance of existing model-based
approaches falls short of model-free counterparts, due to the compounding of esti-
mation errors in the learned model. Driven by this observation, we argue that it is
critical for a model-based method to understand when to trust the model and when
to rely on model-free estimates, and how to act conservatively w.r.t. both. To this
end, we derive an elegant and simple methodology called conservative Bayesian
model-based value expansion for offline policy optimization (CBOP), that trades
off model-free and model-based estimates during the policy evaluation step ac-
cording to their epistemic uncertainties, and facilitates conservatism by taking a
lower bound on the Bayesian posterior value estimate. On the standard D4RL
continuous control tasks, we find that our method significantly outperforms pre-
vious model-based approaches: e.g., MOPO by 116.4%, MOReL by 23.2% and
COMBO by 23.7%. Further, CBOP achieves state-of-the-art performance on 11
out of 18 benchmark datasets while doing on par on the remaining datasets.

1 INTRODUCTION

Fueled by recent advances in supervised and unsupervised learning, there has been a great surge of
interest in data-driven approaches to reinforcement learning (RL), known as offline RL (Levine et al.,
2020). In offline RL, an RL agent must learn a good policy entirely from a logged dataset of past
interactions, without access to the real environment. This paradigm of learning is particularly useful
in applications where it is prohibited or too costly to conduct online trial-and-error explorations
(e.g., due to safety concerns), such as autonomous driving (Yu et al., 2018), robotics (Kalashnikov
et al., 2018), and operations research (Boute et al., 2022).

However, because of the absence of online interactions with the environment that give correcting
signals to the learner, direct applications of online off-policy algorithms have been shown to fail in
the offline setting (Fujimoto et al., 2019; Kumar et al., 2019; Wu et al., 2019; Kumar et al., 2020).
This is mainly ascribed to the distribution shift between the learned policy and the behavior policy

(data-logging policy) during training. For example, in Q-learning based algorithms, the distribu-
tion shift in the policy can incur uncontrolled overestimation bias in the learned value function.
Specifically, positive biases in the Q function for out-of-distribution (OOD) actions can be picked
up during policy maximization, which leads to further deviation of the learned policy from the be-
havior policy, resulting in a vicious cycle of value overestimation. Hence, the design of offline
RL algorithms revolves around how to counter the adverse impacts of the distribution shift while
achieving improvements over the data-logging policy.
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Figure 1: Prevention of value overestimation & adaptive reliance on model-based value predictions. (Left) We
leverage the full posterior over the target values to prevent value overestimation during offline policy learning
(blue). Without conservatism incorporated, the target value diverges (orange). (Right) We can automatically
adjust the level of reliance on the model-based and bootstrapped model-free value predictions based on their
respective uncertainty during model-based value expansion. The ‘expected horizon’ (E[h] =

P
h
wh · h,P

h
wh = 1) shows an effective model-based rollout horizon during policy optimization. E[h] is large at the

beginning, but it gradually decreases as the model-free value estimates improve over time. The figures were
generated using the hopper-random dataset from D4RL (Fu et al., 2020).

In this work, we consider model-based (MB) approaches since they allow better use of a given
dataset and can provide better generalization capability (Yu et al., 2020; Kidambi et al., 2020; Yu
et al., 2021; Argenson & Dulac-Arnold, 2021). Typically, MB algorithms — e.g., MOPO (Yu et al.,
2020), MOReL (Kidambi et al., 2020), and COMBO (Yu et al., 2021) — adopt the Dyna-style policy
optimization approach developed in online RL (Janner et al., 2019; Sutton, 1990). That is, they use
the learned dynamics model to generate rollouts, which are then combined with the real dataset for
policy optimization.

We hypothesize that we can make better use of the learned model by employing it for target value
estimation during the policy evaluation step of the actor-critic method. Specifically, we can compute
h-step TD targets through dynamics model rollouts and bootstrapped terminal Q function values. In
online RL, this MB value expansion (MVE) has been shown to provide a better value estimation of
a given state (Feinberg et al., 2018). However, the naı̈ve application of MVE does not work in the
offline setting due to model bias that can be exploited during policy learning.

Therefore, it is critical to trust the model only when it can reliably predict the future, which can be
captured by the epistemic uncertainty surrounding the model predictions. To this end, we propose
CBOP (Conservative Bayesian MVE for Offline Policy Optimization) to control the reliance on
the model-based and model-free value estimates according to their respective uncertainties, while
mitigating the overestimation errors in the learned values. Unlike existing MVE approaches (e.g.,
Buckman et al. (2018)), CBOP estimates the full posterior distribution over a target value from
the h-step TD targets for h = 0, . . . , H sampled from ensembles of the state dynamics and the Q

function. The novelty of CBOP lies in its ability to fully leverage this uncertainty in two related
ways: (1) by deriving an adaptive weighting over different h-step targets informed by the posterior
uncertainty; and (2) by using this weighting to derive conservative lower confidence bounds (LCB)
on the target values that mitigates value overestimation. Ultimately, this allows CBOP to reap the
benefits of MVE while significantly reducing value overestimation in the offline setting (Figure 1).

We evaluate CBOP on the D4RL benchmark of continuous control tasks (Fu et al., 2020). The ex-
periments show that using the conservative target value estimate significantly outperforms previous
model-based approaches: e.g., MOPO by 116.4%, MOReL by 23.2% and COMBO by 23.7%. Fur-
ther, CBOP achieves state-of-the-art performance on 11 out of 18 benchmark datasets while doing
on par on the remaining datasets.

2 BACKGROUND

We study RL in the framework of Markov decision processes (MDPs) that are characterized by a
tuple (S,A, T, r, d0, �); here, S is the state space, A is the action space, T (s0|s,a) is the tran-
sition function, r(s,a) is the immediate reward function, d0 is the initial state distribution, and
� 2 [0, 1] is the discount factor. Specifically, we call the transition and reward functions the
model of the environment, which we denote as f = (T, r). A policy ⇡ is a mapping from S

2



Published as a conference paper at ICLR 2023

to A, and the goal of RL is to find an optimal policy ⇡⇤ which maximizes the expected cumu-
lative discounted reward, Est,at

[
P1

t=0 �
t
r(st,at)], where s0 ⇠ d0, st ⇠ T (·|st�1,at�1), and

at ⇠ ⇡
⇤(·|st). Often, we summarize the quality of a policy ⇡ by the state-action value function

Q
⇡(s,a) := Est,at

[
P1

t=0 �
t
r(st,at)|s0 = s,a0 = a], where at ⇠ ⇡(·|st) 8t > 0.

Off-policy actor-critic methods, such as SAC (Haarnoja et al., 2018) and TD3 (Fujimoto et al., 2018),
have enjoyed great successes in complex continuous control tasks in deep RL, where parameterized
neural networks for the policy ⇡✓ (known as actor) and the action value function Q� (known as critic)
are maintained. Following the framework of the generalized policy iteration (GPI) (Sutton & Barto,
2018), we understand the actor-critic algorithm as iterating between (i) policy evaluation and (ii)
policy improvement. Here, policy evaluation typically refers to the calculation of Q�(s,⇡✓(s)) for
the policy ⇡✓, while the improvement step is often as simple as maximizing the currently evaluated
Q�; i.e., max✓ Es⇠D[Q�(s,⇡✓(s))] (Fujimoto et al., 2018).

Policy Evaluation At each iteration of policy learning, we evaluate the current policy ⇡✓ by min-
imizing the mean squared Bellman error (MSBE) with the dataset D of previous state transitions:

L(�,D) = MSBE : = E(s,a,r,s0)⇠D

h
(y(s,a, s0)�Q�(s,a))

2
i
, (1)

y(s,a, s0) = r(s,a) + �Q�0(s0,a0), a0 ⇠ ⇡✓(·|s
0) (2)

where y(s,a, s0) is the TD target at each (s,a), towards which Q� is regressed. A separate target

network Q�0 is used in computing y to stabilize learning (Mnih et al., 2015). Off-policy algorithms
typically use some variations of (2), e.g., by introducing the clipped double-Q trick (Fujimoto et al.,
2018), in which minj=1,2 Q�

0
j
(s0,a0) is used instead of Q�0(s0,a0) to prevent value overestimation.

Model-based Offline RL In the offline setting, we are given a fixed set of transitions, D, collected
by some behavior policy ⇡� , and the aim is to learn a policy ⇡ that is better than ⇡� . In particular,
offline model-based (MB) approaches learn the model f̂ = (T̂ , r̂) of the environment using D

to facilitate the learning of a good policy. Typically, f̂ is trained to maximize the log-likelihood
of its predictions. Though MB algorithms are often considered capable of better generalization
than their model-free (MF) counterparts by leveraging the learned model, it is risky to trust the
model for OOD samples. Hence, MOPO (Yu et al., 2020) and MOReL (Kidambi et al., 2020)
construct and learn from a pessimistic MDP where the model uncertainty in the next state prediction
is penalized in the reward. Criticizing the difficulty of accurately computing well-calibrated model
uncertainty, COMBO (Yu et al., 2021) extends CQL (Kumar et al., 2020) to the model-based regime
by regularizing the value function on OOD samples generated via model rollouts. These methods
follow the Dyna-style policy learning where model rollouts are used to augment the offline dataset
(Sutton, 1990; Janner et al., 2019).

Model-based Value Expansion (MVE) for Policy Optimization An alternative to the aforemen-
tioned Dyna-style approaches is MVE (Feinberg et al., 2018), which is arguably better suited to
seamlessly integrating the power of both MF and MB worlds. In a nutshell, MVE attempts to more
accurately estimate the TD target in (2) by leveraging a model of the environment, which can lead
to more efficient policy iteration. Specifically, we can use the h-step MVE target R̂h(s,a, s0) for
y(s,a, s0):

ŷ(s,a, s0) = R̂h(s,a, s
0) :=

hX

t=0

�
t
r̂t(ŝt, ât) + �

h+1
Q�0(ŝh+1, âh+1), (3)

(ŝ0, â0, r̂0, ŝ1) = (s,a, r, s0), ŝt ⇠ T̂ (·|ŝt�1, ât�1), ât ⇠ ⇡✓(·|ŝt), 1  t  h+ 1,

where R̂h(s,a, s0) is obtained by the h-step MB return plus the terminal value at h + 1 (h = 0
reduces back to MF). In reality, errors in the learned model f̂ compound if rolled out for a large h.
Thus, it is standard to set h to a small number.

3 CONSERVATIVE BAYESIAN MVE FOR OFFLINE POLICY OPTIMIZATION

The major limitations of MVE when applied to offline RL are as follows:
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1. The model predictions ŝt and r̂t in (3) become increasingly less accurate as t increases
because model errors can compound, leading to largely biased target values. This issue is
exacerbated in the offline setup because we cannot obtain additional experiences to reduce
the model error.

2. The most common sidestep to avoid the issue above is to use short-horizon rollouts only.
However, rolling out the model for only a short horizon even when the model can be trusted
could severely restrict the benefit of being model-based.

3. Finally, when the model rollouts go outside the support of D, R̂h in (3) can have a large
overestimation bias, which will eventually be propagated into the learned Q� function.

Ideally, we want to control the reliance on the model f̂ and the bootstrapped Q�0 according
to their respective epistemic uncertainty, while also preventing Q� from accumulating large
overestimation errors. That is, when we can trust f̂ , we can safely roll out the model for more steps
to get a better value estimation. On the contrary, if the model is uncertain about the future it predicts,
we should shorten the rollout horizon and bootstrap from Q�0 early on. Indeed, Figure 1 (right)
exemplifies that CBOP relies much more on the MB rollouts at the beginning of training because
the value function is just initialized. As Q�0 becomes more accurate over time, CBOP automatically
reduces the weights assigned to longer MB rollouts.

Below, we present CBOP, a Bayesian take on achieving the aforementioned two goals: trading off
the MF and MB value estimates based on their uncertainty while obtaining a conservative estimation
of the target ŷ(s,a, s0). To this end, we first let Q̂⇡(st,at) denote the value of the policy ⇡ at (st,at)
in the learned MDP defined by its dynamics f̂ ; that is,

Q̂
⇡(st,at) = E

f̂ ,⇡

" 1X

k=0

�
k
r̂(ŝt+k, ât+k)

#
, (ŝt, ât) = (st,at), ât+k ⇠ ⇡(·|ŝt+k). (4)

Note that in the offline MBRL setting, we typically cannot learn Q
⇡ due to having only an approxi-

mation f̂ of the model, and thus we focus instead on learning Q̂
⇡ .

Algorithm 1 Conservative Bayesian MVE

Input: (st,at, rt, st+1), f̂ , Q�0

1. Sample R̂h 8h  H using f̂ and Q�0 as in (3)
2. Estimate µh, �h according to (8), (9)
3. Compute the posterior N (µ,�) using (7)
return conservative value target (e.g., LCB µ� �)

Although there exists a unique Q̂
⇡(s,a) at

each (s,a) given a fixed model f̂ , we can-
not directly observe the value unless we in-
finitely roll out the model from (s,a) until
termination, which is computationally in-
feasible. Instead, we view each R̂h 8h de-
fined in (3) as a conditionally independent
(biased) noisy observation of the true underlying parameter Q̂⇡ .1 From this assumption, we can con-
struct the Bayesian posterior over Q̂⇡ given the observations R̂h 8h. With the closed-form posterior
distribution at hand, we can take various conservative estimates from the distribution; we use the
lower confidence bound (LCB) in this work. Algorithm 1 summarizes the procedure at a high-level.
Please see Algorithm 2 in Appendix B.1 for the full description of CBOP.

3.1 CONSERVATIVE VALUE ESTIMATION VIA BAYESIAN INFERENCE

In this part, we formally discuss the conservative value estimation of CBOP based on Bayesian pos-
terior inference. Specifically, the parameter of interest is Q̂⇡ , and we seek its posterior estimation:

P
⇣
Q̂

⇡
| R̂0, . . . , R̂H

⌘
/ P

⇣
R̂0, . . . , R̂H | Q̂

⇡

⌘
P
⇣
Q̂

⇡

⌘
= P

⇣
Q̂

⇡

⌘ HY

h=0

P
⇣
R̂h | Q̂

⇡

⌘
, (5)

where we assume that R̂h (h = 0, . . . , H) are conditionally independent given Q̂
⇡ (see Appendix

A where we discuss in detail about the assumptions present in CBOP).

In this work, we model the likelihood of observations P(R̂h|Q̂
⇡) as normally distributed with the

mean µh and the standard deviation �h:
R̂h | Q̂

⇡
⇠ N (µh,�

2
h
), (6)

1We will omit (s,a, s0) henceforth if it is clear from the context.
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since it leads to a closed-form posterior update. Furthermore, since R̂h can be seen as a sum of
future immediate rewards, when the MDP is ergodic and � is close to 1, the Gaussian assumption
(approximately) holds according to the central limit theorem (Dearden et al., 1998). Also, note
that our Bayesian framework is not restricted to the Gaussian assumptions, and other surrogate
probability distributions such as the Student-t distribution could be used instead.

For the prior, we use the improper (or uninformative) prior, P(Q̂⇡) = 1, since it is natural to assume
that we lack generally applicable prior information over the target value across different environ-
ments and tasks (Christensen et al., 2011). The use of the improper prior is well justified in the
Bayesian literature (Wasserman, 2010; Berger, 1985), and the particular prior we use in CBOP cor-
responds to the Jeffreys prior, which has the invariant property under a change of coordinates. The
Gaussian likelihood and the improper prior lead to a ‘proper’ Gaussian posterior density that inte-
grates to 1, from which we can make various probabilistic inferences (Wasserman, 2010).

· · ·s1

â1

r̂1

Q̂1

R̂0

ŝ2

â2

r̂2

Q̂2

R̂1

ŝ3

â3

r̂3

Q̂3

R̂2

· · ·

P
⇣
R̂0|Q̂

⇡

⌘ P
⇣
R̂2|Q̂

⇡

⌘

P
⇣
R̂1|Q̂

⇡

⌘

P
⇣
Q̂

⇡
|R̂0 · · · R̂H

⌘

ŷLCB = µ�  �

Figure 2: The graphical model representation of CBOP

The posterior (5) is a Gaussian with mean
µ and variance �2, defined as follows:

⇢ =
HX

h=0

⇢h, µ =
HX

h=0

✓
⇢hP
H

h=0 ⇢h

◆
µh, (7)

where ⇢ = 1/�2 and ⇢h = 1/�2
h

are the pre-
cisions of the posterior and the likelihood
of R̂h, respectively. The posterior mean
µ corresponds to the MAP estimation of
Q̂

⇡ . Note that µ has the form of a weighted
sum,

P
h
whµh, with wh = ⇢h/

P
H

h=0 ⇢h 2

(0, 1) being the weight allocated to R̂h. If
the variance of R̂h for some h is relatively
large, we give a smaller weight to that observation. If, on the other hand, R̂h all have the same
variance (e.g. ⇢0 = · · · = ⇢H ), we recover the usual H-step return estimate. Recall that the quality
of R̂h is determined by that of the model rollout return and the bootstrapped terminal value. Thus
intuitively speaking, the adaptive weight wh given by the Bayesian posterior allows the trade-off
between the epistemic uncertainty of the model with that of the Q function.

Figure 2 illustrates the overall posterior estimation procedure. Given a transition tuple (s,a, r, s0),
we start the model rollout from s1 = s0. At each rollout horizon h, the cumulative discounted
reward

P
h

t=0 �
t
r̂t is sampled by the dynamics model and the terminal value Q̂

h
is sampled by the

Q function (the sampling procedure is described in Section 3.2). We then get R̂h by adding the
h-step MB return samples and the terminal values �h+1

Q̂
h+1, which we deem as sampled from

the distribution P(R̂h|Q̂
⇡) parameterized by µh, �2

h
(we use the sample mean and variance). These

individual h-step observations are then combined through the Bayesian inference to give us the
posterior distribution over Q̂⇡ .

It is worth noting that the MAP estimator can also be derived from the perspective of variance opti-
mization (Buckman et al., 2018) over the target values. However, we have provided much evidence
in Section 4 and Appendix D.3 that the point estimate does not work in the offline setting due to
value overestimation. Hence, it is imperative that we should have the full posterior distribution over
the target value, such that we can make a conservative estimation rather than the MAP estimation.

To further understand the impact of using the MAP estimator for the value estimation, consider an
estimator Q̃ of Q̂⇡ and its squared loss: L(Q̂⇡

, Q̃) = (Q̂⇡
� Q̃)2. It is known that the posterior

mean of Q̂⇡ minimizes the Bayes risk w.r.t. L(Q̂⇡
, Q̃) (Wasserman, 2010), meaning that the pos-

terior risk
R
L(Q̂⇡

, Q̃)P(Q̂⇡
|R̂0, . . . , R̂H)dQ̂⇡ is minimized at Q̃ = µ. In this context, µ is also

called the (generalized) Bayes estimator of Q̂⇡ , which is an admissible estimator (Robert, 2007).
Despite seemingly advantageous, this result has a negative implication in offline RL. That is, the
MAP estimator minimizes the squared loss from Q̂

⇡(s,a) over the entire support of the posterior,
weighted by the posterior distribution. Now, the distribution shift of ⇡ from ⇡� can lead to signif-
icantly biased Q̂

⇡ compared to the true Q
⇡ . In this case, the quality of the MAP estimator when
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evaluated in the real MDP would be poor. Especially, the overestimation bias in the MAP estimation
can quickly propagate to the Q� function and thereby exacerbate the distribution shift.

3.2 ENSEMBLES OF DYNAMICS AND Q FUNCTIONS FOR SAMPLING H-STEP MVE TARGETS

In this section, we discuss how we estimate the parameters µh,�
2
h

of P(R̂h|Q̂
⇡) from the ensemble

of dynamics models and that of Q functions.

Assume we have a bootstrapped dynamics ensemble model f̂ consisting of K different models
(f̂1, . . . , f̂K) trained with different sequences of mini-batches of D (Chua et al., 2018; Janner et al.,
2019). Similarly, we assume a Q ensemble of size M . Given a state ŝt and an action ât, we can
construct the probability over the next state ŝt+1 and reward r̂t by the ensemble as follows:

P(ŝt+1, r̂t|ŝt,at) =
KX

k=1

P
⇣
f̂k

⌘
· P

⇣
ŝt+1, r̂t|ŝt,at, f̂k

⌘

where P(f̂k) is the probability of selecting the kth model from the ensemble, which is 1/K when
all models are weighted equally. Now, the sampling method that exactly follows the probabilistic
graphical model shown in Figure 2 would first sample a model from the ensemble at each time step,
followed by sampling the next state transition (and reward) from the model, which should then be
repeated K times per state to generate a single sample. Then, we evaluate the resulting state ŝt+1

and action ât+1 ⇠ ⇡✓(ŝt+1) with the Q ensemble to obtain M samples. To obtain N trajectories
from a single initial state to estimate µh and �2

h
for h = 1, . . . , H , the overall procedure requires

O(NKH) computation, which can quickly become infeasible for moderately large K and N values.

To reduce the computational complexity, we follow Chua et al. (2018) where each particle is prop-
agated by a single model of the ensemble for H steps. With this, we can obtain N trajectories of
length H from one state with O(NH) instead of O(NKH) (below we use N = K, i.e., we gen-
erate one particle per model). Concretely, given a single transition ⌧ = (s0,a0, r0, s1), we create
K numbers of particles by replicating s1 K times, denoted as ŝ(k)1 8k. The kth particle is propa-
gated by a fixed model f̂k and the policy ⇡✓ for H steps, where (ŝ(k)

t
, r̂

(k)
t�1) = f̂k(ŝ

(k)
t�1, â

(k)
t�1) and

â(k)
t

⇠ ⇡✓(ŝ
(k)
t

). At each imagined timestep t 2 [0, H + 1], M number of terminal values are
sampled by the Q�0 ensemble at (ŝ(k)

t
, â(k)

t
).

Despite the computational benefit, an implication of this sampling method is that it no longer directly
follows the graphical model representation in Figure 2. However, we can still correctly estimate µh

and �2
h

by turning to the law of total expectation and the law of total variance. That is,

µh = E⇡✓

h
R̂h

��� ⌧
i
= E

f̂k

h
E⇡✓

h
R̂h

��� ⌧, f̂k
ii

(8)

where the outer expectation is w.r.t. the dynamics ensemble sampling probability P(f̂k) = 1/K.
Hence, given a fixed dynamics model f̂k, we sample R̂h by following ⇡✓ and compute the average
of the h-step return, which is then averaged across different ensemble models. In fact, the resulting
µh is the mean of all aggregated M ⇥K samples of R̂h.

The h-step return variance Var⇡✓
(R̂h|⌧) decomposes via the law of total variance as following:

�
2
h
= Var⇡✓

h
R̂h|⌧

i
= E

f̂k

h
Var⇡✓

h
R̂h|⌧, f̂k

ii

| {z }
A

+Var
f̂k

h
E⇡✓

h
R̂h

��� ⌧, f̂k
ii

| {z }
B

. (9)

Here, A is related to the epistemic uncertainty of the Q�0 ensemble; while B is associated with
the epistemic uncertainty of the dynamics ensemble. The total variance Var⇡✓

(R̂h|⌧) captures both
uncertainties. This way, even though we use a different sampling scheme than presented in the
graphical model of Figure 2, we can compute the unbiased estimators of the Gaussian parameters.

Once we obtain µh and �2
h

, we plug them into (7) to compute the posterior mean and the variance.
A conservative value estimation can be made by ŷLCB = µ �  � with some coefficient  > 0
(Jin et al., 2021; Rashidinejad et al., 2021). Under the Gaussian assumption, this corresponds to
the worst-case return estimate in a Bayesian credible interval for Q̂

⇡ . We summarize CBOP in
Algorithm 2 in Appendix B.1.
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Table 1: Normalized scores on D4RL MuJoCo Gym environments. Experiments ran with 5 seeds.

MOPO MOReL COMBO CQL TD3+BC EDAC IQL CBOP

ra
nd

om
halfcheetah 35.4 ± 2.5 25.6 38.8 35.4 10.2 ± 1.3 28.4 ± 1.0 - 32.8 ± 0.4

hopper 11.7 ± 0.4 53.6 17.9 10.8 11.0 ± 0.1 31.3 ± 0.0 - 31.4 ± 0.0
walker2d 13.6 ± 2.6 37.3 7.0 7.0 1.4 ± 1.6 21.7 ± 0.0 - 17.8 ± 0.4

m
ed

iu
m halfcheetah 42.3 ± 1.6 42.1 54.2 44.4 42.8 ± 0.3 67.5 ± 1.2 47.4 74.3 ± 0.2

hopper 28.0 ± 12.4 95.4 94.9 79.2 99.5 ± 1.0 101.6 ± 0.6 66.2 102.6 ± 0.1
walker2d 17.8 ± 19.3 77.8 75.5 58.0 79.7 ± 1.8 92.5 ± 0.8 78.3 95.5 ± 0.4

m
ed

iu
m

re
pl

ay

halfcheetah 53.1 ± 2.0 40.2 55.1 46.2 43.3 ± 0.5 63.9 ± 0.8 44.2 66.4 ± 0.3
hopper 67.5 ± 24.7 93.6 73.1 48.6 31.4 ± 3.0 101.8 ± 0.5 94.7 104.3 ± 0.4

walker2d 39.0 ± 9.6 49.8 56.0 26.7 25.2 ± 5.1 87.1 ± 2.3 73.8 92.7 ± 0.9

m
ed

iu
m

ex
pe

rt halfcheetah 63.3 ± 38.0 53.3 90.0 62.4 97.9 ± 4.4 107.1 ± 2.0 86.7 105.4 ± 1.6
hopper 23.7 ± 6.0 108.7 111.1 98.7 112.2 ± 0.2 110.7 ± 0.1 91.5 111.6 ± 0.2

walker2d 44.6 ± 12.9 95.6 96.1 111.0 101.1 ± 9.3 114.7 ± 0.9 109.6 117.2 ± 0.5

ex
pe

rt halfcheetah - - - - 105.7 ± 1.9 106.8 ± 3.4 - 100.4 ± 0.9
hopper - - - - 112.2 ± 0.2 110.3 ± 0.3 - 111.4 ± 0.2

walker2d - - - - 105.7 ± 2.7 115.1 ± 1.9 - 122.7 ± 0.8

fu
ll

re
pl

ay halfcheetah - - - - - 84.6 ± 0.9 - 85.5 ± 0.3
hopper - - - - - 105.4 ± 0.7 - 108.1 ± 0.3

walker2d - - - - - 99.8 ± 0.7 - 107.8 ± 0.2

4 EXPERIMENTS

We have designed the experiments to answer the following research questions: (RQ1) Is CBOP able
to adaptively determine the weights assigned to different h-step returns according to the relative
uncertainty of the learned model and that of the Q function? (RQ2) How does CBOP perform in
the offline RL benchmark? (RQ3) Does CBOP with LCB provide conservative target Q estimation?
(RQ4) How does having the full posterior over the target values compare against using the MAP
estimation in performance? (RQ5) How much better is it to adaptively control the weights to h-step
returns during training as opposed to using a fixed set of weights throughout training?

We evaluate these RQs on the standard D4RL offline RL benchmark (Fu et al., 2020). In particular,
we use the D4RL MuJoCo Gym dataset that contains three environments: halfcheetah, hopper, and
walker2d. For each environment, there are six different behavior policy configurations: random (r),
medium (m), medium-replay (mr), medium-expert (me), expert (e), and full-replay (fr). We release
our code at https://github.com/jihwan-jeong/CBOP.

4.1 CBOP CAN AUTOMATICALLY ADJUST RELIANCE ON THE LEARNED MODEL

Figure 3: E[h] during CBOP training with the
dynamics model trained for different numbers of
epochs. CBOP can place larger weights to longer-
horizon rollouts as the dynamics model becomes
more accurate.

To investigate RQ1, we use the notion of the ex-

pected rollout horizon, which we define as E[h] =P
H

h=0 wh · h. Here, wh is the weight given to the
mean of R̂h as defined in (7), which sums to 1. A
larger E[h] indicates that more weights are assigned
to longer-horizon model-based rollouts.

Figure 1 already shows that E[h] decreases as the
Q function becomes better over time. On the other
hand, Figure 3 shows how the quality of the learned
model affects E[h]. Specifically, we trained the dy-
namics model on halfcheetah-m for different num-
bers of epochs (10, . . . , 100); then, we trained the
policy with CBOP for 150 epochs.

4.2 PERFORMANCE COMPARISON

To investigate RQ2, we select baselines covering both model-based and model-free approaches:
(model-free) CQL (Kumar et al., 2020), IQL (Kostrikov et al., 2022), TD3+BC (Fujimoto & Gu,
2021), EDAC (An et al., 2021); (model-based) MOPO (Yu et al., 2020), MOReL (Kidambi et al.,
2020), and COMBO (Yu et al., 2021). Details of experiments are provided in Appendix C.1.
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Table 1 shows the experimental results. Comparing across all baselines, CBOP presents new state-
of-the-art performance in 11 tasks out of 18 while performing similar in the remaining configura-
tions. Notably, CBOP outperforms prior works in medium, medium-replay, and full-replay config-
urations with large margins. We maintain that these are the datasets of greater interest than, e.g.,
random or expert datasets because the learned policy needs to be much different than the behavior
policy in order to perform well. Furthermore, the improvement compared to previous model-based
arts is substantial: CBOP outperforms MOPO, MOReL, and COMBO by 116.4%, 23.2% and 23.7%
(respectively) on average across four behavior policy configurations.

4.3 CBOP LEARNS CONSERVATIVE VALUES

Table 2: Difference between the values predicted
by the learned Q functions and the true discounted
returns from the environment.

CQL CBOP

Task name Mean Max Mean Max

hopper-m -61.84 -3.20 -55.83 -16.21
hopper-mr -142.89 -28.73 -172.45 -39.45
hopper-me -79.67 -5.16 -114.39 -11.24

To answer RQ3, we have selected 3 configurations
(m, me, and mr) from the hopper environment and
evaluated the value function at the states randomly
sampled from the datasets, i.e., Es⇠D[V̂ ⇡(s)] (nb.
a similar analysis is given in CQL). Then, we com-
pared these estimates with the Monte Carlo estima-
tions from the true environment by rolling out the
learned policy until termination.

Table 2 reports how large are the value predictions
compared to the true returns. Notice that not only the mean predictions are negative but also the
maximum values are, which affirms that CBOP indeed has learned conservative value functions.
Despite the predictions by CBOP being smaller than those of CQL in hopper-mr and me, we can see
that CBOP significantly outperforms CQL in these settings. See Appendix D.1 for more details.

4.4 ABLATION STUDIES

LCB vs. MAP in the offline setting To answer RQ4, we compare CBOP with STEVE (Buckman
et al., 2018) which is equivalent to using the MAP estimation for target Q predictions. Figure 1
(left) shows the case where the value function learned by STEVE blows up (orange). Further, we
include the performance of STEVE in all configurations in Appendix D.3. To summarize the results,
STEVE fails to learn useful policies for 11 out of 18 tasks. Especially, except for the fr datasets,
using the MAP estimation has led to considerable drops in the performances in the hopper and
walker2d environments, which reaffirms that it is critical to have the full posterior distribution over
the target values such that we can make conservative target predictions.

Adaptive weighting For RQ5, we also considered an alternative way of combining R̂h 8h by
explicitly assigning a fixed set of weights: uniform or geometric. We call the latter �-weighting, in
reference to the idea of TD(�) (Sutton, 1988). We evaluated the performance of the fixed weighting
scheme with various � 2 (0, 1) values, and report the full results in Appendix D.3. In summary,
there are some � values that work well in a specific task. However, it is hard to pick a single �
that works across all environments, and thus � should be tuned as a hyperparameter. In contrast,
CBOP can avoid this problem by automatically adapting the rollout horizon.

Benefits of full posterior estimation To ablate the benefits of using the full posterior distribu-
tion in conservative policy optimization, we have compared CBOP to a quantile-based approach
that calculates the conservative estimate through the ↵-quantile of the sampled returns ŷ(s,a, s0)
(3) from the ensemble. The experimental details and results are reported in Appendix D.3. In sum-
mary, we have found that CBOP consistently outperformed this baseline on all tasks considered, and
CBOP was more stable during training, showing the effectiveness of the Bayesian formulation.

5 RELATED WORK

In the pure offline RL setting, it is known that the direct application of off-policy algorithms fails
due to value overestimation and the resulting policy distribution shift (Kumar et al., 2019; 2020;
Fujimoto & Gu, 2021; Yu et al., 2021). Hence, it is critical to strike the balance between conser-

vatism and generalization such that we mitigate the extent of policy distribution shift while ensuring

8
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that the learned policy ⇡✓ performs better than behavior policy ⇡� . Below, we discuss how existing
model-free and model-based methods address these problems in practice.

Model-free offline RL Policy constraint methods directly constrain the deviation of the learned
policy from the behavior policy. For example, BRAC (Wu et al., 2019) and BEAR (Kumar et al.,
2019) regularize the policy by minimizing some divergence measure between these policies (e.g.,
MMD or KL divergence). Alternatively, BCQ (Fujimoto et al., 2019) learns a generative model of
the behavior policy and uses it to sample perturbed actions during policy optimization. On the other
hand, value regularization methods such as CQL (Kumar et al., 2020) add regularization terms to
the value loss in order to implicitly regulate the distribution shift (Kostrikov et al., 2021; Wang et al.,
2020). Recently, some simple yet effective methods have been proposed. For example, TD3+BC
(Fujimoto & Gu, 2021) adds a behavioral cloning regularization term to the policy objective of an
off-policy algorithm (TD3) (Fujimoto et al., 2018) and achieves SOTA performances across a variety
of tasks. Also, by extending Clipped Double Q-learning (Fujimoto et al., 2018) to an ensemble of
N Q functions, EDAC (An et al., 2021) achieves good benchmark performances.

Model-based offline RL Arguably, the learning paradigm of offline RL strongly advocates the
use of a dynamics model, trained in a supervised way with a fixed offline dataset. Although a
learned model can help generalize to unseen states or new tasks, model bias poses a significant
challenge. Hence, it is critical to know when to trust the model and when not to. MOPO (Yu
et al., 2020) and MOReL (Kidambi et al., 2020) address this issue by constructing and learning from
a pessimistic MDP whose reward is penalized by the uncertainty of the state prediction. On the
other hand, COMBO (Yu et al., 2021) extends CQL within the model-based regime by regularizing
the value function on OOD samples generated via model rollouts. Rigter et al. (2022) also takes
an adversarial approach by optimizing the policy with respect to a worst-case dynamics model.
In contrast to these, CBOP estimates a full Bayesian posterior over values by using ensembles of
models and value functions during policy evaluation of an actor-critic algorithm. In principle, having
the full distribution that CBOP provides could also facilitate the use of other risk-informed statistics
and epistemic risk measures to address value overestimation (see, e.g., Eriksson & Dimitrakakis
(2020)).

Model-based value expansion Unlike Dyna-style methods that augment the dataset with model-
generated rollouts (Sutton, 1990; Janner et al., 2019), MVE (Feinberg et al., 2018) uses them for
better estimating TD targets during policy evaluation. While equally weighted h-step model returns
were used in MVE, STEVE (Buckman et al., 2018) introduced an adaptive weighting scheme from
the optimization perspective by approximately minimizing the variance of the MSBE loss, while ig-
noring the bias. Interestingly, the Bayesian posterior mean (i.e., the MAP estimator) we derive in (7)
matches the weighting scheme proposed in STEVE. However as we show in Figure 1 and 10, using
the MAP estimator as value prediction in the offline setting often results in largely overestimated Q

values, which immensely hampers policy learning. See Section 3.1 for the related discussion.

6 CONCLUSION

In this paper, we present CBOP: conservative Bayesian model-based value expansion (MVE) for
offline policy optimization. CBOP is a model-based offline RL algorithm that trades off model-free
and model-based value estimates according to their respective epistemic uncertainty during policy
evaluation while facilitating conservatism by taking a lower bound on the Bayesian posterior value
estimate. Viewing each h-step MVE target as a conditionally independent noisy observation of
the true target value under the learned MDP, we derive the Bayesian posterior distribution over the
target value. For a practical implementation of CBOP, we use the ensemble of dynamics and that of
Q function to sample MVE targets to estimate the Gaussian parameters, which in turn are used to
compute the posterior distribution. Through empirical and analytical analysis, we find that the MAP
estimator of the posterior distribution could easily lead to value overestimation when the learned
MDP is not accurate under the current policy. In contrast, CBOP constructs the LCB from the
Bayesian posterior as a conservative estimation of the target value to successfully mitigate the issue
while achieving state-of-the-art performance on several benchmark datasets.
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A ASSUMPTIONS

In this part, we discuss and analyze the core assumptions that we have made in the derivation and
implementation of CBOP. First, recall that we view different h-step MVE returns R̂h for all h =
0, . . . , H as conditionally independent observations of the true underlying parameter Q̂⇡ . Second,
we have modeled the likelihood of the observations with the Gaussian distribution with mean µh and
standard deviation �h, which we estimate via sampling from the ensemble of dynamics and that of
Q function. Third, we use the improper prior, which still provides us a proper posterior distribution
that is also Gaussian. Below, we describe in more detail about each of these assumptions.

A.1 THE CONDITIONAL INDEPENDENCE ASSUMPTION

In order to meet the conditional independence assumption between R̂h, we need to estimate each
R̂h with samples that are independently sampled. One way of achieving this is to generate samples
per each h, resulting in an algorithm that requires O(NH

2) samples (and computation). However,
we have found that there is no specific benefit in this computational intensive sampling procedure

in terms of the final performance. Hence, our practical implementation only performs the forward
sampling once, reducing the computational cost down to O(NH).

A.2 THE BAYESIAN POSTERIOR ESTIMATION

The improper prior assumption We have used the improper (or uninformative) prior in deriving
CBOP in Section 3.1. Not to mention that the improper priors have been widely used in literature
(Wasserman, 2010; Berger, 1985; Christensen et al., 2011), we further argue that it is quite natural
(and sometimes necessary) not to assume any prior information if we are to apply our algorithm to
general environments/tasks that have different dynamics. When some prior information is available,
however, it is possible to incorporate it as long as we can use a conjugate prior that leads to a
closed-form posterior update. It is critical to keep the posterior in closed-form since otherwise we
have to resort to, e.g., posterior sampling, which will substantially (and unnecessarily) increase the
computational footprint.

Empirical evidence supporting the Gaussian assumption over P
⇣
R̂h | Q̂

⇡

⌘
First, note that the

true return distribution should have a single peak in the locomotion environments we consider due to
their deterministic nature, as long as the policy is deterministic. However, model-generated returns
can have bimodality in their distributions since different models in the dynamics ensemble can lead
to different trajectories, some of which can early terminate with low returns, while others continue
to receive larger returns. Hence, it is interesting to examine whether it is reasonable to assume the
Gaussian distribution over the h-step returns.

To answer this question, we have plotted the histograms of h-step returns for different h values in
three tasks: halfcheetah-mr, hopper-mr, and walker-mr. Figure 4 (a)-(c) show that it is reasonable
to assume R̂h are normally distributed. We have also observed that the empirical distribution of R̂h

sampled from certain states can have bimodality (Figure 4d). Notice that the histograms are more
spread out as h increases, which is due to compounded model errors. However, we note that the
Gaussian distribution can still capture the support of the return distribution reasonably well.

The Gaussian likelihood assumption As discussed above and shown in Figure 4, the Gaussian
assumption captures the actual return distributions reasonably well. Although it is possible to derive
a closed-form posterior update in Student t distribution by making an additional assumption in the
variance of R̂h likelihood (nb. we omit the actual derivation as it is not the contribution of this paper),
we have observed that this does not lead to meaningful performance improvements compared to the
much simpler Gaussian posterior that we derive in Section 3.1.
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(a) halfcheetah-mr (b) hopper-mr

(c) walker2d-mr (d) A state in walker2d showing the bimodal-
ity feature

Figure 4: The histogram of R̂h 8h 2 [0, 5] of a randomly selected state during training, evaluated
across three locomotion environments with the medium-replay-v2 configuration.

Algorithm 2 CBOP: Conservative Bayesian MVE for Offline Policy Optimization
1: Input: Data D, discount factor �, rollout horizon H , LCB coefficient  
2: Initialize actor ⇡✓, Q ensemble Q� and target Q�0 , dynamics ensemble f̂k = (T̂k, r̂k)8k

3: Pretrain f̂⇠ on D till convergence
4: Pretrain ⇡✓ and Q� on D with BC and FQE respectively (Appendix B.3)
5: while ⇡✓ not converged do
6: Sample a batch of transitions B = {⌧i : ⌧i = (s,a, r, s0)i}

|B|
i=1 ⇢ D

7: for ⌧i 2 B do . this step happens in parallel for all ⌧i 2 B

8: ŝk0  s, ŝk1  s0, âk0  a, r̂k0  r, 8k 2 [1,K]
9: for h = 0 to H do

10: if h � 1 then
11: Sample an action âk

h
⇠ ⇡✓(ŝkh) 8k

12: Sample next state transition and reward (ŝk
h+1, r̂

k

h
) f̂k(ŝkh, â

k

h
) 8k

13: end if
14: R̂

k,m

h
 

P
h

t=0 �
t
r̂
k

t
+ �

h+1
Q̂

m

�0(ŝkh+1, â
k

h+1) 8m
15: end for
16: Compute µh and �h by (8) and (9), respectively
17: Estimate µ,�

2 of P
⇣
Q̂|R̂0, . . . , R̂H

⌘
⇠ N (µ,�2) by (7)

18: Compute target Q value: yi(s,a, s0) µ�  �

19: end for
20: Update ⇡✓ and Q� following an off-policy actor-critic algorithm (e.g., SAC Haarnoja et al.

(2018))
21: Update the target network Q�0

22: end while
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Algorithm 3 FQE: Fitted Q-Evaluation (Le et al., 2019)

1: Input: Dataset D = {si,ai, ri, s0i}
n

i=1, policy ⇡ to be evaluated
2: Initialize the parameters of Q�(0) randomly
3: for t = 1, . . . , T do
4: Compute the targets yi = ri + �Q�(t�1)(s0i,⇡(s

0
i
)) 8i

5: Build the training set D(t) = {(si, ai), yi}ni=1
6: Solve a supervised learning problem:
7: �

(t) = argmin� E{(si,ai),yi}⇠D(t)

h
(Q�(si,ai)� yi)

2
i

8: end for
9: � �

(T )

10: return Q�

B ALGORITHM DETAILS

B.1 ALGORITHM SUMMARY

Algorithm 2 summarizes CBOP. In lines 20-21, we can use any off-policy actor-critic algorithm as
the backbone of our approach, since the only part that changes is the computation of the target value
y(s,a, s0). In this work, we follow EDAC (An et al., 2021) — which builds on SAC (Haarnoja et al.,
2018) — because it also employs Q ensembles. As discussed in Appendix B.3, a large discrepancy
in the scale of the terminal Q�0 predictions and that of the model-based rollout returns

P
�
t
r̂t in

the initial iterations greatly hampers policy learning. Hence, we pretrain the policy ⇡✓ and Q� with
with behavioral cloning (BC) and policy evaluation (PE) as elaborated in Appendix B.3.

B.2 DYNAMICS MODEL ARCHITECTURE

In this work, we approximate the true dynamics with a probabilistic ensemble model introduced by
PETS (Chua et al., 2018). We follow the common configurations used in the literature, e.g., MBPO
(Janner et al., 2019) and MOPO (Yu et al., 2020). Each model in the ensemble has 4 fully-connected
layers with 200 neurons. Specifically, we train the ensemble of 30 models, from which we select 20
models (often called ‘elite’) with smaller validation errors. For next state predictions, we train the
ensemble model to predict the delta states, or � = s0 � s for (s, s0) 2 D. We normalize the inputs
and outputs of the model for training and evaluation.

The approach for training the dynamics ensemble closely follows previous work on Bayesian en-
semble estimation (Chua et al., 2018; Janner et al., 2019). To reduce the effect of correlation, we
follow the existing work by using independent initialization for each ensemble member and by train-
ing each of them using different mini-batches sampled from the dataset. Although in practice some
correlation may be inevitable, there are several key advantages to estimating uncertainty in this way.
Firstly, bootstrapped uncertainty estimates have been shown to have strong theoretical properties
— see, e.g. Efron (1982) or Breiman (1996). Secondly, bootstrapping avoids the computational
challenges associated with estimating the uncertainty of model predictions directly, and our experi-
ments have shown that the uncertainty we obtained was indeed well-calibrated. For further details,
please see the expected horizon analysis shown in Figure 3 and Section 4.1, which demonstrates the
effectiveness of CBOP subject to different qualities of the learned dynamics ensemble.

B.3 PRETRAINING

In some environments, we notice that training Q� and ⇡✓ from scratch could be challenging, and
Figure 5 illustrates the reason. Remember that we pretrain the dynamics ensmeble with the offline
data D before starting the policy optimization. This means that the reward predictions made by
the learned model would have the proper scale. On the other hand, the Q�0 ensemble is initialized
with small random values. Hence, in the early iterations of policy learning, even though the Q�

ensemble has not been trained yet, its predictions have a very small variance compared to the model-
based rollout returns given by the learned dynamics ensemble (Figure 5(a)). This will then lead
to all weights being concentrated on R̂0, effectively MF; the MB rollouts would only slow down
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(a) Random initialization (b) Pretrained by BC+PE

Figure 5: The histogram of R̂h 8h 2 [0, 4] evaluated on halfcheetah-medium-v2

learning without contributing anything in this case. Besides, the variance of Q�0 ensemble would
be negligible, suggesting that taking the LCB would not introduce a sufficient level of conservatism
into learning, which can hurt the performance.

Therefore in the experiments, we pretrain Q� and ⇡✓ with the offline data. Specifically, we use
behavior cloning (BC) for the policy network ⇡✓. In BC, we minimize the mean squared loss
LBC(✓) = E(s,a)⇠D[(a � ⇡✓(s))2]. For the value network Q�, we perform policy evaluation
(PE) using Fitted Q-Evaluation (FQE) (Le et al., 2019), which is schematically explained in the
pseudocode in Algorithm 3. In line 4, when the policy to be evaluated is the behavior policy ⇡� , we
can take the recorded next action ai+1 from D in place of ⇡(s0

i
).

More concretely, at each iteration t of FQE, a supervised learning dataset D(t) = {(si,ai), yi}ni=1
is constructed by estimating the target value yi for each (si,ai) ⇠ D with the current Q approxima-
tion Q�(t�1) and the associated transition tuple (si,ai, ri, s0i) via yi = ri + �Q�(t�1)(s0i,⇡(s

0
i
)).

We then update the Q function parameters � by minimizing the MSE loss. That is, �(t)  
argmin�

1
n

P
n

i=1[Q�(t�1)(si,ai) � yi]2. FQE repeats the two steps (i.e., constructing the dataset
and minimizing the MSE loss) to learn the Q� ensemble model.

C EXPERIMENT DETAILS

C.1 EXPERIMENTAL SETTINGS

D4RL MuJoCo Gym We use the v2 version for each dataset as provided by the D4RL library (Fu
et al., 2020). Following Algorithm 2, we pretrain ⇡✓ and Q� with BC and FQE, respectively. The
resulting policy and the Q ensemble are trained for 1, 000 more epochs using CBOP. Table 1 reports
the mean and standard deviation obtained from 5 random seeds.

Comparision of target Q values of MAP and CBOP (Figure 1(a)) In Figure 1(a), we compare
the MAP estimation with the LCB in the hopper-random dataset. We have plotted the mean and ±

one standard error over the course of training. The MAP estimation simply uses the mean µ in (7) as
the target y(s,a, s0), where as the LCB utilizes the variance of the posterior distribution to compute
y(s,a, s0) = µ� · �. Note that we can also use other conservative estimate of the target using the
posterior distribution; for example, we can use value-at-risk (VaR), conditional value-at-risk (CVaR)
or other quantiles.

Expected rollout horizon of CBOP (Figure 1(b) and Figure 3) In Figure 1 and 3, we report the
expected rollout horizon values. The expected rollout horizon can be computed per each sample
in the batch during policy training, and we have reported the average value across all samples in a
batch.

C.2 HYPERPARAMETERS

Table 3 summarizes the CBOP hyperparameters we use in the experiments presented in Section 4.
The only hyperparameter that we have tuned is the LCB coefficient  through the grid search over
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Table 3: The LCB coefficient  used in the D4RL MuJoCo Gym experiments.

 

Task Name halfcheetah hopper walker2d

random 3.0 5.0 5.0
medium 0.5 3.0 3.0
medium-replay 0.5 2.0 2.0
medium-expert 3.0 3.0 3.0
expert 5.0 3.0 3.0
full-replay 2.0 3.0 2.0

the set {0.5, 2.0, 3.0, 5.0}. We have used H = 10, K = 20, M = 20, and lr = 3 ⇥ 10�4 for all
experiments, except for the hopper environment where we used M = 50.2 The LCB parameters
reported in Table 3 are tuned based on the final online evaluation performance from corresponding
environments.

Offline Hyperparameter Selection via FQE (Paine et al., 2020) When strictly adhering to the
offline paradigm of policy learning, it is crucial to restrict access to online interactions at all stages of
learning including the hyperparameter selection.However, many existing works still use the online
evaluation for hyperparameter selection (An et al., 2021; Wang et al., 2021; Fujimoto & Gu, 2021;
Chen et al., 2021) and we followed the same evaluation protocol for tuning the hyperparameters of
our method. We believe there is a dire need for standardizing the evaluation protocol in the offline
RL, but this work should be addressed by the offline RL research community as a whole, which is
beyond the scope of our paper. One important way to reduce the amount of online interactions used
for hyperparameter selection is to minimize the number of hyperparameters to tune. In this regard,
CBOP is particularly advantageous since we need only to tune the LCB coefficient  .

To further validate the choice of  values in Table 3, we performed a post hoc analysis following
the hyperparameter selection work proposed in Paine et al. (2020). To this end, we considered three
data configurations (m, mr, fr) and two environments (halfcheetah, walker2d), and we retrieved the
model checkpoints of the learned policy networks for all seeds. Then, we evaluated each policy ⇡✓
with the following metric:

Es0⇠D[Q⇣(s0,⇡✓(s0)] (10)
Here, s0 are the initial states stored in the offline dataset and Q⇣ is the value function associated
with the policy ⇡✓, which is obtained by running FQE (Algorithm 3). This Q⇣ is different from the
learned value function Q�, and Paine et al. (2020) noted that using Q⇣ is better than using Q� for the
purpose of hyperparameter selection. The candidate  values are sorted based on the scores from
(10), and we can use  with the highest score.

Table 4 compares the rankings of the four  values we considered in the experiments from FQE and
the online evaluation. The rightmost column shows the Spearman’s rank correlation coefficient (⇢)
which is the correlation coefficient between the two sets of rankings. Notably, the  values selected
via FQE match the values we obtained from the online evaluation for 4 out of 6 tasks. In halfcheetah-

m,  = 0.5 has the online performance of 74.3 (as reported in Table 1), while the performance from
 = 2 is 72.4 which is only slightly worse. For walker2d-fr,  = 2 is at 107.8 (reported in Table
1) and  = 3 gives 89.3 when evaluated in the true environment. Even if  = 3 was chosen based
on FQE, we can easily see that this is still a substantial improvement compared to the data-logging
policy which has the average normalized score of 39.8.

2In the early stage of algorithm development, we selected the medium configuration from the three environ-
ments in the D4RL benchmark and used M = 20 for all experiments when testing the performance of CBOP.
It turned out that CBOP works well in the HalfCheetah and Walker2d environments without tuning, but we
found that we needed to have a larger value ensemble to get reasonable performance in the Hopper environ-
ment. We chose M = 50. since it worked well and this choice is also supported by previous work (An et al.,
2021). Accordingly during hyperparameter tuning, we used M = 50 for Hopper and M = 20 for the other
two environments.
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Table 4: Comparing the rankings of the LCB coefficient  based on the online evaluation and FQE
(Paine et al., 2020)

 Rank correlation

Task Name Ranking 0.5 2.0 3.0 5.0 (⇢)

halfcheetah-m FQE 2 1 3 4
0.8

Online 1 2 3 4

halfcheetah-mr FQE 1 2 4 3
0.8

Online 1 2 3 4

halfcheetah-fr FQE 3 1 2 4
0.8

Online 2 1 3 4

walker2d-m FQE 4 2 1 3
1.0

Online 4 2 1 3

walker2d-mr FQE 4 1 2 3
1.0

Online 4 1 2 3

walker2d-fr FQE 3 2 1 4
0.8

Online 3 1 2 4
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0HGiDQ
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I40
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Figure 6: RLiable results across all 18 locomotion tasks. Shaded regions show 95% CIs. We refer
readers to (Agarwal et al., 2021) for detailed explanation of the metrics considered.

Overall, the Spearman’s rank correlation values are always greater than or equal to 0.8, suggesting
that the rankings from FQE align very well with those from the online evaluation. This suggests that
(1) CBOP can be reliably tuned solely with an offline dataset via FQE and that (2), with the benefit
of hindsight, our selection of  values in Table 3 is a valid one.

Other considerations CBOP trades off the uncertainty of the learned dynamics model with that of
the learned Q ensemble. In practice, we use the ensemble models to implicitly capture the respective
epistemic uncertainty. Hence, it is critical that the models we use indeed exhibit well-calibrated
uncertainty in their predictions. In this regard, we found that it is useful to incorporate the gradient
diversification loss for the Q ensemble as introduced in An et al. (2021), which helps prevent the
uncertainty in predictions from collapsing. Instead of tuning the hyperparameter ⌘ that controls the
level of gradient diversification loss, we use a fixed number ⌘ = 1 across all experiments.

Please note that the use of the ensemble diversification trick is orthogonal to our contributions in
this work. Furthermore, we provide a reliable performance comparison between CBOP and EDAC
to validate that CBOP outperforms EDAC. To this end, we use RLiable (Agarwal et al., 2021)
which provides various metrics other than the simple average to more reliably determine the relative
performances of compared methods. Specifically, we have reproduced EDAC and compared its
performance against CBOP using the Median, IQM (interquartile mean), Mean, and Optimality
Gap (Figure 6). In all metrics considered, CBOP exhibits substantially better performance without
overlapping 95% confidence intervals (CI). In fact, another important performance metric, called
the probability of improvement, of CBOP against EDAC is 88.27%, which strongly indicates the
superiority of CBOP.
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Table 5: A full comparison across three environments showing the difference between the values
predicted by the learned Q functions and the true discounted returns from the environment.

CQL CBOP

Task name Mean Max Mean Max

hopper-m -61.84 -3.20 -55.83 -16.21
hopper-mr -142.89 -28.73 -172.45 -39.45
hopper-me -79.67 -5.16 -114.39 -11.24

halfcheetah-m -222.43 -180.97 -106.24 -66.97
halfcheetah-mr -363.00 -198.42 -84.42 -8.48
halfcheetah-me -310.95 -23.74 -210.51 -54.58

walker2d-m -167.36 -8.88 -84.70 -15.00
walker2d-mr -285.02 -25.44 -80.31 -14.06
walker2d-me -156.71 -64.64 -75.89 -42.30

(a) hopper-m (b) hopper-me (c) hopper-mr

Figure 7: The distribution of difference between policy values predicted by algorithms and Monte
Carlo policy evaluation results in the true environment. Here, s ⇠ D, a = ⇡(s).

D ADDITIONAL EXPERIMENTS

D.1 CONSERVATISM ANALYSIS

In Section 4.3, we have empirically verified that CBOP indeed learns a conservative value function.
Specifically, given the offline dataset D, we compute the following value difference:

Es⇠D
⇥
V̂
⇡(s)� E[V ⇡(s)]

⇤
(11)

where we compute the true value E[V ⇡] via the Monte Carlo estimation in the true environment.
We have provided the comparison of CQL and CBOP evaluated in the hopper environment in Table
2, and Figure 7 shows the full histograms of (11) for in this environment. Furthermore, Table
5 includes the results from all three MuJoCo locomotion environments. We can clearly see that
CBOP has learned a conservative value function in these tasks.

D.2 DECOMPOSITION OF h-STEP RETURN VARIANCE

In Section 3.2, we have shown that the variance of h-step returns can be decomposed into A and B

terms according to the law of total variance, which we restate here for ease of exposition:

�
2
h
= Var⇡✓

h
R̂h|⌧

i
= E

f̂k

h
Var⇡✓

h
R̂h|⌧, f̂k

ii

| {z }
A

+Var
f̂k

h
E⇡✓

h
R̂h

��� ⌧, f̂k
ii

| {z }
B

. (12)

Here, A reflects the epistemic uncertainty from the Q�0 ensemble, while B accounts for the uncer-
tainty derived from the learned dynamics ensemble. The beauty of CBOP is that it can capture both
uncertainties by sampling through the dynamics and value ensembles and subsequently compute the
value target in a conservative way through the Bayesian posterior formulation. A natural question
may be whether A would vanish and become unnecessary when the policy and value function have
converged?
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(a) hopper-expert (b) hopper-random

Figure 8: The distribution of the ratio, A

A+B
= E

f̂k

h
Var⇡✓

h
R̂h|⌧, f̂k

ii
/�

2
h

, from (12) when ⇡✓ and
Q� are trained with the hopper-r dataset. (a) evaluates ⇡✓ and Q� with (s,a) sampled from the
hopper-e dataset; (b) is the result from evaluating with the hopper-r dataset. The histogram shows
the empirical distribution based on a batch of samples. Probability density functions are the kernel
density estimation results corresponding to each histogram with the same color.

To answer this question, recall that in the offline setting, the logged data will typically only cover
a subset of the state-action space. Hence, when we use the learned dynamics ensemble to forward
sample rollout trajectories during the target value estimation procedure in CBOP, some of the tra-
jectories will inevitably visit unseen states. Even after the policy and the value have sufficiently
converged, the rolled out trajectories will still visit OOD states (in fact, as the learned policy has
shifted from the behavior policy, it is more likely that it visits more OOD states during the rollouts).
Thus, we can say that the A term will not (and should not) vanish at these OOD state/actions such
that CBOP can account for the epistemic uncertainty in the value and act conservatively against it.

We have further empirically verified the relative contributions of the A and B terms, respectively,
after the policy/value have converged. Firstly, we considered the case when a policy and value
ensemble learned with the hopper-r dataset is used for sampling the h-step returns R̂h starting from
a set of initial states randomly selected from the hopper-e dataset. Roughly speaking, this setup
would ensure that we evaluate the total variance at states and actions that the policy/value have not
been trained with. Thus, we expect a relatively large amount of epistemic uncertainty still left in the
A term. On the other hand, we also evaluated the learned policy/value from the states sampled from
the same dataset they were trained with (i.e., hopper-r). In this case, we would like to see relatively
little epistemic uncertainty left in A since the policy and value were repeatedly trained with those
states and actions.

To this end, we retrieved the policy and value ensemble checkpoints trained with the hopper-r

dataset. Then, we calculated the proportion of A with respect to the total variance, A

A+B
, per each

h-step return per each (s,a) sample, which was sampled randomly from either the hopper-e or
hopper-r dataset.

As expected, Figure 8(a) shows that there is a significant amount of variance left in the A term even
though we have evaluated the converged policy and value function since they were evaluated with
OOD states/actions. Especially when h is small, the A term contributes more to the total variance
than when h is large. As h increases, we can see that the weight shifts gradually towards B, which
indicates there is more uncertainty in the model-based estimates of the returns for longer horizon
rollouts. In contrast, Figure 8(b) shows much less contributions from A compared to B even for
smaller h.

We studied the trends from other tasks as well. Specifically, we picked the m and fr D4RL con-
figurations from the three MuJoCo environments and performed the same evaluations as discussed
above. This time, the policy/value function trained with a certain dataset were evaluated with the
same dataset to see if there is still a meaningful epistemic uncertainty left in A term after conver-
gence. Figure 9 clearly shows that, in most of the cases, the contribution from A to the total variance
is not negligible, despite the policy/value being already converged. Similar to the hopper-r case, A
generally contributes more than B does for small h values. As discussed, this is an intuitive result
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(a) hopper-medium (b) hopper-full-replay

(c) halfcheetah-medium (d) halfcheetah-full-replay

(e) walker2d-medium (f) walker2d-full-replay

Figure 9: The distribution of the ratio, A

A+B
= E

f̂k

h
Var⇡✓

h
R̂h|⌧, f̂k

ii
/�

2
h

, from (12). The his-
togram shows the empirical distribution based on a batch of samples. Probability density functions
are the kernel density estimation results corresponding to each histogram with the same color.

since the learned model would typically be quite accurate for single-step predictions, hence smaller
B compared to A.

It is also notable that in the fr tasks of the hopper and halfcheetah environments shown in Figure
9(d) and 9(b), much more contribution is coming from B even for small h (however, A still has
noticeable contribution). Note that (1) the fr (full-replay) dataset was curated such that it covers
all transition samples encountered by various policies, starting from a random policy all the way to
an expert policy. Now, also note that (2) since we pre-train the dynamics model and fix it during
policy training, the epistemic uncertainty baked in the dynamics ensemble is kept fixed, whereas the
uncertainty in the value ensemble can diminish as training continues. These two factors combined
can explain why we would see more contributions in the total variance from B rather than A in the
fr datasets.

D.3 ABLATIONS

In this part, we provide additional ablations that complement the results presented in the main text.

The effectiveness of conservatism via LCB compared to MAP STEVE (Buckman et al., 2018)
introduced an adaptive weighting scheme for MVE, which corresponds to the MAP estimation of
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(a) halfcheetah-v2 (b) hopper-v2

(c) walker2d-v2

Figure 10: Comparison of the MAP estimation and the LCB estimation in the D4RL MuJoCo bench-
mark tasks. Experiments are run with 3 random seeds.

the posterior we get in (7). In this part, we provide the complete ablations comparing CBOP and
STEVE in all tasks.

In Figure 10(a), we see that STEVE performs comparably to CBOP in 4 of the 6 tasks, where small
 have been used in CBOP (Table 3). However, for the medium-expert and expert tasks — where
we have used  = 3 and 5, respectively — CBOP outperforms STEVE.

The differences in the performances are even more striking in the other two environments. Figure
10(b) and 10(c) show that CBOP significantly outperforms STEVE, suggesting that conservatism
plays a crucial role. It is worth reasserting that the original adaptive weighting scheme derived in
STEVE does not lend itself to a conservative value estimation as we can do with CBOP.

The effectiveness of the Bayesian weighting scheme In Section 4, we have presented a part of
the ablations comparing the adaptive weighting scheme of CBOP with the fixed weighting scheme,
i.e., uniform and � weighting. The weights in the uniform weighting correspond to wh = 1

H+1 ,
while those in the �-weighting are wh = 1��

1��H+1�
h. In the latter, the larger the � parameter, the

more weight is allocated to longer-horizon model-based rollouts; � = 1 corresponds to solely using
the H-step MVE target, whereas � = 0 bootstraps immediately at s0 as in the model-free case.

In order to better isolate the impact of the different weighting schemes, we have used the conser-
vative value estimation for these two fixed weighting schemes as well. More concretely, we have
sampled M ⇥K R̂h samples for h = 0, . . . , H and computed the weighted sums (

P
H

h=0 whR̂h) to
get MK samples of target values. With these samples, we have computed the empirical mean and
the variance, from which we have taken the LCB µ�  · � as the target values.
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(a) halfcheetah-random (b) halfcheetah-medium

(c) halfcheetah-medium-replay (d) halfcheetah-medium-expert

Figure 11: Comparing the fixed weighting schemes and CBOP on the halfcheetah environment.
Experiments are run with 3 seeds.

(a) hopper-random (b) hopper-medium

(c) hopper-medium-replay (d) hopper-medium-expert

Figure 12: Comparing the fixed weighting schemes and CBOP on the hopper environment. Experi-
ments are run with 3 seeds.

Figure 11 - 13 show the results on the halfcheetah, hopper, and walker2d environments, respectively.
We have found that the fixed weighting does not work in the walker2d tasks, regardless of the �
values. Also, CBOP has significantly outperformed the fixed weighting schemes in narrow datasets
(i.e., medium-expert) across all environments.
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(a) walker2d-random (b) walker2d-medium

(c) walker2d-medium-replay (d) walker2d-medium-expert

Figure 13: Comparing the fixed weighting schemes and CBOP on the walker2d environment. Ex-
periments are run with 3 seeds.

In some tasks — such as medium and medium-replay tasks in hopper and halfcheetah environments,
there are some � values that can show similar performances as CBOP. However, large fluctuations
across different � values as exhibited in halfcheetah-medium and hopper-medium suggest that find-
ing � that works robustly across all tasks may be impossible. On the contrary, the adaptive Bayesian
weighting scheme of CBOP can work reliably across all tasks considered.

Additional Baseline: quantile-based conservative MVE We have seen that CBOP is able to
adaptively regulate the reliance on model-based and model-free value estimates while acting con-
servatively with respect to both. The uncertainties in the learned dynamics model and the value
function are captured through the sampling procedure we detailed in Section 3.2. The ablation
studies presented in Section 4.4 show the strong merits that the Bayesian interpretation provides us
through the adaptive control of the roll-out horizon and the conservative value estimates from the
Bayesian posterior. Here, we further strengthen the case and ablate the benefits of being Bayesian
by comparing CBOP against another baseline that we dub Distributional MVE (DiMVE).

Instead of forming a Bayesian posterior over Q̂⇡ , DiMVE simply aggregates all MKH return sam-
ples that we collect from a single pass of forward sampling. Then, it performs a quantile-based
conservative value estimation. Formally, let

R̂
m,k

h
(s,a, s0) :=

hX

t=0

�
t
r̂t(ŝ

(k)
t

, â(k)
t

) + �
h+1

Q
m

�0(ŝ
(k)
h+1, â

(k)
h+1)

be the roll-out collected using the kth particle from the model ensemble and the mth particle from
the value ensemble. The goal of DiMVE is to empirically estimate the left ↵-quantile of the posterior
return distribution induced by the model ensemble for ↵ 2 (0, 1]:

ŷDiMV E(↵) = inf {y 2 R : P(ŷ(s,a, s0)  y) > ↵} . (13)

Let R̂1  R̂2  . . . R̂M⇥K⇥H be the ordering of the R̂
m,k

h
, in the case where the samples are

unique the DiMVE estimate can be written simply as

ŷDiMV E(↵) ⇡ R̂b↵⇥M⇥K⇥Hc.
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Table 6: Comparison of CBOP and DiMVE

Task name CBOP DiMVE (best ↵)

halfcheetah-m 74.3± 0.2 70.9± 0.6 (0.3085)
halfcheetah-mr 66.4± 0.3 65.0± 0.3 (0.3085)
halfcheetah-me 100.4± 0.9 84.4± 6.6 (0.3085)
halfcheetah-fr 85.5± 0.3 83.4± 0.8 (0.4)

walker2d-m 95.5± 0.4 65.1± 3.4 (0.3085)
walker2d-mr 92.7± 0.9 88.5± 0.2 (0.3085)
walker2d-me 117.2± 0.5 113.0± 9.8 (0.3085)
walker2d-fr 107.8± 0.2 104.6± 1.0 (0.3085)

Table 6 compares the performance of CBOP and DiMVE for the walker2d and halfcheetah

environments with the m, mr, me, and fr dataset configurations, where ↵ was tuned among
{0.4, 0.3085, 0.0228, 0.0013, 2.87 ⇥ 10�7

}. Here, the last four ↵ values correspond to  =
0.5, 2.0, 3.0, 5.0, respectively, if assuming the R̂

m,k

h
samples are normally distributed. We noted

that ↵ value smaller than 0.3085 resulted in value divergence towards negative infinity, and so we
report the performance with the best ↵ values in Table 6. Clearly, CBOP outperforms the baseline
in all tasks, showing the effectiveness of our Bayesian formulation. Furthermore, we found DiMVE
to be more unstable during training and it consistently showed larger variances in the performance.
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