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Abstract. As natural language interfaces enable users to express in-
creasingly complex natural language queries, there is a parallel explosion
of user review content that can allow users to better find items such as
restaurants, books, or movies that match these expressive queries. While
Neural Information Retrieval (IR) methods have provided state-of-the-
art results for matching queries to documents, they have not been ex-
tended to the task of Reviewed-Item Retrieval (RIR), where query-review
scores must be aggregated (or fused) into item-level scores for ranking. In
the absence of labeled RIR datasets, we extend Neural IR methodology
to RIR by leveraging self-supervised methods for contrastive learning of
BERT embeddings for both queries and reviews. Specifically, contrastive
learning requires a choice of positive and negative samples, where the
unique two-level structure of our item-review data combined with meta-
data affords us a rich structure for the selection of these samples. For
contrastive learning in a Late Fusion scenario (where we aggregate query-
review scores into item-level scores), we investigate the use of positive
review samples from the same item and/or with the same rating, selection
of hard positive samples by choosing the least similar reviews from the
same anchor item, and selection of hard negative samples by choosing
the most similar reviews from different items. We also explore anchor
sub-sampling and augmenting with meta-data. For a more end-to-end
Early Fusion approach, we introduce contrastive item embedding learn-
ing to fuse reviews into single item embeddings. Experimental results
show that Late Fusion contrastive learning for Neural RIR outperforms
all other contrastive IR configurations, Neural IR, and sparse retrieval
baselines, thus demonstrating the power of exploiting the two-level struc-
ture in Neural RIR approaches as well as the importance of preserving
the nuance of individual review content via Late Fusion methods.

Keywords: Neural Information Retrieval · Natural Language Process-
ing · Contrastive Learning · Language Models
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Fig. 1. Structural difference between IR (left) and RIR (right). In RIR, items have
reviews covering different aspects. In contrast, documents in the IR task do not have
this two-level item-review structure.

1 Introduction

The rise of expressive natural language interfaces coupled with the prevalence
of user-generated review content provide novel opportunities for query-based
retrieval of reviewed items. While Neural Information Retrieval (IR) methods
have provided state-of-the-art results for query-based document retrieval [16],
these methods do not directly extend to review-based data that provides a unique
two-level structure in which an item has several reviews along with ratings and
other meta-data. Due to differences between standard IR document retrieval [21]
and the task of retrieving reviewed-items indirectly through their reviews, we
coin the term Reviewed-Item Retrieval (RIR) for this task. Figure 1 illustrates
the structural difference between IR and RIR. In RIR, each item includes a set
of reviews and each review expresses different perspectives about that item.

Unlike standard Neural IR, which produces query-document scores for doc-
ument ranking, RIR requires query-item scores to be obtained indirectly using
review text. This can be done both via Late Fusion (LF) methods that simply
aggregate query-review scores into item scores or Early Fusion (EF) methods
that build an item representation for direct query-item scoring. Given the ab-
sence of labeled data for RIR, we explore self-supervised contrastive learning
methods for Neural RIR that exploit the two-level structure of the data in both
the LF and EF frameworks with the following contributions:

1. For LF, we propose different positive and negative sampling methods that
exploit the two-level structure of RIR data as well as data augmentation
methods for contrastive fine-tuning of a BERT [4] Language Model (LM).

2. For EF, we propose end-to-end contrastive learning of item embeddings to
fuse reviews of each item into a single embedding vector.

3. We experimentally show that LF-based Neural RIR methods outperform EF
and other contrastive IR methods, Neural IR, and sparse retrieval baselines.



Self-Supervised Contrastive BERT Fine-tuning for Fusion-based RIR 3

Overall, these results demonstrate the power of exploiting the two-level struc-
ture in Neural RIR approaches. By showing the superiority of LF over EF, we
also demonstrate the benefit of aggregating scores for individual reviews after
similarity with a query is computed, thus preserving the nuances of each review
during scoring. Ultimately, this work develops a foundation for the application
and extension of Neural IR techniques to RIR.

2 Background

2.1 IR

Given a set of documents D and a query q ∈ Q, an IR task IR⟨D, q⟩ is to assign
a similarity score Sq,d ∈ R between the query and each document d ∈ D and
return a list of top-scoring documents.

Before the advent of Neural IR methods, most methods depended on sparse
models such as TF-IDF [20] and its variants such as BM25 [19], which heavily
relied on exact term matches and measures of term informativeness. However,
the need for exact term matches, the availability of large datasets, and increases
in computational power led to a shift from traditional models to deep neural
networks for document ranking [8, 10]. Recently, Nogueira and Cho [18] have
initiated a line of research on Neural IR by fine-tuning BERT [4] for ranking
candidate documents with respect to queries.

Recent works have substantially extended BERT-based Neural IR methods.
CoCondenser [6] is a resource-efficient model with excellent performance on the
MS-MARCO benchmark [17]. This model is based on Condenser [5], which al-
ters the BERT architecture to emphasize more attention to the classification
embedding (i.e., the so-called “[CLS]” output of BERT). Contriever [12] is a
state-of-the-art self-supervised contrastive Neural IR method that does not rely
on query-document annotations to train.

Although our work on Neural RIR is influenced by Neural IR, the structure
of IR and RIR differ as illustrated by Figure 1. This requires methods specifically
for working with the two-level structure of data in both training and inference
in the RIR task. To the best of our knowledge, these methods have not been
explored in the literature.

2.2 Fusion

Information retrieval from two-level data structures has previously been studied
by Zhang and Balog [27], though they did not study neural techniques, which are
the focus of our work. Specifically, Zhang and Balog define the object retrieval
problem, where (high-level) objects are described by multiple (low-level) docu-
ments and the task is to retrieve objects given a query. This task requires fusing
information from the document level to the object level, which can be done
before query scoring, called Early Fusion, or after query scoring, called Late
Fusion. Our contributions include extending Early and Late Fusion methods to
self-supervised contrastive Neural IR.
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Formally, let i ∈ I be an object described by a set of documents Di ⊂ D
and let ri,k denote the k’th document describing object i. Given a query q ∈ Q,
fusion is used to aggregate document information to the object level and obtain
a query-object similarity score Sq,i ∈ R.

Late Fusion In Late Fusion, similarity scores are computed between documents
and a query and then aggregated into a query-object score. Given an embedding
space Rm, let g : D∪Q → Rm map ri,k and q to their embeddings g(ri,k) = ri,k
and g(q) = q, respectively. Given a similarity function f(·, ·) : Rm ×Rm → R, a
query-document score Sq,ri,k for document ri,k is computed as

Sq,ri,k = f(q, ri,k) (1)

To aggregate such scores into a similarity score for object i, the top-K query-
document scores for that object are averaged:

Sq,i =
1

K

K∑
j=1

Sq,ri,j (2)

where Sq,ri,j is the j’th top query-document score for object i. The Late Fusion
process is illustrated on the left side of Figure 2.

Previously, Bursztyn et al. [3] introduced a method (one of our baselines)
which can be interpreted as neural late fusion with K = 1, in which query and
document embeddings are obtained from an LM fine-tuned using conventional
Neural IR techniques. In contrast, we develop neural late fusion methods where
K ̸= 1 and introduce novel contrastive LM fine-tuning techniques for neural
fusion.

Early Fusion In Early Fusion, document information is aggregated to the
object level before query scoring takes place. Various aggregation approaches
are possible and we discuss the details of our proposed methods in Section 3.2;
however, the purpose of aggregation is to produce an object embedding i ∈ Rm.
Query-item similarity is then computed directly as

Sq,i = f(q, i) (3)

The Early Fusion process is illustrated on the right side of Figure 2.
Interestingly, related work [22, 25] which uses hierarchical neural networks to

classify hierarchical textual structures can be interpreted as Supervised Early Fu-
sion, since the hierarchical networks learn to aggregate low-level text information
into high-level representations. In contrast to these works, we study retrieval, use
self-supervised contrastive learning, and explore both Early and Late Fusion.

2.3 Contrastive Representation Learning

To generate embeddings, our methods rely on contrastive representation learn-
ing. Given data samples x ∈ X where each x is associated with a label, the goal
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Fig. 2. (Left) Late Fusion demonstrates how embedding of queries and reviews are used
to get a similarity score with Equation (1) and how items are ranked according to the
query-item score. (Right) Early Fusion demonstrates how reviews are fused together
to build a vector representation for comparing the item with the query.

of contrastive learning is to train an embedding function g : X → Rm which
maximizes the similarity between two embeddings f(g(xa), g(xb)) = f(xa,xb) if
xa and xb are associated with the same label, and minimizes this similarity if
xa and xb are associated with different labels. During training, these similarities
are evaluated between some anchor xA ∈ X , positive samples x+ ∈ X associated
with the same label as xA, and negative samples x− ∈ X associated with different
labels than xA. Specifically, given a tuple of N +1 inputs (xA, x+, x−

1 , ..., x
−
N−1),

a similarity function f , and an embedding function g, the N-pair loss [23] is
defined as:

Lg
con(x

A, x+, {x−
i }

N−1
i=1 ) = −log

ef(g(x
A),g(x+))

ef(g(xA),g(x+)) +
∑N−1

i=1 ef(g(x
A),g(x−

i ))
(4)

This equation is equivalent to the softmax loss for multi-class classification of N
classes. Letting s = (xA, x+, {x−

i }
N−1
i=1 ) denote a sample tuple and S be the set

of samples used for training, the objective of contrastive learning is:

min
g

Lg(S) = min
g

∑
s∈S

Lg
con(s) (5)

Sampling Methods for Neural IR For contrastive learning to be used for
Neural IR, a set of samples S must be created from the documents. We focus on
two sampling methods for this task as baselines. The Inverse Cloze Task (ICT)
[12] uses two mutually exclusive spans of a document as a positive pair (xA, x+)
and spans from other documents as negative samples. Independent Cropping
(IC) [6, 12] takes two random spans of a document as a positive pair and spans
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from other documents as negative samples. Another sampling approach used in
ANCE [24] relies on query similarity to dynamically identify additional negative
samples, but we do not compare to this approach since we do not have access to
queries in our self-supervised learning setting.

In-Batch Negative Sampling Equation (5) is often optimized using mini-
batch gradient descent with in-batch negative sampling [7, 9, 13, 26]. Each mini-
batch contains N anchors and N corresponding positive samples. The j’th sam-
ple tuple sj consists of an anchor xA

j , a positive sample x+
j , and, to improve

computational efficiency, the positive samples of other tuples sj′,j′ ̸=j are used
as negative samples for tuple sj . That is, the set of negative samples for sj is
{x+

j′}Nj′=1,j′ ̸=j .

3 Proposed Fusion-based Methods for RIR

We now define the Reviewed-Item Retrieval problem as a specific and highly
applicable case of object retrieval (Section 2.2). We then demonstrate how the
two-level structure of reviewed-item data can be exploited by our novel con-
trastive fine-tuning methods for late and early fusion. In the Reviewed-Item
Retrieval problem RIR⟨I,D, q⟩, we are given a set of n items I where each
item i ∈ I is described by a set of reviews Di ⊂ D, and where the k’th review of
item i is denoted by ri,k. A review ri,k can only describe one item i, and this re-
quirement makes RIR a special case of object retrieval since, in object-retrieval,
a document can be associated with more than one object. Given a query q ∈ Q,
the goal is to rank the items based on the Sq,i score for each item-query pair
(q, i).

3.1 CLFR: Contrastive Learning for Late Fusion RIR

We now present our novel contrastive fine-tuning method for late fusion, in
which review nuance is preserved during query scoring. In Contrastive Learning
for Late Fusion RIR (CLFR), we fine-tune a language model g (the embedding
function) using the contrastive loss function in Equation (5) to produce embed-
dings of queries and reviews. The similarities of query and review embeddings
are then evaluated using the dot product and aggregated into query-item scores
by Equation (2).

As opposed to single-level Neural IR contrastive sampling, RIR enables us to
use the item-review structure in our sampling methods. Specifically, a positive
pair (xA, x+) is constructed from two reviews of the same item, while negative
samples {x−

i }
N−1
i=1 are obtained from reviews of different items. We explore sev-

eral variations of sampling, including the use of item ratings, item keywords, and
review embedding similarity, described below. While most of our methods use
full reviews as samples, we also experiment with the use of review sub-spans for
anchors; the goal of these variants is to reduce the discrepancy between anchor
length and query length, since queries are typically much shorter than reviews.
To keep training balanced, the same number of samples is used for all items.
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Fig. 3. The objective of contrastive fine-tuning is to fine-tune the LM so that positive
sample embeddings are closer to the anchor while negative sample embeddings are
further from the anchor. Hard positive and hard negative samples are selected based
on their distance to the anchor. A hard positive sample (e.g., the green filled circle) is a
review from the same item which is furthest from the anchor. A hard negative sample
(e.g., the red filled diamond) is the closest review to the anchor but from a different
item.

Positive Sampling methods

I. Same Item (SI): We want two reviews from the same item to be close to
each other in the embedding space. Therefore, if we have a review from item i
as an anchor xA, the positive sample is a different review from item i, x+ ∈ Di,
sampled randomly unless otherwise mentioned.

II. Same Item, Same Rating (SI, SR): Building on SI, we further filter the
positive pair reviews from the same item to have the same user rating as well.
The motivation for this method is that reviews with the same rating are from
people that had the same level of satisfaction from their experience. They are
likely expressing a different aspect of their experience or a different phrasing
of the same experience. This may be helpful for better embeddings of reviews
according not only to language similarity but also user experience similarity.

III. Least Similar, Same Item (LS, SI): Choosing a set of the hardest posi-
tive samples for the model to train on may help to further boost the performance.
For the positive samples, we choose the samples that are from the same item
and are furthest away from anchor in the BERT embedding space. Figure 3 (cf.
green rings) shows this sampling method.

IV. Least Similar, Same Item, Same Rating (LS, SI, SR): The reviews
least similar to the anchor but from the same item and with the same rating are
chosen as positive samples. This is a union of the previous methods.
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Negative Sampling methods

I. In-Batch (IB): We use the In-Batch negative sampling method as explained
in Section 2.3 for efficiency purposes. Since each anchor and positive sample pair
in the mini-batch is from a different item, this ensures In-Batch negative samples
for each anchor are from a different item than the anchor.

II. In-Batch + Hard Negatives (IB + HN): In addition to the In-Batch
negatives, we use the review that is most similar to the anchor xA — but from
a different item — as a hard negative sample. We use dot product similarity to
find the most similar review to each anchor in the (BERT) embedding space,
as illustrated in Figure 3, and hard negatives are cached from the fine-tuning
procedure. By adding the hard negatives to the In-Batch negatives we aim to
make the model more robust.

Data Augmentation

We propose two data augmentation methods for RIR. Our first method exploits
the meta-data tags that each item has, and our second method aims to mitigate
the gap between self-supervised training and inference by shortening the anchor
text.

I. Prepending meta-data (PPMD): Many item-review structures contain
meta-data alongside textual and structural information. In our inference dataset,
the items are restaurants that have categorical labels such as “Pizza, Salad,
Fast Food” and usually include the cuisine type such as “Mediterranean, Middle
Eastern”. In order to use this meta-data without changing the model architecture,
we prepend this data in text format to the review text during inference. This
augmentation is done with the goal of better working with queries referring to
categories and cuisine types.

II. Anchor sub-sampling: User queries are usually shorter than reviews. Thus,
instead of taking a review as an anchor (which are the pseudo queries during
the self-supervised fine-tuning), we take a shorter span from the review as the
anchor in what we call sub-sampling anchor to a span (SASP). In an alternative
method, we take a single sentence from the review as the anchor, and call this
sub-sampling anchor to a sentence (SASN). For both cases, the span or sentence
is chosen randomly, and we still use full reviews as positive and negative samples.

3.2 CEFR: Contrastive Learning for Early Fusion RIR

We now present our contrastive learning approaches for Early Fusion, in which
item embeddings are learned before query-scoring. In Early Fusion, the query-
item score Sq,i is computed by Equation (3) once we have an embedding i for
each item i. A naive approach for obtaining the item embedding is to take the
average of the review embeddings ri,k’s of item i. We call this naive approach
Average EF.
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We also introduce a new method which we call Contrastive Learning for Early
Fusion RIR (CEFR), where we use contrastive learning to simultaneously fine-
tune g and learn an item embedding i in an end-to-end style. In particular, we
let i be a learnable vector which we use instead of an anchor embedding g(xA)
and initialize i with the naive item embedding obtained from Average EF. For
a tuple (i, x+, {x−

j }
N−1
j=1 ), the loss given by Equation (4) thus becomes

Lg
con(i, x

+, {x−
j }

N−1
j=1 ) = −log

ef(i,g(x
+))

ef(i,g(x+)) +
∑N−1

j=1 ef(i,g(x
−
j ))

(6)

Given a set of training samples S, with si = (i, x+, {x−
j }

N−1
j=1 ) representing the

sample tuple for item i, and denoting I as the set of learnable item embeddings,
the objective of contrastive learning in CEFR is

min
I,g

Lg(S) = min
I,g

N∑
i=1

Lg
con(si) (7)

Note that CEFR simultaneously learns item embeddings and fine-tunes the
language model g (the embedding function), which is intended to allow flexibility
in learning i. For each item i, the positive sample x+

i ∈ Di is a review from item
i, and the negative samples are obtained via In-Batch negative sampling.

4 Experiments

4.1 Reviewed-Item Retrieval Dataset (RIRD)

To address the lack of existing RIR datasets, we curated the Reviewed-Item
Retrieval Dataset (RIRD)1 to support our analysis. We used reviews related to
50 popular restaurants in Toronto, Canada obtained from the Yelp dataset.2 We
selected restaurants with a minimum average rating of 3 and at least 400 reviews
that were not franchises (e.g., McDonalds) since we presume franchises are well-
known and do not need recommendations. We created 20 queries for 5 different
conceptual categories highlighted in Table 1 (with examples). These 5 groups
capture various types of natural language preference statements that occur in
this task. We then had a group of annotators assess the binary relevance of each
of these 100 queries to the 50 restaurants in our candidate set. Each review was
labeled by 5 annotators and the annotations showed a kappa agreement score of
0.528, demonstrating moderate agreement according to Landis and Koch [15],
which is expected given the subjectivity of the queries in this task [1]. There is
a total number of 29k reviews in this dataset.

1 RIRD: https://github.com/D3Mlab/rir_data
2 Yelp Dataset: https://www.yelp.com/dataset

https://github.com/D3Mlab/rir_data
 https://www.yelp.com/dataset
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Table 1. Categories of queries and their examples

Query category Example
Indirect queries I am on a budget.
Queries with negation Not Sushi but Asian.
General queries Nice place with nice drinks.
Detailed queries A good cafe for a date that has live music
Contradictory queries A fancy, but affordable place.

4.2 Experimental Setup

All experiments for fine-tuning models and obtaining semantic representations
for reviews and queries were done with 8 Google TPUs. Each fine-tuning exper-
iment took between 5-7 hours depending on the experimental setup. We use an
Adam optimizer [14] with a learning rate of 10−5 and use a validation set of 20%
of reviews for hyperparameter tuning. Each experiment was repeated 5 times
with 5 different seeds to mitigate possible noise in dataset. We use a batch size
of N = 48, and add one hard negative per tuple if hard negatives are used. The
similarity function f is the dot product. For the choice of LM, we use uncased
base BERT [11], and we select K ∈ {1, 10, |Dj |} for Equation 2.2, where |Di| is
the number of reviews for item i. Our code for reproducing all results is publicly
available.3

4.3 Baselines

Traditional IR: We use TF-IDF and BM25 with LF as baselines. First, all
query-review scores are computed by TF-IDF and BM25 (b = 0.75, k1 = 1.6)
ranking functions. These scores are then fused in the same manner as in Section
2.2, where query-review level information is aggregated to the query-item level
using Equation (2). Stopword removal and Lemmatization were also applied for
these models using NLTK [2].

Masked Language Modeling (MLM): Masked Language Modeling (MLM)
is a primary self-supervised fine-tuning objective for many LMs such as BERT [4].
We use off-the-shelf BERT as a baseline and also fine-tune it with an MLM
objective on our review data as another baseline. We train for 100 epochs with
early stopping and a learning rate of 10−5.

Neural IR models: In order to compare state-of-the-art Neural IR models
with our proposed models in the self-supervised regime, we use the following
contrastively trained Neural IR language models: Contriever [12], Condenser [5]

3 Code: https://github.com/D3Mlab/rir

https://github.com/D3Mlab/rir
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and CoCondenser [6]. We use publicly released pre-trained models for these base-
lines. Since only one model is available, confidence intervals are not applicable.

IR-based contrastive: We use contrastive learning with self-supervised IR,
explained in Section 2.3, to fine-tune the LM as a baseline. The positive samples
are created by ICT and IC from a single review, and In-Batch negative sampling
is used. Since these methods are agnostic to the item associated with a review,
as long as a review is not used for the positive pair, negative samples could
come from reviews of the same item or reviews of different items. We use these
baselines to examine the importance of using the two-level item-review structure
in addition to the review text in our contrastive learning methods for RIR, since
IR-based contrastive learning (ICT, IC) does not leverage that structure.

4.4 Evaluation Metrics

We use Mean R-Precision (R-Prec) and Mean Average Precision (MAP) with
90% confidence intervals to evaluate the performance of RIR in our experiments.
We note that R-Precision is regarded as a stable measure for averaging when
the number of relevant items varies widely per query.

4.5 Results and Discussion

This section studies four Research Questions (RQ) and discusses our experimen-
tal results for each. Specifically, we compare the effects of various sampling and
data augmentation methods, evaluate Late Fusion against Early Fusion, and
examine how our proposed methods compare to baselines.

RQ1: Which sampling method from Section 3.1 gives the best per-
formance for LM fine-tuning for LF? The choice of sampling method for
contrastive fine-tuning has an important effect on retrieval performance, but
must be analysed jointly with the effect of K. In Table 2, we explore all the
sampling options outlined in Section 3.1 with our base CLFR method using
Same Item (SI) and In-Batch Negatives (IB) sampling. Regardless of K, there is
no significant improvement from using Same Item (SI) Same Rating (SR) sam-
pling over Same Item (SI) sampling. However, adding Least Similar (LS) to the
base CLFR and having Same Rating (SR) provides an absolute and significant
improvement of 0.028 and 0.036 for K = 1 and K = |Dj | in R-Prec but no sig-
nificant improvement for K = 10. Adding hard negative samples fails to provide
significant improvement regardless of the positive sampling method.

RQ2: What is the impact of data augmentation methods from Sec-
tion 3.1 for LM fine-tuning in LF setting? The results in Table 2 show
that prepending meta-data (i.e., cuisine type) to review text gives no significant
improvement. We see that sub-sampling the anchors, by span or by sentence,
achieves the best performance. On average, SASP and SASN improve R-Prec
on the base CLFR method by a significant amount for every K. This shows
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that being robust to the length of the anchor through sub-sampling plays a cru-
cial role for contrastive learning in Neural RIR. Due to space limitations, full
comparative evaluation results are made available in Appendix A.

RQ3: Does Early Fusion or Late Fusion work better for RIR? Table 3
shows the performance of our Early and Late Fusion methods. We can see that
our Late Fusion methods outperform Early Fusion significantly. We conjecture
that since Early Fusion fuses all of an item’s reviews into a single embedding
vector, it may lose the nuance of individual review expressions or differences that
averaged out in the Early Fusion process. In contrast, Late Fusion preserves the
nuances of individual reviews until query-scoring.

Table 2. Results for exploring different techniques for CLFR with 90% confidence
intervals. Positive and negative sampling methods are explained in Section 3.1. All
rows have the base Same Item (SI) positive and In-Batch (IB) negative sampling.
Additional sampling methods are specified in the first two columns.

Sampling K=1 K=10 K=|Dj | (Avg)
Pos. Neg. R-Prec MAP R-Prec MAP R-Prec MAP

- - 0.497±0.010 0.569±0.021 0.514±0.011 0.587±0.013 0.495±0.017 0.575±0.018
SR - 0.499±0.016 0.563±0.022 0.509±0.011 0.583±0.010 0.501±0.029 0.572±0.030
LS - 0.513±0.014 0.589±0.018 0.500±0.014 0.584±0.015 0.487±0.008 0.569±0.013

SR, LS - 0.525±0.004 0.596±0.014 0.515±0.013 0.590±0.016 0.531±0.006 0.607±0.014
- HN 0.511±0.012 0.589±0.011 0.512±0.016 0.590±0.012 0.516±0.014 0.589±0.018

SR, LS HN 0.504±0.015 0.571±0.006 0.516±0.016 0.594±0.012 0.517±0.012 0.596±0.013
PPMD - 0.506±0.004 0.576±0.012 0.503±0.007 0.579±0.010 0.507±0.010 0.573±0.009
SASP - 0.523±0.013 0.595±0.016 0.531±0.006 0.611±0.005 0.525±0.008 0.599±0.013
SASN - 0.532±0.019 0.609±0.020 0.545±0.009 0.626±0.009 0.530±0.012 0.610±0.011

Table 3. Comparing our non-contrastive and contrastive Early Fusion (EF) methods
with our base and best Late Fusion (LF) methods. Average EF takes an average BERT
embedding of reviews as the item embedding. Base LF is CLFR with Same Item and In-
Batch negatives. Best LF is CLFR with Same item and SASN and In-Batch negatives.
We can see the noticeable improvement of using LF over EF. We conjecture this is due
to the preservation of nuance in individual reviews during query scoring.

EF Model R-Prec MAP
Average 0.297 0.364
CEFR 0.438±0.003 0.519±0.003

K=1 K=10 K=|Dj | (Avg)
LF Model R-Prec MAP R-Prec MAP R-Prec MAP
Base LF 0.497±0.010 0.569±0.021 0.514±0.011 0.587±0.013 0.495±0.017 0.575±0.018
Best LF 0.532±0.019 0.609±0.020 0.545±0.009 0.626±0.009 0.530±0.012 0.610±0.011

RQ4: How effective is our (best) method of using the structure of
the review data for Late Fusion in RIR (CLFR) compared to existing
baselines? Table 4 compares the performance of state-of-the-art unsupervised
IR methods with our best contrastive fine-tuning method for RIR. The out-
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Table 4. CLFR (our best model) results on RIRD dataset versus baselines from section
4.3. IR-based methods (Section 2.3) and CLFR use In-Batch negatives (IB), and CLFR
uses Same Item (SI) positive samples and SASN augmentation (Section 3.1).

K=1 K=10 K=|Dj | (Avg)
Model R-Prec MAP R-Prec MAP R-Prec MAP
TF-IDF 0.345 0.406 0.378 0.442 0.425 0.489
BM25 0.393 0.450 0.417 0.490 0.421 0.495
BERT 0.295 0.343 0.296 0.360 0.297 0.364
MLM 0.289 0.347 0.303 0.366 0.298 0.353
Condenser 0.358 0.410 0.390 0.449 0.378 0.428
CoCondenser 0.445 0.505 0.481 0.553 0.482 0.570
Contriever 0.375 0.427 0.418 0.482 0.458 0.519
IR-based, IRC 0.355±0.024 0.422±0.033 0.355 ± 0.022 0.424±0.028 0.398±0.031 0.464±0.026
IR-based, ICT 0.331±0.011 0.395±0.016 0.339±0.023 0.405±0.025 0.328±0.009 0.384±0.014
CLFR 0.532±0.019 0.609±0.020 0.545±0.009 0.626±0.009 0.530±0.012 0.610±0.011

of-domain Neural IR pre-trained language models CoCondenser and Contriever
perform noticeably better than base BERT, with CoCondenser performing the
best among them. The traditional sparse retrieval models (TF-IDF and BM25)
both outperform non-fine-tuned BERT, which emphasizes the importance of
fine-tuning BERT for the downstream task of RIR. We also see that the self-
supervised contrastive fine-tuning methods for IR (ICT and IRC) outperform
non-fine-tuned BERT, but fall far behind the CoCondenser model. MLM fine-
tuning of BERT also does not improve the performance of RIR, which is expected
since it neither utilizes the structure of the data nor does this training objective
directly support IR or RIR tasks. In contrast, by using the item-review data
structure, our best method (CLFR with Same Item, SASN, and In-Batch Nega-
tives) outperforms all contrastive IR, Neural IR, and sparse retrieval baselines.

5 Conclusion

In this paper, we proposed and explored novel self-supervised contrastive learn-
ing methods for both Late Fusion and Early Fusion methods that exploit the
two-level item-review structure of RIR. We empirically observed that Same Item
(SI) positive sampling and In-Batch negative sampling with sub-sampling an-
chor reviews to a sentence for Late Fusion achieved the best performance. This
model significantly outperformed state-of-the-art Neural IR models, showing the
importance of using the structure of item-review data for the RIR task. We also
showed Late Fusion outperforms Early Fusion, which we hypothesize is due to
the preservation of review nuance during query-scoring. Most importantly, this
work opens new frontiers for the extension of self-supervised contrastive Neural-
IR techniques to leverage multi-level textual structures for retrieval tasks.
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A Appendix

Table 5 extends the experiments shown in table 2 by combining more settings
for contrastive learning. SASN augmentation still shows the best performance
of K = 1, 10 and it performs best for K=|Dj | (Avg) while being combined with
SR and LS.

Table 5. Results for exploring different techniques for CLFR with 90% confidence
intervals. Positive and negative sampling methods are explained in Section 3.1. All
rows have the base Same Item (SI) positive and In-Batch (IB) negative sampling.
Additional sampling methods are specified in the first two columns.

Sampling K=1 K=10 K=|Dj | (Avg)
Pos. Neg. R-Prec MAP R-Prec MAP R-Prec MAP

- - 0.497±0.010 0.569±0.021 0.514±0.011 0.587±0.013 0.495±0.017 0.575±0.018
SR - 0.499±0.016 0.563±0.022 0.509±0.011 0.583±0.010 0.501±0.029 0.572±0.030
LS - 0.513±0.014 0.589±0.018 0.500±0.014 0.584±0.015 0.487±0.008 0.569±0.013

SR, LS - 0.525±0.004 0.596±0.014 0.515±0.013 0.590±0.016 0.531±0.006 0.607±0.014
SI HN 0.511±0.012 0.589±0.011 0.512±0.016 0.590±0.012 0.516±0.014 0.589±0.018

SR, LS HN 0.504±0.015 0.571±0.006 0.516±0.016 0.594±0.012 0.517±0.012 0.596±0.013
PPMD - 0.506±0.004 0.576±0.012 0.503±0.007 0.579±0.010 0.507±0.010 0.573±0.009

SI, SASP - 0.523±0.013 0.595±0.016 0.531±0.006 0.611±0.005 0.525±0.008 0.599±0.013
SASN - 0.532±0.019 0.609±0.020 0.545±0.009 0.626±0.009 0.530±0.012 0.610±0.011
SR HN 0.501±0.007 0.575±0.014 0.515±0.009 0.594±0.013 0.507±0.021 0.583±0.018
LS HN 0.513±0.016 0.588±0.014 0.509±0.021 0.586±0.019 0.500±0.029 0.576±0.024

SR, LS, SASP - 0.520±0.016 0.599±0.012 0.523±0.013 0.608±0.015 0.521±0.010 0.590±0.005
SR, LS, SASN - 0.528±0.013 0.603±0.012 0.536±0.012 0.614±0.015 0.538±0.011 0.613±0.016
SR, LS, PPMD - 0.523±0.007 0.594±0.006 0.513±0.012 0.585±0.011 0.520±0.011 0.591±0.011
SR, LS, SASP HN 0.521±0.006 0.595±0.012 0.513±0.020 0.589±0.015 0.520±0.010 0.595±0.013
SR, LS, SASN HN 0.527±0.010 0.598±0.007 0.521±0.009 0.596±0.010 0.522±0.016 0.594±0.013
SR, LS, PPMD HN 0.513±0.012 0.584±0.009 0.514±0.011 0.586±0.003 0.513±0.015 0.584±0.009

SASP HN 0.514±0.011 0.591±0.010 0.521±0.018 0.594±0.017 0.528±0.013 0.604±0.008
SASN HN 0.506±0.015 0.589±0.014 0.520±0.014 0.600±0.016 0.519±0.017 0.598±0.019
PPMD HN 0.501±0.007 0.578±0.004 0.502±0.007 0.575±0.006 0.501±0.015 0.576±0.008
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