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Abstract
Bayesian approaches to preference learning using
Gaussian Processes (GPs) are attractive due to their
ability to explicitly model uncertainty in users’ la-
tent utility functions; unfortunately existing tech-
niques have cubic time complexity in the number
of users, which renders this approach intractable for
collaborative preference learning over a large user
base. Exploiting the observation that user popula-
tions often decompose into communities of shared
preferences, we model user preferences as an infi-
nite Dirichlet Process (DP) mixture of communi-
ties and learn (a) the expected number of prefer-
ence communities represented in the data, (b) a GP-
based preference model over items tailored to each
community, and (c) the mixture weights represent-
ing each user’s fraction of community membership.
This results in a learning and inference process that
scales linearly in the number of users rather than
cubicly and additionally provides the ability to an-
alyze individual community preferences and their
associated members. We evaluate our approach on
a variety of preference data sources including Ama-
zon Mechanical Turk showing that our method is
more scalable and as accurate as previous GP-based
preference learning work.

1 Introduction
Preference learning has become an important subfield in ma-
chine learning transcending multiple disciplines such as eco-
nomics, operations research and social sciences. A wide
range of applications in areas such as recommender sys-
tems, autonomous agents, human-computer interaction and
e-commerce has motivated machine learning researchers to
investigate flexible and effective ways to construct predictive
preference models from preference observations [Fürnkranz
and Hüllermeier, 2010].

This is a challenging problem since complex relations be-
tween users and their preferred items must be uncovered. Fur-
thermore, flexible and principled ways to handle uncertainty
over the users’ preferences are required in order to balance
what the system knows. To address these challenges, non-
parametric Bayesian approaches based on Gaussian processes

(GPs) [Rasmussen and Williams, 2006] have shown to be
effective in real applications [Chu and Ghahramani, 2005a;
Bonilla et al., 2010; Platt et al., 2002; Xu et al., 2010]. How-
ever, one of the major limitations of preference learning ap-
proaches based on GPs is their cubic time complexity in both
the number of users and items.

While the number of items in many preference prediction
applications may be computationally manageable in a GP
framework, the number of users may be much larger and of-
ten poses the greatest computational challenge. Fortunately, it
is well-known that preferences across a user population often
decompose into a smaller number of communities of com-
monly shared preferences [Postlewaite, 2011].

To exploit community structure in preferences, we pro-
pose a novel mixture model of GP-based preference learning.
While we might first take a finite mixture model approach
to modeling community-based preferences, we note that one
of the most difficult parts of modeling communities is deter-
mining their number. Fortunately, we can exploit the Dirich-
let Process [Müller and Quintana, 2004] framework to build
infinite mixture models where the number of mixture com-
ponents (communities) is inferred automatically. Hence, we
model user preferences as an infinite Dirichlet Process (DP)
mixture of communities and learn (a) the expected number
of preference communities represented in the data, (b) a GP-
based preference model over items within each community,
and (c) the mixture weights representing each user’s fraction
of community membership. This results in a learning and
inference process that scales linearly in the number of users
rather than cubicly and as a side benefit provides the ability
to analyze individual communities of preference while also
learning how user preferences align with each community and
each other.

We evaluate our approach on a variety of data including
human preference data collected from Amazon Mechanical
Turk showing that our method is more scalable than previ-
ous GP-based preference learning and as accurate since it is
able to uncover latent shared-preference community structure
present in our data.

2 GP-based Preference Learning
In this section, we briefly review the multi-user Gaussian Pro-
cess based framework for Bayesian preference learning orig-
inally proposed by [Bonilla et al., 2010] before modifying it



to a Dirichlet Process mixture in Section 3.
Let U = {u1,u2, . . . ,un} be a set of n users and let

X = {x1,x2, . . . ,xm} be a set of m items and denote
the set of observed preferences of each user u ∈ U with
Du = {xi � xj} where 1 ≤ i ≤ m and 1 ≤ j ≤ m. Given
the preferences Du for u, satisfaction of the von Neumann-
Morgenstern axioms [Neumann and Morgenstern, 1944] jus-
tify the existence of utilities fui ∈ R for each item xi ∈ X
s.t. xu

i � xu
j ∈ Du iff fui > fuj . In order to model the distri-

bution over these utilities, we denote a latent utility vector f
for all users and items with f = [fu1

1 , fu1
2 , . . . , fun

m ]T . Then,
we can define the likelihood over all the preferences given the
latent functions as:

p(D|f , α) =
∏
u∈U

∏
xi�xj∈Du

p(xi � xj |fui , fuj , α) (1)

with p(xi � xj |fui , fuj , α) = Φ

(
fui − fuj

α

)
, (2)

where Φ(x) =
∫ x
−∞N (y)dy andN (y) is a zero-mean Gaus-

sian distribution with unit variance and α ∈ R is the discrimi-
nal dispersion hyperparameter (indicating how strongly users
discriminate differences of utility) as specified in Thurstone’s
model of comparative judgment [Thurstone, 1959].

In this model, p(f |K) is the prior over the latent utilities f
and is defined via a GP with zero-mean function and a covari-
ance matrix K that factorizes over users and items [Bonilla et
al., 2010]. Therefore:

p(f |K) = N (f ; 0,K), K = Ku ⊗Kx, (3)

where K is a kernel matrix composed of the Kronecker prod-
uct of the kernel matrix over the users Ku and the kernel ma-
trix over the items Kx. One interesting feature of this model
is the inherent transfer of preferences across users through
the correlated prior (which can be learned through hyperpa-
rameter optimization of K), intended to help the prediction
generalize to users u for which few preferences are recorded
in Du.

The posterior of the latent utility function f for each user
and item given all the preferences is:

p(f |D,K, α) =
1

Z
p(f |K)p(D|f , α), (4)

with Z being the normalizer. This posterior is analytically
intractable due to the non-Gaussian nature of the likelihood,
requiring approximation as detailed in [Bonilla et al., 2010].
What is simply critical to note for the purposes of this paper
is that prediction with this Gaussian Process model requires
a matrix inversion of dimensions equivalent to K (i.e., mn),
thus having O(m3n3) time complexity. In the next section
we seek to mitigate this computational complexity while at
the same time exploiting community structure often present
in social preference data [Postlewaite, 2011].

3 Dirichlet Process Mixtures of
Community-based Preference GPs

In this section we propose to alter the GP preference based
model of Section 2 to model users as a (potentially) infinite

  

Figure 1: Our proposed generative graphical model for community-
based preferences. There is a plate for users u with community
membership indicator cu ∈ C and an embedded plate for i.i.d. pref-
erence observations xi � xj of user u depending on the community
assignment cu of u, community cu’s latent utility function fcu , and
the discriminal dispersion parameter α. There is a separate plate for
communities c ∈ C = {1 . . . ,∞} which contains the latent util-
ity function fc drawn from a Gaussian Process conditioned on local
(optimized) community parameters Kc

x. Finally, each cu is gener-
ated i.i.d. from an infinite multinomial distribution with parameters
π and Dirichlet Process prior with concentration parameter λ.

mixture of GP-based communities. Hence, we now assume
there are an infinite number of possible communities of pref-
erence C = {1 . . .∞} where for every user u there is a latent
indicator cu ∈ C indicating to which community u belongs.
Further, we assume each community c ∈ C has it’s own la-
tent utility function over items only fc = [f c1 , f

c
2 , . . . , f

c
m]T

since we assume all members of the community share com-
mon preferences. Hence, we can now define a likelihood in
this model for the preference data conditioned on all latent
utilities f = [f1, . . . , f∞] (where we have redefined f from
the previous section) and the vector of latent community in-
dicators for each user c = [cu1 , . . . , cun ]T :

p(D|f , c, α) =
∏
u∈U

∏
(i,j)∈Du

p(xi � xj |f cui , fcuj , α) (5)

with p(xi � xj |f cui , f cuj , α) as defined in the previous sec-
tion and a community-specific kernel prior Kc

x for each fc
(c ∈ C) over items only.

p(fc|Kc
x) = N (fc; 0,K

c
x). (6)

It is important to emphasize here that one important fea-
ture of our infinite community-based mixture model is that
the hyper-parameters Kc

x of the utilities fc are community-
dependent and can be optimized as part of the learning pro-
cess as described in Section 3.3 leading to improved com-
munity modeling and generalization over all item preferences
within that community.

We assume that c is generated according to an infi-
nite multinomial distribution with parameters π ∈ R|C|

(
∑|C|
i=1 πi = 1), hence

p(c|π) =

|C|∏
i=1

πni
i where ni =

∑
u∈U

δcu=i. (7)



Since the number of possible communities |C| is infinite, we
resort to Dirichlet processes by defining an infinite Dirichlet
prior on the community distribution with concentration pa-
rameter λ [Neal, 1998; Rasmussen, 2000]:

p(π|λ) = p(π1, . . . , π|C||λ) = Dirichlet(λ/|C|, . . . , λ/|C|)

=
Γ(λ)

Γ(λ/|C|)|C|

|C|∏
j=1

π
λ/|C|−1
j . (8)

Altogether this generative framework is represented in the
graphical model of Figure 1.

Our primary goal in inference is to obtain a sample pos-
terior estimate over f and c to be used for future prediction.
To this end, we begin by multiplying all of the likelihood and
prior factors of our generative model in Figure 1 to obtain a
superset of the desired joint posterior parameters:

p(f , c,π|D,Kx, λ, α) ∝

[∏
c∈C

p(fc|Kc
x)

]
· (9)[ ∏

u∈U

[ ∏
(i,j)∈Du

p(xi � xj |fcui , fcuj , α)

]
︸ ︷︷ ︸

p(Du|f ,cu,α)

p(cu|π)

]
p(π|λ)

Here of course, we don’t necessarily require a posterior es-
timate over π and we will see in Section 3.1 that it is in fact
important to marginalize over π in the posterior to facilitate
Gibbs sampling inference for Dirichlet processes.

However, before we dive into specific details, we first pro-
vide a general overview of our posterior inference framework.
To perform inference in this Dirichlet Process mixture of GPs,
we utilize the joint probability in Equation 9 and devise a
collapsed, blocked Gibbs sampler that breaks the Gibbs sam-
pling inference into two distinct steps, for which different in-
ference algorithms are appropriate. Specifically, collapsing
comes from marginalizing over π and blocking stems from
repeating joint inference of f given c. Gibbs sampling then
repeats as follows until convergence:

• For each cu, infer p(cu|c\u, f ,D, λ, α,K) via Gibbs
sampling as discussed in Section 3.1.

• Infer p(f |c,D, λ, α,K) via Expectation Propagation
(EP) as discussed in Section 3.2 with hyperparameters
optimized as discussed in Section 3.3.

Here we have merged all kernel hyperparameters into the set
K = {Kc

x|c ∈ C}.

3.1 Inferring Community Membership
In our Gibbs sampler, given f , we now wish to sample c –
the community memberships for all users. Assuming that our
blocked Gibbs sampler has already provided us with a sam-
ple of f for some fixed c∗ sampled on the previous iteration,
we now wish to sample each new cu in turn for the current
iteration provided that we can define p(cu|c\u, f ,D, λ, α).

While we could sample f from p(f |c∗,D, λ, α) to
compute p(cu|c\u, f ,D, λ, α), this seems inefficient given
that we can derive the full posterior p(f |c∗,D, λ, α) in

closed-form given our Gaussian Process inference machin-
ery in Section 3.2. So instead we propose to compute
Ep(f |c∗,D,λ,α)[p(cu|c\u, f ,D, λ, α)].1

Now we derive an efficiently computable closed-form for
sampling cu where we abbreviate the previous expectation to
the shorter form Ef |c∗ [p(cu|c\u, f ,D, λ, α)]:2

Ef |c∗[p(cu|c\u, f ,D, λ, α)] ∝ Ef |c∗

[∫
p(cu, c\u︸ ︷︷ ︸

c

, f ,π|D, λ, α)dπ

]

∝ Ef |c∗ [p(Du|f , cu, α)]

∫
p(c|π)p(π|λ)dπ︸ ︷︷ ︸

p(c|λ) ∝ p(cu|c\u,λ)

∝

∫ p(Du|f , cu, α)︸ ︷︷ ︸
Likelihood

p(f |c∗,D, λ, α)︸ ︷︷ ︸
Gaussian Process

]df

 p(cu|c\u, λ)︸ ︷︷ ︸
Dirichlet Process

(10)

Thus in (10) we arrive at a closed-form computation that is
straightforward to compute. In the square brackets, we need
only use our GP posterior f |c∗ to compute the product of
the probabilities of each of user u’s preferences xi � xj ∈
Du as defined in the next sections. This leaves us only to
compute p(cu = c|c\u, λ) as is standard in Gibbs sampling
for Dirichlet processes:

1. If c is an active community (∃cu ∈ c\u s.t. cu = c),
then

p(cu = c|c\u, λ) =

∑
u′ 6=u I[cu′ = c]

N − 1 + λ
(11)

where N is the number of non-empty communities.
2. Else c is a new community so

p(cu = c|c\u, λ) =
λ

N − 1 + λ
(12)

Hence all quantities required to sample cu have now been de-
fined permitting sampling of each cu in turn to complete the
community process sampling portion of the Gibbs sampling
inference for our model. And the result is intuitive: a user u
is more likely to join a community which provides a higher
likelihood on its preference data Du. Additionally, this sam-
pling process displays the well-known “rich-get-richer” effect
of Dirichlet Processes since communities with more members
have a higher probability of being selected.

3.2 Inferring Community Utility
Once we have sampled the block of all user assignments c,
it is now time to sample the block of Gaussian Process latent
utilities f for each active community given c. Thus, we first
derive our target conditional distribution:

p(f |c,D, α,K) =
1

Z
p(D|f , c, α)p(f |K) (13)

1Of course, one can always sample f and avoid this expectation
if preferred, but we conjecture that using the expectation will induce
a lower-variance Gibbs sampling process with faster convergence.

2A detailed derivation of all math derived in these sections is
provided in an online appendix at the authors’ web pages.



As seen in Equation 1, since the likelihood is factorized
we can take advantage of sequential approximation meth-
ods such as Expectation Propagation (EP) [Minka, 2001].
EP approximates the posterior p(f |c,D, λ,K) by a tractable
distribution q(f |c). EP assumes that each likelihood term
p(xi � xj |fcu

i , fcu
j , α) can be approximated by a distri-

bution q(fcu
i , fcu

j |θcu) such that the approximated poste-
rior q(f |c) factorizes over q(fcu

i , fcu
j |θcu). Then EP it-

eratively approximates each q(fui , f
u
j |cu) in turn by divid-

ing it out from the approximated posterior q(f |c) (obtain-
ing the cavity distribution), multiplying in the true likelihood
p(xi � xj |fcu

i , fcu
j , α), and projecting the result back to

its factorized form by matching its moments to an updated
q(fcu

i , fcu
j |θcu).

This overall procedure is motivated by the aim to
minimize the KL−divergence between the true posterior
p(f |D, c, α,K) and its approximation q(f |c).

In the preference learning case we detailed earlier, we can
approximate the posterior with a Gaussian:

q(f |c) =

[∏
c

1

Z̃c
p(f c|Kc)

] ∏
u∈U

∏
xi�xj∈Du}

q(fcu
i , fcu

j |α,K)

= N (f ;µc,Σc). (14)

where µc and Σc denote the mean and covariance of the
Gaussian distribution for the community user u belongs to
corresponding to θcu . We are interested in locally approxi-
mating each likelihood term in Equation 1 as:
p(xi � xj |fcu

i , fcu
j , α)≈ q(fcu

i , fcu
j |θcu) (15)

= Z̃u
i,jN (fu

i , f
u
j ; µ̃cu,[i,j], Σ̃

c
u,[i,j]),

where N (fui , f
u
j ; µ̃cu,[i,j], Σ̃

c
u,[i,j]) denotes the local two-

dimensional Gaussian over [fui , f
u
j ]> with mean µ̃cu,[i,j] and

covariance Σ̃c
u,[i,j] corresponding to items i and j. Full de-

tails are provided in an online appendix.2

3.3 Optimizing Kernel Hyper-parameters
One advantage of our model is that the hyper-parameters of
the model can be learned independently for each commu-
nity. Even though we can define distributions over covari-
ance (Inverse-Wishart), here due to the computational cost of
a full Bayesian update of K we instead optimize the hyper-
parameters by maximizing the marginal likelihood in a gra-
dient descent algorithm. The marginal likelihood can be ob-
tained from the normalizer Z̃c in Equation 14 as:

Z̃c =

∫
[p(fc|θc)]

∏
u∈U

∏
{xi�xj}∈Du

q(fui , f
u
j |cu)df (16)

where both p(fc|θc) and q(fui , f
u
j |cu) are Gaussian distribu-

tions and their product produces an unnormalized Gaussian
distribution. Therefore, the log likelihood is:

log(Z̃c) = −1

2
µ̃c
>

(Kc + Σ̃c)−1µ̃c

− 1
2

log det(Kc + Σ̃c)− n
2

log 2π (17)

The derivative of the marginal likelihood with respect to the
kernel hyper-parameters can be used in a gradient descent al-
gorithm to optimize the kernel.

3.4 Prediction
Given a pair of items x∗1,x

∗
2 for a particular user, we will be

able to determine the predictive distribution over the latent
utility functions as:

p(f∗1 , f
∗
2 |D, α,K,u)=

∫ ∞
−∞

p(f∗1 , f
∗
2 |fcu , α,Kc)×

p(fcu |D, α,Kc)dfcu

= N (µ∗,C∗) (18)

with µ∗ = K∗(Kc + Σ̃c)−1µc (19)

C∗ = Σ∗ −K∗
>

(Kc + Σ̃c)−1K∗, (20)

where Σ∗ is the 2× 2 kernel matrix built from the item pair
x∗1 and x∗2; K∗ represents the kernel matrix of test items with
all the items in the training set; K∗c is the kernel matrix of
the queried user with other users in the same community; and
K∗x is the 2×m kernel matrix of the queried pair of items
with other items. Subsequently, their preference for a user is
determined by integrating out the latent utility functions we
have p(x∗1 � x∗2|D, α,K) equals:∑

c

p(c|λ)

∫ ∫
p(x∗1 � x∗2|f∗1 , f∗2 , c, α,K)

p(f∗1 , f
∗
2 |D, c, α,K)df∗1df

∗
2

=
∑
c

p(c|λ)Φ

(
µ∗1 − µ∗2

α2 +C∗1,1 +C∗2,2 − 2C∗1,2

)
. (21)

We see that the mean and covariance of the predictive distri-
bution require the inversion of a much smaller matrix leading
to O(n3) time complexity compared to the case where the
community of the users is not considered in Section 2 which
has O(n3m3) time complexity.

Algorithm 1 Blocked Gibbs Sampling Routine
input: X,U,D, λ, α
Initialize c to arbitrary assignments for each user
while not converged do

// Infer community utilities and hyperparameters
for c ∈ C do

1. Obtain Kc from Eq. 17.
2. Perform EP to infer p(f |c,D, α,K) (Sec 3.2).

end for
// Sample community membership assignments
for u ∈ U do

3. Sample cu from Eq. 10.
end for

end while

3.5 Final Algorithm
Having found the communities and users’ utilities, the algo-
rithm for community-based preference learning is presented
in Algorithm 1. After initializing with class assignments for
each user, hyperparameters for each community GP are opti-
mized followed by inference of f and then c, which repeats
until convergence.



Table 1: Performance results for Synthetic, Sushi and AMT
Car datasets.

Algorithm Dataset Accuracy % Time(s)

[Bonilla et al., 2010] Synthetic 95.17± 3.33 0.05
Sushi 62.13± 5.69 2.10

Full-GP, Section 2 Car 64.00± 8.94 0.89

DP Mixture of GPs
Synthetic 100± 0 0.04

Sushi 62.04± 5.41 0.09
Section 3.1 Car 64.17± 6.97 0.10

Figure 3: Distribution of communities in the datasets . The x-
axis is the number of communities; the y-axis is the posterior
probability at the last sampling iteration. These values are
obtained at iteration 15 of Synthetic and Sushi and iteration
36 of AMT Car.

(a) Synthetic (b) Sushi (c) AMT Car

4 Empirical Evaluation
In this section we empirically evaluate the performance of our
algorithm to determine (1) how well the DP mixture of GPs
is capable of reducing prediction time vs. Full-GP defined
in Section 2, (2) how well the DP mixture of GPs works in
accurately learning the preferences of each user compared to
Full-GP, (3) whether each community learned has a distinct
set of preferences, and (4) how effectively the true number of
communities in data is recovered. We perform our evaluation
on three datasets: one synthetic and two real-world datasets.
The synthetic experiment assesses the effectiveness of our ap-
proach in a controlled setting and the real-world datasets in-
clude the data obtained from preferences over cars that we
have created using Amazon Mechanical Turk as well as a
publicly available sushi preference dataset.

It is assumed that we are given a set of users and items
with their corresponding features. For each user and item we
also augment their features with their ID index, that is, a vec-
tor that is only one for that particular user or item (this is
a common practice in collaborative filtering). The pairwise
item preferences of each user are split into two sets for per-
forming the inference (60%), and testing (40%) where the
algorithm performance is evaluated. We use the squared ex-
ponential covariance with automatic relevance determination
(ARD) for both users and items. We manually tuned λ and α
(for Full-GP as well).

Synthetic Dataset: We generated a hypothetical set of 60
users and 10 items and assigned each user to one of four com-
munities. We randomly assigned each item to be liked by one
of the communities (high utility) and disliked by the other
three communities (low utility). From these communities and
their associated utility functions, we generate the preferences
of each user (without noise to make a pure synthetic test data
set). Our approach is able to converge to exactly four com-

munities with the correct memberships (as shown in Figure
3), demonstrating that our algorithm is effective in recover-
ing latent community structure present in data. As observed
in Table 1, the accuracy and the time consumed by the pro-
posed approach is also improved compared to Full-GP.

Sushi Dataset: Here we describe the results on the sushi
dataset [Kamishima, 2003]. It is a dataset of preferences of
people about 10 types of sushis which leads to 45 preferences
(pairs of sushis) per user. Each user and item (sushi) is spec-
ified by a set of features and where we have categorical fea-
tures, they are converted to binary ones. Moreover, similar to
the collaborative filtering setting, we included the IDs of the
users and items as well. We discovered 8 communities in this
dataset (as shown in Figure 3 while performing as accurately
as Full-GP with two orders of magnitude less running time as
shown in Table 1.

Car Preference Dataset using Amazon Mechanical
Turk3: Amazon Mechanical Turk4 (AMT) provides an excel-
lent crowdsourcing opportunity for performing online exper-
iments and user studies. Since the number of publicly avail-
able preference learning datasets are limited, we set up an
experiment in AMT to collect real pair-wise preferences over
users. In this experiment users are presented with a choice
to prefer a car over another based on their attributes. The car
attributes used are:

• Body type: Sedan, SUV
• Engine capacity: 2.5L, 3.5L, 4.5L, etc.
• Transmission: Manual, Automatic
• Fuel consumed: Hybrid, Non-Hybrid

The set is then split into two sets with 60% of all the pref-
erences kept for inference and the rest for testing. The dataset
is collected so that 10 unique cars (items) are considered and
users are required to answer all 45 possible pair-wise pref-
erences. We targeted US users mainly to have a localized
and consequently more meaningful preference dataset. For
each user, a set of attributes in terms of general questions (age
range, education level, residential region and gender) is col-
lected. Every categorical attribute is converted to binary ones.
We collected these preferences from 60 unique users.

As observed in Table 1, the proposed approach is as accu-
rate and faster than Full-GP. Through learning the communi-
ties, we can also analyze the most frequently chosen attributes
selected by a community as shown in Table 2, where infer-
ence converged to 7 communities.

5 Related Work
Probabilistic models for utility functions in preference learn-
ing and elicitation have previously been proposed in the
machine learning community [Chajewska and Koller, 2000;
Guo and Sanner, 2010]. Extensions to non-parametric mod-
els have also been developed. In particular, [Chu and Ghahra-
mani, 2005b] proposed a preference learning framework
based on Gaussian processes and [Eric et al., 2008] used this

3http://users.cecs.anu.edu.au/
∼u4940058/CarPreferences.html

4http://mturk.com



Figure 2: The distribution of preferred cars in each community for the AMT car dataset. Each x-axis position represents a
different car and the y-axis the normalized frequency with which that car was preferred to another by a user in the community.
Each community is distinct and differs in at least one car attribute.
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Table 2: Most likely attributes selected in each category by communities discovered in the AMT Car dataset. As observed in
Figure 2, some communities are very different while others are similar. For example, community 3 and 7 are only different in
the body type they prefer, but are both quite different from community 4.

SUV, Sedan Automatic, Manual Engine Capacity Hybrid, Non-Hybrid
1 SUV Automatic 3.5L Non-Hybrid
2 Sedan Manual 2.5L Non-Hybrid
3 Sedan Automatic 2.5L Non-Hybrid
4 SUV Manual 4.5L Non-Hybrid
5 Sedan Manual 2.5L Hybrid
6 SUV Automatic 4.5L Non-Hybrid
7 SUV Automatic 2.5L Non-Hybrid

model for active learning with discrete choice data. Multi-
user GP-based preference models have been given by [Birlu-
tiu et al., 2010] and [Bonilla et al., 2010]. However, none
of these methods directly address the efficiency problem nor
discovered any community structure.

Stochastic blocked models [Nowicki and Snijders, 2001;
Airoldi et al., 2008] are another class of related approaches
that model the dependencies between users and infer the
graphical structure under which users interact. Such models
implicitly find the communities users belong to, even though
not directly applied to preference learning in the setting we
discussed here.

Furthermore, [Rasmussen and Ghahramani, 2002] pro-
posed the infinite mixture of Gaussian processes for regres-
sion and later extended in [Meeds and Osindero, 2005] that
is similar to the mixture of Gaussian processes detailed here.
Our work however further extends the mixture of GPs to so-
cial preference learning.

6 Conclusion
We exploited the observation that user populations often de-
compose into communities of shared preferences and mod-
eled user preferences as an infinite Dirichlet Process (DP)
mixture of communities. The resulting inference algorithm
scales linearly in the number of users unlike previous Gaus-
sian Process preference learning approaches that scaled cu-
bicly in the number of users. We evaluated our approach on

a variety of preference data sources including Amazon Me-
chanical Turk showing that our method is more scalable and
as accurate as previous work with only a small number of
inferred communities, validating our community-based mod-
eling approach.

For future work, we note that the differing levels of simi-
larity between communities observed in Figure 2 and Table 2
suggest that a hierarchical non-parametric Bayesian approach
may be useful for directly modeling the differing relation-
ships between communities.
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