
A Mixed-Integer Linear Programming Reduction
of Disjoint Bilinear Programs via Symbolic

Variable Elimination

Jihwan Jeong1,3, Scott Sanner1,3, and Akshat Kumar2

1 University of Toronto, Toronto, Canada
2 Singapore Management University, Singapore

3 Vector Institute, Toronto, Canada
jihwan.jeong@mail.utoronto.ca, ssanner@mie.utoronto.ca,

akshatkumar@smu.edu.sg

Abstract. A disjointly constrained bilinear program (DBLP) has var-
ious practical and industrial applications, e.g., in game theory, facility
location, supply chain management, and multi-agent planning problems.
Although earlier work has noted the equivalence of DBLP and mixed-
integer linear programming (MILP) from an abstract theoretical perspec-
tive, a practical and exact closed-form reduction of a DBLP to a MILP
has remained elusive. Such explicit reduction would allow us to leverage
modern MILP solvers and techniques along with their solution optimal-
ity and anytime approximation guarantees. To this end, we provide the
first constructive closed-form MILP reduction of a DBLP by extending
the technique of symbolic variable elimination (SVE) to constrained op-
timization problems with bilinear forms. We apply our MILP reduction
method to difficult DBLPs including XORs of linear constraints and show
that we significantly outperform Gurobi. We also evaluate our method on
a variety of synthetic instances to analyze the effects of DBLP problem
size and sparsity w.r.t. MILP compilation size and solution efficiency.

Keywords: Bilinear programming · Symbolic variable elimination

1 Introduction

A disjointly constrained bilinear program (DBLP) is formally defined as follows

min
x,y

f(x,y) = c⊤x+ x⊤Qy + d⊤y (1)

s.t. a⊤i x ≤ ai ∀i ∈ I, b⊤
j y ≤ bj ∀j ∈ J

xk ≥ 0 ∀k ∈ K; xm ∈ {0, 1} ∀m ∈M

yl ≥ 0 ∀l ∈ L; yn ∈ {0, 1} ∀n ∈ N,

where I and J are the index sets of the linear constraints. K, L and M , N are
those of continuous and binary variables, respectively. Let nx = |K| + |M | and
ny = |L| + |N |, then we have Q ∈ Rnx×ny , c,ai ∈ Rnx , and d,bj ∈ Rny . The

2 J. Jeong, S. Sanner and A. Kumar

x1

0

1

2

x 2

0.0

0.5

1.0

y1

0.0

0.5

1.0

y 2

−1.0

−0.5

0.0

Fig. 1: The DBLP objective from Section 5 [14], evaluated on a range of values of
x (left) and y (right). The piecewise linear structure hints at a MILP reduction.

disjointness property arises from the separation of linear constraints on x and
y. We define X and Y to be the feasible sets of x and y variables.

Historically, DBLPs have been used to formulate a variety of applications
including uses in game theory, facility location, nonlinear multi-commodity net-
work flows, dynamic assignment and production, risk management, and supply
chain management [8–10, 13]. More recently, DBLPs have found applications in
multi-agent planning problems [?], particularly when the transitions of different
agents are assumed to be independent, which leads to disjoint constraints.

While Gurobi [4] can directly solve DBLPs to optimality since version 9.0
(based on spatial branching and a locally valid McCormick-based LP relaxation),
it can only solve small DBLP instances when they use complex logical constraints
(e.g., XORs of linear constraints). Given that logical constraints can be naturally
encoded in a MILP, we conjecture (and later empirically show) that Gurobi can
better solve such DBLPs when transformed to a MILP formulation.

Earlier work has shown that a DBLP is a concave minimization problem with
a piecewise linear objective and linear constraints over one set of variables, say,
x [5, 6]. To illustrate, Fig.1 shows a DBLP objective from Section 5 evaluated on
a range of x and y values, where we clearly observe piecewise linear structure.
Formally, consider minx,y f(x,y) = minx g(x) with

g(x) := min
y∈Y

f(x,y) = min
y∈V (Conv(Y))

f(x,y) = c⊤x+ min
y∈V (Conv(Y))

{
(d+Q⊤x)⊤y

}
,

where V (Conv(Y)) is the set of vertices of the convex hull of Y. Theoretically,
enumerating all vertices makes g(x) piecewise linear and hence MILP-reducible,
but a more compact and constructive MILP reduction has remained elusive.

In this work, we extend symbolic variable elimination (SVE) [11] to bilinear
expressions and derive the first DBLP to MILP reduction that does not require
enumeration of all vertices V (Conv(Y)). In addition to an investigation of the
performance of our DBLP to MILP reduction on synthetic instances with varying
size and sparsity, we demonstrate that the Gurobi MILP solver applied to our
DBLP reduction can outperform Gurobi’s own bilinear solver for DBLPs.

A MILP Reduction of DBLPs via Symbolic Variable Elimination 3

2 Reducing a DBLP to a MILP: A Worked Example

To foreshadow the general methodology that we explore in this paper, we first
demonstrate how we can “deflate” a DBLP into a conditional DBLP by elimi-
nating one variable from y at a time until the final result is a conditional LP, or
a MILP. We proceed to show such deflation steps in close detail in Example 1.

Example 1. Consider the following simple DBLP (Fig.2a):

min
x1,y1,y2

− 2x1 + x1(y1 + y2)− y1 − y2 (2)

s.t. − y1 + 2y2 ≤ 2, y1 ≤ 2, y2 ≥ 1, 0 ≤ x1 ≤ 2

Our goal is to symbolically minimize out y1 and y2 so that we can obtain a
reduced form over just x1. To do this, we can view the minx1,y1,y2

from the
perspective of symbolic variable elimination [11] where we can “min-out” y1 first.
Observe that when y1 is minimized, x1 and y2 are considered free variables,
allowing us to treat the bilinear objective as linear in y1. The minimum, therefore,
must occur at a boundary value of y1. We can easily obtain symbolic bounds on
y1 if we isolate it in the linear constraints. In this example, −y1 + 2y2 ≤ 2 and
y1 ≤ 2 are equivalent to ylb1 ≤ y1 ≤ yub1 with yub1 = 2 and ylb1 = 2y2 − 2.

We now plug the two bounds on y1 into the objective and compare resulting
values. To that end, let fub(x1, y2) and f lb(x1, y2) be the objective values when
the upper and lower bound of y1 is substituted in, respectively. That is,

fub(x1, y2) = −2x1 + x1(2 + y2)− 2− y2 = x1y2 − y2 − 2

f lb(x1, y2) = −2x1 + x1[(2y2 − 2) + y2]− (2y2 − 2)− y2 = −4x1 + 3x1y2 − 3y2 + 2

−y1 + 2y2 ≤ 2

Infeasible

y1 ≤ 2

y2 ≥ 1

x1 ≤ 2

x1 ≥ 0

−2x1 + x1(y1 + y2) − y1 − y2

(a) DBLP in Example 1

Infeasible

y2 ≥ 1

x1 ≤ 1

x1y2 − y2 − 2

x1 ≥ 0x1 ≤ 2

−4x1 + 3x1y2 − 3y2 + 2

y2 ≤ 2

(b) Conditional DBLP after
eliminating y1

Infeasible

x1 ≤ 1

2x1 − 4

x1 ≥ 0

x1 ≤ 2

−x1 − 1

(c) Final MILP

Fig. 2: Compact XADD [12] decision diagram representation of (2) in its (a) original
form and after (b) y1 and (c) y2 are eliminated. Given values for x1, y1, and y2, the
XADD can be evaluated top-to-bottom. Oval constraints are decisions and the solid
(dashed) edge is followed if the constraint evaluates to true (false). Leaf nodes provide
the objective evaluation. In (c), once all y variables are symbolically eliminated, all
constraints and leaves are linear leading to a conditional LP (=MILP).

4 J. Jeong, S. Sanner and A. Kumar

In order to determine which bound on y1 minimizes the objective, we can check
if the difference fub(x1, y2)− f lb(x1, y2) is positive or negative:

fub(x1, y2)− f lb(x1, y2) = (yub1 − ylb1)(x1 − 1) = (4− 2y2)(x1 − 1) (3)

Crucially in (3), the terms in the objective that do not have y1 always cancel
out, while the ones multiplied to y1 remain. Hence, when we substitute in the
boundary values of y1 into the objective, the difference always has two factors:
one linear factor of x and one linear factor of y (see the discussion in Section 4).
If (3) is positive (or negative), f lb(x1, y2) is smaller (or greater) than fub(x1, y2).
Fortunately since yub1 − ylb1 should be nonnegative, we need only check if linear
factor (x1 − 1) is negative (positive) to determine if the upper (lower) bound
substitution is minimal. Then we can write a reduced conditional DBLP form
(Fig.2b) with y1 eliminated, linear conditions on x, and a bilinear objective:

(Case1) x1 − 1 ≤ 0 : min
x1,y2

fub(x1, y2) = x1y2 − y2 − 2

s.t. 0 ≤ x1 ≤ 1, 1 ≤ y2 ≤ 2

(Case2) x1 − 1 > 0 : min
x1,y2

f lb(x1, y2) = −4x1 + 3x1y2 − 3y2 + 2

s.t. 1 < x1 ≤ 2, 1 ≤ y2 ≤ 2

(4)

As a technical note, we need to symbolically guarantee yub1 ≥ ylb1 , which simplifies
to y2 ≤ 2 and is shown added to the above constraints.

Now that we’ve eliminated y1, we can proceed to eliminate y2. For Case1, we
can minimize out y2 in the same way as we’ve done for y1. Firstly, the bounds
are ylb2 = 1 and yub2 = 2. By substituting these boundary values to fub(x1, y2)
and comparing the results, we get an LP min

0≤x1≤1
2x1 − 4. Similarly, Case2 gives

us another LP, min
1<x1≤2

− x1 − 1. Fig.2c exemplifies the compact representation

of this conditional LP. We can replace the case conditions with binary variables,
reducing the overall problem of (2) to an optimization problem with a piecewise
linear objective and linear constraints, which can be expressed as a MILP.

Example 1 illustrates that we can obtain a concrete MILP model by sym-
bolically minimizing out one set of variables from a DBLP (e.g., y) yielding a
reduced MILP optimization problem over x, which can be easily implemented
and efficiently solved by off-the-shelf MILP solvers such as Gurobi. Substituting
the optimal x in the original DBLP reduces to a MILP over y that is easily
solved to obtain the corresponding y. To move beyond this example and provide
a fully automated reduction of an arbitrary DBLP to a MILP, we will need a
general symbolic procedure to automate this reasoning, which we provide next.

3 Symbolic Calculus with Case Representation

Now that we have worked through a specific example, we proceed to show how the
generic procedure for converting a DBLP to a MILP can be achieved through the
symbolic case representation and case calculus [3, 12] (this section) with a novel

A MILP Reduction of DBLPs via Symbolic Variable Elimination 5

extension to support symbolic variable elimination (SVE) [11] for continuous
minimization operations with bilinear forms (Section 4). Subsequently in Section
5, we present empirical analysis.

3.1 Case Representation

We assume that all symbolic functions can be represented in case form [3, 12]:

f =


ϕ1 : f1
...

...
ϕk : fk

(5)

Here, ϕi (a partition) are logical formulae, which can include arbitrary logical
(∧,∨,¬) combinations of linear inequalities (≥, >,≤, <). We assume that the
set of conditions {ϕ1, . . . , ϕk} disjointly and exhaustively partition the domain
of the variables such that f is well-defined. We call ϕi “disjointly linear” if it
consists only of either x or y. We restrict fi (a function value) to be linear or
bilinear in x and y. Further, we restrict ϕi to be disjointly linear if f has bilinear
fi. These restrictions are in place such that we can represent an arbitrary DBLP
in case form in Section 4.

Henceforth, we refer to functions with linear ϕi and fi as linear piecewise
linear (LPWL). Functions with disjointly linear ϕi and bilinear fi are dubbed as
disjointly linear piecewise bilinear (LPWB). Later, we discuss that in order for
SVE of a DBLP to remain closed-form, it is critical that the procedural reduction
of the original case function always produces an LPWB or LPWL function.

We remark that the DBLP in Example 1 can be easily rewritten in case form

f =

{
[−y1 + 2y2 ≤ 2] ∧ [y1 ≤ 2] ∧ [y2 ≥ 1] ∧ [0 ≤ x1 ≤ 2] : −2x1+x1(y1+y2)−y1−y2
otherwise : ∞

where any finite value for f satisfying the first case (the feasible set) will al-
ways be chosen over ∞ in the other partition (infeasibility), since we want
minx1,y1,y2

f .

3.2 Basic Case Operators

One of the most simple case operations on f in (5) is a unary operation such
as scalar multiplication c · f (c ∈ R) or negation −f . This operation is simply
applied to the function value fi for every partition ϕi. We can also define binary
operations between two case functions by taking the cross-product of the logical
partitions from the two case statements and performing the operation on the
resulting paired partitions.4 For example, the “cross-sum" ⊕ of two cases is:{

ϕ1 : f1

ϕ2 : f2
⊕

{
ψ1 : g1

ψ2 : g2
=


ϕ1 ∧ ψ1 : f1 + g1

ϕ1 ∧ ψ2 : f1 + g2

ϕ2 ∧ ψ1 : f2 + g1

ϕ2 ∧ ψ2 : f2 + g2

4 Only the case operations that we actually use for SVE of a DBLP are introduced.

6 J. Jeong, S. Sanner and A. Kumar

Likewise, we perform ⊖ by subtracting function values per each pair of partitions.
Observe that LPWL and LPWB functions are closed under ⊕ and ⊖.

Next, we define symbolic case min(max) between two case functions as:

casemin

({
ϕ1 : f1

ϕ2 : f2
,

{
ψ1 : g1

ψ2 : g2

)
=



ϕ1 ∧ ψ1 ∧ f1 > g1 : g1

ϕ1 ∧ ψ1 ∧ f1 ≤ g1 : f1

ϕ1 ∧ ψ2 ∧ f1 > g2 : g2

ϕ1 ∧ ψ2 ∧ f1 ≤ g2 : f1
...

...

(6)

wherein the resulting partitions also include the comparison of associated func-
tion values fi and gj to determine min(fi, gj) (highlighted in bold). casemin of
more than two case functions is straightforward since the operator is associa-
tive. Crucially, LPWL functions are closed under casemin (max), but LPWB
functions are not because fi ≤ gj can be bilinear or jointly linear.

Another important symbolic operation is symbolic substitution. This oper-
ation takes a set σ of variables and their substitutions, e.g., σ = {y/(x1 +
x2), z/(x1 − x2)} where the LHS of ‘/’ represents the substitution variable and
the RHS of ‘/’ is the expression being substituted in. Then, we write the substi-
tution operation on fi with σ as fiσ. Then the operation follows:

f =


ϕ1 : f1
...

...
ϕk : fk

, fσ =


ϕ1σ : f1σ
...

...
ϕkσ : fkσ

(7)

In this paper, we will only substitute linear expressions of {yj}j ̸=i variables into
yi, which clearly preserves the LPWL and LPWB properties.

In the next section, we show that the procedural reduction of a DBLP to
a MILP only involves the application of the case operations that preserve an
LPWB form, which eventually reduces to an LPWL form (equivalent to a MILP).

4 Symbolic Reduction of a DBLP to a MILP

Having introduced the case form and its basic operations in Section 3, we first
note that the DBLP in (1) can be written in case form. That is, (1) is equivalent
to minx,y fDBLP (x,y) where

fDBLP (x,y) =

{
ϕ(x) ∧ ψ(y) : c⊤x+ x⊤Qy + d⊤y

¬(ϕ(x) ∧ ψ(y)) : ∞
(8)

with ϕ(x) := [x ∈ X], ψ(y) := [y ∈ Y]. Note how the feasible set of the DBLP
is encoded as a partition and the objective as its function value. Also, observe
that ϕ(x) ∧ ψ(y) is disjointly linear, so fDBLP (x,y) is an LPWB function.

We have seen in Example 1 that we get a MILP out of a DBLP via symbolic
minimization of y variables. In general, if the result of SVE of y from an arbi-
trary LPWB function can be shown to be equivalent to an LPWL function, we

A MILP Reduction of DBLPs via Symbolic Variable Elimination 7

effectively reduce a DBLP to a MILP. However, existing symbolic min operators
[16] fall short of dealing with LPWB functions, since none of them can handle
bilinear function values. In the sequel, we show that we can always factorize the
bilinear expressions appearing during the SVE of y variables into one factor in
x and the other in y. This in turn makes LPWB functions closed under the SVE
operations. With this, we prove that a DBLP can be reduced to a MILP.

4.1 Symbolic Minimization of Linear Piecewise Linear Functions

To see why existing approaches fail to symbolically optimize variables in closed-
form when it comes to LPWB functions, we first consider the symbolic min
operator for LPWL functions [16].5 This operator differs from casemin in that
the former optimizes a symbolic function w.r.t. decision variables, whereas the
latter compares multiple symbolic functions as in (6). Example 2 illustrates the
application of the symbolic min operator to an LPWL function.

Example 2. Let f(x1, x2) be a symbolic function of x1, x2 ∈ [0, 10]2 as below:

f(x1, x2) =

{
x1 + x2 ≥ 1 : 3x1 + 2x2

x1 + x2 < 1 : −3x1 + x2
(9)

As in Example 1, we can view the minx1,x2
from the perspective of symbolic

variable elimination, and we write it as minx2 minx1 f(x1, x2). When x1 is being
minimized out, we can treat x2 as a symbolic free variable. Then,

min
x2

min
x1

f(x1, x2) = min
x2

[
min
x1

{
ϕ1(x1, x2) : f1(x1, x2)

ϕ2(x1, x2) : f2(x1, x2)

]

=min
x2

[
min
x1

casemin
i={1,2}

{
ϕi(x1, x2) : fi(x1, x2)

¬ϕi(x1, x2) : ∞

]
(10)

=min
x2

[
casemin
i={1,2}

min
x1

{
ϕi(x1, x2) : fi(x1, x2)

¬ϕi(x1, x2) : ∞

]
(11)

where ϕi and fi are defined as per (9). (10) follows since partitions are disjoint.
The commutative property gives (11). As a result, minx1

f(x1, x2) is equivalent
to minimizing out x1 from “{ϕi : fi” for all i, followed by casemin of the results.

Now in order to compute minx1

{
ϕi(x1, x2) : fi(x1, x2), we make three im-

portant observations: (a) a partition ϕi and domain bounds on x1 prescribe the
lower and upper bounds over the variable, xlb,i1 and xub,i1 respectively; (b) since
fi is linear in x1, either xlb,i1 or xub,i1 will evaluate to the minimum (ties broken
arbitrarily); and (c) if there is a subset of conditionals in ϕi that are independent
of x1, denoted as ϕ⊥⊥x1

i , it should still be satisfied after the min operation.

5 This operator has been introduced firstly in [16] and later in more detail in [7].
However, we include the result here for completeness and to better illustrate our
extension to handling bilinear function values in Section 4.2.

8 J. Jeong, S. Sanner and A. Kumar

For example, from ϕ1(x1, x2) = [x1 + x2 ≥ 1],

xlb,11 = casemax(1− x2, 0) =

{
x2 ≥ 1 : 0

x2 < 1 : 1− x2
(12)

In general, a domain bound (e.g., x1 ≥ 0) and each conditional (e.g., [x1 + x2 ≥
1]) of a partition can contribute at most one lower bound candidate, and xlb,i1

is the casemax among the candidates. Similarly, we get xub,i1 as the casemin

among candidates, which in this case is simply xub,11 = 10. From these bounds,
we additionally impose a set of constraints such that xlb,i1 ≤ xub,i1 is ensured
at all times, which are added to ϕ⊥⊥x1

i . In this example, these are [0 ≤ 10] and
[1− x2 ≤ 10], which trivially hold true, and so we set ϕ⊥⊥x1

1 = true.
With these bounds, it remains to determine the minimum value by substi-

tuting xlb,i1 and xub,i1 into x1 in f1 and performing casemin. For i = 1, we have:6

min
x1

{
ϕ1(x1, x2) : f1(x1, x2)

¬ϕ1(x1, x2) : ∞
= casemin(f1σ

ub
1 , f1σ

lb
1)⊕

{
ϕ⊥⊥x1
1 : 0

¬ϕ⊥⊥x1
1 : ∞

= casemin

(
30 + 2x2,

{
x2 ≥ 1 : 2x2

x2 < 1 : 3− x2

)

=

{
x2 ≥ 1 : 2x2

x2 < 1 : 3− x2
(13)

where σlb
1 = {x1/xlb,11 } and σub

1 = {x1/xub,11 }.
If we follow the same procedure for ϕ2(x1, x2) and f2(x1, x2), we get below:

min
x1

{
ϕ2(x1, x2) : f2(x1, x2)

¬ϕ2(x1, x2) : ∞
=

{
x2 ≥ 1 : x2

x2 < 1 : −3 + 4x2
(14)

Finally, we take casemin of (13) and (14), which becomes

g(x2) := min
x1

f(x1, x2) =

{
x2 ≥ 1 : x2

x2 < 1 : −3 + 4x2
(15)

Note that x1 has been eliminated from f(x1, x2) in (15). The same procedure
can be repeated for the elimination of x2.

4.2 Symbolic Minimization of Disjointly Linear Piecewise Bilinear
Functions

Example 2 highlights the key operations entailed in symbolic minimization of an
LPWL function. However for DBLPs, the step in (13) would compare bilinear
expressions, leading to a case function with bilinear or jointly linear partitions,
preventing naively applying the same symbolic manipulations. Despite these
bilinear expressions, Proposition 1 affirms that we can still perform SVE of one
6 Note the way we enforce ϕ⊥⊥x1

1 by the cross-sum operation.

A MILP Reduction of DBLPs via Symbolic Variable Elimination 9

set of variables from the DBLP, which eventually gives rise to an LPWL function.
This in turn can be modeled as a MILP by introducing binary indicator variables.

Firstly, we formally define an LPWB function f(x,y) for x ∈ Rnx ,y ∈ Rny :

f(x,y) =


ϕ1(x) ∧ ψ1(y) : f1(x,y) = c⊤1 x+ x⊤Q1y + d⊤

1 y
...

...
ϕn(x) ∧ ψn(y) : fn(x,y) = c⊤nx+ x⊤Qny + d⊤

ny

(16)

where ci ∈ Rnx , di ∈ Rny , Qi ∈ Rnx×ny , and ϕi(x) and ψi(y) are conjunction
of linear inequalities in x and y.7 Note that fDBLP is a special case of (16).
Proposition 1 establishes that LPWB functions are closed under symbolic min
and eventually become LPWL, which uses the following result from Lemma 1.

Lemma 1. Consider the symbolic substitution operations into bilinear fi(x,y)
with σj = {y1/lj(y2:ny

)}, where y2:ny
= {y2, . . . , yny

}, lub(y2:ny
) and llb(y2:ny

)
are linear. Then, casemin(fi(x,y)σ

ub, fi(x,y)σ
lb) is an LPWB function.

Proof. Define h : Rnx×(ny−1) 7→ R as h(x,y2:ny
) := fi(x,y)σ

ub − fi(x,y)σ
lb. If

h ≥ 0, we select fi(x,y)σlb as the casemin; otherwise, fi(x,y)σub is selected. In
other words, we get a case function with bilinear partitions and bilinear values:

casemin(fi(x,y)σ
ub, fi(x,y)σ

lb) =

{
h(x,y2:ny) ≥ 0 : fi(x,y)σ

lb

h(x,y2:ny) < 0 : fi(x,y)σ
ub

(17)

However, h(x,y2:ny
) can always be factorized into two factors where each factor

is linear in either x or y2:ny . That is,

h(x,y2:ny) =

(
lub(y2:ny)− llb(y2:ny)

)[
[di]1 +

nx∑
r=1

xr[Qi]r,1

]
≥ 0 (18)

since the terms in fi(x,y) that do not include y1 cancel out. Finally, we get
[lub(y2:ny)− llb(y2:ny) ≥ 0] ∧ [[di]1 +

∑nx
r=1 xr[Qi]r,1 ≥ 0] : fi(x,y)σ

lb

[lub(y2:ny)− llb(y2:ny) < 0] ∧ [[di]1 +
∑nx

r=1 xr[Qi]r,1 < 0] : fi(x,y)σ
lb

[lub(y2:ny)− llb(y2:ny) ≥ 0] ∧ [[di]1 +
∑nx

r=1 xr[Qi]r,1 < 0] : fi(x,y)σ
ub

[lub(y2:ny)− llb(y2:ny) < 0] ∧ [[di]1 +
∑nx

r=1 xr[Qi]r,1 ≥ 0] : fi(x,y)σ
ub

(19)

which has disjointly linear partitions and bilinear values, hence an LPWB.

Now, we present the main result in Proposition 1.

Proposition 1 (Symbolic minimization of LPWB functions). Let g(x)
denote the result of symbolic minimization of f(x,y) over y variables, which we
assume to be well-defined. That is,

g(x) := min
y
f(x,y) (20)

Then, it follows that g(x) is an LPWL function of x.
7 A function value can be ∞, which implies that the corresponding partition is infea-

sible (see Fig.2c).

10 J. Jeong, S. Sanner and A. Kumar

Proof. The proof relies on inductive reasoning as we show how each yi can be
eliminated in turn yielding an LPWB closed-form and ultimately a final LPWL
form once all y have been eliminated.

Firstly, similar to (11), we note min
y
f(x,y) is equivalent to the following:

min
yny ,...,y2

[
casemin
i={1,...,n}

min
y1

{
ϕi(x) ∧ ψi(y) : fi(x,y)

¬ϕi(x) ∨ ¬ψi(y) : ∞

]
(21)

For the ith partition, ψi(y) and the generic domain bounds over y1 specify the
upper and lower bounds of y1, denoted as yub,i1 and ylb,i1 , respectively. Notice
that yub,i1 and ylb,i1 are LPWL functions of y2:ny . We now substitute the bounds
in the place of y1, followed by casemin to determine a smaller value, which gives:

gi(x,y2:ny) := min
y1

{
ϕi(x) ∧ ψi(y) : fi(x,y)

¬ϕi(x) ∨ ¬ψi(y) : ∞

= casemin

(
fi(x,y)σ

ub
i , fi(x,y)σ

lb
i

)
⊕

{
ϕi(x) ∧ ψ⊥⊥y1

i (y2:ny) : 0

¬
(
ϕi(x) ∧ ψ⊥⊥y1

i (y2:ny)
)
: ∞

(22)

where σub
i = {y1/yub,i1 } and σlb

i = {y1/ylb,i1 }.
The second term in (22) ensures that the conditionals independent of y1

in [ϕi(x) ∧ ψi(y)] hold true, which are not accounted for in yub,i1 and ylb,i1 .
ψ⊥⊥y1

i (y2:ny) also includes a set of conditionals that require yub,i1 ≥ ylb,i1 for
all pairs of function values. Naturally, we use ∞ as the value of an infeasible
partition such that it will be ignored in later steps since we are minimizing.

Now, we have that gi(x,y2:ny
) is an LPWB function. To see this, denote the

casemin in (22) as m(x,y2:ny
). A partition of m(x,y2:ny

) is conjunction of a
partition from yub,i1 , say the jth, and another from ylb,i1 , say the kth; the cor-
responding function value is casemin(fi{y1/lubj (y2:ny)}, fi{y1/llbk (y2:ny)}), with
lubj and llbk denoting the function values from yub,i1 and ylb,i1 , respectively. Then
for this partition, we clearly see we get disjointly linear partitions and bilin-
ear function values as per Lemma 1. This analysis can be extended to all other
partitions and function values of m(x,y2:ny

), and hence gi(x,y2:ny
) is LPWB ∀i.

Finally, we note (21) becomes

min
y
f(x,y) = min

yny ,...,y2

[
casemin
i={1,...,n}

gi(x,y2:ny)

]
= casemin

i={1,...,n}

[
min

yny ,...,y3

(
min
y2

gi(x,y2:ny)

)]
(23)

where (23) follows since min and casemin are commutative. Then, we see that the
inner-most minimization is essentially SVE of y2 of an LPWB function. Hence,
we can repeat the elimination procedure until all y variables are minimized out,
at which point we get a sequence of casemin applied to an LPWL function of x.
Since an LPWL function is closed under the casemin operator, we will get an
LPWL function, g(x) in closed-form.

A MILP Reduction of DBLPs via Symbolic Variable Elimination 11

Corollary 1. The DBLP in (1) is equivalent to a MILP.

Proof. The DBLP can be represented in case form as in (8), which is an LPWB
function. Hence, minx,y fDBLP (x,y) can be represented as minx gDBLP (x) where
gDBLP (x) := miny fDBLP (x,y) is an LPWL function (Proposition 1). There-
fore, the DBLP is equivalent to the minimization problem with piecewise linear
objective and linear constraints, which is equivalent to a MILP.

We remark that maintaining a case representation of a DBLP or its LPWL
equivalent with explicit partitions can be prohibitively expensive. Hence, in prac-
tice we use Extended Algebraic Decision Diagrams (XADDs) [12] (example in
Fig.2) to compactly represent the case statement and perform operations.

5 Empirical Analysis

In this section, we evaluate the proposed novel reduction of a DBLP to a MILP
on various test problems. First, we present the problem constrained with XORs of
linear constraints in which the proposed approach outperformed Gurobi (9.5.0).
Then, we explore empirical characteristics of the MILP reduction on general
DBLPs using a set of randomized test instances. Specifically, we analyze the
effects of the problem size and sparsity on the MILP reduction and its solution
efficiency. We use the XADD for practical implementation of case functions, and
we ported the original XADD implementation in Java to our own in Python.
Generated MILPs are then solved using Gurobi. All experiments were done on
a Linux machine with a 2.90GHz processor.8

Problems with XOR Conditional Constraints Consider the following
DBLP involving XOR (⊻) combinations of constraints as motivated by [15]:

min c⊤r+ r⊤Qy + d⊤y + czz, where (24)

ri =


[
[x3i−2 ≥ x3i−1] ⊻ [x3i−1 ≥ x3i]

]
∧ [z ≥ 0] : max(x3i−1, x3i)−min(x3i−1, x3i)[

[x3i−2 ≥ x3i−1] ⊻ [x3i−1 ≥ x3i]
]
∧ [z ≤ 0] : min(x3i−1, x3i)−max(x3i−1, x3i)

¬
[
[x3i−2 ≥ x3i−1] ⊻ [x3i−1 ≥ x3i]

]
∧ [z ≥ 0] : min(x3i−2, x3i−1)−max(x3i−2, x3i−1)

¬
[
[x3i−2 ≥ x3i−1] ⊻ [x3i−1 ≥ x3i]

]
∧ [z ≤ 0] : max(x3i−2, x3i−1)−min(x3i−2, x3i−1)

s.t. b⊤
j y ≤ bj , ∀j = 1, . . . , 15

xi ∈ [−10, 10], rj ∈ [−20, 20], yk ∈ [−10, 10]

i = 1, . . . , 3n, j = 1, . . . , n, k = 1, . . . , 15.

Here, c, r ∈ Rn, x ∈ R3n, cz, z ∈ R and bj ,y ∈ R15. Observe that ri in
the objective is determined based on an XOR conditional expression involving
x3i−2, x3i−1, x3i and a linear constraint of z ∀i = 1, . . . , n. The feasible region
over y is independently constructed by randomly generating bj and bj ∀j, and
we also randomly generate the coefficients (cz, c,d, Q) in the objective. We elim-
inate x from (24) and solve the resulting MILP using Gurobi for the remaining
variables.
8 SVE runs on a single processor, but Gurobi made use of all 16 available cores.

12 J. Jeong, S. Sanner and A. Kumar

2 4 6 8 10 12 14 16 18

n

10−2

10−1

100

101

102

103

104

T
im

e
(s

ec
)

SVE DBLP-to-MILP

Native DBLP

0 10 20 30 40 50

n

0

10

20

30

SVE MILP Conversion

MILP Solving

Fig. 3: Left: Runtime comparison of the Native DBLP form (using Gurobi’s
bilinear solver) and the SVE DBLP-to-MILP conversion (using Gurobi’s MILP
solver) vs. n (number of variables in XOR problem). Unlike Native DBLP whose
time complexity appears exponential in n, SVE DBLP-to-MILP appears linear
in n (nb. logarithmic y-axis). Right: Breakdown of total runtime of the SVE
DBLP-to-MILP solution separated into SVE Conversion time and Gurobi MILP
solve time. While SVE scales linearly in n, the MILP step takes a larger fraction
of time as n increases (nb. linear y-axis and extended range of n on the x-axis,
which only SVE DBLP-to-MILP can solve).

Note that this problem structure is particularly advantageous for the sym-
bolic framework since each ri can be compactly represented in XADD with only
a small number of decision variables and the XOR constraints are sparse. In
Fig.3, we compare the runtime performance of our approach against that of
Gurobi. For each n, we generated 5 instances with different random seeds and
plot the mean and its standard error. As the runtime grows exponentially for
Gurobi, it quickly becomes impossible to solve problems with n ≥ 15 (nx ≥ 45)
within the given time limit of 5000 seconds. However, the solution time increases
linearly in the number of variables for the symbolic approach, and we solve the
problem with nx = 150 within 30 seconds. In other words, we have effectively
reformulated a DBLP that Gurobi cannot practically solve in its native form to
the one that Gurobi can solve as a MILP!

Randomized Test Problems with Different Sizes and Sparsity Now,
we scrutinize the proposed approach on some general DBLP test problems. For
the first set of experiments, we follow [14] for systematic generation of test prob-
lems with certain properties. In particular, they suggested a two-step method in
which smaller DBLP problems are first constructed, which are then additively
combined. Furthermore, the underlying structure of the problem is then con-
cealed by random transformations on the decision variables using Householder
matrices [1]. 5 instances with different random transformation matrices are con-
structed for each configuration (nx, ny) and we report the average and standard
error.

In Table.1, we evaluate the impact of how balanced a problem is on computa-
tional complexity by fixing the total number of variables while altering (nx, ny)

A MILP Reduction of DBLPs via Symbolic Variable Elimination 13

Table 1: Time and space complexity for balanced and imbalanced problems. For
every fixed number of total variables (12, 16, 20, 24), the results for an imbalanced
(nx > ny) and a balanced (nx = ny) are reported. Observe that imbalanced
problems are easier to solve and more compact to encode than their balanced
counterparts.

nx + ny nx ny Time (Symbolic) Time (MILP)
XADD

Nodes
Cont var

(MILP)
Bin var
(MILP)

Constr
(MILP)

12
8 4 4.35± 0.01 0.01± 0.00 44 35 16 55
6 6 16.35± 0.17 0.04± 0.00 76 54 18 75

16
10 6 44.67± 0.17 0.04± 0.00 114 75 23 103
8 8 121.45± 1.09 0.88± 0.02 214 140 24 168

20
12 8 391.87± 3.22 0.71± 0.01 318 185 30 221
10 10 959.65± 66.15 28.84± 2.81 622 388 30 423

24
16 8 313.38± 1.65 0.18± 0.00 536 295 32 335
12 12 5886.00± 142.75 356.23± 11.17 1840 1122 36 1164

such that one instance has nx = ny whereas nx > ny for the other (y is elim-
inated). We have compared four sets of problem instances with varying total
numbers of variables, i.e., 12, 16, 20, 24. For each total number of variables, bal-
anced and imbalanced instances are compared. We can see that it is in general
much easier to solve imbalanced problems, which turn out to be more com-
pact to encode as well. As the number of total variables increases, we observe
that the discrepancy in the complexity between an imbalanced and its balanced
counterpart widens.

Notably, the number of binary variables only rises at a moderate rate, whereas
the numbers of continuous variables and constraints increase along with the size
of the MILP reduction. This suggests that the case representation of the MILP
equivalent of a given DBLP turns out to have a structure similar to a tree. For
this type of problem, the computational gain attributed to using XADD can
rather be small, and therefore we observe fast increases in complexity with the
problem size. On the other hand, for types of problems we present in (24) and
Fig.4, the SVE step can be efficiently done even for larger problems. Finally,
note also that regardless of ny, the running times for the optimal MILP solution
remain very small.

In order to better understand the solution efficiency with regard to the num-
ber of variables and the sparsity of the problem, we created other sets of random
test problems. Concretely, the goals are to examine (a) whether the increase
in the number of symbolically eliminated variables has greater impact than the
increase in the total number of variables in solution efficiency and (b) the effects
of the sparsity of coefficients (ai,bj , Q). For these problems, we generate feasible
and bounded problems with 30 constraints (na = nb = 15). 5 instances gener-

14 J. Jeong, S. Sanner and A. Kumar

ated with different random seeds are used per each experiment configuration,
and we plot the average and its standard error.

For (a), we symbolically eliminate y and compare two sets: one with nx = 8
and ny from 4 to 9, and the other with ny = 4 and nx increased from 8 to 13.
This way, when we increment the total number of variables by 1, it is only for the
first set that the number of symbolically eliminated variables increases. In Fig.4,
we see that the time requirements for solving problems with fixed ny (solid) have
virtually remained consistent regardless of the total number of variables. On the
other hand, the runtimes for the symbolic solution with increasing ny have seen
a huge jump at nx + ny = 16 and they are generally on the increase along with
the number of variables (dashed). On the contrary, the final sizes of the MILP
reduction — in terms of the number of nodes in XADD, the number of binary
and continuous variables, and the number of constraints — have shown only
mild increasing patterns.

12 13 14 15 16 17
nx + ny

0

10

20

30

40

50

60

T
im

e
(s

ec
)

Time (symbolic)

Time (MILP)

12 13 14 15 16 17
nx + ny

10

20

30

40

50

60

C
ou

nt

XADD nodes

bin var (MILP)

cont var (MILP)

constrs (MILP)

Fig. 4: Time and space complexity as the total number of variables increases.
Here, y is symbolically minimized. The dashed lines correspond to the case of
increasing ny, whereas the solid lines represent the case of increasing nx.

0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100

120

T
im

e
(s

ec
)

Time (symbolic)

Time (MILP)

0.2 0.4 0.6 0.8 1.0

25

50

75

100

125

C
ou

nt

XADD nodes

bin var (MILP)

cont var (MILP)

constrs (MILP)

Density

Fig. 5: Time and space complexity as the sparsity of Q, {ai}na
i=1, {bj}nb

j=1 changes

A MILP Reduction of DBLPs via Symbolic Variable Elimination 15

For (b), we vary the density parameter used in the generation of the coefficient
matrices (a,b, Q) from 0.1 to 1.0 (full matrices) and record the time and space
complexity thereof. The numbers of variables are set to (nx, ny) = (8, 4) and we
eliminate y variables. Fig.5 shows a general trend where the MILP reduction
becomes increasingly expensive as the density of the coefficient matrices rises.
However, the complexity peaks at the density 0.8, and the instances with denser
coefficients turn out to be easier to solve. Typically, instances that take longer
symbolic compilation running times tend to result in XADDs with more nodes.
Hence, it appears that sparse forms have few constraints leading to smaller
encodings and solution times, while the highest density problems likely have
redundant (implied) constraints that the XADD can eliminate also leading to
smaller encodings and solution times.

To sum up, we have seen that there are types of DBLP problems that cannot
be solved by Gurobi within a reasonable amount of time in their native form.
We are able to solve such problems by solving the MILP equivalent of a DBLP
which can be obtained via SVE. Using various test problems, we have also ex-
amined the efficiency of the proposed approach. In particular, we have observed
that imbalanced problems are much easier to solve with SVE than their balanced
counterparts with the same numbers of decision variables. Although it generally
takes longer to solve a larger DBLP, there exists a set of problems with which we
do not see much increase in solution time as the number of variables increases.
These sorts of problems can benefit the most from our symbolic approach. Fi-
nally, we have seen that sparse instances can be more compactly represented
via XADD, leading to smaller runtimes, while the densest form can be solved
relatively easily as well.

6 Conclusion and Future Work

We proposed a novel use of symbolic variable elimination (SVE) for reducing
one optimization problem (DBLP) to another (MILP) exactly in closed-form.
We showed this methodological innovation involves extending existing SVE op-
erations to work with bilinear forms. As a result, we were able to provide the
first exact constructive MILP reformulation of DBLPs by proving that all sym-
bolic operations involved remain closed-form. Empirically, we saw this reduction
enables solving DBLPs with complex logical constraints to optimality, which are
unsolvable in their native form.

As future work, we note that it is possible to extend our methodology to dis-
jointly constrained multilinear programs (DMLPs), which will further broaden
the applicability of our method to multi-agent decision-making problems [2].

Longer term, we hope that this work inspires the use of (and further research
into) SVE as a technique for manipulating and reducing constrained optimization
problems into alternative forms more amenable for use with highly efficient and
optimal off-the-shelf solvers.

16 J. Jeong, S. Sanner and A. Kumar

References

1. Audet, C., Hansen, P., Jaumard, B., Savard, G.: A symmetrical linear maxmin ap-
proach to disjoint bilinear programming. Mathematical Programming 85(3), 573–
592 (1999)

2. Becker, R., Zilberstein, S., Lesser, V., Goldman, C.V.: Transition-independent de-
centralized markov decision processes. In: Proceedings of the Second International
Joint Conference on Autonomous Agents and Multiagent Systems. p. 41–48. AA-
MAS ’03, Association for Computing Machinery, New York, NY, USA (2003).
https://doi.org/10.1145/860575.860583, https://doi.org/10.1145/860575.860583

3. Boutilier, C., Reiter, R., Price, B.: Symbolic dynamic programming for first-order
MDPs. In: IJCAI-01. pp. 690–697. Seattle (2001)

4. Gurobi Optimization, LLC: Gurobi Optimizer Reference Manual (2021),
https://www.gurobi.com

5. Horst, R., Pardalos, P., Van Thoai, N.: Introduction to Global Optimiza-
tion. Nonconvex Optimization and Its Applications, Springer US (1995),
https://books.google.ca/books?id=w6bRM8W-oTgC

6. Horst, R., Tuy, H.: Global Optimization: Deterministic Approaches. Springer
Berlin Heidelberg (2013)

7. Jeong, J., Jaggi, P., Sanner, S.: Symbolic dynamic programming for continuous
state mdps with linear program transitions. In: Proceedings of the 30th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI-21). Online (2021)

8. Konno, H.: A Bilinear Programming: Part II. Applications of Bilinear Program-
ming. Technical Report (1975)

9. Nahapetyan, A.G.: Bilinear programming: applications in the supply chain man-
agement, pp. 282–288. Springer US, Boston, MA (2009)

10. Rebennack, S., Nahapetyan, A., Pardalos, P.M.: Bilinear modeling so-
lution approach for fixed charge network flow problems. Optimization
Letters 3(3), 347–355 (2009). https://doi.org/10.1007/s11590-009-0114-0,
https://doi.org/10.1007/s11590-009-0114-0

11. Sanner, S., Abbasnejad, E.: Symbolic variable elimination for discrete and continu-
ous graphical models. Proceedings of the AAAI Conference on Artificial Intelligence
26(1), 1954–1960 (Sep 2012)

12. Sanner, S., Delgado, K.V., de Barros, L.N.: Symbolic dynamic programming for
discrete and continuous state mdps. In: Proceedings of the 27th Conference on
Uncertainty in AI (UAI-2011). Barcelona (2011)

13. Sherali, H.D., Alameddine, A.: A new reformulation-linearization technique for
bilinear programming problems. Journal of Global Optimization 2(4), 379–410
(1992)

14. Vicente, L.N., Calamai, P.H., Júdice, J.J., J, J.J.: Generation of disjointly con-
strained bilinear programming test problems. Computational Optimization and
Applications 1, 299–306 (1992)

15. Ye, Z., Say, B., Sanner, S.: Symbolic bucket elimination for piecewise
continuous constrained optimization. In: CPAIOR. pp. 585–594 (2018),
https://doi.org/10.1007/978-3-319-93031-2_42

16. Zamani, Z., Sanner, S., Fang, C.: Symbolic dynamic programming for continuous
state and action mdps. In: Proceedings of the 26th AAAI Conference on Artificial
Intelligence (AAAI-12). Toronto, Canada (2012)

