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Abstract

Bayesian Optimisation has received considerable
attention in recent years as a general methodol-
ogy to find the maximum of costly-to-evaluate
objective functions. Most existing BO work fo-
cuses on where to gather a set of samples with-
out giving special consideration to the sampling
sequence, or the costs or constraints associated
with that sequence. However, in real-world
sequential decision problems such as robotics,
the order in which samples are gathered is
paramount, especially when the robot needs to
optimise a temporally non-stationary objective
function. Additionally, the state of the environ-
ment and sensing platform determine the type
and cost of samples that can be gathered. To
address these issues, we formulate Sequential
Bayesian Optimisation (SBO) with side-state in-
formation within a Partially Observed Markov
Decision Process (POMDP) framework that can
accommodate discrete and continuous observa-
tion spaces. We build on previous work using
Monte-Carlo Tree Search (MCTS) and Upper
Confidence bound for Trees (UCT) for POMDPs
and extend it to work with continuous state and
observation spaces. Through a series of experi-
ments on monitoring a spatial-temporal process
with a mobile robot, we show that our UCT-
based SBO POMDP optimisation outperforms
myopic and non-myopic alternatives.

1 INTRODUCTION

Bayesian Optimisation (BO) [1, 6, 10] is a global optimi-
sation technique that has recently gained popularity in the
machine learning community. BO possesses major advan-
tages when used to find the maximum of partially observed
objective functions that are costly to evaluate, lack gradient
information, and can only be inferred indirectly from noisy

observations. BO is robust to this setting because it builds
a statistical model over the objective. More specifically, it
places a prior over the space of functions and combines it
with noisy samples to produce an incremental prediction
for the unknown function. The prior usually takes the form
of a Gaussian Process (GP) [15], which has proved suc-
cessful in modelling spatial-temporal data [4, 9, 17]. The
key component for the effectiveness of BO is the use of
an Acquisition Function (AF) that guides the search for the
optimum by selecting the locations where samples are gath-
ered based on the posterior in each iteration.

BO can be readily applied to scenarios where the objective
function does not vary in time and sampling locations can
be chosen freely within the input domain. In real-world
robotics applications, functions are likely to change with
time [11] indicating that when to sample is as important
as where to sample. Another important aspect in realistic
settings is that the state of the environment and sampling
platform determines the reachable space for gathering the
next sample. Combined, these issues create an imperative
for finding optimal sequences of sampling locations.

Most of the existing work focuses on myopic decision-
making by evaluating one-step lookahead for objective
sampling. Non-myopic solutions have been proposed in
[5, 12], but the authors acknowledge they are considerably
expensive to evaluate and do not account for possible side-
state presence due to external conditions. An optimal so-
lution to non-myopic decision-making with side-state can
be formalised in the Partially Observed Markov Decision
Process (POMDP) framework. The key here is to consider
the state as a tuple, consisting of the unknown function and
the state of a sensing robot. However, this leaves open
the question of how one can efficiently solve the resulting
POMDP.

The online setting for POMDP planning has received in-
creased attention in recent years for helping overcome per-
ceived efficiency limitations of POMDP solutions [16].
Silver and Veness [18] show how to use UCT for large
POMDPs, however, this does not extend to continuous ob-
servations (without sampling). Porta et al [14] present



Point-Based Value Iteration (PBVI) for continuous state,
action and observation POMDPs, however, this approach
aims for a closed-form value function that generalises over
all states, which can only be computed in more restricted
cases than the general sequential BO POMDP framework
we would like to propose in this work. A first connection
between BO and POMDPs has been noted by [20], that
solved the two-step lookahead without any efficient strate-
gies, or considering the side-state as we do. In this work
we intend to build on both [18] and [20] to apply UCT to
a general POMDP formulation of SBO with side-state and
continuous observations.

We begin by briefly describing Gaussian Processes (GPs),
BO and POMDPs. We show the connections between SBO
and POMDPs, followed by possible online solutions for
multi-step lookahead in POMDPs that aim to provide an
optimal sequence of sampling locations. In section 4 we
evaluate our model for spatial-temporal monitoring prob-
lems that clearly demonstrate the benefits of our UCT al-
gorithm for non-myopic SBO optimisation.

2 BACKGROUND

We start with a brief description of Gaussian processes as
the underlying regression technique for Bayesian optimi-
sation. We then describe BO and define notation for our
POMDP formulation.

2.1 GAUSSIAN PROCESSES

A GP is a collection of random variables with a joint Gaus-
sian distribution. A GP places a Gaussian prior over the
space of functions and is completely defined by a mean
function, m(x), and a positive semi-definite covariance
function k(x,x′), where x is an input in a D dimensional
space, x ∈ RD. A latent noisy function f can be repre-
sented as f(x) ∼ GP(m(x), k(x,x′)). Further, we assume
an additive noise model y = f(xi) + ε for noisy observa-
tions y from f , where ε iid∼ N

(
0, σ2

n

)
is an independent

Gaussian noise.

Given a set of N training inputs X = {xi}Ni=1 and cor-
responding outputs y = {yi}Ni=1 we can calculate the
predictive distribution of f at an unknown query location
x? by computing the posterior p(f(x?)|y, X,x?). For
a GP, this predictive distribution is Gaussian, f(x?) ∼
N
(
f̄?, cov(f?)

)
, where

f̄? = K(x?, X)K−1
X (y −m(X)) ,

cov(f?) = K(x?,x?)−K(x?, X)K−1
X K(X,x?) ,

(1)
and K(A,B) is a covariance matrix whose element (i, j)
is calculated as ki,j = k (xi,xj), with xi ∈ A and xj ∈ B.
KX = K(X,X) + σ2

nI is the covariance matrix between
observations, with identity matrix I .

The parameters of the mean and covariance functions can
be estimated automatically by maximising the marginal
likelihood of the data [15]. Since we will be dealing with
space-time inputs, x can be represented by space and time
components, covariance functions can be separable [19]
and learn periodic patterns [15, 21].

2.2 BAYESIAN OPTIMISATION

BO is an optimisation technique for finding the optimum
x̂ ∈ RD of an unknown, costly to evaluate and noisy func-
tion f : RD → R,

x̂ = arg max
x

f(x). (2)

In this setting f is not directly observable but we have avail-
able noisy samples from f , i.e. the ith observation can be
seen as yi = f(xi) + ε, where ε iid∼ N

(
0, σ2

n

)
is the noise

associated to each independent observation. BO uses a GP
to model f which is incrementally updated at every itera-
tion, as new observations become available. The benefit of
this approach is that for every optimum candidate location
we can evaluate an analytical expression for the expected
value of f and its variance (Equation 1). This informa-
tion is used by an Acquisition Function (AF), h(x), whose
purpose is to guide the search for the optimum. At each
iteration, one sample is gathered from f at a location se-
lected by maximising h(x), which is a simpler and faster
optimisation procedure (compared to the original problem
of optimising f ). Algorithm 1 presents the BO algorithm.

Algorithm 1 Bayesian Optimisation

Inputs: f , h
Outputs: x̂, f(x̂)

for j = 1, 2, 3, . . . {Max iterations} do
Find xj = arg maxx h(x)
yj ← f(xj) . Gather sample from f
Augment training set with (xj , yj).
Update GP
if yj > µ(x̂) then

x̂← xj . Update location of optimum
end if

end for

Many AFs have been proposed on the literature [6–8,
12]. In this paper we use the Upper Confidence Bound
(UCB) [3] acquisition function, however, none of the al-
gorithms presented here are strongly linked to this specific
AF.

2.3 PARTIALLY OBSERVABLE MDPs

POMDPs are a unified framework for sequential decision
making under uncertainty when the state is not directly ob-



servable. A POMDP is fully represented by the following
tuple 〈S,A, T,R, Z,O〉, where:

• S : Set of states {s1, s2, . . . , sn} .

• A : Set of actions {a1, a2, . . . , an}.

• T : S × A × S → [0, 1] is a transition function that
represents the probability of transition between states
s and s′ when executing action a, i.e. T (s, a, s′) =
p(s′|s, a).

• R : S × A→ R is a reward function that encodes the
reward of executing action a on state s, i.e. R(s, a).

• Z : Finite set of observations {z1, z2, . . . , zn}.

• O : S × A × Z → [0, 1] is a observation function
that represents the probability of observing o if action
a is executed with resulting state s, i.e. O(o, a, s) =
p(o|a, s).

In POMDPs, it is well-known that a belief state summarises
all relevant information in the observation history of a
POMDP. Given a belief state bt−1(s), the belief at time t
can be updated as:

bt(s
′) ∝ P (o|s′)

∫
bt−1(s)P (s′|s, a)ds. (3)

where b0(s) = p(s) represents the initial belief state.

Solving a POMDP is equivalent to determining a policy π?

mapping belief states to actions which maximizes some ob-
jective criterion. An optimal policy over an infinite horizon
can be found by maximising the expected cumulative dis-
counted reward rt (for discount γ ∈ (0, 1]) at time step t
when executing π starting from belief state b0 := b0(s),

π? = arg max
π

E

[ ∞∑
t=0

γt · rπt |b0
]
. (4)

3 SEQUENTIAL BAYESIAN
OPTIMISATION

With the definitions above we can now extend BO to a
sequential setting. In order to apply BO to more realistic
problems we expand the existing theory to a more generic
framework and include the notion of state in the definition
of the problem. This means that at every step a generic re-
ward, r, can be obtained by sampling at x. This reward
depends on the state x of a mobile robotic sensor and the
expected value of the objective function f(x). In the gen-
eral case, because gathering each sample has an associated
reward, the order in which they are gathered has a direct
influence over the total accumulated reward for a specific
lookahead. We call this kind of optimisation technique Se-
quential Bayesian Optimisation (SBO).

D0 D1 · · · Dn

x? x2 xn

f? f2 fn

r? r2 rn

Figure 1: Bayesian network representation for SBO.

Sampling locations and their associated observations are
grouped in D, which is built incrementally as shown in
Figure 1. Using a similar treatment to plain BO, the my-
opic expectation of the reward r (ER), can be obtained by
marginalising out all unknown outcomes,

ER(x?|D0) = Ef? [r(x?, f?|D0)] (5)

=

∫
r(x?, f?|D0)p(f?|x?,D0)df? . (6)

The n-step lookahead expression is given by

ERn(x?|D0)

=

∫
· · ·
∫ (

r(x?, f?|D0) +

n∑
i=2

(r(xi, fi|Di−1))

)
p(f?|x?,D0)×

n∏
i=2

p(fi|xi)p(xi|Di−1)

df?df2 · · · dfndx2 · · · dxn ,
(7)

where we are marginalising out all future outcomes
(f?, f2 . . . fn) and locations (x2 . . .xn). This expression
has been derived in [12], however, it presents a slight mod-
ification because we are considering the whole sequence of
locations for reward calculation, not just the expected im-
provement for the last sample. It is important to note that
within the BO algorithm, ER can be seen as the acquisition
function h(x) for selecting sampling locations. ER needs
to be maximised w.r.t. x? in each iteration of the algorithm.

In real robotic deployments, decisions {xi} can be repre-
sented as continuous paths followed by the robot. We rep-
resent these paths as parametrised curves, C, over the input
space, with each curve characterised by a set of parame-
ters Θ. The following expression shows the expected re-
ward for traversing a path with parameters Θ?, and looking
ahead for n steps, i.e. considering n paths in the future and



integrating all possible rewards,

ERn(Θ?,D0)

=

∫
f?

∫
f2

...

∫
fn

∫
Θ2

...

∫
Θn(

r(CΘ? |DN−1) +

n∑
i=2

r(CΘi
|Di−1)

)
p(f?|Θ?,DN−1)

n∏
i=2

p(fi|Θi,Di−1)p(Θi|Di−1)

df?df2 · · · dfndΘ2 · · · dΘn

(8)
In this expression we are marginalising out all possible
observations and paths for n steps. Unfortunately, given
the infinite number of possible paths, this integral does not
have an analytical solution and can only be approximated.
In the following section we illustrate how SBO can be rep-
resented in a POMDP formulation and solved using online
decision making POMDP solvers.

3.1 SBO AS ONLINE POMDPs

Our SBO formulation is state-aware, i.e. it considers the
state of a mobile robot for decision making. This prob-
lem can be formulated as a POMDP problem in a similar
manner as described in [20] for regular BO. The main idea
is to include the objective function, which is partially ob-
servable, together with the state of the robot, into the state
definition. We assume the robot’s pose is fully observable
and part of the state as side information p. The decision of
where to sample f is encoded by the action space, which
is limited by the possible actions that can be performed by
the robot. In the discrete case, an action is represented by
moving to a specific cell. For the continuous case an action
means travelling along a continuous path. More formally,
the elements of the POMDP definition for side-state SBO
are:

• S : The state which is a tuple {f,p}, where f is a
latent (not directly observable) function defined over
space and time representing the unknown process.
Additionally, we include the state of the sensing robot,
p, which is fully observable, as the side information.

• A : The parametrised action space a (Θ). The actions
can be described as move according to parameters Θ
and gather a samples from f in the process. For the
discrete sampling case, Θ represents a location in the
spatial domain of f . For the continuous case, Θ are
the parameters of a continuous curve defined over the
domain of f .

• T : The transition function which is defined over
the entire state {f,p}. T ({f,p}, a (Θ) , {f ′,p′}) is
the transition probability of resulting in state {f ′,p′}
given that action a (Θ) was taken at state {f,p}. As-
suming that the robot does not affect or change the

objective function, the joint transition probability can
be decomposed into the product of two independent
transition functions:

T ({f,p}, a(Θ), {f ′,p′})
= Tf (f, a(Θ), f ′)Tp(p, a(Θ),p′)

(9)

Since f is not affected by the actions in A, the transi-
tion function Tf is the identity.

Tf (f, a(Θ), f ′) = δ(f ′ − f). (10)

The transition function Tp depends on the definition
of the action space, and can often be modeled deter-
ministically since robots can navigate with accurate
positioning and path following controllers in many
large-scale outdoor monitoring applications. When
the action space is defined as a location, the action
parameters Θ represent a location, and Tp can be cal-
culated using

Tp(p, a(Θ),p′) = δ(p′ −Θ) (11)

• R : If the objective function f is sampled at Θ then
the expected reward in an SBO POMDP belief state
is the objective value w.r.t. beliefs b(f) minus any
application-specific action cost(p,Θ) associated with
moving from p to Θ:

ER({f,p}, a(Θ)) = Eb(f)[f(x)] + cost(p, a(Θ))
(12)

When the action space is parametrised as locations the
reward can be evaluated directly. However, when the
action space is parametrised by curves, the reward as-
sociated to an action is given by the sum of the rewards
along the curve C:

R({f,p}, C(Θ)) =
∑

x∈C(Θ)

R({f,p}, C(Θ)) ,

(13)
where the sum can be replaced by an integral when the
sensing device allows continuous sampling along the
curve.

• Z : In SBO, objective observations z ∈ R are simply
noisy observations of f(Θ) as defined next.

• O : The observation function is defined according to
the action space parametrisation. When the action
space is defined as a sampling location Θ, f can be
evaluated directly on Θ.

O(z, a(Θ), {f,p}) = p(z|f(x = Θ)) (14)

We observe that for GPs, we can generate z by sam-
pling from a GP marginal for f at location Θ. When
the action space is a curve C, f is evaluated at a num-
ber of sample locations within C. The observation
function for this set of observations {zi} is

O({zi}, C(Θ), {f,p}) =
∏

xi∈C(Θ)

p(zi|f(xi)) (15)



The belief is then the probability distribution over the space
of functions f and updated as described in equation (3). If
the model for f is a GP, the belief update for an action-
observation pair can be computed directly. The action com-
ponent can be ignored for purposes of updating a belief in
f , since as stated earlier, the robot’s physical state does not
affect or change the objective function, it only restricts the
observations that can be made regarding f . Therefore, the
belief update over f is simply computed by adding new
location-observation pairs to the GP training data set.

Next, we present a methodology to solve this POMDP by
sampling a subset of action primitives that the robot can
execute in the environment. Action primitives and maxi-
mum likelihood observation selection are the key points to
approximate Equation 8.

3.2 MCTS AND UCT FOR SBO

MCTS is a popular technique for solving large POMDPs
[2, 18]. This method can turn a tedious search in de-
cision trees into an efficient approximation using Monte-
Carlo samples from the tree. MCTS efficiently searches
reachable beliefs from a given initial belief state and is use-
ful for real-time online planning. Its main advantage over
other techniques, such as Point-Based Value Iteration is
that it does not require the overhead of maintaining alpha-
functions over all states nor choosing the states for which
alpha-functions should be maintained.

[18] have shown how MCTS can reach impressive scalabil-
ity through the use of UCT, which they call POMCP. In this
work we conserve their idea of efficient tree search. How-
ever, we consider the case where the belief update is a GP
update for f and use the maximum likelihood observation,
as it is done by [13]. The maximum-likelihood observation
assumption helps reducing the branching factor of the tree,
which would grow uncontrollably when sampling observa-
tions.

For the SBO problem, each node in the tree consists of a be-
lief representation for f and a side-state p. We define the
ith node by vi. For each action-observation pair, the be-
lief representation b(f) and side state p are updated easily
since b(f) is a GP prior and side-state transitions are de-
terministic and observable. Every new action-observation
simulation creates a new node with the updated belief and
side-state.

The tree is built incrementally starting with an initial node
v0. Figure 2 shows an example of a small tree that has been
expanded partially with two action primitives. Each ellipse
represents a node, that consists of a belief over f , b(f),
and side-state p. A node is expanded by simulating the
outcomes of executing an action. The outcomes (noisy ob-
servations of f ) are the maximum-likelihood observations.
The branching factor of the tree will be the number of ac-

v0
{b0(f),p0}

v1
{b1(f),p1}

v2
{b2(f),p2}

v3
{b3(f),p3}

v4
{b4(f),p4}

a(Θ1)
o(a(Θ1), vo)

a(Θ2)
o(a(Θ2), vo)

a(Θ1)
o(a(Θ1), v2)

a(Θ2)
o(a(Θ2), v2)

Figure 2: Example of a tree with depth 2, partially
expanded from a set of two action primitives.

tion primitives. When a node is expanded, a new node is
created using the updated belief and new side-state.

The first step in each iteration is to find a leaf node candi-
date for expansion/evaluation, which is done inside of the
function TREEPOLICY. This search is guided by the func-
tion BESTCHILD, which uses the statistics stored for each
node (accumulated reward and number of visitations) to se-
lect the most promising child. Starting from the chosen leaf
node, a random action selection is conducted until the max-
imum depth is reached, executed within DEFAULTPOLICY.
The total accumulated reward is then backed up in function
BACKUP, that updates the statistics on all the nodes visited
during the current iteration. Each iteration of the search al-
gorithm simulates a sequence of up to n actions, where n is
the maximum depth. When the iteration loop is completed,
the best action is determined by picking the best child from
the parent node v0. Algorithm 2 shows the full procedure
for building a tree and returning the best immediate action.

4 EXPERIMENTS

In this section we present experiments where a robot at-
tempts to learn the behaviour of a spatial-temporal process
by choosing actions that maximise the expected reward.
We show comparisons for two different problems, includ-
ing one with time dependent behaviour.

For illustrative purposes we simulate 2D functions in space
that can change with time, such that,

f : R3 → R
(x1, x2, t)→ y .

In these experiments, the pose p = (x1r, x2r, θr) of a robot
is the side-state for the SBO formulation and f is the un-
known function to be estimated. The belief b(f) is rep-
resented by a GP using a separable space-time covariance
function [19]. The structure of the GP’s covariance func-
tion can capture periodicity in f from the training data.



Algorithm 2 Monte Carlo Tree Search for SBO

function a? = MCTS(b(f),p, depthmax)
v0 = NEWNODE(b(f),p, rewardmin)
i← 0
while i < {Max MCTS iterations} do

vl ← TREEPOLICY(v0)
r ← DEFAULTPOLICY(vl)
BACKUP(vl, r)

end while
return a? = BESTCHILD(v0)

end function
function vl = TREEPOLICY(a)

v ← v0

while DEPTH(v) ≤ depthmax do
if v has untried actions then

Choose a from untried actions
r ← Simulate a . Simulate Reward
Update b(f) and p.
return vl =NEWNODE(b(f),p, r)

else
v = BESTCHILD(v)

end if
end while
return v

end function
function r = DEFAULTPOLICY(vl)

r ← Get reward accumulated until vl
d← DEPTH(vl)
while d ≤ depthmax do

Select a randomly
Update b(f) and p.
ra ← Simulate a
r ← r + ra
d← d+ 1

end while
end function
function BACKUP(vl, r)

v ← vl
while v 6= v0 do

Increase visited counter for v
Increase accumulated reward for v
v ← PARENT(v)

end while
end function
function vc = BESTCHILD(vp)

V ← Children of vp
for vi ∈ V do

Np ← Visited counter of vp
Ni ← Visited counter of vi
Ri ← Accumulated reward

g(i) =
Ri
Ni

+ κMC

√
2ln(Np)

Ni
end for
vc ← arg max

vi∈V
g(i)

end function
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Figure 3: Motion primitives for a mobile robot.
Axis in km.

Since the robot travels at a certain speed ṗ, the reachable
area for sampling f depends on the side-state p.

The action space A is determined by a set of motion prim-
itives parametrised as 2D cubic splines. A cubic spline C
is a continuous function mapping from R to R2, C(u|Θ) =

[Cx1
Cx2

]
T , with u ∈ [0, 1], defined as

C = Θ
[
u3 u2 u1 1

]T
, (16)

where Θ are the parameters expressed as a 2 × 4 ma-
trix for the 2D case. With appropriate parametrisation,
the curves generate the ten primitives A = {Ci}i=1...10

shown in Figure 3 for p = p0 = (0, 0, 0). For values of
p = (x1r, x2r, θr) the curves are rotated and translated us-
ing translation and rotation matrices. We define a transition
function Tp(p, Ci,p′) = 1 for a cubic spline transformed
from p, with

p′ =

(
Ci(u = 1)x1

, Ci(u = 1)x2
,
∂Cx1

/∂u

∂Cx2
/∂u

∣∣∣∣
u=1

)
.

(17)

Before an action (curve) is selected for execution, the robot
computes the optimal action using the MCTS algorithm
(Algorithm 2). The robot gathers noisy samples from f
along C while the action is being executed.

4.1 STATIC FUNCTION

In the first example, we simulate a static function, with ex-
pression

y = f(x1, x2, t) = e−(x1−4)2e−(x2−1)2

+0.8e−(x1−1)2e−( x2−4
2.5 )

2

+4e−( x1−10
5 )

2

e−( x2−10
5 )

2

,
(18)

where x1 ∈ [0, 5], x2 ∈ [0, 5], and t ∈ [0,∞]. Figure 4
shows a plot for this function, where it is easy to distinguish
two main peaks with different amplitudes. The robot is
initially located at pose p = (0.5, 0.5, 0) and travels at a
fixed speed of 0.2m/s, gathering a sample every 5 minutes.



Figure 4: Static goal function. Axis in km.

We first want to evaluate how the definition of the re-
ward function R within the POMDP context impacts the
action selection properties of the algorithm. We com-
pare four different reward functions based on the UCB ac-
quisition function, r(x) = µ(x) + κσ(x), where κi ∈
{1.0× 106, 200, 20, 10}. It is a well known fact that the
value of κ affects the exploration-exploitation trade off and
this is clearly reflected in the resulting paths followed by
each robot, as shown in Figure 5. The most explorative
path sequence corresponds to κ = 1.0× 106 (Figure 5a)
and the least explorative is κ = 10 (Figure 5d). Between
these two extremes there are intermediate solutions where
exploitation is favoured more strongly for lower values of
κ.

In the next experiment we focus on the depth of the action
selection search, i.e. the number n of lookahead steps for
decision making. This corresponds to the maximum depth
allowed in the search tree. We first evaluated the entire de-
cision tree, which means simulating all the possible combi-
nations of actions. This approach, which we call Full Tree
(FT) strategy, will need |A|n simulations which becomes
impractical quickly. In fact, for this paper we only consider
FT strategies with n ≤ 3. We compare the performance of
FT against MCTS (Algorithm 2) where the number of sim-
ulations is a parameter. Clearly, for a same depth, MCTS is
bounded by FT, however MCTS can find near-optimal so-
lutions much faster. For this reason we were able to exper-
iment with depths up to n ≤ 5. We compare six different
combinations of depth and algorithm type as indicated in
Table 1.

The reward function used for these simulations was r(x) =
µ(x)+1.0× 106σ(x) for all cases. Therefore, the only dif-
ference in action selection is due to the number of looka-
head steps. Figure 6 shows the paths followed by the robot
at t = 2.3 days, when it had already gathered 616 sam-
ples from f . This figure does not show all cases, only the
four most relevant ones. It is interesting to observe that
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(a) κ = 1.0× 106
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Figure 5: Comparison of followed paths for purely explo-
ration behaviour using Full Tree and MCTS-UCT. Axis in
km. Colour scale represents the value of sampled values.

Table 1: Experiment for Depth and Algorithm Type Com-
parison

Id Algorithm Max Depth Iterations

1 FT 1 10

2 FT 2 110

3 FT 3 1110

4 MCTS 3 100

5 MCTS 4 150

6 MCTS 5 400

the search with FT Depth 1 (Figure 6a) has not achieved
a full coverage of the area and is highly susceptible to get
trapped and collide into the edges of the domain, which
is clearly sub-optimal from an exploration point of view.
On the other hand, the FT Depth 2 shows increased cover-
age capability, which is improved further for deeper search
strategies. FT Depth 3 and MCTS Depth 3 show similar
result, with the clear advantage that MCTS requires only
10% of the number of simulations of FT.

We also compare the accumulated reward over time for
each case in Figure 7. This illustrates the advantage of us-
ing a multi-step lookahead strategy in increasing the total
accumulated reward. However, it is not clear the advan-
tage of using higher depths than two, as they do not show a
clear improvement in accumulated reward. The main rea-
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Figure 6: Comparison of paths for purely exploration
behaviour using FT and MCTS-UCT. Axis in km. Colour

scale represents the value of samples.

son behind this is that f does not change over time, thus
making the problem simple enough such that any strategy
with depth greater than 1 would be very close to the optimal
solution.

4.2 DYNAMIC FUNCTION

In this second experiment we use a more complex function
that changes over time,

y = f(x1, x2, t) = e
−
(

x1−2−f1(t)
0.7

)2

e
−
(

x2−2−f2(t)
0.7

)2

,
(19)
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Figure 7: Accumulated reward for static goal function.
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Figure 8: Dynamic goal function within one period. Axis
in km.

with f1(t) = 1.5 sin(2πt), f2(t) = 1.5 cos(2πt), x1 ∈
[0, 5], x2 ∈ [0, 5], and t ∈ [0,∞]. This expression gener-
ates a function where the peak moves over time. The peak
circles clockwise around (x1, x2) = (2, 2) periodically,
with a period of 1 day. The motivation for this example
comes from air pollution monitoring tasks where we are in-
terested in following peaks of pollution through time while
learning how the entire process evolves in space-time. Fig-
ure 8 shows the goal function for 6 time steps within one
period.

Similarly to the previous experiment, the robot is initially
located at pose p = (0.5, 0.5, 0), travels at a fixed speed
of 0.12m/s and gathers a sample every 15 minutes. The
goal in this experiment is to find and follow the maximum
of f over time. Therefore, we select the reward function
r(x) = µ(x) + 10σ(x), which according to Figure 5,
should generate paths concentrated over the maximum val-
ues of f . Ideally, the robot should learn to follow the peak
through time which would be possible for speeds greater
than 0.109m/s. We try the same set of depth-algorithm
pairs as in Section 4.1 and detailed in Table 1. We only
show results for the extreme cases with the purpose of
avoiding clutter in the figures.

Figure 9 illustrates the advantage of using multi-step looka-
head strategies. The first row shows paths for FT Depth 1,
where it can be seen that the robot does not learn how to
follow the peak around a circle within 15 days. The sec-
ond row, MCTS Depth 2, which only does 15 more simula-
tions per iteration than FT Depth 1, the robot is already able
to learn the circular pattern at t = 12 days. With deeper
search strategies, the time required to learn the pattern de-
creases significantly indicating a better exploration and ex-
ploitation solution. In fact, for MCTS Depth 5 the pattern
is learnt in t = 8 days.

Figure 10 shows the benefits of using non-myopic strate-
gies for action selection. The cumulative reward is clearly
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Figure 9: Comparison of followed paths for FT and MCTS-
UCT in a dynamic function. First row shows the paths for
FT, Depth 1; Second row shows the paths for MCTS, Depth
2; Third row shows the paths for MCTS, Depth 5. Colour
scale represents the value of samples.

larger for multi-step lookahead decision making algo-
rithms. The best solution is MCTS Depth 5, that is clearly
superior for the entire duration of the simulation. A steeper
slope for accumulated reward indicates that a method has
learnt how to follow the peak. Then from this plot it is
also clear that FT Depth 1 is not able to capture space-time
dependencies properly.

It is important also to compare FT Depth 2 with MCTS
Depth 2. The fact that FT is an upper bound for MCTS
Depth 2 can be confirmed from Figure 10. In addition, it
can be seen that both strategies accumulate similar rewards,
which is a good indication that MCTS will approximate the
FT solution, even with only 25% of the total tree.

Finally, Figure 11 shows how MCTS prioritises the search
over promising paths. The pose of the robot at this instant
is p = (1.5, 3, 0). Red paths are result of the function DE-
FAULTPOLICY that did not get further explored and blue
paths are the paths present in the tree. In can be seen how
the tree automatically grows towards potentially informa-
tive areas, i.e. where the reward is higher. The green curve
is the best branch of the tree.

5 CONCLUSION

In this paper we proposed formulating the sequential BO
problem as a POMDP. Our main contribution was to de-
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Figure 11: Example of tree built for MCTS Depth 5.

termine a non-myopic decision making solution that max-
imises reward and takes into account the belief of an un-
known space time process and the state of a mobile robot
acting as a sensor. We formulated the solution for the
POMDP analogue of SBO using a modified version of the
UCT algorithm for MCTS, which is a scalable and efficient
way of finding asymptotically optimal decisions.

We demonstrate empirically the advantage of using non-
myopic planning solutions, which becomes especially im-
portant when the objective function dynamically changes
over time.

Even though long-term decision-making under uncertainty
is a very complex problem, we solved it using a scal-
able method that works for realistic scenarios with state-
dependent restrictions and time variation. We believe that
using multi-step lookahead path planning is a convenient
and practical way for solving many robotic problems re-
quiring the accurate representation of real space-time phe-
nomena, such as environment monitoring.
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