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Abstract

Decision analysis w.r.t. unknown parameters is a critical task
in decision-making under uncertainty. For example, we may
need to (i) perform inverse learning of the cost parameters of
a multi-objective reward based on observed agent behavior;
(ii) perform sensitivity analyses of policies to various param-
eter settings; or (iii) analyze and optimize policy performance
as a function of policy parameters. When such problems have
mixed discrete and continuous state and/or action spaces, this
leads to parameterized hybrid MDPs (PHMDPs) that are of-
ten approximately solved via discretization, sampling, and/or
local gradient methods (when optimization is involved). In
this paper we combine two recent advances that allow for
the first exact solution and optimization of PHMDPs. We first
show how each of the aforementioned use cases can be for-
malized as PHMDPs, which can then be solved via an ex-
tension of symbolic dynamic programming (SDP) even when
the solution is piecewise nonlinear. Secondly, we can leverage
recent advances in non-convex solvers that require symbolic
forms of the objective function for non-convex global opti-
mization in (i), (ii), and (iii) using SDP to derive symbolic
solutions for each PHMDP formalization. We demonstrate
the efficacy and scalability of our optimal analytical frame-
work on nonlinear examples of each of the aforementioned
use cases.

1 Introduction
Markov Decision Processes (MDPs) are the de facto stan-
dard framework for decision theoretic planning in fully ob-
servable environments (Boutilier, Dean, and Hanks 1999).
Traditional MDP solution techniques often assume that the
parameters of the model are known. However, in practice,
model parameters are usually estimated from limited data
or elicited from humans and are naturally uncertain. Hence
decision analysis w.r.t. unknown parameters is a critical
task in decision-making under uncertainty with applications
to: (i) inverse learning of parameters of multi-objective re-
wards; (ii) sensitivity analyses of policies to various parame-
ter settings; and (iii) analyzing and optimizing policy perfor-
mance as a function of policy parameters. Formalizing mod-
els to address each of the aforementioned use cases is often
fraught, due to the specification leading to hybrid (mixed
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discrete and continuous state and/or action) MDPs with non-
linear and/or piecewise structure that have been traditionally
very difficult to solve.

In this paper we make the following key contributions:
• We present Parameterized Hybrid MDPs (PHMDPs) as a

unified model of the aforementioned use cases and pro-
vide an algorithm that solves PHMDPs exactly and in
closed-form by defining a parameterized variant of Sym-
bolic Dynamic Programming (SDP) (Boutilier, Reiter,
and Price 2001) extended to hybrid MDPs (Sanner, Del-
gado, and Nunes de Barros 2011).

• We provide the first completely symbolic encodings of
the aforementioned use cases, which in turn enables the
use of recent advances in symbolic non-convex optimiza-
tion techniques with guarantees (Gao, Kong, and Clarke
2013).

• We present the first exact symbolic analysis of vaccination
policies in an SIR epidemiological model (Kermack and
McKendrick 1927), as well exact solutions to the inverse
learning of parameters in a multi-objective reward domain
and sensitivity analyses of portfolio execution strategies.

2 Related Work
In this section we briefly survey prior art in the areas
of multi-objective reasoning, exact sensitivity analysis and
nonlinear parameterized policy optimization and conclude
with a discussion of alternate uses of the term parameter-
ized in the MDP literature that contrasts with our work.

The techniques used to solve Multi-objective MDPs
(MOMDPs) with unknown preferences depend on the na-
ture of the scalarization function used to weight each reward
component (Roijers et al. 2013). Methods such as the Con-
vex Hull Value Iteration algorithm (Barrett and Narayanan
2008) can be used for discrete enumerated state MOMDPs
with any linear preference function. Nonlinear scalarization
functions require the calculation of the Pareto front, which
can be prohibitively large. As a result, Pareto front approxi-
mation techniques such as those of (Chatterjee, Majumdar,
and Henzinger 2006) and (Pirotta, Parisi, and Restelli 2015)
or Lorenz optimal refinements such as (Perny et al. 2013)
are often used. In this work we present the first exact fac-
tored hybrid MOMDP solutions as a symbolic function of
multiobjective weights via PHMDPs and SDP.

To date, most research into sensitivity analysis of MDP



parameters has focused on uncertainty within the specifi-
cation of the transition function (Kalyanasundaram, Chong,
and Shroff 2004), reward function (Tan and Hartman 2011),
or a combination of both (Givan, Leach, and Dean 2000),
in discrete MDPs. The framework that we introduce in this
paper enables exact sensitivity analysis for PHMDPs that al-
lows it to be applied in continuous state settings and permits
the derivation and analysis of the optimal policy as a sym-
bolic function of these parameters.

Policy gradient methods rely upon optimizing parameter-
ized policies with respect to the expected return by gradient
descent. Two of the most prominent approaches have been
the finite-difference methods, such as those of (Ng and Jor-
dan 2000), and Monte Carlo methods, such as (Sutton et al.
1999; Baxter and Bartlett 2000), both of which only con-
verge to local optima. Our use of PHMDPs and SDP allows
us to solve for a globally optimal policy as a parameterized
function of policy parameters.

Finally, as a point of differentiation from other uses of the
term parameterized in the MDP literature, we remark that
other works (Doshi-Velez and Konidaris 2016; Duff 2002;
Dearden, Friedman, and Andre 1999; Gopalan and Mannor
2015) have used Parameterized MDP to refer to MDPs with
latent parameters whose beliefs can be updated by observ-
ing reward and transition samples. In contrast, in this work
we assume strict uncertainty of continuous MDP parame-
ters in models that are otherwise fully specified; in this way
we can treat parameters simply as free variables that can be
parametrically analyzed via recent advances in symbolic so-
lution methods and non-convex optimizers (Gao, Kong, and
Clarke 2013).

3 Parameterized Hybrid MDPs
In this section we introduce Parameterized Hybrid Markov
Decision Processes (PHMDPs).

3.1 Definition
A parameterized hybrid Markov Decision Process (PH-
MDP) is defined by the tuple 〈S,A, T ,R,H, γ, θ〉.
S specifies a vector of states given by (~d, ~x) =
(d1, . . . , dm, x1, . . . , xn), where each di ∈ {0, 1} (1 ≤ i ≤ m)
is discrete and each xj ∈ R (1 ≤ j ≤ n) is continuous. Ahs
specifies a finite set of state and horizon dependent actions.
~θ are free parameters from the parameter space Θ. PHMDPs
are naturally factored (Boutilier, Dean, and Hanks 1999)
in terms of the state variables ~d and ~x. Hence, the joint
transition model can be written as:

T :P
(
~d′, ~x′

∣∣∣~d, ~x, a, ~θ) =

m∏
i=1

P
(
d′i

∣∣∣~d, ~x, a, ~θ) n∏
j=1

P
(
x′j

∣∣∣~d, ~d′, ~x, a, ~θ) , (1)

where a ∈ Ahs . The transition model permits discrete noise
in the sense that P

(
x′j |~d, ~d′, ~x, a, ~θ

)
may condition on ~d′,

which are stochastically sampled according to their condi-
tional probability functions. We note that this framework can
be extended to Dynamic Bayesian Networks with arbitrary

intermediate variable layers that allow one to emulate syn-
chronic arc dependencies and relax the discrete and contin-
uous stratifications.
R : S × A × ~θ → R is the reward function which en-

codes the preferences of the agent. H represents the number
of decision steps until termination and the discount factor
γ ∈ [0, 1) is used to geometrically discount future rewards.
A policy π : S × H × ~θ → A, specifies the action to take in
every state and horizon. The value function of the optimal
policy π∗ satisfies:

V π
∗ (~d, ~x; ~θ

)
= max

a∈A

{
Qπ
(
~d, ~x, a; ~θ

)}
. (2)

Qπ
(
~d, ~x, a; ~θ

)
gives the expected return starting from state

(~d, ~x) ∈ S, taking action a ∈ Ahs , and then following pol-
icy π. In general, an agent’s objective is to find an optimal
policy π∗ which maximises the expected sum of discounted
rewards over horizon H1. We again remark that in our for-
mulation of PHMDPs ~θ are free parameters and not learned
from reward and transition samples.

4 Parameterized Symbolic Dynamic
Programming

Symbolic Dynamic Programming (SDP) (Boutilier, Reiter,
and Price 2001) is the process of performing dynamic pro-
gramming via symbolic manipulation. In the following sec-
tions we present a brief overview of SDP operations and how
it can be adapted to solve PHMDPs.

4.1 Symbolic Case Calculus
SDP assumes that all functions can be represented in case
statement form (Boutilier, Reiter, and Price 2001):

f =


φ1 : f1
...

...
φk : fk

Here, fi are nonlinear expressions over (~d, ~x, ~θ) and φi are
logical formulae defined over (~d, ~x, ~θ) that can consist of ar-
bitrary logical combinations of tests on ~d and inequalities
(≥, >,<,≤) over nonlinear expressions of (~x, ~θ). We assume
that the set of conditions {φ1, . . . , φk} disjointly and exhaus-
tively partition (~d, ~x, ~θ) such that f is well-defined for all
(~d, ~x, ~θ). Henceforth, we refer to functions with linear φi and
piecewise linear fi as linear piecewise linear (LPWL) and
functions with nonlinear φi and piecewise nonlinear fi as
nonlinear piecewise nonlinear (NPWN) functions.

Operations on case statements may be either unary or bi-
nary. Unary operations on a single case statement f, such
as scalar multiplication c · f where c ∈ R, are applied
to each fi (1 ≤ i ≤ k). Binary operations such as addition,
subtraction and multiplication are executed in two stages.
Firstly, the cross-product of the logical partitions of each
case statement is taken, producing paired partitions. Finally,
the binary operation is applied to the resulting paired par-
titions. The “cross-sum” ⊕ operation can be performed on
two cases:

1All of the code can be found at https://github.com/
skindev/xadd-inference-1/src/cmomdp.



{
φ1 : f1
φ2 : f2

⊕

{
ψ1 : g1
ψ2 : g2

=


φ1 ∧ ψ1 : f1 + g1
φ1 ∧ ψ2 : f1 + g2
φ2 ∧ ψ1 : f2 + g1
φ2 ∧ ψ2 : f2 + g2

“cross-subtraction” 	 and “cross-multiplication” ⊗ are
defined in a similar manner but with the addition opera-
tor replaced by the subtraction and multiplication operators,
respectively. Some partitions resulting from case operators
may be inconsistent and are thus removed. All of the oper-
ations presented thus far are closed-form for NPWN func-
tions (Sanner, Delgado, and Nunes de Barros 2011).

A case statement can be maximized with respect to a
continuous parameter y as f1(~x) = maxy f2(~x, y). Continu-
ous maximization is used for continuous A PHDMPs and is
closed-form for LPWL functions; maximization of discrete
A remains closed-form for all NPWN functions. We refer
the reader to (Sanner, Delgado, and Nunes de Barros 2011;
Zamani, Sanner, and Fang 2012) for more details.

In principle, case statements can be used to represent all
PHMDP components. In practice, case statements are im-
plemented using a more compact representation known as
Extended Algebraic Decision Diagrams (XADDs) (Sanner,
Delgado, and Nunes de Barros 2011), which also support
efficient versions of all of the aforementioned operations.

4.2 SDP for Parameterized Hybrid MDPs
Value iteration (VI) (Bellman 1957) can be modified to solve
PHMDPs in terms of the following case operations:

Qh
(
~d, ~x, a; ~θ

)
= R

(
~d, ~x, a; ~θ

)
⊕ γ⊕

~d′

∫
~x′

P
(
~d′, ~x′

∣∣∣~d, ~x, a; ~θ
)
⊗ V h−1

(
~d′, ~x′; ~θ

)
d~x′ (3)

V h
(
~d, ~x; ~θ

)
= casemaxa∈A

{
Qh
(
~d, ~x, a; ~θ

)}
(4)

P
(
~d′, ~x′

∣∣∣~d, ~x, a; ~θ
)

is specified in Equation (1). The pa-
rameters θi are stationary free variables and hence do not
change during the backup operation. Continuous state pa-
rameters ~x are handled in a similar fashion. Symbolic in-
tegration over continuous variables are carried out with re-
spect to a deterministic Dirac δ function. This is a conse-
quence of the discrete noise restriction mentioned in sec-
tion 3.1 and yields a closed-form backup operation even with
NPWN T orR components (Sanner, Delgado, and Nunes de
Barros 2011).

A particular strength of SDP is that all operations will au-
tomatically condition the value and policy on the θi, without
needing to know their value a priori, yielding the parameter-
ized value function in Equation (4).

In the case of discrete A it can be proved that all of the
SDP operations used in Equations (3) and (4) are closed-
form for NPWN functions (Sanner, Delgado, and Nunes de
Barros 2011). In the case of continuous A all of the oper-
ations are closed-form for only LPWL functions (Zamani,
Sanner, and Fang 2012).

Inverse Learning for Multi-objective PHMDPs A pos-
sible formulation for the inverse learning problem for multi-
objective MDPs is to constrain the Q-values corresponding

to the observed behavior and maximize ~θ, which can be in-
terpreted as multi-objective weights that best explain the ob-
served behavior:

max
~θ

max
ak,ak 6=π

Qh
(
~d, x, ak; ~θ

)
	Qh

(
~d, x, a−k; ~θ

)
, (5)

where x can either be fixed or a region specified in the con-
straints, ak refers to the action taken under the policy π in a
particular state and a−k refers to all other available actions in
that state. We note that Equation (5) is one of many possible
formulations to inverse reinforcement learning and refer the
reader to (Ng and Russell 2000) for alternate approaches.

Sensitivity Analysis for PHMDPs Sensitivity analysis
for PHMDPs can be analysed exactly and in closed-form via
SDP by first calculating Equation (4) and then taking sym-
bolic derivatives, up to any order, with respect to ~θ.

Nonlinear Parameterized Policy Optimization Methods
for PHMDPs Parameterized policies π(~θ) for PHMDPs,
where ~θ may be nonlinear, can be analyzed exactly and in
closed-form via SDP by substituting π(~θ) in for a in Equa-
tion (3). This precludes the need for action maximization in
Equation (4) and makes SDP efficient in both computation
time and space. The parametric nature of this function al-
lows us to directly apply non-convex optimization tools that
require symbolic forms of the objective function. This yields
a global optimization of the function in contrast to policy
gradient methods which only guarantee local optimization.

5 Results
In this section we demonstrate the efficacy and tractability
of PHMDPs by calculating the first known optimal solu-
tions to three difficult nonlinear sequential decision prob-
lems. We note that while dOp (Gao, Kong, and Clarke 2013)
offers strong δ-optimality guarantees, we found that nonlin-
ear solvers such as fmincon (The MathWorks Inc. 2015), an
interior-point algorithm, perform comparably well and are
much more efficient, hence we use fmincon.

5.1 Inverse Learning for Navigation
The domain is specified as follows: S = 〈loc〉, where
loc is the location of the vehicle. A ∈ {0.0, 5.0} is the
amount by which vehicle moves relative to its current lo-
cation. T (loc′|loc, a) = δ [loc′ − (loc+ a)], where a ∈ A.
R (~w, loc, loc′) = w1 · Rregion + w2 · Rmove where,
Rregion(loc

′) = Rmove(loc, loc
′) ={

(loc′ ≥ 10.0) : loc′

otherwise : 0.0
−|loc′ − loc|

Figure 1a shows the optimal value function atH = 15 and
reveals the trade-off between reaching the goal region and
incurring a movement cost w2 · Rmove, when w2 ∈ [0.0, 50.0].
The vehicle will incur the movement cost as long as it is
mitigated by the Rregion reward. Furthermore, the range of
acceptable non-zero movement costs decreases the further
the vehicle is from the goal region. In Figure 2a we utilise
Equation (5) to learn the parameters (weights) of the multi-
objective reward under the following sub-optimal policy:
π̃(0 < loc < 10) = 5.0, π̃(loc < 0 or loc > 10) = 0.0. We
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Figure 1: Optimal Value functions for each domain.

observe that when a = 0.0, w2 = 50.0, its maximum value.
When a = 5.0, there are two different gradients for w2, one
when (0 < loc < 5) and another when (5 < loc < 10). The
steeper gradient in the latter region indicates that being one
step closer to the goal region allows the vehicle to accumu-
late an additional Rregion reward over H.

5.2 SIR Epidemic
The well studied SIR epidemic (Kermack and McKendrick
1927) domain is specified as follows: S = 〈s, i, r〉, where
s, i, and r refer to the size of the susceptible, infected and
recovered sub-populations, respectively. A ∈ {π(ν)} where
ν ∈ [0.0, 1.0] is the proportion of s to vaccinate at each stage.
The transition function T for each state variable in S is given
by:
T (s′|s, i, r, π(ν)) = δ [s′ − (s− β · s · i− π(ν) · s)]
T (i′|s, i, r, π(ν)) = δ [i′ − (i+ β · s · i− λ · i)]
T (r′|s, i, r, π(ν)) = δ [r′ − (r + λ · i+ π(ν) · s)]

where β is the infection rate and λ is the spon-
taneous recovery rate. The reward is specified as
R (costinf, costvaccine, s, i, r, π(ν)) = (s · (−costvaccine ·
π(ν)+(1−π(ν))))− costinf · i+r. costinf is the incident cost
of infection and costvaccine is the unit cost of vaccination.
We assume that the total population is constant and that
vaccinated individuals go straight from s to r without being
infected. The decision maker must balance the cost of
vaccination and the burden of disease on the population.

Figure 1b shows the optimal value function atH = 7 when
s = 1000.0, i = 100.0, r = 0.0, λ = 0.25, costvaccine = 4.0 and
costinf = 10.0. The value function shows that it is not always
optimal to vaccinate the entire population. In fact, Figure 2b
reveals that vaccinating the entire population is only optimal
when β > 0.25, that is, when the basic reproductive ratio
R0 (= β/λ) (Heffernan, Smith, and Wahl 2005) exceeds 1.0.
Scenarios where R0 > 1.0 can lead to an epidemic.
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Figure 3: Time and Space versus H for Navigation.

To the best of our knowledge, this is the first exact sym-
bolic analysis of vaccination policies in an SIR model. Fur-
thermore, PHMDPs and SDP can be used to solve any SIR
model without needing an analytical solution.

5.3 Optimal Execution

The domain is specified as follows S = 〈p, inv〉, where p is
the price of the asset and inv is the inventory remaining.A ∈
{π (θ)}, where θ ∈ (0.0, 1.0) is the proportion of inventory to
be sold. The transition function T for each state variable in
S is given by:
T (p′|p, inv, π (θ)) = δ [p′ − (p− κ · (inv · π (θ)) + ε)]
T (inv′|p, inv, π (θ)) = δ [inv′ − (inv − inv · π (θ))]

where κ > 0 is a market-impact parameter and ε is a
discrete noise parameter. The reward is specified by
R (p′, inv, π (θ)) = p′ · inv · π (θ) . When transacting a large
number of shares, investors often face a trade-off between
adverse market impact and the volatility of slow execution.

Figures 1c and 1d show the optimal value function at
H = 10 and its derivative w.r.t the parameter θ, respectively.
When inventory is low, the value function is high at higher
θ and the corresponding derivative is relatively stable. When
the inventory is high, the value function is high at lower θ
and the corresponding derivative shows maximum sensitiv-
ity. This indicates that when inventory is low, high θ allows
the investor to capture the current price and when inventory
is high, lower θ captures a more stable set of future prices.

5.4 Time and Space Complexity

Figure 3 shows an approximate linear relationship between
the horizon H and the computational time and space for the
Navigation domain, which is a promising scalability prop-
erty of the overall framework.
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