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ABSTRACT

In this paper, we model aspects of communication beyond the words

that are said. Specifically, we aim to detect interruptions and ac-

tive listening events, which are important elements in any dialogue.

We build a dataset with fine-grained annotations for each category

and train multimodal models that take into account all channels in a

digital conversation, that is, the video, the audio, and the text. Our

experiments show that multimodality is a necessary component in

modeling the complexity of the non-textual components of the con-

versation as different artifacts require different modalities to capture

effectively.

Index Terms— Multimodality, Speech Recognition, Video Pro-

cessing, Machine Learning, Dialogue

1. INTRODUCTION

A large body of research has been applied in modeling dialogue fo-

cusing on spoken or edited text [1], or in detecting events that are

orthogonal to the dialogue [2]. However, a large part of the commu-

nication occurs through non-verbal artifacts [3]. Thereby, the usage

of text-only representations of dialogues poses an incomplete view

of the information being transmitted. An obvious example is the

fact that a simple nod is equivalent to speaking the words “Yes”

or “I agree”, but without a textual footprint. In fact, most natu-

ral dialogues have an overwhelming amount of non-textual events,

such as non-verbal active listening [4], where the listener directly

interacts with the speaker by nodding or smiling. Another frequent

non-textual cue is interruptions [5], where the flow of the speaker’s

discourse is disrupted, often resulting in overlapping discourse [6].

These are not only difficult to map into text due to the overlapping

discourse [7] but also not always detectable in text, for instance,

when the speaker intends to say “I am going to buy a carpet for my

new house” and is interrupted after the word “carpet”, the resulting

sentence “I am going to buy a carpet” is still valid.

Thus, with the goal of supporting the field of dialogue towards

incorporating non-verbal events, we build a dataset of fine-grained

classification of interruption and active listening events (Section 2).

Then, we present a multimodal model that uses textual, audio and

visual features to detect these events (Section 3). Our experimental

results show that both visual and auditory channels are needed for

learning to classify the whole range of events (Section 4). Finally,

we tie our work with previous work in Section 5 and conclude in

Section 6.

∗Work done during an internship at Talka AI.

2. DATASET

Our dataset is composed of interruptions and active listening events

with fine-grained subcategorizations over 1109 Zoom meetings

spanning 801.8 hours of video.

2.1. Interruptions

Interruptions break the current speaker’s discourse. Following [6, 8],

we subcategorize interruptions into competitive and cooperative in-

terruptions. Competitive interruptions attempt to shift the current

speaker’s discourse and public’s attention towards a different object,

whereas cooperative interruptions support the speaker and topic be-

ing relayed.

2.2. Active Listening

Active listening is a technique used by the listener to improve mu-

tual understanding. While certain aspects of active listening cannot

be fully observed, such as not being distracted by unrelated thoughts

and paying attention to the speaker’s body language, we focus on de-

tecting cues that are observable. In our Zoom recordings, we observe

that active listeners frequently give encouraging verbal cues, such as,

“That’s right” and “uh huh” but also non-verbal cues, such as nod-

ding and smiling. Thus, we subcategorize active listening events as

verbal and non-verbal.

2.3. Annotation Scheme

Each event is annotated as a tuple (t1, t2, l), where we annotate the

interval [t1, t2] milliseconds with label l ∈ L. Here, L is composed

of the set of possible labels, namely, cooperative and competitive for

interruptions and verbal and non-verbal for active listening. Finally,

different types of events can overlap, for instance, nodding and smil-

ing can occur concurrently.

2.4. Annotation Quality

The annotation is done by a team of annotators. Each annotator went

through a screening test before making annotations in the dataset.

We then trained each annotator on the descriptions of the events with

examples. 200 videos were randomly selected to test for the agree-

ment scores across different annotators, and the agreement score is

above 90%.

2.5. Transcription Quality

We used an in-house transcription pipeline that includes speech

recognition, diarization, punctuation, inverse-text-normalization

(ITN), and capitalization. For speech recognition, our evaluation of

a range of data sources (phone calls, podcasts, etc) shows that our
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Fig. 1. Event Prediction Model on video data. Videos are extracted, into three separate channels: visual, acoustic and textual. Features are

then extracted for each of the channels. A neural network is then used to aggregate the features for event classification.

in-house transcription service has a compelling word-error-rate of

10.9 whereas AWS Transcription Service is 14.3. We believe the

quality of the transcription is sufficient for its downstream tasks.

2.6. Statistics

After annotating all videos, we were able to obtain 23633 interrup-

tion annotations (16682 cooperative and 6951 competitive interrup-

tions). Furthermore, we obtained 68040 verbal and 4438 non-verbal

active listening annotations. It is important to also report that more

than 99% of the non-verbal active listening annotations relate to one

of the participants either smiling or nodding. Furthermore, the num-

ber of annotations for non-verbal active listening is substantially

lower, since most videos used the full-screen mode for recording

where only the speaker is visible.

3. MODEL

We devise a model that predicts given a five-second video x, where

each event L is present within x (Figure 1). Thus, the model gener-

ates a binary vector y = y1, . . . , y|L|, where each index i confirms

the presence or absence of a different event.

3.1. Data Pre-processing

For a k-second video, we extract k five-second segments. These

correspond to extracting a moving window starting from [−4, 1] sec-

onds til [k − 4,k] seconds, with an interval of one second between

windows. Each window is treated as a datapoint (x, y) with labels

y. We treat a given label yi as positive if there is an annotation

(t1, t2, l), where [t1, t2] overlaps with x.

For training, we extract all segments from our inventory of an-

notated videos. Inference can be performed by iterating through

the five-second segments of a given video and predicting the start-

ing point of a given event in the last second of the positively la-

beled event, and the ending point as the starting time of the first

segment where a negative prediction is obtained. For instance, a

smile event starting from 5 to 7 seconds is predicted if the seg-

ments [1, 5], [2, 6], [3, 7], [4, 8], [5, 9], [6, 10] are labelled positively

and [7, 11] is labelled negatively.

3.2. Features Extraction

From each segment x, we extract textual, audio and visual features.

This step allows us to tackle the lack of labeled training data by us-

ing pre-trained models that have been trained on large amounts of

unlabeled data. Furthermore, as text, audio and video have differ-

ent input formats, this step unifies all modalities into a single vector

representation.

Audio Features We followed [9] and extract the audio features from

the 5-second segment with wav2vec 2.0 large model [10] pre-trained

on [11]. Thus, each audio vector xa extracted from x is processed

into a sequence of vectors ea = φwav2vec2(xa), ea ∈ R
Ta×Da , where

Ta is the time sequence of the latent 1D-convolutional features, and

Da is the dimension of each audio feature.

Text Features Transcriptions of the videos with word-level times-

tamps are generated with a finetuned wav2vec 2.0 base model on

scrapped YouTube captions. Overlapping texts, denoted as xt, are

extracted based on the start and end time of the 5-second segment.

We then embed the text using the Open Pre-trained Transformer

Language Models (OPT) [12]. Each text feature is denoted as et =
φOPT(xt), et ∈ R

Dt×Tt . Similar to audio features, Tt and Dt are the



lengths and the dimension of the text feature.

Visual Features For visual features, we use the visual encoder CLIP

[13] and obtain the visual embedding from the sub-sampled frames

in videos ev = φCLIP(xi), ev ∈ R
Dv×Tv .

3.3. Transformer-based Multi-modal Network

The Transformer model is tested in many studies to be effective

when dealing with multiple types of input. We design the second

model in our paper based on the 1-D convolutional neural network

and classic Transformer encoder.

The audio feature extracted in 3.2 is first pushed through four

layers of 1-D convolution neural networks and transformed into au-

dio input denoted as u
′

a ∈ R
T

′

a
×D

′

a . Then each of the u
′

a,ut,uv is

separately passed to a positional encoding layer followed by a Trans-

former encoder. The output of the last layer in each Transformer

encoder module, denoted by za, zt, zv, are then concatenated in the

sequence dimension as z. Finally, z is input to several linear layers

to produce the event possibility.

3.4. MLPMixer-based Multi-modal Network

We design our multi-modal networks based on the MLPMixer

model [14], and enhance its performance by applying normalization

techniques over different modalities. The advantage of the MLP-

Mixer mainly lies in the combination of channel-mixing operations

and token-mixing operations, which serves as a substitute for the

self-attention mechanisms. While it is originally designed for visual

tasks where typically only one image is involved, it is shown in foot-

note1 that we are inspired by this multi-modal solution and apply a

similar architecture in our design.

With the textual, audio and visual features obtained from 3.2

denoted as ea, et and ev, we first apply a dropout layer followed

by a layer normalization on each kind of representation for a fair

distribution among different modalities, and then concatenate these

features to form the input X ∈ R
c×l, where c = ca = ct = cv and

l = la + lt + lv . The input X is then passed to several Mixer layers,

which remain the same structure as described in [14], except for a

dropout layer placed after the first linear layer in each MLP unit.

The output of Mixer layers goes through a global average pooling

and a linear classifier to produce predicted logits.

4. EXPERIMENTS

We now perform experiments to establish the multimodal baselines

for the dataset we propose and analyze the multimodal aspects of

interruptions and active listening.

4.1. Setup

Dataset Splits There are four events L in our dataset: Competitive

interruptions, Cooperative interruptions, verbal and non-verbal ac-

tive listening. To avoid overfitting to particular speakers, we divide

the train, dev and test sets, so that videos do not overlap in different

sets. We conduct experiments on each kind of event individually,

with identical settings: we assigned 80% of the data for training,

10% of the data to the dev set and another 10% to the test set.

Models For the MLPMixer, the input sequence is padded as Ta =
250, Tt = 70 and Tv = 12, while the dimension of each feature

1https://pytorch.org/blog/how-disney-improved-activity-recognition-
with-multimodal-approaches-with-pytorch/

is D = 512. The MLPMixer model is designed to have 24 Mixer

layers, and each Mixer contains the token-mixing MLP dimension

as DS = 512 and channel-mixing MLP dimension as DC = 1024.

The Transformer model consists of four 1-D convolutional neural

networks which are used to process audio input solely, a positional

encoding layer combined with a Transformer encoder module ap-

plied for each modality, followed by three linear layers. The 1-

D convolutional neural networks are with output feature lengths of

512, 128, 128 and 256 respectively. Each positional encoding layer

is with a dropout rate of 0.05, followed by a Transformer encoder

module, which contains 2 layers of 8 heads Transformer encoder

with a dropout rate of 0.1, and finally produces a vector zmodality ∈
R

Dmodality ,modality ∈ {audio, text, visual}. The output dimensions

of the final four linear layers with ReLU activation are defined as

1024, 512, 512, and 2, where the final layer feeds into a softmax

layer to produce the probability of an event.

4.2. Event Detection Results

Accuracy results obtained from our models are reported in Table 1.

We can observe that using audio features only (row Audio), we can

perform well on both interruption and verbal active listening events.

As expected, using only audio features is not sufficient to predict

non-verbal active listening events. For non-verbal active listening

events, visual features are needed (row Video). We can also observe

that combining the modalities yields the best overall accuracy across

different types of events. Additionally, the MLPMixer (row MLP-

Mixer) that combines different modalities over time outperforms the

Transformer for three of the four events (row Transformer).

Interruptions Active Listening
Comp Coop Verbal Non-Verbal

Unimodal
TEXT 73.50 76.08 66.52 67.36

AUDIO 87.26 89.63 89.10 58.20
VIDEO 54.59 59.40 53.06 89.32

Multimodal
TRANSFORMER 87.26 89.48 89.62 89.53

MLPMIXER 87.74 90.18 90.05 89.32

Table 1. Accuracy results on different events using a single modality
or multiple modalities. Competitive and cooperative interruptions
are results are illustrated in columns Comp and Coop and the as-
pects of verbal and non-verbal active listening events are illustrated
in columns Verbal and Non-Verbal.

It is important to mention that none of the optimal results are

obtained using the text input, which shows that other modalities are

needed to capture different aspects of communication. Table 2 illus-

trates some examples with the highest probability for each different

event on the development set.

We can see that text can be used to some extent to detect ver-

bal active listening and both interruption events. It can do so by

detecting some particular constructions, where the construction of

the speaker’s sentence is broken (e.g. “how we’re gonna no, no, no,

no”). However, we observed that in many instances, the ASR does

not capture short interruptions, such as “yeah”, likely due to low

language modeling scores. This suggests that annotations of inter-

ruptions and active listening can be used to augment ASR results in

dialogues.

Surprisingly, text can be used to some extent to predict non-

verbal active listening. We can observe in Table 2 that these cor-

respond to positive remarks with a high chance that the listener is

performing active listening (e.g. “really appreciate it. this has been

super helpful.”).



Non-verbal active listening examples
(s1)yeah, of course. um, cool. (s2)no, all good.
(s1)super helpful. um, cool.
(s1)perfect. well, awesome. I’m glad that you came to you.
(s1)really appreciate it. this has been super helpful.

Verbal active listening examples
(s1)yeah, yeah. (s2) I’m in London. (s1)well, yeah. (s2)whereabouts are you? (s1)north
(s1)it really it looks like I’m just a movie set now. (s2)yeah. (s1)it’s all thing. (s2)yeah. (s1)hopefully it won’t
(s1)be what we call a contributor. (s2) um, right. (s1)and then anyone else your customers are technically contributors
(s1)early next week. and (s2) great, (s1) some of that. (s1)good. excellent. great. (s2) well,

Competitive interruption examples
(s1) like solitude or not solid. (s2) excuse me. you ever heard a snowbird?,
(s1) I just want to let you know that. (s2) but if you’re not a one.
(s1)not going 45 min on how we’re gonna (s2) no, no, no, no, no, no, no, no. absolutely not. let me ask you,
(s1) and.(s2)sorry. let me rephrase. okay. Wednesday,

Cooperative interruption examples
(s1) I see. cool. (s2)okay. so it seems like the
(s1) lost track of what we were doing here so join yo, you can correct me from sake. (s2) I think, you know, I think what johnny was trying to say
(s1) there’s a status change. (s2) so yeah, that makes sense. and I mean, we’re quite a small team.
(s1)go for a pint after this. (s2)right. where are you based? (s1)I’m in. I’m

Table 2. Examples of correct predictions for both verbal and non-verbal active listening, as well as competitive and cooperative interruptions.
Markers s1 and s2 are used to identify different speakers.

5. RELATED WORK

5.1. Self-supervised Learning

Self-supervised learning emerged as a crucial paradigm in recent

years. The learning process breaks down into the pre-training phase

which learns general-purpose features from unlabeled data and the

fine-tuning phase in which the model is applied to labeled data. This

has demonstrated impressive results in natural language [15, 16], vi-

sion [17, 18, 19], and audio [20, 10]. We make use of the released

pre-trained models and finetuned them on conversation-specific fea-

tures.

5.2. Deep Multimodal Learning

Deep learning algorithms have unlocked avenues in learning from

heterogeneous modalities of data. Different fields of research com-

bine multiple modalities for a variety of tasks, including represen-

tation learning [21, 22, 23], robotics [24], cross-modality predic-

tion and retrieval [25, 26], etc. Our work relates closely with the

field of video understanding [27, 28, 29]. However, the aforemen-

tioned works predominantly rely on visual cues in objects and mo-

tions. Most of the tasks are centered around actions and proce-

dures, whereas our work focuses on the conversations between peo-

ple, where features of visual, acoustic, and textual modalities are

critical.

5.3. Conversation Dataset

There have been studies on learning the intrinsic features from con-

versations. Datasets are collected to classify smiles and eyelid po-

sitions [30], classify emotions from conversations [31, 32], detect

communication-critical events within meetings [4, 33]. We focus on

conversational features that rely on temporal features in the form of

a video. This greatly extends previous datasets which mostly 1. con-

tain a single modality of audio, or text; and 2. have a limited amount

of annotated data.

6. CONCLUSION

We built a dataset of interruptions and active listening in a conver-

sational setup. These events play a critical role in conversations and

are not reflected in a transcript stored in text. We propose a mul-

timodal neural network that uses pre-trained embeddings for each

modality, which are combined into an established MLPMixer model

and a Transformer model for optimal results. Results indicate that

the visual and audio channels play a critical role in the detection of

interruptions and active listening events. Finally, the combination

of these cues is more effective using MLPMixer, which merges the

different modalities progressively.

The data presented in this paper will be made available at

https://www.talka.ai.

7. REFERENCES

[1] Qian Liu, Yihong Chen, Bei Chen, Jian-Guang Lou, Zixuan

Chen, Bin Zhou, and Dongmei Zhang, “You impress me: Di-

alogue generation via mutual persona perception,” in ACL,

2020.

[2] Devamanyu Hazarika, Soujanya Poria, Roger Zimmermann,

and Rada Mihalcea, “Conversational transfer learning for emo-

tion recognition,” 2020.

[3] Barbara J. Grosz and Candace L. Sidner, “Attention, inten-

tions, and the structure of discourse,” Computational Linguis-

tics, 1986.

[4] Harry Weger Jr., Gina Castle Bell, Elizabeth M. Minei, and

Melissa C. Robinson, “The relative effectiveness of active lis-

tening in initial interactions,” International Journal of Listen-

ing, 2014.

[5] John Local and Peter French, “Prosodic features and the man-

agement of interruptions,” in Intonation in Discourse. 1986.

[6] Khiet P Truong, “Classification of cooperative and competitive

overlaps in speech using cues from the context, overlapper, and

overlappee.,” in Interspeech, 2013, pp. 1404–1408.

[7] Anshuman Tripathi, Han Lu, and Hasim Sak, “End-to-end

multi-talker overlapping speech recognition,” in ICASSP 2020-



2020 IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP). IEEE, 2020, pp. 6129–6133.

[8] Li-chiung Yang, “Interruptions and intonation,” in Proceed-

ing of Fourth International Conference on Spoken Language

Processing. ICSLP’96. IEEE, 1996, vol. 3, pp. 1872–1875.

[9] Henry Zhou, Alexei Baevski, and Michael Auli, “A compari-

son of discrete latent variable models for speech representation

learning,” in ICASSP 2021-2021 IEEE International Confer-

ence on Acoustics, Speech and Signal Processing (ICASSP).

IEEE, 2021, pp. 3050–3054.

[10] Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed, and

Michael Auli, “A framework for self-supervised learning of

speech representations,” NeurIPS, 2020.

[11] Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev

Khudanpur, “Librispeech: An ASR corpus based on public

domain audio books,” in 2015 IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP), 2015,

pp. 5206–5210.

[12] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe,

Moya Chen, Shuohui Chen, Christopher Dewan, Mona Diab,

Xian Li, Xi Victoria Lin, et al., “Open pre-trained transformer

language models,” arXiv, 2022.

[13] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh,

Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda

Askell, Pamela Mishkin, Jack Clark, et al., “Learning trans-

ferable visual models from natural language supervision,” in

International conference on machine learning. PMLR, 2021,

pp. 8748–8763.

[14] Ilya O Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas

Beyer, Xiaohua Zhai, Thomas Unterthiner, Jessica Yung, An-

dreas Steiner, Daniel Keysers, Jakob Uszkoreit, et al., “MLP-

Mixer: An all-MLP architecture for vision,” NeurIPS, 2021.

[15] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario

Amodei, and Ilya Sutskever, “Language models are unsuper-

vised multitask learners,” 2019.

[16] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina

Toutanova, “BERT: pre-training of deep bidirectional trans-

formers for language understanding,” CoRR, 2018.

[17] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross B.

Girshick, “Momentum contrast for unsupervised visual repre-

sentation learning,” CoRR, 2019.
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