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Abstract. Bucket elimination and its approximation extensions have
proved to be effective techniques for discrete optimization. This paper
addresses the extension of bucket elimination to continuous constrained
optimization by leveraging the recent innovation of the extended alge-
braic decision diagram (XADD). XADDs support symbolic arithmetic
and optimization operations on piecewise linear or univariate quadratic
functions that permit the solution of continuous constrained optimiza-
tion problems with a symbolic form of bucket elimination. The proposed
framework is an efficient alternative for solving optimization problems
with low tree-width constraint graphs without using a big-M formulation
for piecewise, indicator, or conditional constraints. We apply this frame-
work to difficult constrained optimization problems including XOR’s of
linear constraints and temporal constraint satisfaction problems with
“repulsive” preferences, and show that this new approach significantly
outperforms Gurobi. Our framework also enables symbolic parametric
optimization whose closed-form solution cannot be computed with tools
like Gurobi, where we demonstrate a final novel application to parametric
optimization of learned Relu-based deep neural networks.

Keywords: bucket elimination, decision diagram, constrained optimiza-
tion, symbolic dynamic programming

1 Introduction

Bucket elimination [2, 7] is a generalized dynamic programming framework that
has been widely applied to probabilistic reasoning problems on graphical models
[8], including cost networks, constraint satisfaction [6], and propositional sat-
isfiability [5]. The application of this framework to combinatorial optimization
problems has been shown to be highly competitive against alternative tech-
niques [16, 14]. In this paper, we propose symbolic bucket elimination (SBE) as
a novel method of solving mixed discrete and continuous constrained optimiza-
tion problems (i.e., covering MILPs and a subclass of MIQPs). SBE critically
leverages recent innovations in the extended algebraic decision diagram (XADD)
that enable the exact representation and manipulation of piecewise linear and
univariate quadratic functions [17]. We show that SBE can outperform Gurobi
on low tree-width constrained optimization problems and that SBE can also
perform symbolic parameteric optimization of learned Relu-based deep neural
networks [15] — something tools like Gurobi cannot do exactly in closed-form.
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2 Background

2.1 Case Representation and Operations

The case statements constitute the foundational symbolic mathematical repre-
sentation that is used throughout this paper and are presented below.

Case Statement The case statement takes the following form:

f =


φ1 : f1
...

...

φk : fk

where φi is a logical formula over domain (b,x) with discrete1 b ∈ Bm and
continuous variables x ∈ Rn, and is defined by arbitrary logical combinations
(∧,∨,¬) of (1) boolean variables in b and (2) linear inequality relations (≥, >
,≤, <) over continuous variables in x. Each φi is disjoint from other φj (j 6= i)
and exhaustively covers the entire domain such that f is well defined. Each fi
is a linear or univariate quadratic function (LUQF) of x, e.g. f1 = x1 + 3x2
or f2 = 5x23 − 2x3 + 1. Only one variable can be quadratic in a case statement
and wherever it occurs it must be univariate, hence given the previous examples
f3 = x1 + 2x3 would be disallowed with f1 and f2 in the same case statement.

Binary Operations For binary operations, the cross-product of logical parti-
tions of each case is taken. For example, the “cross-sum” ⊕ is defined as:

{
φ1 : f1

φ2 : f2
⊕

{
ψ1 : g1

ψ2 : g2
=


φ1 ∧ ψ1 : f1 + g1

φ1 ∧ ψ2 : f1 + g2

φ2 ∧ ψ1 : f2 + g1

φ2 ∧ ψ2 : f2 + g2

Note that the case representation is closed under general conditions for ⊕.

Case Maximization Maximization of two case statements is a piecewise oper-
ator that can be defined easily (e.g., consider the maximum of two hyperplanes):

casemax

({
φ1 : f1

φ2 : f2
,

{
ψ1 : g1

ψ2 : g2

)
=



φ1 ∧ ψ1 ∧ f1 > g1 : f1

φ1 ∧ ψ1 ∧ f1 ≤ g1 : g1

φ1 ∧ ψ2 ∧ f1 > g2 : f1

φ1 ∧ ψ2 ∧ f1 ≤ g2 : g2
...

...

1 For simplicity of exposition, we presume that non-binary discrete variables of cardi-
nality k are encoded in binary with dlog2(k)e boolean variables.
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The casemin operator is defined analogously. We remark that the case repre-
sentation is closed for casemax and casemin for linear φi, ψj , fi, and gj . These
operators are not necessarily closed for LUQF operands since the newly in-
troduced constraints fi > gj may become non-LUQF. However, we can often
eliminate univariate quadratic variables before applying a casemax or casemin.

Case Substitution The case substitution operator defined as σ = (y/g), trig-
gers the substitution of a variable y with a case statement g. Similar to the ⊕
operation, fσ results in a case with conditions as cross-products of case condi-
tions between f and g, and value expressions in f with variable y replaced by
the value corresponding to the case condition in g. As an illustrative example:

fσ =


x < y ∧ z ≤ 0 : x+ v

x < y ∧ z > 0 : x− 2w

y < z ∧ z ≤ 0 : v + z

y < z ∧ z > 0 : −2w + z

, f =

{
x < y : x+ y

y < z : y + z
, g =

{
z ≤ 0 : v

z > 0 : −2w

Maximization/Minimization Over a Variable In symbolic optimization
we will want to maximize over both boolean and continuous variables. For a
boolean max over bi, we simply take the casemax over both instantiations {0, 1}
of bi:

2 f(b\i,x) = maxbi g(b,x) = casemax(g(bi = 0, b\i,x), g(bi = 1, b\i,x)).
Symbolic maximization over a continuous variable xi is a much more involved
operation written as f(b,x\i) = maxxi

g(b,x) and discussed in detail in [20].
This operation is closed-form for LUQF g(b,x) and results in a purely symbolic
case statement for f(b,x\i). Minimization operators are defined analogously.

2.2 Extended Algebraic Decision Diagrams (XADDs)

b

2*x + z <= 10 2*x + z <= 10

y - x >= -2x + z

y - x <= 3

0

y >= -6

0.1

y <= 4

y*y

Fig. 1. Example XADD.
The true branch is solid,
the false branch is dashed.

Due to cross-product operations, a data structure
such as decision diagrams are required to maintain
a tractable case representation. Bryant [4] introduced
the reduced ordered binary decision diagram (BDD)
representing boolean functions; algebraic decision di-
agrams (ADD) [1] extended BDDs to non-boolean
functions. The extended algebraic decision diagram
(XADD) [18] shown in Figure 1 extends the ADD to
allow continuous variables with inequalities for dec-
sions and LUQF expressions for leaves. As for ADDs,
XADDs have a fixed order of decisions from root to
leaf. The standard ADD operations to build a canon-
ical ADD (Reduce) and to perform a binary oper-
ation on two ADDs (Apply) also apply for XADDs.
The XADD can be exponentially smaller than the case
representation (each path from root to leaf is a case partition) and all previous
case operations can be implemented to exploit the DAG stucture of XADDs [20].

2 We use b\i to denote the set b with the variable bi excluded. Similarly x\i denotes
exclusion of xi from x
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3 Symbolic Bucket Elimination

In this section, we introduce our novel framework: symbolic bucket elimination
for continuous constrained optimization. Problems can be specified as follows:

max
b,x

n∑
i=1

Ri(b,x) subject to Cj ∀j ∈ {1, · · · , k} (1)

In our case, the Ri can be LUQF expressions and the Cj are linear constraints.
We translate problems of this form into their symbolic equivalent:

max
b,x

m⊕
i=1

Fi(b,x),where Fi =

{
Ci : 0

¬Ci : −∞
,∀i ∈ {1, . . . , k}. (2)

where m = k+n and for each linear constraint Cj , there is a corresponding linear
case statement Fi(b,x). A maximum value of −∞ for the problem would indicate
that the problem is overconstrained and infeasible. We also note that while a case
representation would require a big-M formulation to handle piecewise, indicator,
and conditional constraints possible in cases, this framework represents all of
these logical constraints natively in the symbolic case form and thus as XADDs.

3.1 Symbolic Bucket Elimination Algorithm (SBE)

We can solve the general optimization problem of (2) by using a fully symbolic
variant of bucket elimination [8] leveraging the case (XADD) representation and
its efficient operations. In bucket elimination, each function Fi is placed into
ordered, variable-specific buckets. Variable ordering is determined by heuristics
that aim to minimize the induced tree-width of the underlying graph [8], with the
restriction that variables appearing on the left hand side of equality constraints
will be ordered such that their representative buckets will be eliminated first.
The rule for bucket assignment is to identify the variable in each function that
appears the latest in the ordering, and place the function in the bucket of the
respective variable. The buckets are then eliminated sequentially in the forward
step. In backtracking, optimal assignments are obtained with an arg max [20]
on the summed function for each bucket. The SBE algorithm is presented in
Algorithm 1. If the objective is minimization, (arg)max replaces (arg)min.

Computational Complexity For bucket elimination over discrete domains,
complexity is bounded by an exponential function of the tree-width of the con-
straint graph [8]. When we extend bucket elimination to continuous domains
using XADD, the complexity is not explicitly tree-width dependent. While a con-
straint with many decision variables may be represented compactly as a piecewise
expression, one can generally only upper bound the number of pieces needed in
a case statement as an exponential function of the number of primitive binary
operations (⊕, casemax) used by bucket elimination. Nevertheless, the XADD
does maintain compact representations much smaller than the worst-case upper
bound and proves to be particularly advantageous when the underlying con-
straint graph has low tree-width, as we show in the experimental results section.
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Algorithm 1 SYMBOLIC BUCKET-ELIMINATION (SBE)

Input: Input XADD functions {F1, . . . , Fm}, a variable ordering d
Output: The optimal objective value and variable assignments

1: Initialization: bucket assignment
2: Assign each input function to an ordered set of buckets: bucket1, . . . , bucketn. Let
fj,p denote a function residing in bucketp that is either an input function, or a
resultant function from a bucket already eliminated

3: Forward Elimination: eliminate each bucket sequentially
4: for p← n down to 1 in ordering d do
5: gp ←

⊕
j fj,p

6: if p is on left hand side of equality constraint: p = cons then
7: hp ← gpσ, where σ = (p/cons) // substitute variable for constraint
8: else hp ← maxxp gp

9: if p > 1 then assign hp to a bucket according to rule (bucket1 if constant)

10: Backtracking : recover optimal variable assignments, x∗

11: for p← 1 up to n in ordering d do
12: x∗p ← arg maxxp

gp(x1 = x∗1, . . . , xp−1 = x∗p−1), x∗ ← x∗ ∪ {x∗p}
13: return h1, x∗

4 Experimental Results

In this section, we demonstrate the computational efficiency and the expressive-
ness of symbolic bucket elimination framework on three distinct problems. First,
we present two problems in which the symbolic bucket elimination framework
outperformed the state of art solver AMPL-Gurobi (7.5.0) with default settings
on a 2.20GHz processor [10]. Second, we present a novel application of symbolic
parametric optimization to Relu-based deep neural networks.

4.1 Problems with XOR Conditional Constraints

Following is a synthetic problem involving constraints combined with XOR (Y):

max

n∑
i=1

ri

where ri = if (xi ≥ xi+1 Y xi+1 ≥ xi+2) then max(xi+1, xi+2)−min(xi+1, xi+2)

else min(xi, xi+1)−max(xi, xi+1),

subject to − 10 ≤ xi ≤ 10,∀i ∈ {1, . . . , n+ 2},−20 ≤ rj ≤ 20,∀j ∈ {1, . . . , n}

In this problem, the reward term in the objective ri is determined by an XOR
conditional expression involving the respective decision variables xi, xi+1, xi+2.

This problem structure is particularly advantageous for the proposed frame-
work due to the small size of the decision diagram for each constraint term, as
well as the sparsity of the constraints. This is illustrated through evaluations
of its runtime performance, with comparisons to that of Gurobi in Figure 2.
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Fig. 2. (a) Comparison of log runtime of SBE vs. Gurobi, with SBE outperforming
Gurobi for n > 4. (b) Non-log runtime for 1 ≤ n ≤ 100 showing SBE is linear in n.
(c) Constraint graph for n = 5, showing the low tree-width nature of this problem.

Symbolic bucket elimination outperforms Gurobi, even at a very small n. The
performance gap becomes significant as n increases — while the runtime for
Gurobi scales exponentially in n, the bucket elimination framework scales lin-
early in n as evidenced in the non-log plot Figure 2(b).

4.2 Temporal Constraint Satisfaction with Preferences

Temporal constraint problems with preferences deal with finding optimal assign-
ments to time events based on preferences [12]. The objective is to optimize the
total preference value, subject to a set of constraints such as ordering of certain
time events, or time delays between events. This class of problems is a combina-
tion of Temporal Constraint Satisfaction Problems [9] with soft constraints [3].
The problem considered is:

min

n∑
i=1

ti + pi

where pi = if (ti ≤ 10(i+ 1)) then ti
2 else (ti − 10n)2,∀i ∈ {1, . . . , n}

subject to 10i ≤ ti ≤ 10(i+ 1) ∨ 10(i+ 2) ≤ ti ≤ 10(i+ 3),∀i ∈ {1, . . . , n}
ti + 10 ≤ ti+1,∀i ∈ {1, . . . , n− 1}, {ti, pi} ∈ R,∀i ∈ {1, . . . , n}

The definition of pi is analogous to the mid-value preference constraint presented
in [12]. The preference value pi is dictated by whether the condition ti ≤ 10(i+1)
is true. If so, then it is preferred for time event ti to occur as close to time 0
as possible, otherwise ti should occur close to time 10n (i.e., the preferences
are “repulsive” and prefer opposite ends of the timeline). The objective is to
minimize the sum of time events ti and preference values pi. The first constraint
is a disjunctive type constraint on time event ti. The second constraint imposes
a gap requirement between time events. We note that although quadratic terms
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Fig. 3. (a) Comparison of log runtime of SBE vs. Gurobi, with SBE outperforming
Gurobi for n > 40. (b) Non-log runtime for 1 ≤ n ≤ 100 showing SBE is linear in n.
(c) Constraint graph for n = 4, demonstrating the low tree-width structure.

appear in the leaves of the representative constraint XADD, decisions will remain
linear throughout SBE as there are no explicit discrete variables to maximize
and therefore no casemax operations to promote quadratic terms into decisions.
The runtime evaluations and problem structure are visualized in Figure 3. As
in the previous example, the runtime for Gurobi scales exponentially in problem
size while SBE scales linearly. SBE outperforms Gurobi for n > 40.

4.3 Symbolic Parametric Optimization of Deep Neural Networks

We demonstrate a novel application of SBE to perform symbolic parametric op-
timization of deep neural networks with rectified linear units (Relu) that are
piecewise linear. Previous work has shown Relu-based deep neural networks
can be compiled into linear constraint optimization programs and solved non-
parametrically with applications in automated planning [19] and verification [11].
In this section, we show promising results for symbolic parametric optimization
on the learned output units, yj(x) of a Relu-based deep network trained on
h(x) by first compiling the constraints and then maximizing yj(x) w.r.t. a sub-
set of the input variables xs using SBE. This results in new symbolic piecewise
functions that represent the maximal deep network output values that can be
achieved for the best xs as a function of the remaining inputs. Such symbolic
parametric (partial) optimization is not possible with Gurobi. The Relu-based
deep network is represented by the following objective, piecewise linear case
statements and constraints implementing the connections and Relu functions:

max
xs⊂{x1,...,xn}

yj ,∀j ∈ {1, . . . ,m}

yj =
∑

i∈{1,...,p}

wi,j,lri,l + bj,l+1,∀j ∈ {1, . . . ,m}
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rj,k = max(
∑

i∈{1,...,p}

(wi,j,k−1ri,k−1) + bj,k, 0),∀j ∈ {1, . . . , p}, k ∈ {2, . . . , l}

rj,1 = max(
∑

i∈{1,...,n}

(wi,j,0xi) + bj,1, 0),∀j ∈ {1, . . . , p}

−10 ≤ xi ≤ 10,∀i ∈ {1, . . . , n}, yj ∈ R,∀j ∈ {1, . . . ,m}
0 ≤ ri,k ∈ R,∀i ∈ {1, . . . , p}, k ∈ {1, . . . , l}
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Fig. 4. Top: Runtime for SBE
for network widths 2-4, depths 4-
7. Bottom: Deep neural network
structure with 2 input units, 1
output unit, width of 3, hidden
layer depth of 2 (n = 2,m =
1, p = 3, l = 2).

where parameters n, m, p and l denote the
number of input units, number of output units,
width (units in a hidden layer) and depth (hid-
den layers) of the network, wi,j,k denotes the
weight between unit i at layer k and unit j,
and bj,k denotes the bias of unit j at layer k.

In Figure 4, we show an example neural net-
work structure and the runtime results of us-
ing SBE to parametrically optimize a network
trained to learn h(x) = x21 + x22 with n = 2,
m = 1 for various width p and depth l. Run-
times are heavily width-dependent since tree-
width grows with the width of a deep net, but
not depth. The SBE eliminates the nodes in
the hidden layers in a backward manner un-
til it reaches the input layer, where the vari-
able x1 is maximized out. We note that for
networks with more than one output, it is pos-
sible with SBE to parametrically optimize on
different sets of xs for the different outputs.
Other types of activation functions (i.e., linear
or step) are also possible, as long as each unit
can be represented as piecewise functions. SBE
applied to deep nets as done here has potential
applications in planning and verification: i.e.,
what is achievable as a function of an input?

5 Conclusion and Future Work

We introduced a novel symbolic bucket elimination (SBE) framework for repre-
senting and solving constrained optimization problems symbolically (and even
parametrically), that can exponentially outperform Gurobi when the underly-
ing constraint graph has low tree-width. In terms of future work, we remark
that previous investigations in the discrete domain using mini-buckets [7] and
heuristic search have demonstrated excellent improvement over exact bucket
elimination [16, 13]. Hence, a promising direction for future work is mini-bucket
extensions of SBE to allow it to scale to higher tree-width constrained optimiza-
tion problems, vastly extending the scope of applicability of SBE.
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