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Introduction

The quantitative study of neighbourhoods has a long pedigree, going back at least to
the Chicago School. A large proportion of these applications, at least until recently,
fall under the umbrella of geodemographic research — the study of neighbourhoods
through the characteristics of the populations which inhabit them (Harris, Sleight, and
Webber 2005; Webber and Burrows 2018). Geodemographic applications thus char-
acterize neighbourhoods through a sample of socioeconomic characteristics and then
apply clustering techniques — typically K-Means — to derive neighbourhood typolo-
gies.

Cluster-based methods have gained significant popularity as computing power has
increased, and user-friendly software has spread. In the process, researchers have ex-
panded original, static approaches in several directions to refine how the theoretical
notion of contextually varying urban areas is operationalized. For example, spatio-
temporal classification (Singleton, Pavlis, and Longley 2016) and sequence analysis
(Delmelle 2015; Delmelle 2016; Delmelle 2017) have been proposed. Much of this work
takes a two-stage approach. First, a classification (or clustering) is built across neigh-
bourhoods for each period, or all periods. An additional classification is then built to
characterize the changes in category over time, for example, using sequence analysis.
In essence, we first determine what is there, and then we determine how it changes.

This paper proposes the use of an alternative approach we term “predictive cluster-
ing”. The key distinguishing feature of our proposed method is to cluster neighbour-
hoods based on the relationship between outcome and characteristics, rather than from
the characteristics themselves. We define what is based upon how it becomes. More pro-
saically, we group neighbourhoods to maximize the quality of prediction made about
their change, according to a set of linear regressions. The predictive clustering approach
makes at least three noteworthy contributions to neighbourhood research:

• Conceptually, predictive clustering is highly distinct from traditional methods
— in particular, linear regression. Because it relies on a predictive model, it
can uncover how specific characteristics influence an outcome researchers are
interested in studying. We can then observe heterogeneity in those influences and
use it to cluster observations. This perspective makes neighbourhood dynamics
fundamental to the definition of urban space.
• Methodologically, in contrast to traditional neighbourhood classifications, predic-

tive clustering is based on a specific outcome to which areas similarly “respond”.
In other words, our proposal can be considered model-based clustering (Fraley
and Raftery 2002). This framework defines the current state of a neighbourhood
as a set of variables thought to influence trajectories of change. In this paper,
following a long tradition of research, we use income change to illustrate the po-
tential of this methodological feature of our approach (for a recent example, see
Hochstenbach and Gent 2015).
• Practically, predictive clustering has clear implications that differentiate it from

the traditional K-Means approach. Our approach can identify neighbourhoods
that exhibit different processes of change even if they look similar at any given
point in time, and similar dynamics even when they look different. Not only
is this potentially useful for urban policymakers when designing interventions,
it cannot be readily examined when one only considers characteristics of the
neighbourhood, as in the traditional K-Means approach.
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In developing our proposal, we build upon established frameworks of clustering and
regression in machine learning. These models are used to study the relationship between
a series of predictive variables (i.e. features) and a response variable (i.e. label). In
predictive modelling for urban settings, rarely does a single model work well for all
regions, and hence it can often be beneficial to cluster regions of similar traits or
behaviour and to fit a separate model per cluster. Such approaches are traditionally
referred to as cluster-wise linear regression (CLR) (Späth 1979; Späth 1981).

Unfortunately, CLR methods relying on traditional approaches like K-Means clus-
tering are not guaranteed to produce the minimum error. This is in part because the
K-Means clustering which groups together the most similar areas does not guarantee
clustering which groups areas that change similarly. Furthermore, CLR models pro-
duce results dependent on their initialization, which can risk damaging reproducibility.
In contrast, we propose to use a more recent variant of CLR termed Classification and
Regression via Integer Optimization (CRIO) (Bertsimas and Shioda 2007) to ensure
optimality, consistency, and reproducibility for CLR.

While the optimal CRIO framework has been proposed in the technical literature,
to the best of our knowledge, it has not been widely applied either in general or specifi-
cally to analyzing neighbourhood dynamics; in this article, we aim to demonstrate that
CRIO provides a powerful new tool for understanding neighbourhood change. By em-
ploying CRIO, which simultaneously optimizes the clusters generated for the data and
the (robust) linear regression models used to predict income change, our model is bet-
ter suited to create clusters within which census tracts behave similarly. This contrasts
with more traditional models, which treat the clustering step and the prediction step as
two separate stages, as in K-Means followed by per-cluster linear regression (KM+LR),
each with different objectives. In simultaneously optimizing these two steps, we thus
leverage a model that generates clusters better suited to the prediction task at hand,
while also improving reliability over successive replications of the system.

In the following sections, we develop the notion of CRIO for CLR and present a
case study for its application to prediction of neighbourhood income change. First, we
review previous work on clustering-based regression models in the general literature,
followed by a review of clustering approaches applied specifically in geographical anal-
ysis applications. Then we focus specifically on defining the CRIO methodology for
CLR along with more traditional CLR approaches like KM+LR that rely on K-Means
for clustering. Having outlined our methodology, we then proceed to apply it to a case
study for the prediction of neighbourhood income change. Next, we discuss key differ-
ences between CRIO and KM+LR in this case study and the potential benefits and
insights offered by the CRIO method for predictive clustering. We conclude with a
discussion of future refinements of the CRIO methodology as well as further potential
applications in neighbourhood effect and dynamics modelling.

In summary, our study argues for a novel approach to examining neighbourhood
change. We deviate from existing methods by focusing on the similarity of change
between neighbourhoods rather than the similarity of features. By employing a globally
optimal method for predictive clustering, an existing technology, we ensure that (a) our
method generates reproducible results and (b) the clustering and regression stages
occur together, rather than separately. In our results section, we examine precisely
how this difference in methodology achieves our underlying goal of finding clusters
that are predictive of neighbourhood change.

3



Olson et al. CRIO for Neighbourhood Change Geographical Analysis

Literature Review

The proposed contributions in this article represent the intersection of two mostly
independent threads of research: general cluster-wise regression (CLR) algorithms and
the general application of clustering methodologies in geographical analysis. We survey
the literature in both areas in the following subsections.

Clustering in Geographical Analysis

There is a longstanding lineage of clustering applications in the context of geography.
Clustering methods stem both from the geodemographics and the urban regional sci-
ence traditions. In broad strokes, these methods can be classified according to their
engagement with spatial constraints and temporal dynamics. Given that a comprehen-
sive review exceeds the scope of this paper (see Knaap et al. 2019), our focus is limited
to recent work related to our contribution.

Traditional clustering identifies typologies of places based on a set of shared at-
tributes of their residents. These typologies are both static, in that they are based on
cross-sectional data, and nonspatial since they do not impose formal spatial constraints.
In the context of neighbourhoods, much of this work is known as geodemographics
(Webber and Burrows 2018; Spielman and Folch 2015). The most common method
used in this line of work, often combined with others, is cluster analysis via K-Means
(Lloyd 1982). For instance, Wei and Knox (2014) use it to cluster census data tracts
in three different tract-years before applying discriminant analysis to identify seven
clusters, which they then qualitatively analyze to produce neighbourhood types. Using
survey instead of census data, Spielman and Singleton (2015) combine K-Means with
Ward’s hierarchical clustering algorithm to identify 250 clusters that get grouped in
ten neighbourhood types at the highest level. One of the main drawbacks of traditional
clustering methods is their unsupervised nature — there may not be a clear alignment
with the underlying mathematical objective of the clustering algorithms and the end
goals of the intended research. Furthermore, these traditional unsupervised cluster-
ing methods are not well-suited to identify neighbourhood change and its underlying
sociodemographic and spatial causes (Webber and Burrows 2018; Longley 2012).

Unlike geodemographics, regionalization methods inherently impose spatial con-
straints on clustering with the goal of aggregating subregions into a predetermined
number of distinct contiguous regions with underlying similar features. Duque, Ramos
and Surinach (2007) extensively discuss the work in this tradition. The goal of the
regionalization algorithm may be spatial, sociodemographic, or both. Notable work in
this area includes Duque, Anselin, and Rey’s (2012) Network-Max-P Regions model.
This is a global optimization model that attempts to group areas into a maximum
number of regions while satisfying a threshold constraint, minimizing heterogeneity
within the groups, and including spatial proximity constraints. Since Network-Max-
P prohibits non-contiguous regions from sharing a label, it would be inappropriate
for establishing generic neighbourhood types that may correspond to geographically
distributed “islands”. Similarly, the work of Rey and colleagues (2011) addresses the
issue of neighbourhood change using a Max-P regionalization algorithm. They apply
the algorithm on the same set of census tracts at two different time periods, 1990 and
2000. Then, they measure the changes between both spatial solutions as a proxy to
changes in the spatial boundaries of neighbourhoods between the two periods. This
line of work faces similar limitations to geodemographics in that it may inherently fail
to find meaningful regions that explain label changes over time (Knaap et al. 2019).
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A third kind of clustering methods are those that engage with changes over time but
do not impose spatial constraints on the models as in regionalization. Such temporal
clustering methods follow changes in neighbourhood composition (e.g., gentrification),
their spatial boundaries (e.g., service coverage), or both (S. J. Rey et al. 2011). The
general logic is, then, to identify the trajectories of specific urban spaces (Knaap et al.
2019). One widely used method is to run an initial geodemographic analysis that seg-
ments an urban space into neighbourhood classes. Then, the change in neighbourhood
classes is modelled. In her recent work, Delmelle (2016; 2017) clusters sequential pat-
terns of class label changes over time. The extended method combines a self-organizing
map to project the feature space onto a 2D surface with K-Means to group the result-
ing areas (Delmelle 2017). Then, the sequences are clustered using Ward’s hierarchical
algorithm. An important advantage of the method is that it is asynchronous, i.e., it
allows to identify similar trajectories for different neighbourhoods at different segments
of time (Knaap et al. 2019). Other recent research uses different clustering methods
and data to assess spatial changes over time. Reades, De Souza and Hubard (2019) aim
to both classify and predict gentrifying neighbourhoods in London through Principal
Component Analysis and Random Forests on census data. Using data from the venue
rating application “Yelp,” Glaeser, Kim, and Luca (2018) apply linear regression mod-
els to predict various metrics of gentrification. Unlike unsupervised clustering, these
methods do have a clear success metric that can be used to verify whether the model
adequately captures the data. However, clustering and prediction remain as separate
processes in these models rather than sharing a single mathematical objective used to
globally optimize both.

The clustering method we leverage in this article aims to tackle some of the limi-
tations discussed above by combining clustering together with prediction of temporal
change. Mohamed and colleagues (2013) explored a similar method by initially us-
ing K-Means to create sets of clusters, and then applying separate Ordered Probit
Regressions to each cluster. While this two-step process of clustering followed by re-
gression proved to be a step in the right direction, the clustering is independent of the
regression and therefore does not necessarily yield clusters that provide the optimal
regression. In contrast, our CRIO approach to CLR produces clusters that directly
minimize regression error, thus providing the optimal clusters for prediction.

Cluster-wise Regression Models

Cluster-wise regression (CLR) is a type of regression from a vector of predictive vari-
ables (features) to a response variable (label), where each observation (consisting of
predictive variables) is assigned to a cluster that determines the regression model that
is used to predict the response variable across all models. Researchers have primar-
ily explored CLR algorithms in two directions that we discuss next: heuristic solution
approaches and globally optimal mathematical programming approaches.

To obtain an approximate solution in a relatively short amount of computation time,
researchers have proposed heuristic approaches to solve the CLR problem. One obvious
approach to CLR is simply to cluster the data with K-Means (Lloyd 1982) according
to the predictors and then perform a linear regression on the data in each cluster to
obtain a per cluster regression model. We refer to this model as K-Means plus linear
regression (KM+LR) and note that an analysis of clusters of KM+LR is simply an
analysis of K-Means clusters themselves — the regression problem has no impact on
the clustering. In order to unify clustering and regression under a single objective to
jointly minimize regression error, Späth (1979) proposed an exchange method in which
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after starting with an initial cluster assignment, two items from different clusters are
exchanged if the total squared error is reduced. Although this method is efficient, Späth
(1981) later improved the exchange method to achieve faster convergence by moving
a single item from one cluster to the other if the total squared error is reduced. These
heuristic methods produce acceptable solutions in many contexts; however, they are
highly dependent on the initialization, and thus, do not guarantee a globally optimal
solution.

Given the drawbacks of heuristic approaches, many researchers started to explore
mathematical programming formulations of the CLR problem. Although these ap-
proaches were not applied to the neighbourhood analysis problem we examine here,
these methods nonetheless provide the fundamental global optimization approach that
we leverage in this article. Lau, Leung, and Tse (1999) proposed one of the first non-
linear programming procedures to solve a variant of the CLR problem. However, since
their optimization model is non-linear, their solution is subject to local optima and
thus dependent on initialization. Zhang (2003) developed a centre-based clustering
algorithm to reduce dependence on initialization, called K-Harmonic Means, which
converges to a better local optimum than the heuristic approaches. To facilitate com-
putationally efficient solutions that are robust to outliers, other researchers have looked
at a variation of the CLR problem: minimizing total absolute error instead of the to-
tal squared error. Bertsimas and Shioda (2007) proposed a mixed-integer linear pro-
gramming (MILP) model called Classification and Regression via Integer Optimization
(CRIO) to solve this variation of the CLR problem, which is the basis upon which we
develop our approach. Follow-on work by Zhu, Li, and Kong (2012) explored a similar
MILP approach and explored symmetry breaking approaches to enhancing scalability.
Recent work by Park et al. (2017) switched back to a less computationally efficient
squared error objective, but also provided column generation techniques to improve
the scalability of his mathematical programming framework.

Each of the above approaches focused on a unique algorithm to solve a CLR problem.
However, while addressing similar tasks, these papers did not apply their methods to
neighbourhood change analysis, nor our specific problem set. We built both a heuristic
model based on K-Means followed by per-cluster linear regression (KM+LR), which has
fast convergence, as well as a CRIO model that guarantees global optimality to solve
our CLR problem. We aim to highlight the differences of these two CLR approaches
and the advantages offered by CRIO for neighbourhood change analysis.

Data

Our experiments attempt to predict income change between 2000 and 2010 in New
York City. To facilitate this, we use the Longitudinal Tract Database (LTDB), which
harmonizes census data to 2010 boundaries (Logan, Xu, and Stults 2014). This study
focuses on data from 2000 and 2010 in Manhattan to obtain a dataset where accurate
results can be obtained in reasonable computation time, and results can be more readily
interpreted qualitatively.

The census features that were considered in our study were chosen to represent
basic population characteristics, economic measures, educational attributes, geographic
and migration information and housing aspects of the census tract. We normalize
within each census tract according to the total population of that tract. The value for
prediction is change in per capita income from 2000 to 2010. It is calculated as the log
of per capita income in 2010 divided by the per capita income in 2000.
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We log transform all variables (feature and label). The main reasons to log transform
are due to the wide dynamic range of the data, where a small number of extreme
values can disproportionately affect the regression; furthermore, for the label that is
computed as a ratio, we would expect change to be linear and additive in terms of a
log-ratio (Gelman and Hill 2006).

Before we use the dataset in our analysis, we performed several pre-processing steps
and cleaning to prepare the data. We started with 288 census tracts total. Firstly, since
we used per capita income in 2000 and 2010 to create the labels, we only kept tracts
that exist in both years. We only removed one tract this way — Liberty Island, which
has no registered inhabitants, is recorded in the 2010 dataset but not the 2000 dataset.
Next, we removed rows where any value was recorded as -999, indicating a missing
entry, a step which removed seven individual entries — all in the income per capita
feature. We then divided the 2010 data by the 2000 data to obtain the change between
the two censuses. Where a value was 0 in the 2000 census, this provides a division by
zero error. For columns that now contain > 10% NaN values, we remove the entire
column. For the remainder, we move the census tract row containing this NaN value.
The reason for this hybrid removal process is to (a) prevent removing entire columns
because they simply contain one invalid entry; and (b) prevent removing entire rows
simply because they have one column, which is frequently invalid. This hybrid process
allowed us to retain a larger proportion of both the census tracts and the features than
entirely removing by column or by row. We repeat this process after taking the log of
all columns. After cleaning, we are left with 236 rows of the original 288, with only
valid entries remaining.

The last step was to standardize all features and labels. We first subtracted each
variable by its mean and then divided it by the standard deviation of that variable.
Then, each standardized value represented the number of standard deviations away
from the mean of that variable. This step was vital since we wanted to compare weights
on features and mutual information score of each feature.

One limitation of the CRIO model comes from the nature of MILP optimization
tasks. The computation time required to solve the problem and hence produce optimal
clusters increases dramatically with each variable included in the model. As a result of
this limitation, we employed a maximum of 5 census features at a time in prediction.

To determine the features best suited for inclusion in our model, we calculated
the mutual information (MI) of each feature with the prediction variable (Cover and
Thomas 1991). This resulted in the following selection of the highest MI features:

(1) prof: Professional Employees: The proportion of residents in professional
occupations.

(2) col: College Degree+: The proportion of people in the census tract with at
least a four-year college degree.

(3) flabf: Females in Labor Force: The proportion of working women.
(4) multi: Multi-Family Units: The proportion of single homes containing more

than one family.
(5) own: Owner-Occupied Housing Units: The proportion of people living in

homes that they own.
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Methods

In this section, we first begin with notation definitions and then proceed to outline our
Cluster-wise Linear Regression (CLR) methodology for the two methods we compare
in this article: KM+LR as well as the technical definition of the CRIO approach that
motivates this research investigation.

Optimization Metrics for Linear Regression

We assume there are n observations consisting of f predictive variables Xi,j (for i ∈
{1, . . . , n} and j ∈ {1, . . . , f}) used to predict response variable Yi. Specifically, the ith
observation can be written as a tuple of the form (Xi,1,...,Xi,f , Yi).

In linear regression, we use a linear weighting of the predictive variables to predict
the response variable; formally, letting w = (w1, . . . , wf ) be a vector of f regression
coefficients and b a bias term, we can obtain a prediction Ŷi of the true value Yi
as follows: Ŷi =

∑f
j=1wjXi,j . Given our n observations, we can optimize our linear

regression according to either mean absolute error (MAE) or mean squared error (MSE)
as defined below.

(1) Mean Squared Error (MSE):

min
w,b

1

n

n∑
i=1

Yi −
f∑

j=1

wjXi,j − b

2

(1)

(2) Mean Absolute Error (MAE):

min
w,b

1

n

n∑
i=1

∣∣∣∣∣∣Yi −
f∑

j=1

wjXi,j − b

∣∣∣∣∣∣ (2)

While mostly similar in calculation, MAE differs from MSE in that it penalizes
outliers less substantially – the squared term in MSE causes the cost of outliers to
increase quadratically. For this reason, the use of MAE is considered to lead to robust
linear regression that is less sensitive to outliers and which also has useful sparsity
(zero weight) inducing properties that lead to improved interpretability that can be
observed in the experimental results for the CRIO method that uses MAE. We explic-
itly optimize the MAE metric in both our KM+LR and CRIO methods, although we
report performance in terms of both MAE and MSE for each model.

General Cluster-wise Linear Regression (CLR)

As discussed previously, cluster-wise linear regression (CLR) is a general framework for
piecewise linear regression, where we aim to find a fixed number of cluster assignments
for the data and then apply a linear regression within each cluster. Formally, if we
assume there are n observations and that we define each observation as (Xi,1,...,Xi,f ,
Yi), the goal is to look for K clusters, C1, ..., CK given n observations, such that the
following properties hold:

• each cluster contains a set of the observations: Ck ⊂ N = {1, ..., n},
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• each cluster must contain at least one observation: |Ck| > 0,
• clusters do not overlap: Cj ∩ Ck = 0 for j 6= k, and
• each observation is assigned to a cluster: ∪Kk=1Ck = K.

For each cluster k, we will find f cluster-specific weights (w1,k, w2,k, ..., wf,k) and K
bias terms. How we find the clusters and optimize the linear regression models depends
on the specific approach we take.

K-Means plus Linear Regression (KM+LR)

As previously done in Mohamed et al. (2013), we approach CLR in two stages. In the
first stage, we apply the popular K-Means algorithm (Lloyd 1982) to find K clusters.
In the second stage, we simply apply standard linear regression using MAE as the
objective to fit the data assigned to each cluster, hence resulting in one MAE-based
linear regression model per cluster. We refer to this method as K-Means plus Linear
Regression (KM+LR). We note that MAE is used as the regression optimization metric
not only for its robustness properties, but also to match CRIO, discussed next.

Classification and Regression via Integer Optimization (CRIO)

We now provide the mathematical derivation of our Classification and Regression via
Integer Optimization (CRIO) model that reflects the final result presented in Bertsimas
and Shioda (2007, see Eq (15)). Unlike KM+LR, we aim to do both clustering and
robust (MAE-based) linear regression simultaneously in this model.

In the objective function (3), the first term is the MAE. The indicator, ci,k =1 when
tract i belongs to cluster k; and ci,k = 0, otherwise. The per-datum absolute error
measure, ei,k =

∣∣∣∑f
j=1wj,k Xi,j + bk− yi

∣∣∣, is multiplied by a binary cluster assignment
indicator ci,k to ensure that we are only considering error resulting from the linear
regression that each tract is assigned to. Also, we use the constraint in (4) to ensure
each tract can only be assigned to one of the K clusters.

min
1

n

n∑
i=1

m∑
k=1

ci,k

∣∣∣ f∑
j=1

wj,k Xi,j + bk − yi

∣∣∣ (3)

s.t.

m∑
k=1

ci,k = 1 ∀ i = 1, ..., n (4)

ci,k ∈ {0, 1} ∀ i = 1, ..., n, k = 1, ...,m (5)
wj,k ∈ R ∀ j = 1, ..., f, k = 1, ...,m (6)
bk ∈ R ∀ k = 1, ...,m (7)

In this model, the objective function is nonlinear because of the absolute value and mul-
tiplication of absolute value with a binary cluster assignment indicator ci,k. Therefore,
the model was reformulated as a mixed integer linear program (MILP) for computa-
tional efficiency and implementation. Though we initially tested three encoding meth-
ods, we ultimately selected the following “Big-M” encoding as this method produced
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the best results in our preliminary testing.

min
1

n

n∑
i=1

m∑
k=1

ei,k (8)

s.t.

m∑
k=1

ci,k = 1 ∀ i = 1, ..., n (9)

f∑
j=1

wj,k Xi,j + bk − yi − ei,k ≤M(1− ci,k) ∀ i = 1, ..., n, k = 1, ...,m

(10)
f∑

j=1

−wj,k Xi,j − bk + yi − ei,k ≤M(1− ci,k) ∀ i = 1, ..., n, k = 1, ...,m

(11)
ei,k ≥ 0 ∀ i = 1, ..., n, k = 1, ...,m

(12)
ci,k ∈ {0, 1} ∀ i = 1, ..., n, k = 1, ...,m

(13)
wj,k ∈ R ∀ j = 1, ..., f, k = 1, ...,m

(14)
bk ∈ R ∀ k = 1, ...,m

(15)

In this Big-M encoding, we replaced the absolute values in the objective function by
enforcing ei,k =

∣∣∣∑f
j=1wj,k Xi,j + bk − yi

∣∣∣ with constraints (10) and (11) (Bertsimas
and Tsitsiklis 1997). We then used the Big-M encoding to remove ci,k in the objective
function and M was set to the max distance between all pairs of data points. We added
constraint (12) to ensure ei,k = 0 when ci,k = 0 in constraint (10) and (11). To see
that this compact encoding is correct, when ci,k = 1, the RHS of constraint (10) and
11 becomes 0 and ei,k =

∣∣∣∑f
j=1wj,k Xi,j + bk− yi

∣∣∣. In contrast, if ci,k = 0, ei,k = 0 due
to constraint (12) and the minimization of the objective function.

We note that the above CRIO MILP closely relates to a specific type of finite mixture
model (see, e.g., McLachlan, Lee, and Rathnayake (2019) for recent work) assuming
Laplacian noise (MAE) as previously pointed out by Lau, Leung, and Tse (1999); how-
ever, in our case, the latent class membership variables (the ci,k) are conditioned on and
directly optimized rather than being optimized in a marginal likelihood framework typ-
ically used in mixture model fitting. The advantage of our CRIO model is that MILP-
based solvers can provide a globally optimal solution that guarantees reproducibility (up
to symmetries) as opposed to standard finite mixture modelling approaches that rely
on non-convex optimization algorithms like Expectation Maximization (EM) known to
be subject to local optima (Zhang 2003).

In terms of implementation of the above CRIO MILP, we used the Gurobi solver (a
commercial solver that is free for academic use) on a desktop computer with a six-core
Intel i7-8700 CPU at 3.20GHz and 32GB of RAM. We limited running time to 4 hours
per MILP solution and found that this was sufficient to support up to 5 features and
5 clusters for our 236 census tracts. This was sufficient for our initial investigation of
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CRIO for neighbourhood analysis in this article, but we discuss avenues for potential
enhanced scalability for CRIO in our concluding future work discussion.

Results

In this section, we compare the CLR performance of our CRIO method to the KM+LR
baseline method and measure performance using both MAE and MSE. We qualitatively
examine the weights and feature averages for the clusters of both KM+LR and CRIO
and also visualize the cluster assignments on a map. Finally, for KM+LR (the only
method examined here with outcomes dependent on initialization), we additionally
examine the reproducibility of its K-Means clusterings across multiple runs.

Illustrative Example

Before we apply KM+LR and CRIO to real data, we first begin with an illustrative
example that highlights key differences between the two approaches. For this example,
we refer to Figure 1, where we have generated a synthetic dataset consisting of samples
of points i (with Gaussian distributed error) from three different regression lines of the
form Yi = w1Xi,1 + b (nb. f = 1 according to our notation from the previous section)
with randomly generated w1 and b parameters. These plots show the clusters and
regression lines (in colour) for K ∈ {1, 2, 3} for each of KM+LR and CRIO.

The optimal result for either model would be to assign each point to the same
cluster for the line that generated it and to recover the optimal w1 and b for each line.
However, we chose this example specifically to demonstrate a limitation of KM+LR
to achieve this optimal result. Because KM+LR uses a two-stage clustering algorithm
and only clusters each sample i on the feature (i.e., the x-axis Xi, 1) in the first stage,
it is restricted to assigning clusters by partitioning the x-axis and then to determining
optimal regressions for each of these x-axis partitions at the second stage. In contrast,
CRIO’s joint CLR optimization has the ability to determine the cluster assignment
for each i considering both its feature Xi, 1 and it’s label Yi and how well both fit
a potential regression line. In this way, CRIO is clearly able to recover the optimal
underlying generative model for the data without “knowledge” of the existence of these
generating models or their parameters. Hence, Figure 1 demonstrates that CRIO can
capture clusters that are predictive of the label (and change, if this is the chosen label),
whereas KM+LR is limited to capture clusters based on feature similarity alone.

Average Error per Tract

Leveraging insight from the illustrative example, we now proceed to compare KM+LR
and CRIO on our previously described New York census data. The first evaluation
of performance is through comparing the Mean Absolute Error (MAE) and Mean
Squared Error (MSE) per tract displayed in Table 2. Here we show results for KM+LR
and CRIO for four different values of K, as well as the values for LR at a K of 1
(where KM+LR reduces to standard linear regression). Both KM+LR and CRIO get
progressively better as K increases since they have more clusters and linear regression
models to fit, thus reducing error. In terms of comparison, we observe that CRIO
performs better on both metrics due to its global optimization approach. Additionally,
both of these models outperform standard LR, particularly at higher values of K.
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KM+LR Consistency

After executing the KM+LR model across a broad range of random initializations,
we were able to produce the consistency results shown in the CRC column of Table
2. The cross-run consistency (CRC) value is calculated as, for every pair of runs, the
proportion of model assignments that are the same in both runs divided by the total
number of model assignments possible. As can be seen from this table, a low k value
does produce stable clusters as indicated by high CRC, but as the number of clusters
increases, the stability (i.e., CRC) substantially diminishes. This is representative of a
critical problem with clustering methods such as K-Means that underlies KM+LR —
re-running the same model on the same data is not guaranteed to reproduce results.

Exploring the Nature of Clusters Produced by KM+LR and CRIO

After comparing the results quantitatively, we now visualize the cluster assignment
on the New York City map to analyze the results qualitatively in Figure 4 as well as
the individual weights and feature averages for each cluster in Table 1. In the cluster
analysis that follows, it is critical to recall that the clusterings for KM+LR are simply
due to K-Means since linear regression (LR) is only applied after clustering in the
KM+LR methodology.

In Figure 4, we show KM+LR in the top row and CRIO in the bottom row while
columns correspond to different K. It is evident that for the same K, there is a sub-
stantial qualitative difference in the clusterings produced by KM+LR and CRIO. This
is clear already when K = 2. K-Means divides Manhattan primarily between North
and South, whereas CRIO produces clusters that span this division. This is strong
initial evidence that areas that look “the same” from the traditional K-Means point of
view might “behave” very differently, while “different” areas might change according to
a similar model.

Table 1 helps to unpack what the clusters consist of. It shows the individual weights
and feature averages for each cluster for differing numbers of clusters K. Since our
main objective is to articulate the generic differences between the two methods, high-
lighting K = 2 provides a straightforward illustration, especially when we primarily
focus on education, which at this level seems to be a key variable. K-Means classifies
neighbourhoods into high and low educated areas (average standardized college degree
values of 0.99 and -0.54 respectively), which have correspondingly high and low levels
of homeownership (average homeownership of 0.44 and -0.24 respectively). Higher-
educated areas tend to exhibit greater income growth; growth in the less-educated
areas is slower. Within highly educated areas, the influence of homeownership is lower,
making minimal impact on the prediction. In low educated areas, however, the impact
of homeownership is double.

For K=2, CRIO takes an entirely different approach. It divides Manhattan into
areas in which the factors driving income change between 2000 and 2010 are similar,
in the first cluster, and areas which can be predicted based on a combination of all
features in the second. It includes this ’static’ cluster in every increasing value for K.
For example, at K=5, the final cluster also contains zero weightings, although this
time, the participation in this group is lower. Returning to K=2, the exception to this
is that homeownership is again considered important as a factor for income change.

It is additionally worth noting the number of census tracts assigned to each cluster
between the models. For the KM+LR models, cluster assignment is lopsided, with
some clusters containing a very small number of tracts. For K=4 and K=5, KM+LR
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has a cluster containing only a single tract, which is a poor utilization of the additional
clustering opportunity. On the other hand, CRIO assigns roughly even proportions
of tracts to each cluster, even as the number of clusters increases. This demonstrates
better utilization of the models available.

Cluster-based Regression Analysis

In Figure 3, we show the linear regressions per-feature for KM+LR (top) and CRIO
(bottom) for each of the five features (five columns) with K = 5 for both algorithms.
Each graph shows a linear regression overlaid on a scatterplot. The scatterplot shows
each tract as a point providing both its feature value (x-axis) and corresponding income
change (y-axis); the CRIO models assign each tract to one of 5 cluster models, which
is indicated by the colour of the point. The regression plots for the five cluster models
were generated by zeroing out all features except for the feature being shown in the
column and showing the predicted change in income per capita as a linear response
to that feature. We remark that the slope of this line does reflect the weight of that
feature in the model, but that the y-intercept (vertical offset) of the line should be
ignored since all other features were zeroed out for this analysis of individual feature
response.

In the first row of Figure 3 we show the results for KM+LR. These regressions are
highly stochastic and include many extremely steep regression slopes that are highly
unlikely in the context of the points assigned to that model (same colour) and strongly
indicative of overfitting and response to individual outliers. Additionally, it is possible
to observe how KM+LR simply splits its clusters on feature values as indicated by the
horizontal (colour) separation of the clusters with regard to the y-axis for many of the
features. For this reason, we note that there is a very high variance of income change
(y-axis) per feature, indicating that the clusters do not correspond to tracts that behave
similarly with regard to income change. Finally, KM+LR does not optimally use all
five models to produce different predictions. Instead, many of the models are used for
one or a few noisy data points (as reflected in Table 1). Hence, these models are highly
overfit and leave the rest of the points to be covered by the few remaining regression
models.

In sharp contrast, the CRIO plots in the second row of Figure 3 demonstrate how
each cluster corresponds to a different range of incomes, as indicated by the vertical
separation of cluster models (colours) on the y-axis. We remark that the CRIO models
opt for much more reasonable feature coefficients in the context of the points assigned
to that model (same colour), and where the slopes are more extreme it does appear
to fit well to the associated data. Across plots in the bottom row, we can see how
each of the five models focuses on responses to different features — flat lines indicate
that a model is ignoring that feature, and likely focusing on others. This indicates
that CRIO is more robust to noise. Overall, these models are visibly more plausible
for the data, indicating the clusters much better reflect the predictive process than the
corresponding results in the first row KM+LR plots.

Case Study

While it is beyond the scope of this comparative methodological article to provide a
comprehensive analysis of income change in New York City, we now highlight a case
study that elucidates key differences between the clustering and regression approaches
of the KM+LR and CRIO models. Specifically, to highlight the different underlying
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approaches employed by KM+LR and CRIO, we look at the example of two census
tracts in New York — 148.01 and 148.02. These tracts existed separately since at
least 1970, which is the first decade included in the LTDB, but due to their decimal
difference, they would have at one point existed as a single tract. Indeed, they are
directly adjacent to one another (see Figure 2). In addition to being directly adjacent,
both tracts’ census features are mostly in alignment with one another, as seen in Table
3. Due to their highly similar features, the KM+LR model naturally predicts very
similar outcomes for the two tracts. However, despite this, the two tracts have very
different outcomes in reality. By contrast, our CRIO model can model the change in the
two tracts differently (Table 4). In tract 148.01, the model identifies homeownership as
the critical factor in changing income, whereas 148.02 appears largely to remain static
in this prediction. This demonstrates a fundamental difference in the two approaches
to income prediction. KM+LR is only capable of identifying groups of tracts that are
similar in the present features. This does result in spatially cohesive clustering, but as
we see from this example, spatial coherence is not necessarily a desirable quality for the
prediction task of understanding neighbourhoods’ susceptibility to change by similar
processes. On the other hand, CRIO produces non-spatially coherent clustering, but
does so as it can capture the underlying similarity in change, rather than just high-level
feature similarity.

Conclusion

In this comparative methodology article, we applied the “Classification and Regression
via Integer Optimization” (CRIO) methodology to group census tracts into neighbour-
hood clusters. Whereas traditional approaches using K-Means and Linear Regression
(KM+LR) group neighbourhoods based upon shared static attributes, CRIO groups
neighbourhoods based upon common dynamic processes. In short, what superficially
looks like highly related clustering and regression methods turn out to produce very
different analyses. This highlights the critical importance of carefully considering the
assumptions underlying combined clustering and regression approaches when using
them to analyze neighbourhood change.

Not only does CRIO constitute a novel conceptual approach to neighbourhood clus-
tering, but it also outperforms traditional methods along several metrics. By using a
mixed integer linear programming (MILP) model, CRIO ensures optimal, reproducible
solutions. Moreover, CRIO achieved both lower mean absolute error and mean squared
error than the KM+LR baseline method for CLR. Though CRIO does involve a longer
computation time than existing methods, it produces a robust, reproducible solution
even when the problem size is large.

We used income change in Manhattan to demonstrate the potential of CRIO in
contrast to standard methods. Quantitatively, CRIO produces a solution with a lower
absolute error than the baseline KM+LR method and more consistent cluster assign-
ments. Qualitatively, CRIO reveals patterns that KM+LR obscures. In particular, it
cuts across static divisions to uncover areas held together by their potential to change.

Most fundamentally, CRIO provides a quantitative methodology for perceiving the
city not only as a collection of common attributes but as an evolving space of processes.
It offers a way to identify what and where these processes are rigorously. Beyond
this conceptual and methodological reorientation, it has significant practical potential.
A policymaker can use CRIO-based tools to identify areas that, despite any current
differences, tend to change in similar ways. This can help in both evaluating and
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designing interventions.
The application of CRIO applied to neighbourhood analysis is new, and as such it,

presents challenges and opportunities. As noted previously, the basic version of CRIO
that we implemented is not highly scalable, which limited us to regression models over
five features and five clusters for 236 census tracts in this analysis; quite simply, this
is the computational price to be paid for global optimality that previous approaches
lacked. Future work should look at incorporating one or more of the scalability en-
hancements for the CRIO methodology (Bertsimas and Shioda 2007; Zhu, Li, and
Kong 2012; Park et al. 2017) that involve a range of techniques from pre-clustering to
symmetry breaking to column generation methods for optimization.

Even with its current moderate scalability, CRIO still represents a valuable contri-
bution to cluster analysis for neighbourhoods. This article only managed to introduce
the idea of predictive clustering for neighbourhood analysis, compare key differences
of CRIO compared to KM+LR from a few perspectives, and present a brief case study
predicting income change in Manhattan. Future work should continue to explore the
application and extension of CRIO to a variety of neighbourhood response variables
to better understand whether neighbourhood clusterings are consistent across multiple
response variables and the underlying (causal) mechanisms that explain the common
“behavioural” evolution underlying these response-dependent clusterings.
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K Method MSE MAE CRC
1 LR 0.59 0.57
2 KM+LR 0.57 0.57 1.0

CRIO 0.32 0.39
3 KM+LR 0.49 0.53 0.98

CRIO 0.27 0.34
4 KM+LR 0.47 0.51 0.92

CRIO 0.19 0.25
5 KM+LR 0.45 0.50 0.90

CRIO 0.14 0.22

Table 2.: Comparison of MSE and MAE for Linear Regression, KM+LR and CRIO
CLR methods for k clusters. CRIO performs best on both MSE and MAE for all k. For
KM+LR, the Cross-Run Consistency (CRC) is also shown, where the maximum CRC of
1.0 indicates complete reproducibility. CRC is not shown for the other two methods as
they are deterministic and so produce the same results each time (technically equivalent
to a CRC of 1.0).

Tract prof col flabf multi own incpc Model Prediction
148.01 -0.94 -0.91 -1.49 -0.45 -0.25 0.24 2 -0.61
148.02 -0.69 -0.79 -0.52 -0.20 -0.25 -1.68 2 -0.51

Table 3.: Census features and KM+LR predictions for 148.01 and 148.02. Note that
highly similar census features results in KM+LR predicting very similar income change
for both tracts, while in reality the change in the two tracts is quite different. It would
in fact be nearly impossible for a well-trained KM+LR model to correctly predict the
income change for both of these tracts at the same time.

Method Tracts prof col flabf multi own Bias
KM+LR Both 0.10 0.56 0.05 -0.06 0.26 0.33
CRIO 148.01 0.00 0.00 0.00 0.00 0.00 0.01
CRIO 148.02 0.73 1.47 0.00 0.30 0.99 0.55

Table 4.: Prediction weights for 148.01 and 148.02 in KM+LR and CRIO. CRIO assigns
different weights to the features for the two tracts, which reflects underlying differences
in the way that these two tracts are changing. KM+LR is incapable of this type of
observation.
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Figure 1.: Illustrative comparison of CRIO and KM+LR on a simple synthetic dataset.
Raw data (individual points) corresponding to three distinct regression lines (depen-
dent y-axis as a linear function of the independent x-axis with a small amount of
Gaussian noise added) and ground truth cluster labels and regressions (respectively,
the points and lines shown in orange, green, and blue) are recovered by CRIO for K=3
clusters (top right). CRIO results are shown in the top row and KM+LR results are
shown in the bottom row. Columns provide results for each method for a different
number of clusters K ∈ {1, 2, 3}. While CRIO for K=3 (top right) is able to accurately
assign each point to the correct cluster and recover the ground truth regression line
per cluster, KM+LR fails to identify the ground truth clusters and regressions for K=3
(bottom right) since it can only use x-axis features for clustering.

Figure 2.: The location of census tracts 148.01 and 148.02 in New York City.
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Figure 5.: Mean Squared Error (MSE) for all three compared methods. Note that a
dashed line is shown for Linear Regression (LR) as this method does not use clustering
and is not dependent on K. Clearly, both CLR models (KM+LR and CRIO) reduce
prediction error over LR. CRIO substantially outperforms KM+LR at each K as well
as LR in terms of MSE regression error.
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