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Abstract. Clusterwise Regression (CLR) methods that jointly optimize
clustering and regression tasks are useful for partitioning data into dis-
joint subsets with distinct regression trends. Due to the inherent diffi-
culty in simultaneously optimizing clustering and regression objectives,
it is not surprising that existing optimal CLR approaches do not scale
beyond 100s of data points. In an effort to provide more scalable and op-
timal CLR methods, we propose a novel formulation of the problem that
takes inspiration from ε-tubes in Support Vector Regression (SVR). The
advantage of this novel formulation, which aims to assign data points
to clusters in order to minimize the largest ε-tube that encapsulates the
regressed data, is that it admits an optimal MILP formulation. Further-
more, given that each constraint in our formulation corresponds to a
single data point, we propose an efficient row generation solution that
can optimally converge for the full dataset while only requiring optimiza-
tion over a subset of the data. Our results on a variety of synthetic and
benchmark real datasets show that our Clusterwise Regression MILP
formulation provides near-optimal solutions up to 100,000 data points
and the smallest data-encapsulating ε-tubes among CLR alternatives.

Keywords: Clusterwise Regression · Row Generation · Mixed-integer
linear programming.

1 Introduction

Clusterwise Regression (CLR) is a fundamental task in Machine Learning that
jointly optimizes for clustering and regression tasks, where the data is partitioned
into several clusters, each group fit by a regression plane, such that the overall
regression error is minimized. CLR models find applications in a plethora of fields
such as social science [17], marketing analysis [9], and climate modeling [1].

Traditionally, CLR models entailed jointly optimizing for clustering with the
squared error objective for regression, as proposed in seminal work on CLR [20].
Existing greedy algorithms for CLR are sensitive to initialization and provide
only locally optimal results, thus limiting clustering quality and reproducibility.
Moreover, the classical CLR model [20] was recently shown to be NP-hard [18]
and considered a very difficult problem to solve [14]. Thus, optimally solving for
100s of data observations is challenging [4, 7, 5, 6], even with synthetic examples.
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Fig. 1: We show the ε-tube CLR solution (right) with an illustrative example.
Additionally, we demonstrate our row generation algorithm, where we start (left)
with an initial set of points (denoted with ×) and run two iterations adding 3
constraints per iteration denoted with + that are the farthest from the regression
lines until we reach the optimal result in the third iteration. We observe that
convergence to the optimal solution does not require ε to monotonically decrease.

In this work, we propose a novel approach to CLR that is inspired by the ε-
tubes (or margins) that correspond to absolute values of the regression residuals
in Support Vector Regression (SVR) [22, 12]. In this formulation, we minimize
the largest ε-tube across all clusters that encapsulates the regressed data. Such a
formulation is inherently insensitive to cluster size imbalance since we only mea-
sure the worst-case residual. In addition, a core computational advantage of this
formulation is that it can be expressed and optimally solved as a Mixed Integer
Linear Program (MILP) that supports an efficient row (constraint) generation
strategy. We illustrate this iterative row generation process in Fig 1 demon-
strating the evolution of data point (re)assignments to three clusters and their
corresponding shaded ε-tube at each iteration until optimality. It is important to
note that this solution only generated the most-violated constraints for all data
points (most often near the ε-tube boundaries, by definition) since the remaining
data lie within tube boundaries and automatically satisfy the optimality criteria.

Leveraging our novel MILP formulation and row generation solution can thus
solve ε-tube CLR using a subset of the data (while guaranteeing optimality w.r.t.
all data), hence providing near-optimal results for up to 100,000 data points in
comparison to other CLR formulations and solutions that cannot scale optimally
beyond 100s of data points. We provide experiments on a variety of synthetic
datasets (varying number of data points, dimensionality, clusters, and cluster im-
balance) and 10 benchmark real datasets to demonstrate our algorithm’s ability
to reach the smallest ε-tube clusters when compared with several baselines.

2 Related Work

Several greedy algorithms have been proposed to solve the classical CLR prob-
lem, including exchange algorithms proposed in the pioneering works of Späth [20,
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21], simulated annealing in [10], mathematical programming-based heuristics [3,
2, 13], and an Expectation-Maximization [8] type methodology in a recent work
called k-plane clustering [16], which is analogous to the k-means algorithm [15].
In contrast, exact approaches involve the use of mixed-integer optimization [4,
14, 7], repetitive branch-and-bound methods [5], and column generation ap-
proaches [6, 18]. However, these algorithms only scale up to 100s of observations
in low dimensions, even with synthetic datasets and typically less than 5 clus-
ters. Moreover, numerous alternatives for the L2 regression loss of CLR have
been presented, like the more robust L1 loss [4, 19, 2]. More recently, SVR for
regression was used for the CLR problem [13]; however, the key difference with
our approach is that we directly minimize the ε-tubes while they solve for pure
SVRs in each cluster (by minimizing the slacks) with ε being a hyperparameter;
further, they do not provide any optimality guarantees.

3 Optimal CLR with ε-tube Objective

3.1 Reduction of ε-tube CLR to a MILP

Our ε-tube objective for CLR minimizes the maximum regression residual for
every point across all the clusters. More formally, consider that we have n
observations (xi, yi) with d features in the dataset (X, y) ∈ Rn×(d+1) where
i ∈ N = {1, ..., n}. The main goal in CLR is to find one regression plane for
each of the k clusters (Cj), where the regression coefficients for the jth cluster
are represented by weights wj ∈ Rd and bias bj ∈ R for j ∈ K = {1, ..., k}. We
will use w and b without cluster indices to refer to the collection of k regression
plane parameters. Each data point is assigned to exactly one cluster, similar to a
hard-partitioning setting in unsupervised clustering. We introduce binary vari-
ables cij that denote whether point i is assigned to cluster Cj (cij = 1) or not
(cij = 0), thus enabling us to formulate a min-max mixed integer optimization
problem. Using this notation, we define our first key novel contribution of
the ε-tube CLR objective:

min
w,b,c

max
j∈K

max
i∈N

|yi −w⊺
jxi − bj | · cij (1)

Here, we first observe that we can further reduce this ε-tube CLR objective to
a bi-level optimization problem with the introduction of a new variable ε, which
takes the value of the maximum residual from all points across the k regression
planes (through the first constraint in (2)).

min
w,b,c

ε

s.t. ε = max
j∈K

max
i∈N

|yi −w⊺
jxi − bj | · cij

k∑
j=1

cij = 1, i ∈ N ; wj,1 < wj+1,1, j ∈ K\{k};

wj ∈ Rd, bj ∈ R, j ∈ K; cij ∈ {0, 1}, i ∈ N, j ∈ K;

(2)
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In this bi-level problem, indicator variables cij ensure we only capture residu-
als for the regression plane (cluster) a point is assigned to. Moreover, constraints∑k

j=1 cij = 1 guarantee every point in the dataset is assigned to exactly one clus-
ter. We also add symmetry-breaking constraints of the form wj,1 < wj+1,1 that
enforce the first dimension of the regression coefficients across clusters to be
in increasing order. This guarantees that we choose exactly one solution out of
the k! possible permutations with the same optimal value. A key observation
is that we can remove both max’s from the first constraint and rewrite it to
ε ≥ |yi − w⊺

jxi − bj | · cij , i ∈ N, j ∈ K. While this constraint ensures that ε
takes a value greater than or equal to the max prediction error, the minimization
criteria in (2) enforces equality! Using this elegant transformation and indica-
tor constraints to encode the product of regression residual and cij yields our
second key novel contribution of ε-tube CLR formulated as a MILP:

min
w,b,c

ε

s.t. cij = 1 =⇒ ε ≥ |yi −w⊺
jxi − bj |, i ∈ N, j ∈ K

k∑
j=1

cij = 1, i ∈ N ; wj,1 < wj+1,1, j ∈ K\{k};

wj ∈ Rd, bj ∈ R, j ∈ K; cij ∈ {0, 1}, i ∈ N, j ∈ K;

(3)

3.2 Row Generation Methodology

The final pure-MILP formulation for our ε-tube objective in (3) allows for the use
of efficient branch-and-bound strategies through state-of-the-art MILP solvers.
However, the large number of binary variables and constraints may present a
challenge for MILP solvers. A possible solution would be to reduce the number
of variables and constraints of the model without affecting its correctness.

In problem (3), we observe that we minimize a single variable ε whose value
is governed through the n × k indicator constraints. If points that have large
residuals w.r.t. the regression coefficients for the optimal result can be known
a priori, the indicator constraints corresponding to the points that have much
smaller residuals can be neglected. Neglecting these observations will not change
the optimal value as ε is already larger than the residuals from these points.

This crucial insight can be leveraged in our third novel contribution of
an efficient row (constraint) generation MILP solution by starting with
a small subset of observations (with their associated variables and constraints) in
a reduced version of (3) we term main problem (MP). Given an optimal solution
to MP, we check whether it is optimal for the full problem (3). This check can be
performed through a sub-problem (SP) that identifies points that have residuals
larger than that of the current solution of the MP. In essence, the SP identifies
the most-violated constraints corresponding to the points with largest residuals
not yet included in the MP. These most-violated constraints can then be added
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to the MP. This procedure can be iteratively executed until the SP ensures that
all observations have residuals smaller than that of the current optimal solution.
In such a case, we have found an optimum for the full problem (3). Convergence
to optimality is guaranteed in finite time since in the (unlikely) worst case this
happens when we generate all rows (constraints) and recover the full problem (3).

Algorithm 1 Row generation

Input (xi, yi), k

1: ε∗ ← 0, ε̂←∞
2: I ̸= ∅, cons ̸= ∅, wj , bj ← Initialize

▷ Initial constraints cons for points I
3: ε∗,w∗

j , b
∗
j , c

∗
ij ← Solve MILP with

cons
4: ĉij ← {1j=ĵ |ĵ = argminj |yi−w∗⊺

j xi−
b∗j |}, ▷ Assign points i ∈ N

5: ε̂, I,cons← Add-Constraints()
6: if ε̂ > ε∗ then
7: go to line 3 ▷ Re-solve MILP

with augmented constraints set cons
8: end if
9: return ε∗,w∗

j , b
∗
j , ĉij ▷ Optimal

Algorithm 2 Add-Constraints

Input (xi, yi),w
∗
j , b

∗
j , ĉij ,cons, ε

∗

ε̂ = maxi∈N, j∈K{|yi −w∗⊺
j xi − b∗j | ·

ĉij}
▷ Check if ε∗ is the max residual
if ε̂ > ε∗ then

for j ∈ K do
Iadd ← {argmaxi|yi−w∗⊺

j xi−
b∗j | · ĉij} ▷ Find largest residual

I ← I ∪ Iadd
end for
cons ← cons ∪ {cij = 1 =⇒

ε ≥|yi −w⊺
jxi − bj |, i ∈ Iadd, j ∈ K}

end if
return ε̂, I,cons

We formalize the above row (or constraint) generation procedure through
Algorithms 1 and 2 that primarily perform the MP and SP tasks, respectively.
In Algorithm 1, we initialize our model with a small subset of observations in
I ⊂ N , and their corresponding variables cij and constraints in C. We solve
the MP with the reduced formulation of (3) using a MILP solver to obtain
the optimal value ε∗. The coefficients for the k regression planes are used to
assign a point i ∈ N to the cluster to which it has the lowest prediction error
(line 4 in Algorithm 1). This is a crucial step in our algorithm as we use the
cluster assignment information to then compute the maximum residual stored
in ε̂ (line 1 in Algorithm 2) for all points w.r.t. the coefficients obtained from the
MP. If ε̂ > ε∗, we are yet to reach the optimal solution. Hence, we identify the
most violating constraints (if one exists) for each of the k clusters through the
SP (line 7 in Algorithm 2) and add them to the MP. We stop iterating between
the MP and SP when ε̂ = ε∗, i.e., when no more points i ∈ N incur residuals
larger than the current objective, implying optimality w.r.t. all constraints.

4 Empirical Evaluation

We first study the properties of our ε-tube CLR objective and comparatively
evaluate our solution on synthetic and real datasets. We use a hyphenated
three-part naming convention: (1) clustering criteria (k-means or direct point-
to-cluster assignment), (2) regression loss (least squares, SVR, or ε-tube), and
(3) optimization method (independent, iterative, or MILP). We compare the
following methods: (i) km-ls-indep: k-means (km) followed by least-squares
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Fig. 2: # Constraints generated and solution time to 5% optimality gap for dir-
et-milp-rg with number of clusters k and dimensionality d vs. amount of data n
for the klr-data. # Constraints and time only increase marginally as n increases.

(ls) regression where the clustering and regression take place independently;
(ii) km-svr-indep: k-means followed by SVR [22]; (iii) km-et-indep: k-means
followed by optimizing our ε-tube objective; (iv) dir-ls-iter: k-planes [16] algo-
rithm with least squares regression where the clustering is directly (dir) assigned
by an iterative procedure (iter); (v) dir-et-iter: a novel k-means inspired ap-
proximate iterative algorithm to optimize for our ε-tube (et) objective — here we
iterate between (a) finding the best set of hyperplanes (compute wj , bj , j ∈ K)
per cluster given a cluster assignment for all points and (b) re-assigning points to
clusters (update cij) such that each point has the lowest prediction error when
assigned to that cluster; (vi) dir-et-milp: our novel full MILP from Eq (3);
(vii) dir-et-milp-rg: our novel full MILP with row generation (rg).

Across our experiments, similar to the approach followed in [16, 5, 6, 18], we
primarily focus on comparing the ε value, i.e., the maximum residual among
all clusters, since providing an optimal algorithm for the ε-tube objective is our
key contribution; we only include non-“et” methods for relative comparison with
other common CLR methods. All experiments were run on Google Colab in the
standard CPU setting (at 2.3 GHz and 32 GB memory) with Gurobi 9.5.2. All
code is available at https://github.com/Aravinthck/CLR-epsTube.

4.1 Synthetic Dataset Experiments

Scalability Our dir-et-milp-rg algorithm depends on solving a MILP at every
iteration, which leads us to ask how well it scales vs. the dimensionality, number
of clusters, and amount of data. To this end, we evaluate the scalability of
dir-et-milp-rg when the ground truth clusters are recovered by constructing
synthetic datasets (called klr-data) similar in spirit to [5, 6, 16] where we choose
k ∈ {2, 3, 5} regression parameters uniformly at random with d ∈ {1, 2, 5, 8}
features and normal error in the regression. The feature vectors are extracted
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Fig. 3: Comparative experiments of different algorithms for synthetic datasets.

from Gaussian clusters with observations n varied from 103 to 105 points. Fig 2
shows that the number of constraints generated to reach an optimality gap of 5%
only increases marginally with the number of data points n. Similar trends are
observed for the reported run-time for these experiments (cf. Fig 2, right). These
empirical results further suggest that only a small fraction of the observations
are needed. For example, only ≈ 75 observations are needed to solve the problem
to 5% optimality gap with 105 observations (top-right point in Fig 2, left).

Performance gain for row generation We now compare the run-times of our
row generation method dir-et-milp-rg and full-MILP solution dir-et-milp in
Fig 3a where we terminate on reaching the 5% optimality gap with both methods.
With the klr-data, we experiment with n ranging from 100 to 104, d ∈ {1, 2, 5}
and k = 2 to ensure that dir-et-milp finishes in under 104 seconds. Here, dir-
et-milp-rg strictly dominates its dir-et-milp counterpart in all cases and by
more than 3 orders of magnitude for n = 104. What is more remarkable is that
dir-et-milp-rg remains relatively flat as n increases in contrast to dir-et-milp
that grows exponentially with n (i.e., as evidenced by the superlinear trend on
this log-log plot).

Robustness to cluster imbalance The optimal solution of our ε-tube CLR
should be insensitive to imbalance in the number of points in the clusters because
we only measure the worst-case residual. This alleviates the need for a higher
concentration of clusters in areas where the data is denser. We validate this
claim with imbalanced clusters with n = 104, d = 1, and k = 3. One of the
clusters was designed to be dense, and the others were sparse, with the ratio
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Table 1: Comparative evaluation of objective values ε from (3) on 10 datasets
shown in the columns and ordered by number of data points (n).
index Iris Autompg Ceosalaries Boston Airfoil Redwine Abalone Whitewine Powerplant Protein

# data (n) 150 392 500 506 1503 1599 4177 4898 9568 45730
# dimension (d) 4 7 1 13 5 11 7 11 4 9
# clusters (k) 3 3 6 2 4 3 3 3 5 2

km-ls-indep 0.8 1.5 10.64 2.34 2.77 3.04 4.56 3.98 2.71 3.94
km-svr-indep 0.94 1.38 5.69 2.02 2.3 2.81 3.57 3.39 1.99 1.72
km-et-indep 0.63 1.06 5.68 1.27 2.2 2.24 2.83 2.98 1.62 1.72
dir-ls-iter 0.48 1.0 2.5 1.76 1.21 2.34 2.82 3.05 1.76 2.16
dir-et-iter 0.32 0.59 0.7 0.99 0.86 1.55 1.75 1.86 0.53 1.67
dir-et-milp 0.24 0.42 0.64 0.78 0.77 1.13 1.75 1.82 1.45 1.72
dir-et-milp-rg 0.22 0.38 0.48 0.67 0.59 0.62 0.88 1.03 0.3 0.82

of points given by dense/sparse ratio. From Fig 3b, it is evident that all three
methods came close to recovering the optimal balanced clusters (dense/sparse
ratio = 1). However, for the imbalanced cases (ratio > 1), only dir-et-milp-rg
identified the true ground truth cluster in all cases, while dir-et-iter struggled
with local optimality of its greedy method (reaching optimality once) and dir-
ls-iter appears to further suffer from the sensitivity of its least sum-of-squared
loss to imbalanced clusters.

4.2 Real Dataset Experiments

We now benchmark our model with 10 commonly used CLR datasets found in
[13, 16, 11, 2]. In Table 1, we report the mean objective value ε obtained after 10
independent runs for the various greedy baselines compared with the full-MILP
solution dir-et-milp, which is run for the same amount of time that it takes
dir-et-milp-rg to reach the 5% optimality gap. We use the best value for k
reported in the mentioned peer-reviewed works for each dataset. The ε values
obtained for dir-et-milp-rg are better than all other methods, often substan-
tially. Interestingly, we note that the greedy dir-et-iter that we have proposed
outperforms dir-et-milp on several datasets. Moreover, we observed that the
lower bound returned by Gurobi for dir-et-milp was zero and did not increase
within the restricted time limit for these experiments. Improved formulation for
dir-et-milp (and -rg) and tightening of lower bounds is an interesting direc-
tion for potential future work. However, the strictly dominant performance of
dir-et-milp-rg underscores its ability to scale to large real datasets.

5 Conclusion

We provided a novel formulation for the ε-tube CLR problem that reduces to
a MILP and further admits an efficient row generation solution. Our results on
benchmark datasets make it evident that our row generation solution is much
faster than solving the full MILP and that we outperform other CLR methods
in terms of maximum ε-tube loss and different levels of cluster imbalance.
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