
Metric Hybrid Factored Planning in Nonlinear
Domains with Constraint Generation

Buser Say and Scott Sanner

Department of Mechanical & Industrial Engineering, University of Toronto, Canada
{bsay,ssanner}@mie.utoronto.ca

Abstract. We introduce a novel planner SCIPPlan for metric hybrid
factored planning in nonlinear domains with general metric objectives,
transcendental functions such as exponentials, and instantaneous contin-
uous actions. Our key contribution is to leverage the spatial branch-and-
bound solver of SCIP inside a nonlinear constraint generation framework
where we iteratively check relaxed plans for temporal feasibility using a
domain simulator, and repair the source of the infeasibility through a
novel nonlinear constraint generation methodology. We experimentally
evaluate SCIPPlan on a variety of domains, showing it is competitive
with, or outperforms, ENHSP in terms of run time and makespan and
handles general metric objectives. SCIPPlan is also competitive with a
general metric-optimizing unconstrained Tensorflow-based planner (TF-
Plan) in nonlinear domains with exponential transition functions and
metric objectives. Overall, this work demonstrates the potential of com-
bining nonlinear optimizers with constraint generation for planning in
expressive metric nonlinear hybrid domains.

Keywords: Metric hybrid planning · Nonlinear optimization · Con-
straint generation.

1 Introduction

Metric optimization is at the core of many real-world nonlinear hybrid [6] plan-
ning domains where the quality of the plan matters. Most nonlinear hybrid
planners in the literature either ignore metric specifications [12, 3, 4], or leverage
heuristics to guide their search for finding a plan quickly [9, 13] with the notable
exceptions COLIN [5] and ENHSP [17], which can handle metric optimization
for a subset of PDDL+ [6] domains.

In this paper, we leverage the nonlinear constrained optimization solver
SCIP [10] to present SCIPPlan for solving metric hybrid factored [2] nonlinear
planning problems by decomposing the original problem into a master prob-
lem and a subproblem. In the master problem, we relax the original problem
to a system of sequential function updates 1, which allows us to handle arbi-
trary nonlinear functions (such as polynomial, exponential, logarithmic etc.) in

1 Relaxation refers to the omission of temporal constraints from the master problem.

2 Buser Say and Scott Sanner

the transition and metric objectives as well as instantaneous continuous action
inputs that are beyond the expressivity of existing hybrid planners.

In the nonlinear hybrid planning literature, the time at which a conditional
expression (e.g., a mode switch condition) is satisfied is known as a zero-crossing
and when the dynamics of the planning problem are piecewise linear, one can use
the TM-LPSAT compilation to find valid plans that avoid zero-crossings [18].
When the continuous change can be described more generally as polynomials,
one can use the SMTPlan [4] compilation of the hybrid planning problem to
avoid zero-crossings between two consecutive decision points (i.e. happenings).
However, in general, problem dynamics can include arbitrary nonlinear change
and only ENHSP [17] approaches the expressive dynamics of SCIPPlan.

In SCIPPlan, the candidate solution found by solving the master problem
can include zero-crossings of general transcendental nonlinear conditions between
two consecutive decisions which can either (i) violate the global constraints of the
original problem, or (ii) contain mode switches that are not accounted for by the
master problem. To identify and repair the source of zero-crossings, we use the
simulate-and-validate approach [7] in the subproblem where domain simulators
are used to simulate the candidate plan, and if the candidate plan is found to
be infeasible, temporal constraints associated with zero-crossings are generated
and added back to the master problem. SCIPPlan iteratively solves the master
problem and the subproblem until a valid plan is found.

Experimentally, we show that SCIPPlan outperforms the state-of-the-art
metric nonlinear hybrid planner ENHSP in almost all problem instances with
respect to makespan and run time performance. We further experiment with
the capabilities of SCIPPlan beyond the expressiveness limitations of ENHSP in
the optimization of general metrics on a subset of modified domains, and ver-
ify its competitiveness versus an unconstrained Tensorflow-based planner (TF-
Plan) [19] on a nonlinear metric domain with exponential transitions.

2 Preliminaries

In this section, we present the preliminary definitions, notation and solution
methodologies required to define and solve the metric hybrid factored planning
problem.

3 Metric Discrete Time Factored Planning: Π

Before we dive into the notationally heavy details of general nonlinear hy-
brid factored planning, we begin with a straightforward mixed-integer nonlin-
ear program (MINLP) compilation of a discrete time factored nonlinear plan-
ning domain. A discrete time metric factored planning problem is a tuple Π =
〈S,A,C, T, I,G,Q〉 where

– S = {Sd, Sc} is a set of discrete Sd and continuous Sc domains with state
variables/assignments denoted s ∈ S,

Metric Hybrid Factored Planning with Constraint Generation 3

– A = {Ad, Ac} is a set of discrete Ad and continuous Ac domains with action
variables/assignments denoted a∈A,

– C : S × A → {true, false} is a function that returns true if action a ∈ A
and state s ∈ S pair satisfies constraints that represent global constraints
on state and action variables,

– T : S × A → S denotes the state transition function between discrete time
steps t and t+ 1, T (st,at) = st+1 if C(st,at) = true, and is undefined
otherwise, and

– Q : S ×A→ R is the metric reward function to optimize.

In addition, I represents the initial state constraint s1 = s̄1 and G : S →
{true, false} represents goal state constraints. Given a finite planning horizon of
H decision stages, a solution π = 〈ā1, . . . , āH〉 (i.e. plan) to Π is a fixed value
assignment to actions at = āt that induces an assignment to state variables st

satisfying the initial state I, transition T , goal G, and global C constraints for
all t ∈ {1, . . . ,H}. Our objective in solving metric planning problem Π is to find
the action sequence π that maximizes the sum of rewards over the time horizon
by optimizing the following model:

max
π=〈a1,...,aH〉

H∑
t=1

Q(st+1,at) (1)

subject to I : s1 = s̄1

G(sH+1)

T (st,at) = st+1 ∀t ∈ {1, . . . ,H}
C(st,at) ∀t ∈ {1, . . . ,H}

Note that Π is a standard discrete-time model that does not consider the (po-
tentially) changing values of states between pairs of consecutive time steps
t, t + 1 ∈ {1, . . . ,H}. Under this simplifying assumption, there is no need to
consider zero-crossing constraints that will become critical for relaxing time to
be continuous in our subsequent hybrid generalization of the above framework.
Before we present the hybrid generalization, however, we discuss the compilation
and solution of the above problem followed by an example.

3.1 High-level Syntax and SCIP MINLP Compilation

In order to compile the optimization formulation of (1) into a Mixed-Integer
Nonlinear Programming (MINLP) formulation that can be solved via an off-
the-shelf MINLP solver (e.g., SCIP [10]), we need (i) a high-level syntax such
as the RDDL language [15] for specifying all constraints and functions and (ii)
a compilation that can translate any formula in this syntax into the MINLP
language. For example, piecewise functions induced by if-then-else constructs
require use of the big-M trick to encode conditional constraints, while boolean

4 Buser Say and Scott Sanner

Table 1. (left column) Grammar to recursively generate expression syntax of the
RDDL language [15] extending [14] to nonlinear expressions in the last four rows. E1

and E2 belong to the same language as E and are acyclic. (middle column) Conditions
on grammar rule application. (right column) MINLP compilation of the grammar rule:
every RDDL expression E is represented by an MINLP variable vE that evaluates to
the value of that expression ({0, 1} if boolean). M is a large constant.

Expression Condition Constraints

E → k k is a constant vE = k
Eb → > (or ⊥) vEb = 1 (or 0)
Eb → p p is state or action variable vE = vp
E → ∧ni=1E

i
b ≡ ∀iEib Eib is a boolean expression nvE ≤

∑n
i=1 vEi

b
≤ n− 1 + vE

E → ∨ni=1E
i
b ≡ ∃iEib Eib is a boolean expression vE ≤

∑n
i=1 vEi

b
≤ nvE

E → ¬Eb Eb is a boolean expression vE = 1− Eb, vE , vEi
b
∈ {0, 1}

E → kE1 k is a constant vE = kvE1

E → E1 op E2 op ∈ {+,−} vE = vE1 op vE2

Eb → E1 ≥ E2 Eb is a boolean expression MvEb −M ≤ vE1 − vE2

≤MvEb , vEb ∈ {0, 1}
E → if Eb then E1 Eb is a boolean expression vE1 +MvEb −M ≤ vE

else E2 ≤M + vE1 −MvEb ,
vE2 −MvEb ≤ vE
≤ vE2 +MvEb , vEb ∈ {0, 1}

E → E1 op E2 op ∈ {×,÷} vE = vE1 op vE2

E → exp(E1) vE = evE1

E → log(E1) E1 is a positive expression vE = log(vE1)

E → abs(E1) vE = |vE1 |

expressions in constraints and if-then-else conditions require special encodings
as arithmetic expressions over integers.

In Table 1, we provide a grammar for the (nonlinear) expression syntax of
the ground RDDL language and a compilation of each grammar rule to the SCIP
MINLP format assuming each sub-expression has been recursively compiled.

3.2 Spatial Branch-and-Bound

To solve the compiled MINLP, SCIP uses Spatial Branch-and-Bound (SBB) [11]
– an algorithm based on the divide-and-conquer strategy for solving MINLPs
in the form of min f(x) subject to g(x) ≤ 0 where function f(x) and function
vector g(x) contain nonlinear expressions, and the decision variable vector x can
have continuous and/or discrete domains. The SBB algorithm uses tree search
where branching decisions are made on candidate solutions x̄, and the optimal
value of the objective function f(x̄) is bounded at each search node until a preset
optimality gap is reached.

Metric Hybrid Factored Planning with Constraint Generation 5

0 2 4 6 8 10
x-axis

0

2

4

6

8

10

y-
a
x
is

agent

constraint

obstacle

goal

0 2 4 6 8 10
x-axis

0

2

4

6

8

10

y-
a
x
is

agent

constraint

obstacle

goal

(a) First Iteration (b) Iteration 6

0 2 4 6 8 10
x-axis

0

2

4

6

8

10

y-
a
x
is

agent

constraint

obstacle

goal

0 2 4 6 8 10
x-axis

0

2

4

6

8

10

y-
a
x
is

agent

constraint

obstacle

goal

(c) Iteration 9 (d) Final Iteration 16

Fig. 1. Visualization of iterative plan generation of SCIPPlan for the example hybrid
navigation domain. In the first six iterations, the plan steps π (in red) generated to
reach the goal (in orange) pass through the obstacle (in blue), violating zero-crossing
constraint c3 that is detected during plan simulation. At each iteration, additional
zero-crossing constraints are generated symbolically at the midpoints of each violation
interval (in green) to eliminate these zero-crossings from the solution space of the
master problem. By iteration 9, SCIPPlan starts to converge to a valid plan and by
iteration 16, SCIPPlan returns a valid plan. Note that sometimes there are overlaps of
the position of the agent between time steps (i.e., the agent does not move).

3.3 Illustrative Example

To illustrate how the MINLP compilation and solution works for the metric
factored planning problem, we consider the following simple navigation domain
with (i) three continuous action variables (ax, ay, ∆) ∈ Ac that move the agent ax
and ay in respective x and y directions for duration ∆, (ii) two continuous state
variables (sx, sy) ∈ Sc representing agent location, (iii) and three constraints in

6 Buser Say and Scott Sanner

C:

c1 : 0 ≤ stx + atx∆
t, sty + aty∆

t ≤ 10 ∀t ∈ {1, . . . ,H},
c2 : −1 ≤ atx, aty ≤ 1 ∀t ∈ {1, . . . ,H}, and

c3 : 4 ≥ stx + atx∆
t ∨ 6 ≤ stx + atx∆

t

∨ 4 ≥ sty + aty∆
t ∨ 6 ≤ sty + aty∆

t ∀t ∈ {1, . . . ,H}.

Here, constraints c1, c2 denote bounds on the domains of state variables sx and
sy, and constraint c3 represents an obstacle located in the middle of the maze.
Initial and goal constraints are compiled as follows for H = 4:

I : s1
x, s

1
y = 0, G : sH+1

x , sH+1
y = 8 ,

Given the transition function

T : st+1
x = stx + atx∆

t, st+1
y = sty + aty∆

t ∀t ∈ {1, . . . ,H}

and reward metric Q(st+1,at) = −∆t (minimize total time, a.k.a. makespan),
the SSB solver can return a plan π as visualized by Figure 1 (a). The plan π
passes through the obstacle since the discrete time formalization only checks
constraints at the start and end points of each decision stage; we remedy this
with a hybrid extension in the next section.

4 Metric Hybrid Factored Planning: Πδ

In this section, we define the metric hybrid factored planning problem Πδ by
building on the notation, definitions and the solution methodology presented for
the metric factored planning problem Π. But before we define Πδ, first we need
to distinguish one continuous action variable as the control duration ∆ ∈ Ac to
specify the duration of time step t ∈ {1, . . . ,H} such that 0 ≤ ∆ 2. Similarly, we
update the notation we use for the global constraint function C(st,at, ∆t) and
the state transition function T (st,at, ∆t) to explicitly specify the duration ∆t

of time step t ∈ {1, . . . ,H}. Finally, we need to distinguish the set of boolean
expressions that appear in if-else conditions of the state transition function T as
transition modes M, that is,

T (st,at, ∆t) = if E1
b (st,at, ∆t) then E1(st,at, ∆t)

. . .

elif Enb (st,at, ∆t) then En(st,at, ∆t)

else En+1(st,at, ∆t)

2 In this work, we focus on hybrid planning problems where duration ∆ is completely
controlled by the planner. When there are exogenous events or processes that can
change the total duration of a time step, we need to define a continuous state variable
∆′ ∈ Sc as a function of s,a,∆ such that f(s,a,∆) = ∆′ and transfer zero-crossing
definitions onto ∆′. In this work, we assume ∆ = ∆′ and omit ∆′ for notational
simplicity.

Metric Hybrid Factored Planning with Constraint Generation 7

where E1
b (st,at, ∆t), . . . , Enb (st,at, ∆t) ∈ M. We denote Mδ : S × A×∆→ P (M)

as a function that returns the set of transition modes evaluating to true for given
values of state s̄t and action āt variables and duration ∆̄t for t∈{1,. . .,H} where
notation P (S) denotes the power set of S.

Definition 1. (Zero-Crossing Certificate): Given the values of state s̄t and ac-
tion āt variables and duration 0 < ∆̄t for t ∈ {1, . . . ,H}, we say xt ∈ (0, ∆̄t) is
a zero-crossing certificate for time step t if at least one of the following holds:

1. Global Constraint Violation: C(s̄t, āt, xt)= false,
2. Mode 3 Switch: Mδ(s̄t, āt, xt) 6= Mδ(s̄t, āt, ∆̄t).

Given the definition of the zero-crossing certificate, the metric hybrid factored
planning problem is a tuple Πδ = 〈S,A,C,Cδ, T, I,G,Q〉 where Cδ : S × A ×
∆ → {true, false} is a function defined as Cδ(st,at, ∆t) = true if and only
if there does not exist xt ∈ (0, ∆t) that is a zero-crossing certificate. Given a
planning horizon H, a plan πδ = 〈ā1, ∆̄1 . . . , āH , ∆̄H〉 to Πδ is a plan π to Π
where Cδ(s̄t, āt, xt) = true for all xt ∈ (0, ∆̄t) and t∈ {1,. . .,H}. Note that the
definition Πδ extends deterministic RDDL [15] to continuous time and allows
instantaneous continuous actions Ac ⊆ A that are not functions of time. Unlike
the PDDL+ [6] formalism, we do not assume that the effects of instantaneous
actions are realized ε time after their execution.

5 Solving Πδ with Constraint Generation

In this section, we introduce our novel SCIP-based planner (SCIPPlan) to plan
in metric hybrid planning problems with nonlinear dynamics. But before we
outline SCIPPlan, we first need to define the zero-crossing interval.

Definition 2. (Zero-Crossing Interval): Given the values of state s̄t and action
āt variables, and the duration 0 < ∆̄t of time step t ∈ {1, . . . ,H}, a zero-crossing
is an interval |Lxt1, xt2|R where |L ∈ {[, (} and |R ∈ {],)} if and only if:

1. Non-empty: 0 < xt1 ≤ xt2 < ∆̄t such that if xt1 = xt2 then |Lxt1, xt2|R is not an
open interval (xt1, x

t
2), and

2. Uninterrupted and Contiguous: ∀x ∈ |Lxt1, xt2|R where x is a zero-crossing
certificate.

The novelty of SCIPPlan is that it decomposes Πδ into a master problem
M(Π,H) and a subproblem S(π, ε), whereM(Π,H) solves the metric factored
planning problem Π for a given horizon H using a SBB solver, and S(π, ε) checks
whether π is also a plan for Πδ using a domain simulator with respect to a time
discretization parameter ε. If π is not a plan for Πδ, S(π, ε) returns the first
zero-crossing interval |Lxt1, xt2|R with minimum time step t ∈ {1, . . . ,H}, and a
temporal constraint is added back to the master problem M(Π,H) to update
either function C or T , depending on whether the zero-crossing is due to a global
constraint violation or a mode switch, respectively.

3 The concept of a mode is analogous to its counterpart in the field of Hybrid Au-
tomata [8].

8 Buser Say and Scott Sanner

5.1 Master Problem

The master problem M(Π,H) solves the metric factored planning problem Π
for a given horizon H, using the compilation presented for Π in the MINLP
formulation of (1) assisted by complex expression compilation of Π to MINLP
form provided in Table 1. We optimize the MINLP in (1) using the SCIP SBB
solver [10].

5.2 Subproblem

Given a plan π for Π and a discretization parameter ε, the subproblem S(π, ε)
uses a domain simulator to check for a zero-crossing certificate by simulating the
state transition T sequentially b ∆̄

t

ε c times for all time steps t ∈ {1, . . . ,H} such

that T (s̄t, āt, ε) . . . T (s̄t, āt, εb ∆̄
t

ε c). If a zero-crossing certificate is found, S(π, ε)
returns (i) the first zero-crossing interval |Lxt1, xt2|R with minimum time step
t ∈ {1, . . . ,H} such that there does not exist another zero-crossing certificate
xt ? xt1 found by S(π, ε) where the relational operator ? is < (i.e., greater) if
|L = [(i.e., minimum bound of the interval is closed) and ≤ (i.e., greater or
equal to) otherwise, and (ii) the set of compilation constraints gt that cause the
zero-crossing interval |Lxt1, xt2|R.

Precisely, the zero-crossings due to (i) global constraint violation can be
mapped to a set of compilation constraints representing the global constraint
function C (as presented in the Illustrative Example Revisited section). Zero-
crossings due to (ii) mode switch can be mapped to a set of boolean expressions
Etb and to their respective compilation boolean decision variables vtEb

— these
evaluate to different values within zero-crossing interval |Lxt1, xt2|R compared to
the end of control duration ∆̄t at time step t ∈ {1, . . . ,H}.

5.3 Temporal Constraint Generation

Given the interval |Lxt1, xt2|R identified by the domain simulator for a time step
t ∈ {1, . . . ,H} and the respective set of constraints gt, SCIPPlan generates a
nonlinear constraint

gt(k∆t) ≤ 0, k =
xt2 + xt1

2∆̄t
, (2)

where Constraint 2 symbolically substitutes all ∆t with k∆t. Note that k ∈ [0, 1]
is a constant coefficient representing the ratio of the mid-point of the zero-
crossing interval |Lxt1, xt2|R to the complete duration at time step t. There are
four benefits of our constraint generation methodology: (i) We generate a sym-
bolic 4 constraint ensuring the zero-crossing violation of the current plan is
enforced, while generalizing as a valid constraint for all other plans. (ii) Instanti-
ation of zero-crossing constraints at the violation midpoint is intended to induce a

4 Symbolic refers to the fact that Constraint (2) is a function of decision variables
(i.e., st,at,∆t) whose values are decided at optimization time.

Metric Hybrid Factored Planning with Constraint Generation 9

binary search refinement in the constraint generation process. (iii) SCIPPlan only
generates temporal constraints as needed, thus substantially reducing MINLP
size. (iv) Constraint (2) only perturbs gt by changing its coefficients and not
adding any additional decision variables, thus allowing SBB solvers to reuse in-
formation between iterations (e.g., warm start features). Given the descriptions
of M(Π,H), S(π, ε) and Constraint (2), SCIPPlan is outlined by Algorithm 1.

Algorithm 1 SCIPPlan

1: H← 1, π ← ∅, xt1, xt2, gt ← ∅, ε← small numerical constant
2: while π is ∅ do
3: π ←M(Π,H)
4: if π is ∅ then
5: H← H + 1.
6: else |Lxt1, xt2|R, gt ← S(π, ε)
7: if |Lxt1, xt2|R, gt are ∅ then
8: return π
9: elseM(Π,H)← gt(k∆t) ≤ 0 where k =

xt2+xt1
2∆̄t

5.4 Illustrative Example Revisited

We have previously ended the illustrative example where the master problem
M(Π,H) (i.e., the SSB solver) returned the plan π = 〈ā1

x = 0, ā1
y = 0, ∆̄1 =

0, ā2
x = 1, ā2

y = 1, ∆̄2 = 4, ā3
x = 0, ā3

y = 0, ∆̄3 = 0, ā4
x = 1, ā4

y = 1, ∆̄4 = 4〉 as
visualized by Figure 1 (a). The subproblem S(π, ε) will detect the zero-crossing
interval by simulating the transition function T for all time steps t ∈ {1, . . . ,H}
and detect the first violation of constraint c3 which occurs within the interval
[0, 2] over duration ∆̄4 = 4. Given the identified zero-crossing interval [0, 2] for
time step t = 4 and the violated constraint c3, the following constraint (i.e.,
checking for the obstacle at the midpoint of the zero-crossing)

g4
1 : 4 ≥ s4

x + (0.25)a4
x∆

4 ∨ 6 ≤ s4
x + (0.25)a4

x∆
4

∨ 4 ≥ s4
y + (0.25)a4

y∆
4 ∨ 6 ≤ s4

y + (0.25)a4
y∆

4

will be added to the master problem. As visualized by Figure 1 (b-d), the master
problem would then be re-solved and further constraints will be generated if
needed. Once no zero-crossings are detected in a solution, that plan would be
returned as the final plan πδ in Figure 1 (d).

6 Experimental Results

In this section, we test the computational efficacy of SCIPPlan on three metric
hybrid factored planning problemsΠδ, namely HVAC [1], ComplexPouring [17], [3],

10 Buser Say and Scott Sanner

NavigationJail, against ENHSP [17], and on one metric factored planning
problem Π, namely NavigationMud [16], against TF-Plan [19] 5 with respect
to run time and solution quality. Unless otherwise stated, all domains minimize
total time (i.e., makespan) Q(st+1,at) = −∆t.

6.1 Domain Descriptions

In this section, we describe the benchmark domains in detail. The domains were
chosen to test the capabilities of SCIPPlan on metric optimization, handling
nonlinear transitions and concurrency.

Heating, Ventilation and Air Conditioning is the problem of heating dif-
ferent rooms r ∈ R of a building upto a desired temperature by sending heated
air br. The temperature of a room ht+1

r is bilinear function of its current temper-
ature htr, the volume of heated air sent to the room br, the temperature of the
adjacent rooms htr′ and the duration ∆t of the control input at time step t where
r′ ∈ Adj(r) ⊂ R denotes the set of adjacent rooms to room r. The dynamics of
the domain are described as follows:

ht+1
r = htr +

∆t

Cr
(br +

∑
r′∈Adj(r)

htr′ − htr
Wr,r′

) (3)

for all r ∈ R, t ∈ {1, . . . ,H} where Cr andWr,r′ are parameters denoting the heat
capacity of room r and the heat resistance of the wall between r and r′, respec-
tively. Moreover, the initial and the goal constraints are described as h1

r = Hinit
r

and hH+1
r = Hgoal

r for all rooms r ∈ R where the parameters Hinit
r and Hgoal

r

denote the initial and goal temperatures of the rooms, respectively.

ComplexPouring is the problem of filling buckets b ∈ B upto a desired volume
with the water that is initially stored in the tanks u ∈ U . The volume of a bucket
vt+1
b (or a tank) is a nonlinear function of its current volume vtb (or vtu), volume

of water poured in (and out) from (and to) other tanks and ∆t at time step t.
The dynamics of the domain are described as follows:

vt+1
b = vtb +

→
v
t

b −
←
v
t

b ∀b ∈ B ∪ U (4)

→
v
t

b =
∑
u∈U

∆tptu,b(2Ru
√
vtu −R2

u) ∀b ∈ B ∪ U (5)

←
v
t

b =
∑

u∈B∪U
∆tptb,u(2Rb

√
vtb −R

2
b) ∀b ∈ U (6)

0 ≤ vtb +
→
v
t

b −
←
v
t

b ≤ V max
t
b ∀b ∈ B ∪ U (7)

5 We note that TF-Plan does not handle i) discrete variables, ii) global or goal con-
straints, or iii) support dynamic time discretization, but can handle exponential
transitions and complex metric objectives (e.g., NavigationMud).

Metric Hybrid Factored Planning with Constraint Generation 11

for all t ∈ {1, . . . ,H} where ptb,u ∈ {0, 1} is a binary decision variable denoting

whether tank b pours into bucket (or tank) u at time step t, and Rb and V maxtb
are parameters denoting the flow rate and capacity of bucket (or tank) b, respec-
tively. Further, the initial and the goal constraints are described as v1

b = V initb

for all buckets and tanks b ∈ B ∪ U and vH+1
b ≥ V goalb for all buckets b ∈ B

where the parameters V initb and V goalb denote the initial and goal volumes of
tanks and buckets, respectively.

NavigationJail is a two-dimensional d ∈ {x, y} = D path- finding domain that
is designed to test the ability of planners to handle instantaneous events. The
location of the agent lt+1

d is a nonlinear function (i.e., cubic polynomial) of its
current location ltd, speed vtd, acceleration atd and ∆t at time step t. Moreover,
the agent can be instantaneously relocated to its initial position Linitd for all
dimensions d ∈ D and set its speed to 0 if it travels through a two-dimensional
jail area that is located in the middle of the maze with the corner points Jmind ,
Jmaxd for all d ∈ D. The system dynamics of the domain is described as follows:

l′
t
d = ltd + vtd∆

t + 0.5atd(∆
t)

2 ∀d ∈ D (8)

v′
t
d = vtd + atd∆

t ∀d ∈ D (9)

if ∀d ∈ D Jmind ≤ l′td ≤ Jmaxd (10)

then lt+1
d = Linitd , vt+1

d = 0 ∀d ∈ D (11)

else lt+1
d = l′

t
d, v

t+1
d = v′

t
d ∀d ∈ D (12)

Lmind ≤ l′td ≤ Lmaxd , Amind ≤ atd ≤ Amaxd ∀d ∈ D (13)

for all t ∈ {1, . . . ,H} where (Lmind ,Lmaxd) and (Amind ,Amaxd) are the minimum
and the maximum boundaries of the maze and the control input for dimension
d ∈ D, respectively. The goal of the domain is to find a path from the initial
location Linitd to the goal location Lgoald for all dimensions d ∈ D. The initial

and the goal constraints are described as l1d = Linitd , v1
d = 0, and lH+1

d = Lgoald

for all dimensions d ∈ D, respectively.

NavigationMud is a two-dimensional d ∈ {x, y} = D domain that is designed
to test the ability of planners to handle transcendental functions with general
optimization metrics. The location of the agent lt+1

d is a nonlinear function (i.e.,
exponential) of its current location ltd and positional displacement action ptd at
time step t due to higher slippage in the center of the maze. The system dynamics
of the domain is described as follows:

lt+1
d = ltd − 0.99 + ptd

2.0

1.0 + e−2yt
∀d ∈ D (14)

yt =

√√√√∑
d∈D

(ltd −
Lmaxd − Lmind

2.0
)

2

(15)

Lmind ≤ ltd ≤ Lmaxd , Pmind ≤ ptd ≤ Pmaxd ∀d ∈ D (16)

12 Buser Say and Scott Sanner

0 10 20 30 40 50 60 70 80 90
time

10

12

14

16

18

20

22

te
m
p
e
ra
tu
re

room 1

room 2

0 1 2 3 4 5 6
time

0

10

20

30

40

50

60

70

80

v
o
lu
m
e

tank 1

tank 2

tank 3

tank 4

tank 5

bucket

0 2 4 6 8 10
x-axis

0

2

4

6

8

10

y-
a
x
is

agent

jail

goal

(a) HVAC (b) ComplexPouring (c) NavigationJail

Fig. 2. Visualization of example plans generated by SCIPPlan. The inspection of plan
traces show from left to right: linear, piecewise linear, and nonlinear state transitions
as a function of time. As observed in Table 2, we remark that the nonlinear domain
(right) requires significantly more compute time than the linear (left) and piecewise
linear (middle) domains.

for all t ∈ {1, . . . ,H} where (Pmind ,Pmaxd) are the minimum and the maximum
boundaries of the positional displacement for dimension d ∈ D, respectively.

The objective of the domain is to find a path from the initial location Linitd

that is described by the constraint l1d = Linitd for all dimensions d ∈ D with the

minimum total Manhattan distance
∑
t∈{1,...,H}

∑
d∈D |l

t+1
d − Lgoald | from the

goal location Lgoald over all time steps t.

6.2 Implementation Details

SCIPPlan is a compilation-based planner that consists of the constraints com-
piled from RDDL [15] using the syntax presented in Table 1, RDDLsim domain
simulator [15] and the dynamically generated temporal constraints (2). At ev-
ery iteration, SCIPPlan only adds the set of constraints that correspond to the
first zero-crossing interval, or terminates if the plan is valid with respect to the
discretization parameter ε. In SCIPPlan, we modeled the actions btr and atd from
HVAC and NavigationJail domains as decision variables with continuous do-
mains. In PDDL+, we incremented and decremented the actions as a function
of time with some constant rate z. Further in the NavigationJail domain, we
have modeled the if-else-then statements (10-12) using events in PDDL+ (as op-
posed to using global constraints) since going into the jail location can still lead
to feasible plans. In the HVAC and NavigationJail domains, we tested ENHSP
with relaxed goal settings where the respective equality goal constraints were
relaxed to the following constraints:

Hgoal
r − z ≤ hH+1

r ≤ Hgoal
r + z ∀r ∈ R (17)

Lgoald − z ≤ lH+1
d ≤ Lgoald + z ∀d ∈ D (18)

Metric Hybrid Factored Planning with Constraint Generation 13

Table 2. Comparison of plan quality produced and run times by SCIPPlan (SP),
ENHSP (EP) and TF-Plan (TF) with respect to the given domain metrics. We optimize
both Makespan metric objectives (middle four columns) and General metric objectives
(last column). Lower values indicate better solution quality.

Makespan General

Domain Quality Run Time Run Time

HVAC SP 0 EP 0.1 SP 0 EP 0.1 SP 0

(2,R) 88.00 145.00 ≤ 0.01 1.02 0.02

(2,D) 88.00 145.00 ≤ 0.01 1.02 0.19

Pouring SP 0 EP SP 0 EP SP 0

(3,1) 4.30 11.00 0.10 0.32 0.01

(5,1) 5.51 19.00 1.38 0.41 0.87

(4,2) 7.67 22.00 0.93 0.37 0.58

(9,2) 1.69 10.00 0.90 0.37 0.08

NJail SP 0.05 EP 0.1 SP 0.05 EP 0.1 -

(-1.0,1.0) 13.59 - 281.75 ≥ 1800 -

(-0.5,0.5) 13.63 - 60.94 ≥ 1800 -

(-0.2,0.2) 13.35 - 59.29 ≥ 1800 -

NMud SP 0.05 TF SP 0.05 TF -

(-1.0,1.0) 64.25 65.23 15.46 30.00 -

(-0.5,0.5) 140.35 136.55 232.84 240.00 -

(-0.2,0.2) 800.00 360.38 1800.00 960.00 -

due to the continuous domains of state s ∈ Sc and action a ∈ Ac variables,
and the fact that ENHSP identified these domains to be infeasible with equality
constraints. We tested SCIPPlan under different optimality gap parameters g for
the underlying SBB solver. For both parameter settings z and g, we will use the
notation SPx to report results for SCIPPlan under the optimality gap setting
g = x, and EPx for ENHSP under the rate setting z = x. Finally, when the total
makespan is not minimized, in SCIPPlan we constrained the total makespan by
a large constant such that

∑
t∈{1,...,H}∆

t ≤M .

6.3 Comparison of the Solution Quality and Run Time Performance

In Table 2, we compare the quality of plans produced and the run times of
SCIPPlan, ENHSP and TF-Plan with respect to the chosen optimization metric
under the best performing parameter settings. From left to right, the first column
of Table 2 specifies the domains and problem instances solved. The second and
third columns present the optimal makespan found by the respective planners.
The fourth and firth columns present the computational effort that is required
to produce the metrics presented in the second and third columns. The sixth
column presents the running time (seconds) that is required to optimize the
general metric variants of the original domains.

14 Buser Say and Scott Sanner

6.4 Computational Performance

In this section, we investigate the efficiency of using SCIPPlan for solving metric
hybrid factored planning problems in nonlinear domains. We ran the experiments
on MacBookPro with 2.8 GHz Intel Core i7 16GB memory. We optimized the
nonlinear encodings using SCIP 4.0.0 [10] with 1 thread, and 30 minutes total
time limit per domain instance.

Comparison of solution qualities The detailed inspection of the columns
associated with solution quality shows that SCIPPlan can successfully find high
quality plans in almost all the instances with optimality gap parameter g ≤ 0.05,
except the largest domain NavigationMud (-0.2,0.2). In contrast, we observe
that in HVAC and ComplexPouring domains, ENHSP can find plans with on av-
erage 60% lower quality compared to SCIPPlan. Moreover in NavigationJail

domain, neither EP 0.1 nor EP 0.01 found feasible plans within time limit. In
NavigationMud domain, we tested the scalability of SCIPPlan against TF-Plan.
We found that SCIPPlan is competitive with TF-Plan with respect to the solu-
tion quality of the plans found in the small and medium size instances, whereas
the large instance NavigationMud(-0.2,0.2) is hard to optimize (i.e., the plan
does not contain actions other than no-ops) for SCIPPlan. We note that unlike
TF-Plan, we currently do not leverage parallel computing, which is one of the
main strengths of Tensorflow to handle large scale optimization problems. In Fig-
ure 2, we visualize the plan traces to get a better understanding of what makes
a domain hard in terms of plan computability. The inspection of plan traces
shows from left to right: linear, piecewise linear and nonlinear state transitions.
Together with the computational results presented in Table 2, we confirm that
domains with nonlinear state transitions (e.g., NavigationJail) are significantly
computationally harder compared to linear (e.g., HVAC) and piecewise linear
(e.g., ComplexPouring) domains.

Comparison of run time performances The inspection of the last three
columns shows that SCIPPlan finds high quality plans with little computational
effort in HVAC and ComplexPouring domains, whereas it takes on average 135
seconds and 125 seconds to find high quality plans for NavigationJail and
NavigationMud domains, with the exception of the largest instance NavigationMud
(-0.2,0.2) for horizon H = 50. The benefit of spending computational resources
to provide stronger optimality guarantees is justified in Figure 3, where we plot
the increase in plan quality as a function of optimality gap parameter g. Figure 3
shows that spending more computational resources can significantly improve the
quality of the plan found as the instances get harder to solve.

6.5 General Metric Specifications

Finally, we test SCIPPlan on general metrics of interest in HVAC and ComplexPouring

domains and measure the effect on run time. In the HVAC domain, we modify

Metric Hybrid Factored Planning with Constraint Generation 15

0 20 40 60 80 100
optimization parameter g

10

12

14

16

18

20

pl
an

 m
et
ric

 (m
in
im

iza
tio

n)

NJail(-1,1)
NJail(-0.5,0.5)
NJail(-0.2,0.2)

Fig. 3. The increase in plan quality (lower is better for minimization) as a function of
optimality gap parameter g for SCIPPlan on NavigationJail domain.

the metric to minimize the total cost
∑
t∈{1,...,H}

∑
r∈R crb

t
r of heating all rooms

r ∈ R of a building for all time steps where the parameter cr denotes the unit
cost of heating room r ∈ R. Similarly in ComplexPouring domain, we minimize
the total number of times we pour from one tank to the bucket (or other tanks)
across all time steps such that

∑
t∈{1,...,H}

∑
u∈U

∑
b∈B∪U p

t
u,b. The results pre-

sented in the last column of Table 2 show that the performance of SCIPPlan is on
average the same for general metric optimization and makespan optimization.
As demonstrated in NavigationMud and modified HVAC and ComplexPouring

domains, SCIPPlan finds high quality plans with respect to general metric spec-
ifications.

7 Conclusion

In this paper, we presented a novel SCIP-based planner (SCIPPlan) that can
plan in metric hybrid factored planning domains with nonlinear transcendental
functions such as exponentials and instantaneous continuous actions. In SCIP-
Plan, we leveraged the spatial branch-and-bound solver of SCIP inside a non-
linear constraint generation framework where candidate plans are iteratively
checked for temporal infeasibility using a domain simulator, and the sources of
infeasibilities are repaired through a novel nonlinear constraint generation al-
gorithm. Experimentally, we have shown that SCIPPlan can plan effectively on
a variety of domains and outperformed ENHSP in terms of plan quality and
run time performance. We have further shown that SCIPPlan is competitive
with the Tensorflow-based planner (TF-Plan) in highly nonlinear domains with
exponential transitions and general metric specifications.

16 Buser Say and Scott Sanner

References

1. Agarwal, Y., Balaji, B., Gupta, R., Lyles, J., Wei, M., Weng, T.: Occupancy-
driven energy management for smart building automation. In: ACM Workshop on
Embedded Sensing Systems for Energy-Efficiency in Building. pp. 1–6 (2010)

2. Boutilier, C., Dean, T., Hanks, S.: Decision-theoretic planning: Struc-
tural assumptions and computational leverage. JAIR 11(1), 1–94 (1999),
http://dl.acm.org/citation.cfm?id=3013545.3013546

3. Bryce, D., Gao, S., Musliner, D., Goldman, R.: SMT-based non-
linear PDDL+ planning. In: 29th AAAI. pp. 3247–3253 (2015),
http://dl.acm.org/citation.cfm?id=2888116.2888168

4. Cashmore, M., Fox, M., Long, D., Magazzeni, D.: A compilation of
the full PDDL+ language into SMT. In: ICAPS. pp. 79–87 (2016),
http://dl.acm.org/citation.cfm?id=3038594.3038605

5. Coles, A.J., Coles, A.I., Fox, M., Long, D.: COLIN: Planning with continuous linear
numeric change. JAIR pp. 1–96 (2012)

6. Fox, M., Long, D.: Modelling mixed discrete-continuous domains for planning.
JAIR 27(1), 235–297 (2006), http://dl.acm.org/citation.cfm?id=1622572.1622580

7. Fox, M., Long, D., Magazzeni, D.: Plan-based policies for efficient multiple battery
load management. CoRR abs/1401.5859 (2014), http://arxiv.org/abs/1401.5859

8. Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable
about hybrid automata? In: Proceedings of the Twenty-seventh An-
nual ACM Symposium on Theory of Computing. pp. 373–382. ACM,
New York, NY, USA (1995). https://doi.org/10.1145/225058.225162,
http://doi.acm.org/10.1145/225058.225162

9. Löhr, J., Eyerich, P., Keller, T., Nebel, B.: A planning based frame-
work for controlling hybrid systems. In: ICAPS. pp. 164–171 (2012),
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS12/paper/view/4708

10. Maher, S.J., Fischer, T., Gally, T., Gamrath, G., Gleixner, A., Gottwald, R.L.,
Hendel, G., Koch, T., Lübbecke, M.E., Miltenberger, M., Müller, B., Pfetsch, M.E.,
Puchert, C., Rehfeldt, D., Schenker, S., Schwarz, R., Serrano, F., Shinano, Y.,
Weninger, D., Witt, J.T., Witzig, J.: The scip optimization suite 4.0. Tech. Rep.
17-12, ZIB, Takustr.7, 14195 Berlin (2017)

11. Mitten, L.G.M.: Branch-and-bound methods: General formulation and properties.
Operations Research 18(1), 24–34 (1970), http://www.jstor.org/stable/168660

12. Penna, G.D., Magazzeni, D., Mercorio, F., Intrigila, B.: UPMurphi: A tool
for universal planning on PDDL+ problems. In: ICAPS. pp. 106–113 (2009),
http://dl.acm.org/citation.cfm?id=3037223.3037238

13. Piotrowski, W.M., Fox, M., Long, D., Magazzeni, D., Mercorio, F.:
Heuristic planning for hybrid systems. In: AAAI. pp. 4254–4255 (2016),
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12394

14. Raghavan, A., Sanner, S., Tadepalli, P., Fern, A., Khardon, R.: Hindsight opti-
mization for hybrid state and action mdps. In: Proceedings of the Thirty-First
AAAI Conference on Artificial Intelligence (AAAI-17). San Francisco, USA (2017)

15. Sanner, S.: Relational dynamic influence diagram language (rddl): Language de-
scription (2010)

16. Say, B., Wu, G., Zhou, Y.Q., Sanner, S.: Nonlinear hybrid planning with deep
net learned transition models and mixed-integer linear programming. In: Pro-
ceedings of the Twenty-Sixth International Joint Conference on Artificial Intel-
ligence, IJCAI-17. pp. 750–756 (2017). https://doi.org/10.24963/ijcai.2017/104,
https://doi.org/10.24963/ijcai.2017/104

Metric Hybrid Factored Planning with Constraint Generation 17

17. Scala, E., Haslum, P., Thiébaux, S., Ramı́rez, M.: Interval-based relaxation for gen-
eral numeric planning. In: ECAI. pp. 655–663 (2016). https://doi.org/10.3233/978-
1-61499-672-9-655, http://dx.doi.org/10.3233/978-1-61499-672-9-655

18. Shin, J.A., Davis, E.: Processes and continuous change in
a sat-based planner. Artificial Intelligence 166(1-2), 194–
253 (Aug 2005). https://doi.org/10.1016/j.artint.2005.04.001,
http://dx.doi.org/10.1016/j.artint.2005.04.001

19. Wu, G., Say, B., Sanner, S.: Scalable planning with tensorflow for hybrid nonlinear
domains. In: Proceedings of the Thirty First Annual Conference on Advances in
Neural Information Processing Systems (NIPS-17). Long Beach, CA (2017)

