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Abstract

Binary decision diagrams (BDDs) are an approach to encoding and rea-
soning with formulae in propositional logic. They have the property that
the representation of any propositional formula is canonical (i.e., two
formulae are equivalent iff they have the same structure under a vari-
able ordering condition that can be easily enforced); this is particularly
useful since tautological and inconsistent formula will reduce to TRUE
and FALSE, respectively. However, in traditional theorem proving and
satisfiability testing, we typically only need to refute a formula (or equiv-
alently determine that it is unsatisfiable). Since BDDs can both directly
prove or refute a formula, they seem to be more powerful than required
for many standard applications. Consequently, we analyze the standard
BDD algorithms and show that they are performing much more compu-
tation than required to provide a refutation. By pruning structure from
the BDD that is unnecessary for refutation, we show how the BDD al-
gorithms can be modified to provide an efficient implementation of di-
rectional resolution. This yields a refutation-complete BDD (RCBDD)
that we implement using CUDD and compare to the original BDD algo-
rithm for satisfiability testing on random 3-SAT formulae. These results
show that RCBDDs are an efficient alternative to BDDs for satisfiability
testing, with RCBDDs generally outperforming BDDs, and only slightly
underperforming BDDs in the remaining cases. The efficiency of RCB-
DDs and the intuitions developed in this paper make them a promising
approach for a wide variety of applications that we discuss in the con-
cluding section.

1 Background

Since the abstract outlines the general structure of the paper, we will immediately delve
into the background material required to understand this paper.

1.1 Binary decision diagrams

Binary decision diagrams (BDDs) were introduced in their most well-known form by
Bryant [1]. BDDs allow one to encode any propositional formula as a reduced, ordered,
directed acyclic decision graph terminating in a TRUE or FALSE terminal node. At each



decision node, the branch corresponding to the variable evaluation is taken (true/false, a.k.a
high/low). Once a BDD terminal node is reached, that node represents the evaluation of
the formula under the given variable assignment.

To maintain a canonical BDD representation that allows one to determine formula equiv-
alence via graph isomorphism, one must maintain a variable order for all decision nodes
and maintain the BDD in reduced form. BDD reduction requires that two properties be
maintained:

1. There are only two distinct terminal nodes TRUE and FALSE and no two distinct
decision nodes have the same high and low branches (these properties can be
maintained via hash tables).

2. Any node having the same child node on its high and low branches is replaced
with its child node.

The first rule amounts to an efficient, non-redundant representation for BDDs. We note
that this rule is not required to show soundness or completeness of BDD-based theorem
proving (where the goal is to directly prove or refute a theorem) but it is required to achieve
a canonical graph otherwise. The second rule performs all of the logicaldeduction. For
insight into the power of this deduction, see Figure 1. In general we note that the BDD
provides an efficient way to store both CNF and DNF formula. In addition, the reduction
rules amount to performing refutation resolution for CNF theories and an analogous rule
for direct-proof in DNF theories.

1.2 Directional resolution

Directional resolution [2] is the bucket elimination algorithm [3] applied to the Davis-
Putnam resolution theorem proving procedure [4]. It essentially amounts to resolving
all clauses containing a variable, eliminating that variable, and propagating all remain-
ing clauses to the next variable in the ordering. As for all bucket elimination algorithms,
this algorithm has worst-case performance that is exponential in tree-width induced by the
variable ordering. An example of directional resolution is given in Figure 2.

2 Refutation-complete BDDs

As noted in Figure 1, the standard BDD algorithms are performing a great deal of unneeded
computation if we are only seeking to show unsatisfiability. Specifically, we need not retain
the CNF representation of any formula that could not possibly be resolved against in the
future. This is the motivation for using variable elimination in the directional resolution al-
gorithm and it can be easily extended to BDDs. We call this extension refutation-complete
BDDs (RCBDDs) since they combine the representation of BDDs with the refutation-
completeness of directional resolution.

2.1 Algorithm

If we examine Figure 2, we see that we can draw a direct correspondence between direc-
tional resolution and BDD algorithms if we note that the CNF formula at each step are
represented by the distinct paths to the FALSE terminal node. The basic BDD algorithm
already takes care of the resolution rule as noted in Figure 1, so we need only add the vari-
able elimination procedure of directional resolution to this process. We can do this easily
by pruning out elimated variables and replacing them with TRUE as demonstrated in Fig-
ure 2. This pruning step does require extra overhead to reduce the RCBDD to canonical
form, but it removes a lot of unnecessary structure that should save a great deal of future
computation.
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(a) Refutation resolution rule:

(b) Factor and simplify (FS) rule:

Figure 1: These diagrams depict how the (a) resolution rule for CNF formulae and the
(b) factor and simplify rule (FS) rule are implemented for DNF formulae via binary de-
cision diagrams (BDDs). We note that BDDs provide an efficient way of encoding CNF
formulae (every path to a

�
terminal node encodes a CNF clause) and they also provide an

efficient way of encoding DNF formulae (every path to a � terminal node encodes a DNF
clause). Consequently, given a CNF or DNF clausal representation of a formula, we note
that the resulting BDD provides an encoding of this information that efficiently represents
redundant structure. Finally, we note that the simplification rules of BDDs effectively im-
plement the resolution rule and the FS rule, thus allowing to both directly prove or refute a
propositional theorem. However, we note that directional resolution [2] can achieve refu-
tation completeness using only the resolution rule. Consequently, our refutation-complete
approach to BDDs will prune out structure unnecessary for refutation resolution, thereby
providing an efficient BDD implementation of directional resolution.

Consequently, we generalize the directional resolution algorithm to BDDs in Figure 3. The
correctness of this algorithm follows from the correspondence between BDDs as an effi-
cient CNF representation and the direct correspondence between the RCBDD operations
and directional resolution on the CNF formulae.

2.2 Implemention

To implement the RCBDD algorithm in Figure 3, we used the Colorado Universiry deci-
sion diagram (CUDD) library developed by Somenzi [5]. This is an extremely efficient C
implementation of binary decision diagrams with a number of optimizations.
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Figure 2: This diagram provides a proof of unsatisfiability for the CNF formulae in (a)
via the (b) clausal form of the directional resolution method and (c) the RCBDD form of
directional resolution. In directional resolution, the variables are eliminated in order with
any resolvents over the eliminated variable passed on to the next step that mentions any of
its variables. Clearly the RCBDD is performing resolution over its representation of the
CNF formula. The main modification of the general BDD algorithm is the replacement of
the eliminated variable with TRUE as demonstrated during the elimination of variable c in
part (c). This pruning effectively removes any residual clauses mentioning the eliminated
variable from the set (remember, the CNF clauses are implicitly encoded as all distinct
paths to FALSE). This procedure is sound and refutation-complete because it is performing
exactly the same operation that directional resolution performs when it discards residual
clauses during variable elimination.



RCBDD-UNSAT
Input: A set � of CNF formulae containing � clauses over � variables.
Output: TRUE if � is unsatisfiable, FALSE otherwise.

1. Generate a total variable ordering over the variables �������	�
��� .
2. Generate a bucket �� for each ��� .
3. For each clause ��� , put it in the bucket corresponding to its variable which

comes first in the total order.
4. for ���������	��� :

(a) Build a BDD (standard algorithm) by conjoining all clauses and other
BDDs from previous steps in bucket � .

(b) If the BDD has reduced to the FALSE terminal node, return TRUE. ( �
is unsatisfiable.)

(c) Replace any remaining � � nodes in the BDD with the terminal FALSE
node, and reduce the BDD (standard algorithm).

(d) Add the BDD to the bucket corresponding to its variable which comes
first in the total order (if this is not the final bucket).

5. return FALSE. ( � is satisfiable.))

Figure 3: The algorithm for performing refutation resolution using BDDs. This is es-
sentially an efficient BDD-based version of the directional resolution algorithm given by
Dechter and Rish [2].

We implemented the RCBDD algorithm by constructing and manipulating BDDs directly
with thethe functions in this library. The only non-standard RCBDD operation was the
variable elimination/pruning. We implemented this step somewhat suboptimally by noting
that pruning out a variable and replacing it with TRUE is equivalent to rotating it to the
top of the variable order and computing the disjunction of its two branches. Performance
could likely be enhanced by a more direct manipulation of the decision diagram structure
for this pruning.

We have not explored the possibility of finding good variable eliminination orderings for
RDBDDs in this paper. However, such work would likely enhance the performance of
RCBDDs since our algorithms are inherently limited by the induced tree-width of the vari-
able ordering [2]. For the time being, we use a static chronological variable ordering.

For comparison purposes, we also implemented a standard BDD CNF theorem prover using
CUDD. This is simply the RCBDD algorithm without the variable elimination/pruning
step.1

The implementation is available upon request. It works for any SAT problem specified in
DIMACS format and there are a number of scripts provided for data and graph generation.

1As a sanity check, we always verified that the original BDD algorithm and the RCBDD algorithm
produced the same satisfiability results over all problems. The two different algorithms agreed on all
problem instances.
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Figure 4: Graphs showing log average running time of satisfiability vs. number of vari-
ables (using random 3-SAT instances) for the original BDD algorithm (solid line) and the
refutation-complete BDD algorithm (dashed line). Times were averaged over 20 differ-
ent randomly generated problems. Problems generated for each graph used a fixed clause
density ratio (given in the graph title) ranging from 0.5 in (a) to 8 in (h). Both algorithms
appear exponential in the number of variables for all density ratios. However, note that for
density ratios less than 4, the refutation-complete BDD is more efficient while for density
ratios greater than or equal to 4, the normal BDD inference algorithm is more efficient.
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Figure 5: Graphs showing the log average running time of satisfiability vs. clause density
ratio (using random 3-SAT instances) for the original BDD algorithm (solid line) and the
refutation-complete BDD algorithm (dashed line). Times were averaged over 20 different
randomly generated problems. Graph (a) used 40 variable problems and (b) used 50 vari-
able problems. Note that the relative difficulty seems to be directly related to the clause
density ratio and is somewhat independent of the number of variables (as expected). As
before, the refutation-complete BDD is more efficient for density ratios less than 4 while
for density ratios greater than or equal to 4, the normal BDD inference algorithm is more
efficient (although not by a large amount). Additionally, it is interesting to note that each
algorithm seems to have a different phase transition point (the clause ration where the so-
lution time transitions from increasing to decreasing difficulty for the algorithm). This is
explained in the results section.

3 Experiments

3.1 Random 3-SAT

We ran experiments on random 3-SAT instances generated according to the framework
discussed in Selman et al. [6]. We used a number of variables in the range � ����������� and
clause to variable ratio (densities) in the range � � � �	��
�� .
While random 3-SAT instances don’t provide a good indicator of real-world performance,
they do provide a good comparison test bed where large numbers of problems can be gen-
erated over a range of problems that vary in the percentage of satisfiable and unsatisfiable
instances as well as their general difficulty. This allows for a comparison of the original
and RCBDD algorithms over a wide range of problems.

3.2 Results

Figure 5 shows the average log running time vs. number of variables over a range of
clause densities. As noted in the caption, there is a performance switch between for clause
densities greater than or equal to 4. At this point, most instances become unsatisfiable
and the RCBDD algorithm incurs extra overhead by performing the pruning step when it
yields only a few pruned nodes. Consequently, the lighter-weight original BDD algorithm
outperforms the RCBDD algorithm on these instances. However, we note that the RCBDD
performance is not terrible in comparison to the difference between the BDD and RCBDD
algorithms on the satisfiable instances where RCBDD drastically outperforms BDD.



Figure 4 shows the average log running time vs. the clause density for two different vari-
able quantities. As noted in the caption, performance is relatively consistent over different
variable quantities. This is expected since the clause density is the primary modulator of
problem difficulty. We see that each algorithm has a distinct phase shift point and that
futhermore, these are different. Since the RCBDD is reaping the benefits of pruning on the
satisfiable instances (low clause density), it is not surprising that the most difficult prob-
lems for the RCBDD tend toward the unsatisfiable (where pruning doesn’t payoff) while
the most difficult problems for the original BDD algorithm occur where a higher percent-
age of the satisfiable instances are found (since the BDD has a lot of unneeded structure
weighing down the algorithm running time).

4 Concluding Remarks

4.1 Achievements

We have introduced a new set of BDD algorithms termed RCBDDs that can be used in place
of BDDs for satisfiability-testing (where only refutation-completeness is required). Our
empirical results show that RCBDDs are an efficient alternative to BDDs for satisfiability
testing, with RCBDDs generally outperforming BDDs, and only slightly underperforming
BDDs in the remaining cases.

4.2 Future work

In presenting this work, we have omitted one major detail. The recent development of
DPLL-style [7] backtracking algorithms augmented with techniques for clause learning
such as Chaff [8] and BerkMin [9] have allowed them to advance far beyond the state-
of-the-art performance of BDDs for satisfiability testing. While this means that binary
decision diagrams (BDDs) are rarely used for general satisfiability testing, there are never-
theless a variety of special cases where BDDs are the algorithms of choice. The presence of
such application domains holds the possibility that the RCBDD algorithms may be applied
to enhance BDD performance in these areas. And additionally, the fact that BDDs are rarely
used for satisfiability testing does not preclude the possibility that they cannot be extended
or combined with other algorithms in ways that overcome their current limitations.

Some of these potential applications are discussed next.

4.2.1 Specialized problem structure

Uribe and Stickel [10] discuss specialized problems such as functional equivalence and
domains with heavy recursive structure where BDDs typically perform well. Given the
advantages of using BDDs in these domains, it is likely that RCBDDs could enhance per-
formance on these problems.

4.2.2 Finite-state automata verification

Problems such as verifying properties of finite-state automata [11] cannot be used with
DPLL algorithms since these algorithms typically have to handle infinite numbers of state
transitions. This can be done efficiently by representing transitions as BDDs and comput-
ing reachability using fixed-point detection and BDD operations. In this case, it may be
possible to apply RCBDDs by regressing faulty states through the transition diagram and
using RCBDD operations to infer unsatisfiability of predecessor states, similar to a BDD
approach described by Gupta et al. [12]. Using RCBDDs in place of BDDs may lead to a
more efficient implementation of property verification in finite-state automata.



4.2.3 Integration with DPLL clause learning

Many of the reasons for the advanced performance of recent DPLL clause learning algo-
rithms stem from the fact that clauses learned from conflicts act as no-goods and allow for
efficient conflict detection and backtracking in DPLL search. In some cases, this clause
learning can yield exponential speedup in DPLL performance [13]. Since one must obvi-
ously store these learned clauses in some data structure, it might make sense to store them
in a BDD since this allows for both efficient CNF/no-good storage (based on our previous
observations) and efficient conflict detection (just traverse the BDD for the current assign-
ment). Furthermore, an RCBDD could be used to perform directional resolution on these
learned clauses, thus increasing the power of clause learning. And when backtracking be-
yond a variable in the currently learned clauses, one can easily use the previous RCBDD
pruning procedure for efficiently simplifying the clause set. Consequently, there are a
number of exciting possibilities for RCBDD storage and inference with learned clauses
that could enhance both the efficiency and reasoning power of the DPLL algorithms.
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