
Towards practical taxonomic classification for description logics
on the Semantic Web

Scott P. Sanner
Department of Computer Science

University of Toronto
Toronto, Ont, M5S 3H5, CANADA

ssanner@cs.toronto.edu

Abstract

Description logics offer a well-defined semantics
for many common and useful reasoning tasks that
can be formalized under the notion of subsumption
and are currently finding use as a representation
language for the Semantic Web (e.g. DAML+OIL).
For this domain, description logics can be highly
useful for reasoning about relationships between
entities in distributed knowledge bases by classify-
ing them into a taxonomic subsumption hierarchy.
However, there are many practical considerations
for designing a sound and complete, yet efficient al-
gorithm for performing large-scale taxonomic clas-
sification. Traditionally, structural subsumption al-
gorithms have provided efficient techniques for per-
forming classification but have only supported rela-
tively inexpressive languages. Consequently, in re-
sponse to the need for efficient taxonomic classi-
fication of more expressive languages, we develop
an approach that extends previous structural sub-
sumption algorithms to support sound and com-
plete classification of a moderately expressive de-
scription logic including both conjunctive and dis-
junctive constructors. Furthermore, we extend this
algorithm to a more expressive description logic
with the claim that its sources of incompleteness
are infrequent and benign in practice. Finally, we
show that for the expected distribution of concept
structures, both of these taxonomic classification
algorithms require polynomial time in the size of
the knowledge base and argue that such a result is a
necessity for practical classification algorithms that
will scale with the expected growth of the Semantic
Web.

1 Introduction
As languages for knowledge representation on the Seman-
tic Web [Bemers-Lee et al., 2001] and other media gain
widespread acceptance, it is important that the associated rea-
soning tools have the ability to scale to the unprecedented
quantities of structured content that are likely to emerge. Fur-
thermore, it is important that the majority of this reasoning
be automated since direct human involvement is both costly

and time-consuming. Thus, the desire for automated reason-
ing coupled with the expected growth rate of the Semantic
Web poses a set of constraints on reasoning algorithms whose
sheer magnitude has not been encountered previously in the
field of knowledge representation and reasoning.

Consequently, we examine practical applications of rea-
soning on the Semantic Web that can be formalized under the
notion of description logic subsumption. Furthermore, we an-
alyze the constraints that this domain places on such reason-
ing in an attempt to provide an efficient, scalable, and prov-
ably correct algorithm to satisfy our reasoning needs within
these constraints.

1.1 Description logics and the Semantic Web
As the Semantic Web comes of age, it is likely that there
will be a shift from the database-like specification of knowl-
edge bases (KB’s) containing primitive concepts (e.g. a
list of a retailer’s products) to KB’s containing logical
compositions of primitive objects collected from distributed
KB’s. Consequently, the choice of a description logic in
the spirit of KL-ONE [Woods and Schmolze, 1992] such as
DAML+OIL [Horrocks et al., 2001] as a representation lan-
guage for the Semantic Web is well-suited to this domain
since it automates reasoning about relationships between such
composed concepts.

To motivate our discussion, we use an example drawn from
online retail sales: If three online office supply retailers list
their products in DAML+OIL, each could specify the follow-
ing primitive concept URI’s for their pencil products:

� Retailer-1’s primitive pencil concept:
http : ==www:ret1:com=pg:daml#Ret1 Pencil

� Retailer-2’s primitive pencil concept:
http : ==www:ret2:com=pg:daml#Ret2 Pencil

� Retailer-3’s primitive pencil concept:
http : ==www:ret3:com=pg:daml#Ret3 Pencil

It is important to note that each of these concepts is unique
and primitive (i.e. lacking definitions of sufficient conditions
for membership) and thus have no intrinsic relation to each
other outside of natural language interpretation.

Now, it is expected that other organizations wanting to con-
struct their own product ontologies will define composite pen-
cil concepts referring to the set of pencils that agree with their

Org1_Pencil

Org3_Pencil Org2_Pencil

Figure 1: A taxonomy of defined concepts.

individual organizational definition and needs. For example: 1

� Organization-1’s pencil concept definition:
Org1 Pencil

:
= Ret1 Pencil t Ret2 Pencil

� Organization-2’s pencil concept definition:
Org2 Pencil

:
= Ret1 Pencil t Ret2 Pencil
tRet3 Pencil

� Organization-3’s pencil concept definition:
Org3 Pencil

:
= Org1 Pencil t Ret3 Pencil

Note that these organizations have defined their pencil con-
cept in terms of disjunctions of other primitive and composite
concepts defined by the various retailers.2 It is this logical
compositional definition from common primitives that makes
it possible to reason about the relationships between such
concepts defined in distributed and independently developed
knowledge bases.3

To demonstrate the relationships that can be inferred be-
tween the above defined concepts, we have drawn a sam-
ple taxonomy in Figure 1. Arrows represent a subsumption
(a.k.a. kind-of) relation that points from the subsumed con-
cept to the subsuming concept. The special concept > rep-
resents the universal concept which subsumes every concept
and the special concept ? represents the empty concept that
is subsumed by every other concept.4

Such an automatically induced taxonomic structure in-
duces a subsumption hierarchy which has two main proper-

1From here on out, we will assume that each retailer
or organization has a unique namespace and thus we will
drop the namespace from the concept URI. Consequently,
http : ==www:ret1:com=pg:daml#Ret1 Pencil will simply be
written as Ret1 Pencil.

2See Table 1 for the definition of the description logic symbols
used here.

3As a side note, the use of description logics for describing com-
positions should also be instrumental in moving the web away from
a database-like representation where mappings need to be explicitly
specified to a paradigm where such mappings can be automatically
inferred.

4The importance of including these root > and ? concepts will
become apparent once we start to define algorithms for performing
concept classification.

ties: 1) It is minimal in the sense that no links are redun-
dant, and 2) It is complete for the reflexive/transitive closure
of all subsumption relations (i.e. no subsumption relation
is missing). Thus, we can deduce by the mutual subsump-
tion relation between Org2 Pencil and Org3 Pencil that these
concepts are equivalent and from their subsumer relation to
Org1 Pencil that both are more general than this concept.
This latter subsumption relationship implies that any instance
of Org1 Pencil must also necessarily be an instance of both
Org2 Pencil and Org3 Pencil.

Note that while these relationships can be provably derived
from the concept definitions, all relationships are not immedi-
ately apparent from the definitions. Yet these inferences can
be extremely important since Organization-2 can now deter-
mine that both Organization-3’s and Organization-1’s pen-
cil definitions are equivalent and can be substituted for each
other. Furthermore, any pencil that may be inferred to sat-
isfy Organization-1’s definition will also necessarily satisfy
the definition of Organization-1 and Organization-3.

Note that it would be a mistake to define axioms stat-
ing necessary relationships between concepts as opposed
to using their full definitions to automate this inference
(e.g. using Ret1 Pencil v Org1 Pencil and Ret2 Pencil v
Org1 Pencil in place of the current disjunctive definition of
Org1 Pencil). Such a definition does not capture the fact that
an instance of Org1 Pencil is necessarily either a Ret1 Pencil
or a Ret2 Pencil and thus it is impossible to make the inferred
relationships in Figure 1 with such an incomplete definition.

Consequently, it is the purpose of this paper to describe
an efficient and practical algorithm for reasoning about the
subsumption relationships between defined concepts that are
composed from a set of logical constructors. This is one of
the primary goals of the field of description logics and next
we will focus on some limitations of current approaches.

1.2 Problems with current approaches
Current research in description logic classification has fo-
cused on a on worst-case analysis for sound and complete
subsumption reasoning with respect to an extensional (i.e.
model-theoretic) semantics by providing satisfiability based
algorithms for subsumption testing [Horrocks et al., 2000].
Unfortunately, such reasoning is intrinsically NP-Complete
even for relatively inexpressive languages [Levesque and
Brachman, 1985]. Furthermore, this approach has focused on
the tractability of an individual subsumption test as opposed
to the tractability of constructing a taxonomy.

This approach has been criticized by Woods [1991], who
states that the “primary tractability concern is not the cost of
subsumption, but the cost of classifying into a large taxon-
omy”. And this criticism is especially relevant for the appli-
cation discussed here since we will need an algorithm that
can classify the massive amounts of content available on the
Semantic Web.

As pointed out by Woods, structural subsumption ap-
proaches lend themselves to efficient techniques for taxo-
nomic classification by reusing redundant information over
multiple subsumption tests in order to amortize the cost of
subsumption testing. However, structural subsumption tech-
niques use an intensional definition of subsumption that is not

necessarily extensionally complete. While the use of struc-
tural subsumption has yielded provably efficient classifica-
tion algorithms (e.g. Classic [Borgida et al., 1989]) it has
traditionally been limited due to its inability to provide ex-
tensionally complete reasoning for expressive languages as
well as its inability to support many commonly used com-
binations of description logic constructors [Brachman et al.,
1991]. Specifically, for this application, both conjunction and
disjunction are extremely important constructors for reason-
ing about logically composed concepts, but both constructors
have not been jointly addressed in any previous work on prov-
ably complete structural subsumption techniques for classifi-
cation.

1.3 A potential solution
Before we provide a potential solution to this problem, let us
first define the constraints on description logic classification
posed by the Semantic Web:

1. The taxonomic classification algorithm must run in
polynomial-time in the size of the taxonomy. 5

2. The language must be expressive enough to build practi-
cally useful composite concepts. Thus, we need at least
conjunction, disjunction, and commonly used role re-
strictions such as existential, universal, and qualified car-
dinality restrictions.6

With these requirements however, it seems we are at a bit
of an impasse: The extensional approaches to subsumption do
not place their primary focus on efficient taxonomic classifi-
cation and it is theoretically impossible for them to achieve
polynomial time complexity if complete subsumption algo-
rithms are used. And although the intensional approaches
can provide polynomial-time taxonomic classification algo-
rithms, they do not seem to support expressive enough lan-
guages for our purposes.

Consequently, a solution satisfying both of the above con-
straints may need to sacrifice requirements of extensional
soundness and completeness or alternately show that the
super-polynomial classification cases do not occur for the ex-
pected distribution of concepts in our domain. Since there
are multiple sources of super-polynomial complexity for ex-
pressive languages, our solution will utilize a combination
of these approaches: sacrificing completeness in some cases
where it is arguably benign to avoid exponential blow-up, and
making the claim that for the other cases, exponential blow-
up is not likely to occur for the expected class of concept
structures in our domain.

Thus, in order to achieve the above goals, we build on the
established efficiency of current structural classification al-
gorithms and augment them with the ability to support both
conjunctive and disjunctive constructors. For a moderately
expressive language, we find that our selection of construc-
tors yields a polynomial-time extensionally sound and com-
plete algorithm when applied to the expected distribution of

5We assume any time complexity beyond polynomial to be in-
tractable when applied to the Semantic Web.

6We exclude complement here since composition of concepts is
expected to occur mainly through conjunction, disjunction, and role
restrictions.

concept structures. For more expressive languages however,
we sacrifice extensional completeness with the claim that the
lost subsumptions are benign for most large-scale practical
reasoning applications on the Semantic Web.

Ultimately, our claim of achieving the above goals is pred-
icated upon the accuracy of our tradeoff assumptions. How-
ever we believe these claims are well-grounded in practical
applications and in some sense, given the impossibility of ex-
tensionally complete, polynomial-time taxonomic classifica-
tion algorithms for expressive description logics, these results
are in some sense the best that can be hoped for.

2 Language and semantics
Having previously discussed the language elements that are
useful in a compositional domain such as the Semantic Web,
let us now define the language elements and their model-
theoretic semantics.

2.1 Language definition
Table 1 lists the constructor, definitional, and axiomatic el-
ements for two languages, L1 and L2. Both languages are
a subset of the DAML+OIL language used for the Semantic
Web. With respect to DAML+OIL, L2 lacks complement;
transitive, functional, and inverse roles; role restrictions in-
volving individuals or set selection; and disjointness asser-
tions. However, we consider the subsetsL1 andL2 since they
still capture some of the most useful constructors for logically
composed concepts.

2.2 Semantics
We provide a model theoretic semantics for L1 and L2 in
Table 1. Under an interpretation I = (�

I ; �I), �I is a
nonempty domain, and an interpretation function � I maps
from concept names into a subset of �I and from role names
into a subset of �I

��
I .

2.3 Additional language restrictions
Since we will be using structural subsumption for efficient
taxonomic classification, we must make a few additional re-
strictions on the language to make it amenable to this ap-
proach. These three restrictions involve the following:

1. We must prevent any non-primitive concept from ref-
erencing itself or a subclass in a definition (including
through a role restriction). This restriction is not lim-
iting since Person v 8child:Person is still legal and
there are few non-primitive concepts that would require
such a recursive definition.

2. We limit axioms to primitive concepts only. However
this is not as limiting as it sounds since there are seman-
tically equivalent rewrites of some axioms involving one
primitive concept and one structured concept. For ex-
ample, for primitive concepts C, D, and E, C v D and
C v E will allow C v D u E to be inferred via struc-
tural subsumption. And likewise, D v C and E v C
will allow D t E v C to be inferred as well. Thus, ax-
ioms from a primitive concept to a disjunctive child or
from a primitive concept to a conjunctive parent can be
defined in this manner.

Languages L1 and L2
Constructor Syntax Semantics

Concept name C CI (where CI
� �

I)
Top > �

I

Bottom ? ;

Conjunction C uD CI
\DI

Disjunction C tD CI
[DI

Existential restriction 9R:C fx j 9y : RI
(x; y) ^ CI

g

Min cardinality restriction > nR fx j]fyjRI
(x; y)g � ng

Qualified min cardinality restriction > nR:C fx j]fyjRI
(x; y) ^ CI

(y)g � ng

Role name R RI (where RI
� �

I
��

I)

Definitional or Axiomatic Constraint Syntax Semantic Constraint

Concept definition C
:
= D CI

� DI

Concept subsumption axiom C v D CI
� DI

Role subsumption axiom R v S RI
� SI

Language L2 only
Constructor Syntax Semantics

Universal (value) restriction 8R:C fx j 8y : RI
(x; y)! CI

g

Max cardinality restriction 6 nR fx j]fyjRI
(x; y)g � ng

Qualified max cardinality restriction 6 nR:C fx j]fyjRI
(x; y) ^ CI

(y)g � ng

Table 1: Extensional Semantics for L1 and L2

3. We limit concepts to have at most one equivalence def-
inition. For example, A

:
= B u (C tD) is ok, but

one could not add an additional definition such as
A

:
= E t F to a knowledge base already containing the

first definition.

3 Subsumption definition
Now that we have defined the semantics for our language, we
will proceed to give two definitions for subsumption in these
languages. The first definition is extensionally complete via
its direct reference to the model-theoretic semantics while the
second definition is complete for L1 but not for L2.

3.1 Extensional subsumption
Under an extensional approach to subsumption for C v D,
we are effectively checking whether every model of C also
satisfies D. To do this, we can build the concept C u :D,
and determine whether any models could satisfy it. If we can
show C u :D is unsatisfiable, then whenever C holds for a
model, clearly D must also hold. This effectively reduces
subsumption testing to an unsatisfiability test and yields ex-
tensionally sound and complete results for both L1 and L2.
Many NP-Complete but nevertheless relevantly efficient sub-
sumption algorithms have been developed using this method
(e.g. [Horrocks et al., 2000]).

As pointed out by Donini [2002], it is interesting to note
that in constructingCu:D, we are implicitly including com-
plement in the language that we are using for subsumption

inference despite the fact that we stated our concept within
the constraints of a less expressive language. Consequently,
it is the case that the language for which we are perform-
ing an unsatisfiability test is more expressive than the origi-
nal language in which we stated our subsumption test. Thus,
although we present no formal results, it may be the case that
subsumption testing methods other than satisfiability can in-
herently perform more efficiently than the approach described
here since an extensional subsumption approach would inher-
ently require augmenting the langauge with the expressivity
of complement.

3.2 Intensional subsumption

While the previous method of subsumption inference can
be considered proof via failure of an exhaustive search for
a countermodel, intensional subsumption can be considered
more of a direct theorem proving method based on formal
logical rules for inference. Such rules for subsumption in L 1

andL2 are given below in Table 2, however it should be noted
that applying these subsumption rules directly to any two con-
cept structures would not yield extensional completeness. For
extensional completeness, a concept’s structure must first be
normalized before these rules are applied. However, since
normalization and classification are interleaved processes, we
postpone the discussion of normalization until the next sec-
tion on classification.

Structural comparison of two concept structures1;2;3

Concept A type Concept B type Intensional rule for A v
i
B (i.e. A is intension-

ally subsumed by B)
Primitive Primitive (Base) A v

i
B iff B is in the reflexive transitive

closure of v for A.
Primitive Conjunctive (Recursive) A v

i
B iff for every conjunctive con-

stituent B
j

of B, A v
i
B

j
.

Primitive Disjunctive (Recursive) A v
i
B iff for some conjunctive con-

stituent B
j

of B, A v
i
B

j
.

Conjunctive Primitive (Recursive) A v
i
B iff for some conjunctive con-

stituent A
i

of A, A
i
v

i
B.

Conjunctive Conjunctive (Recursive) A v
i
B iff for every conjunctive con-

stituent B
j

in B, there is some conjunctive con-
stituent A

i
in A such that A

i
v

i
B

j
.

Conjunctive Disjunctive (Recursive) A v
i
B iff for some conjunctive con-

stituent A
i

of A, there is some disjunctive con-
stituent B

j
of B such that A

i
v

i
B

j
.

Disjunctive Primitive (Recursive) A v
i
B iff for every disjunctive con-

stituent A
i

of A, A
i
v

i
B.

Disjunctive Conjunctive (Recursive) A v
i
B iff for every disjunctive con-

stituent A
i

of A and every conjunctive constituent
B

j
of B, A

i
v

i
B

j
.

Disjunctive Disjunctive (Recursive) A v
i
B iff for every disjunctive con-

stituent A
i

in A, there is some disjunctive con-
stituent B

j
in B such that A

i
v

i
B

j
.

Structural comparison of two role restriction structures1;3;4

Restriction A type Restriction B type Intensional rule for A v
i
B (i.e. A is intension-

ally subsumed by B)

6 n1R1:C1 6 n2R2:C2 (Recursive) A v
i
B iff n1 � n2 and R1 v R2

and C1 vi
C2.

> n1R1:C1 > n2R2:C2 (Recursive) A v
i
B iff n1 � n2 and R1 v R2

and C1 vi
C2.

8R1:C1 8R2:C2 (Recursive) A v
i
B iff R1 v R2 and C1 vi

C2.
Any other combination (Base) A v

i
B not possible, return false

Note 1: We introduce the symbol v
i

to indicate an inferred intensional subsumption. For
this definition, we use v to refer to asserted subsumptions such as axioms or subsumptions
implicit in conjunctive and disjunctive definitions. For example, A

:
= B u C implicitly

contains A v B and A v C and A
:
= B t C implicitly contains B v A and C v A.

Note 2: One will note that the only possible concept types are primitive, disjunctive, and con-
junctive when in fact, defined concepts can mix both conjunction and disjunction. However,
this is not a problem since we build concepts in multiple stages with each stage being purely
disjunctive or conjunctive and freely referring to the other type as a constituent. For example,
A

:
= B t (C uD) would be built as a named concept A with two disjunctive constituents:

B and an anonymous conjunctive concept representing C u D. Also note that after DNF
normlization, all concepts will be a single named disjunction of anonymous conjunctions of
primitive concepts. See the normalization section for more information.

Note 3: Concepts cannot subsume individual role restrictions and vice versa except via di-
rect definition, i.e. A

:
= Bt 6 nR:C implicitly contains 6 nR:C v A but other than

such definitions, 6 nR:C cannot subsume or be subsumed by any other concept. See the
completeness proof for more information.

Note 4: We omit intensional subsumption rules for 9nR:C, > nR, and 6 nR since the first
two can be converted to the form> nR:C and the last can be converted to the form6 nR:C.
See the normalization section for more information.

Table 2: Intensional subsumption rules for L1 and L2

4 Algorithm definition
The classification algorithm seeks to take a new concept and
insert it into the taxonomy such that the reflexive transitive
closure of all taxonomy links yields all subsumption rela-
tionships (with respect to the subsumption definition) while
ensuring that no links are redundant (i.e. the taxonomy is
minimal). Due to the presence of mutual recursion between
the normalization and classification algorithms, the algorithm
can appear somewhat complex at first. Consequently, we will
first discuss the following general steps for performing taxo-
nomic classification of a concept:

1. Normalize the concept description: Given a target con-
cept, we must first ensure that all equivalent concepts
normalize to the same concept structure. If we skipped
this step, it would be impossible to necessarily deter-
mine whether two concepts were equivalent. For exam-
ple, A u (B t C) and (A u B) t (A u C) are equiva-
lent, but this cannot be determined by purely structural
rules until both are converted to disjunctive normal form,
i.e. the form of the latter concept. For now it suffices
to mention that normalization yields a concept in dis-
junctive normal form with all possible role restrictions
merged and all redundant concept elements removed.

2. Find the most specific subsumers (MSS): Given a tar-
get concept, find the set of all concepts in the taxon-
omy that subsume the target such that no concept in this
set subsumes any other (i.e. discard subsumers that are
not most specific since they can be inferred via reflexive
transitive closure). Refer to this set as the mss set.

3. Find the most general subsumees (MGS): Given a tar-
get concept, find the set of all concepts in the taxonomy
subsumed by the target such that no concept in this set
is subsumed by any other (i.e. again, the non-most gen-
eral subsumees can be inferred via reflexive transitive
closure). Refer to this set as the mgs set.

4. Insert the concept into taxonomy: Given a target concept
and its mss and mgs sets, we now determine how to
add the concept to the taxonomy to minimize the number
of subsumption links and remove any redundant links if
present.

Having defined the basic ideas behind taxonomic
classification, we now formalize the algorithm in
the form of a number of subprocedures given in Al-
gorithms 1–5: ClassifyKb(), Classify(target),
NormalizeAndDefine(target), MSS(target),
MGS(target).

4.1 Classification of a knowledge base
In Algorithm 1 we first define the algorithm for classifying
an entire knowledge base consisting of primitive concepts and
relations, axioms, and concept and role restriction definitions.
This algorithm is relatively straightforward, simply requiring
that the taxonomy be initialized by inserting the root concepts
> and ?, the root relation >

rel
, all relations and primitive

concepts, and any stated and default axioms relating them. 7

7A concept or axiom is not known in the taxonomy until it has
been added.

2 R.C’

1 R.C C

BA

B’A’

2 R.C’B’A’

1 R.CBA

a

s

d

s

s

C’

s

s

c c
s

A’

a
c c

c

B’

a

BddA

dd
s

Figure 2: Example taxonomy showing different subsumption
link types (closed arrow) as well as concept referents of re-
strictions (open arrow). Primitive concepts are displayed in
rounded rectangles, defined concepts in normal rectangles.
Note the different structural subsumptions and their confor-
mance to the intensional subsumption definition.

After this, all structured concepts are inserted and classified
into the taxonomy. Once this procedure has completed, the
full subsumption taxonomy will have been built for the con-
tents of the knowledge base.

It is first important to note that we use many different types
of subsumption links in this algorithm. These link types fol-
low:

� v
a

– Any directly asserted, axiomatic subsumption.

� v
s

– Any structural subsumption inference conforming
to the intensional subsumption definition that has not al-
ready been stated as an axiom.

� v
c

– A definitional link from a conjunctive concept to
its parent conjunctive constituents. Defines a subsump-
tion relationship as well as the definition of the conjunc-
tive concept (i.e. the conjunction of all of its parent v

c

links).

� v
d

– A definitional link from a disjunctive concept to
its child disjunctive constituents. Defines a subsumption
relationship as well as the definition of the disjunctive
concept (i.e. the disjunction of all of its childv

d
links).

Figure 2 shows an example complete taxonomy involving
these links.

It is also important here to mention a few issues regard-
ing the treatment of primitive concepts in this algorithm im-
plementation. Although it seems that we are not classifying
primitives according to the intensional subsumptional defini-
tion, it turns out in fact that we are. First, it should be noted
that primitive concepts can only be structurally subsumed by
conjunctive concepts and they can only structurally subsume

Algorithm 1: ClassifyKb(kb)

begin
// Add all primitive concepts and axioms
Add >, >

rel
, and ? to the taxonomy ;

Add all primitive kb concepts to the taxonomy ;
foreach ((concept axiom a v b) 2 kb) do

Add the taxonomy link a v
a
b ;

foreach (concept c 2 taxonomy) do
if (c has no axiomatic parent) then

Add the taxonomy link c v
s
> ;

if (c has no axiomatic child) then
Add the taxonomy link ? v

s
c ;

// Add all relations and axioms
Add all kb relations to the taxonomy ;
foreach ((relation axiom r v s) 2 kb) do

Add the taxonomy link r v
a
s ;

foreach ((relation r) 2 taxonomy) do
if (r has no axiomatic parent) then

Add the taxonomy link r v
s
>

rel
;

// Classify and add defined concepts
foreach ((def d

:
= : : :) 2 kb) do

Classify(d) ;

end

disjunctive concepts. Consequently when we classify defined
concepts, the conjunctive mgs algorithm and disjunctive mss
algorithm will respectively implement this definition by re-
spectively finding any primitive children of conjunctive con-
cepts and any primitive parents of disjunctive concepts. Thus,
as we will see, this method of classifying all primitive con-
cepts and then classifying all defined concepts will still yield
a correct algorithm with respect to the intensional subsump-
tion definition.

4.2 Classification of a concept
Given the above algorithm for classifying an entire knowl-
edge base, we now define Algorithm 2 for classifying an
individual structured concept. This algorithm is straightfor-
ward, first normalizing the concept, then finding its mss and
mgs sets, and finally inserting it into the taxonomy and re-
moving redundant structural links if necessary. 8 The only
non-obvious component of classification is that the normal-
ization algorithm must take care of recursively classifying
constituents of the concept such as restrictions and the con-
junctive components of the DNF definition. It is important
to point out that unlike languages such as Classic [Borgida
et al., 1989], this mutual recursion between classification and

8Note that some of the redundant links could be axioms or def-
initions. For the representation we will use here, it is important
to delete only structurally inferred links since axiomatic and defi-
nitional links carry important structural information in addition to
their subsumption interpretation.

Algorithm 2: Classify(target)

begin
// Recursively normalize and classify concept
if (target is primitive) then return;
Add target to the taxonomy ;
NormalizeAndDefine(target) ;

// Determine position in taxonomy
mss �MSS(target) ;
mgs �MGS(target) ;
if (mss \mgs = ;) then

// New structure so insert into taxonomy
foreach (p 2 mss) do

Add the taxonomy link target v
s
p;

foreach (c 2 mgs) do
Add the taxonomy link c v

s
target;

foreach (p 2 mss) do
foreach (c 2 mgs) do

Remove the taxonomy link c v
s
p;

else
// target is equivalent to any a
Choose any a 2 mss \mgs;
Add the taxonomy link target v

s
a;

Add the taxonomy link a v
s
target;

end

normalization is required for correctness of concept normal-
ization (this is due to the complex interactions than can occur
between role restrictions, conjunction, and disjunction).

4.3 Normalization algorithm
Normalization is required to ensure that structural compari-
son of two defined concepts will yield all extensionally com-
plete subsumption relationships. Here we discuss the indi-
vidual steps involved in normalization and then proceed to
specify the full algorithm.

1. Expand definitions: Any non-primitive concept must
be replaced by its definition until only primitive con-
cepts remain. For example, given the definition
(A

:
= B t C), the concept D u A u 9R:A can be ex-

panded to D u (B t C) u 9R:A. Note that the restric-
tion referent A in 9R:A is not expanded yet; We will
recursively apply this algorithm to all role restriction ref-
erents in a subsequent step.

2. Convert to DNF: We convert the concept to disjunctive
normal form (i.e. a a disjunction of purely conjunctive
elements) by distributing t over u. For example, given
the concept (A t B) u C we distribute the t to obtain
(A u C) t (B u C).

3. Convert restrictions to canonical form: For each role of
the following type, perform the given conversion:

a) 9R:C �! > 1R:C

b) > nR �! > nR:>

c) 6 nR �! 6 nR:>

4. Merge conjoined universal role restrictions: If any 8
role restrictions in the same conjunction are exactly the
same except for their referent concepts, we merge them
and conjoin their referent concepts. For example, we
rewrite 8nR:C u 8nR:D as 8nR:(C uD).

5. Classify all role restrictions: All role restriction refer-
ents should be classified.

6. Rewrite tautologous and inconsistent role restrictions:
All role restrictions determined by classification to be
equivalent to the following forms should be rewritten to
their equivalent> or ? definitions:

a) 8R:>�! >
b) 6 nR:? �! >

c) > 0R:C �! >

d) > nR:? where n � 1 �! ?

7. Eliminate redundant conjoined elements: Constituents
that subsume other constituents within a conjunction
should be removed. For example, if it is known that
A0
v A, then the concept (AuA0

)tB can be simplified
to A0

t B. As another example, if classification has in-
ferred that > n0R0:C 0 is subsumed by> nR:C then the
concept > n0R0:C 0

u > nR:C will be simplified to
> n0R0:C 0.

8. Merge, classify, rewrite, and eliminate disjoined uni-
versal role restrictions: If two different disjoined sets
of conjunctions are equivalent in every way except
for a single universal role restriction in each which
agree on their restriction type and relation, we disjoin
the referent concepts in these restrictions and merge
the two conjunctions.9 Next we classify the newly
disjoined restriction referent and rewrite it according
to step 7 if it is equivalent to any of those forms. Next
we check if the restriction (or its rewrite) is redundant
with any other conjoined elements as in step 8 and
eliminate it if it is redundant. Finally, we repeat
these steps until no further disjunctive role merges
are possible. Following is an example which makes
use of many of these steps: Assume we are given
A0
v A, B0

v B, and R0
v R, and the concept

(8R0:(A0
t B0

) u 8R:A) t (8R0:(A0
t B0

) u 8R:B).
We first notice that the two components of the con-
junction match except for the restrictions 8R:A and
8R:B. Consequently we merge the two conjunctive
components to form 8R 0:(A0

t B0
) u 8R:(A t B).

Next we classify the newly formed restriction referent
8R:(A t B) and find that it subsumes 8R0:(A0

t B0
).

This leads us to remove the redundant subsumer, leaving
us with the final normalized concept 8R 0:(A0

t B0
)

which is equivalent to the original concept.

9. Build and classify conjunctive substructure: Since
a DNF definition is broken down into two levels,

9It was important to first remove redundant conjunctive con-
stituents since this allows identical conjunctive constituents to be
structurally identified.

i.e. a disjunction of conjunctions, we build formal
anonymous concepts for each of the conjunctions
and recursively classify them. For example, the DNF
concept D

:
= (A u B) t (C u 9R:(A t B)) is replaced

with the following definitions: D
:
= Anon1 t Anon2,

Anon1
:
= A u B, Anon2

:
= C u 9R:Anon3, and

Anon3
:
= A t B. Then for each anonymous con-

junctive concept, we add v
c

taxonomy links with
the anonymous concept as child and its conjunc-
tive constituents as parents. For example, given
Anon1

:
= A u B, we add the two taxonomy links

Anon1 vc
A and Anon1 vc

B. Once each anonymous
concept is defined, we then proceed to recursively
classify it.

10. Eliminate redundant disjoined elements: Constituents
that are subsumed by other constituents within a disjunc-
tion should be removed. For example, if it is known
that A0

v A, then the concept A t A0
t B can be

simplified to A t B. As another example, if classifica-
tion has inferred that > n0R0:C 0

v geqslantnR:C then
the concept > n0R0:C 0

t > nR:C will be simplified to
> nR:C.

11. Build disjunctive concept structure: Now that we have
the conjunctive components of the DNF definition built
and classified, we addv

d
taxonomy links with the target

concept as parent and its disjunctive anonymous con-
stituents as children. From the above example, given
D

:
= Anon1 u Anon2, we add the two taxonomy links

D v
d
Anon1 and D v

d
Anon2. Once this is complete,

the target concept is normalized and ready for classifica-
tion.

Now that we have explained and provided examples for
each of the individual steps, we present a formalized version
of these steps in Algorithm 3.

4.4 Most specific subsumer (MSS)
As noted in the above explanation of taxonomic classification,
only defined concepts (i.e. those with conjunctive or disjunc-
tive definitions) and restrictions are passed to the classifica-
tion algorithm. Consequently, in Algorithm 4, we define an
mss algorithm to handle these respective concept structures.

First, however, we will provide a brief high-level descrip-
tion of the different components of this algorithm that effec-
tively implement taxonomic inference of the intensional sub-
sumption rules specified in Table 2. We give soundness and
completeness results for these implementations in a subse-
quent section.

� Conjunctively defined target: If we are looking for the
subsumers of a conjunctively defined concept, we can
do this in two steps. In the first step we mark the tar-
get and all parents up to > with a distinct mark. Now,
starting with a set containing the > concept, we simply
search down the taxonomy from all elements in this set,
adding any marked concept or any conjunctively defined
concept that has all constituents marked. If during this
search, any concept is a subsumer but has no children
that are subsumers, this concept is a candidate mss.

Algorithm 3: NormalizeAndDefine(target)

begin

// Note: For an in-depth discussion of each of the
// following steps, please refer to section 4.3
if (target is of the form 6 nR:C or > nR:C) then

// Just classify restriction referent (note: this
// restriction will be classified upon return)
Classify(C);

else

// Expand concept structure, convert to DNF,
// and normalize restriction definitions
Expand non-primitive elements in target def;
Convert target def to DNF;
foreach (role restriction res 2 target) do

Convert res to canonical form;

// Merge, classify, rewrite and eliminate
// redundant conjoined elements
Merge all possible conjoined role restrictions;
foreach (role restriction res 2 target) do

Classify(res) ;
Rewrite res if tautologous or inconsistent ;

Eliminate redundant conjoined elements;

// Merge, classify, rewrite and eliminate
// redundant disjoined elements
while (a disjoined role restriction can be
merged) do

Merge the restriction to form res�;
Classify(res�);
Rewrite res if tautologous or inconsistent;
Eliminate res if redundant with conjoined
elements;

// Define conjunctive substructure, classify,
// and remove redundant disjoined elements
Build anonymous concept defs for conjunctions;
foreach (anonymous concept anon) do

Add v
c

taxonomy links from anon to to its
conjunctive constituents;
Classify(anon) ;
Eliminate anon if redundant with other
disjoined elements;

// Define disjunctive substructure (note - this
// concept will be classified upon return
Addv

d
taxonomy links from the disjunctive

anonymous concept constituents to target;

end

� Disjunctively defined target: If we are looking for the
subsumers of a disjunctively defined concept, we must
find other disjunctive concepts for which all constituents
are subsumers of the target’s constituents. To do this, we
mark up from each of the target’s constituents with a dis-
tinct mark and then collect all parent concepts of one of
the constituents that contain all marks.10 Additionally,
we need to check for the special case of an mss conjunc-
tive concept and we do this simply by checking to see
if any conjunctively defined child of a disjunctive mss
has all constituents within the mgs set. As a final note,
it should be apparent that this algorithm also finds prim-
itive parents of disjunctively defined concepts. Conse-
quently, the disjunctive mss algorithm finds all primitive,
conjunctive, and disjunctive subsumers of a disjunctive
concept according to the intensional subsumption rules.

� Restriction target: There are a number of ways to find
parent subsumers of restrictions and here we present a
somewhat inefficient but relatively simple method for
doing this. We assume that all concepts have been clas-
sified in an extensionally complete taxonomy so that
finding a parent subsuming restriction according to the
intensional subsumption rules simply consists of two
steps. First, all restrictions making reference to the re-
striction referent or one of its parents is collected in a
set. Then, all restrictions in this set are checked against
the intensional subsumption rules to prune out the non-
subsumers. (The final filtering step will ensure that only
the most-specific relation subsumers are returned.)

As a final step during MSS, it is important to filter the mss
candidate set for subsumers that are not most specific. It is
generally difficult to order the subsumer search to guarantee
that such anomalous mss’s do not occur. Thus it is easiest
as a final step to simply remove any superfluous concepts by
removing any subsumers of other concepts within the set.

Note that for the structural comparisons in the inten-
sional subsumption definition that seem to be ignored (i.e.
Primitive/Disjunctive, Conjunctive/Primitive, and Conjunc-
tive/Disjunctive), the intensional subsumption is inferrable
directly through the transitive closure of axiom and defini-
tion links. Thus, it only takes primitive concept classification
and definitional links to build a complete taxonomy for these
cases.

Next we proceed to define the MSS algorithm in Algo-
rithm 4. This algorithm makes reference to the following
helper functions:

� GetDirParents=Children(target; linkType): We
use this function to get the directly linked par-
ents/children of the specified link types for the target.
Link type refers to one or more of v

a
;v

c
;v

d
;v

s
and

is abbreviated with a; b; c; d respectively. Returns the set
of parents/children.

� GetAllParents=Children(target; linkType): We
use this function to get the recursive transitive closure of

10It should be apparent that any disjunctive mss concept must be
a subsumer of every constituent of target, so it really does not matter
which constituent we initiate our search from.

all specified link types starting from the target (searching
upward for parents and downward for children). Returns
the set of parents/children.

� MarkAllParents=Children(target; linkType;
markerID): We use this function to mark the recursive
transitive closure of all specified link types starting from
the target (searching upward for parents and downward
for children). All concepts within this closure are given
the specified marker id. Returns nothing.

� ContainsMark(target;markerID): We use this
function to determine whether the specified target has
been marked with the specified marker id. Returns true
or false.

4.5 Most general subsumee (MGS)
Just as in the above MSS algorithm, we define the MGS al-
gorithm for conjunctively and disjunctively defined concepts
and restrictions. One of the elegant symmetries in this algo-
rithm is that it essentially mirrors the MSS algorithm in that
it infers from the ? concept upward (rather than > down-
ward) and the inference algorithms for conjunction and dis-
junction are effectively swapped. This similarity is no coin-
cidence in fact and reflects the symmetry of conjunctive and
disjunctive subsumption for the intensional definition. First,
we will briefly discuss the details of inference for each type
of concept structure:

� Conjunctively defined target: The algorithm for finding
conjunctive mgs’s is the same algorithm used to find dis-
junctive mss’s except that now we pass a distinct mark
down from each of the conjunctive constituents and col-
lect all mgs’s below one of the constituents. An addi-
tional subsumption check for disjunctive mgs’s is in-
cluded to fully implement the intensional subsumption
rules. Also, as in disjunctive MSS, conjunctive MGS
can find primitive concepts as children since this algo-
rithm directly implements that rule from the intensional
subsumption rules.

� Disjunctively defined target: This algorithm is essen-
tially the same as conjunctive MSS except that we mark
down from target to ?, initiate our search at ?, and ex-
pand our search frontier upward.

� Restriction target: This algorithm is essentially identi-
cal to the MSS algorithm for restrictions except that the
direction of inference is reversed.

And finally, as in the MSS algorithm, we must also filter
the candidate mgs set since there could be redundant elements
within this set.

We now proceed to define the MGS algorithm in Algo-
rithm 5 which refers to the same helper functions defined for
the MSS algorithm.

4.6 Remarks on instance classification
We have omitted a discussion of instance classification but
this would simply require a slightly modified subset of the
algorithm given here.

The goal of instance classification is to find the most spe-
cific concept subsumers for a given instance. An instance

Algorithm 4: MSS(target)

begin
// Find the subsumers of target
mss � ;;
switch (type of target)

case (target is conjunctively defined)
MarkAllParents(target; ajcjdjs; 1);
frontier � f>g;
while (frontier 6= ;) do

Remove c 2 frontier;
dc � GetDirChildren(c; ajcjdjs);
foreach (cld 2 dc) do

if (cld is primitive and marked
with 1 or cld is conjunctive and
all GetDirParents(cld; c) are
marked with 1) then

frontier � frontier [cld;

if (no child subsumee exists) then
mss � mss [cld;

case (target is disjunctively defined)
cons � GetDirChildren(target; d);
for (i = 1 : : : jconsj) do

MarkAllParents(cons
i
; ajcjdjs; i);

frontier � fcons1g;
while (frontier 6= ;) do

Remove c1 2 frontier;
if (c1 contains all jconsj marks) then

mss � mss [c1;
dc � GetDirChildren(c1; c);
foreach (c2 2 dc) do

if (all GetDirParents(c2; c)
contain all jconsj marks) then

mss � mss [c2 n c1;

else
frontier � frontier [
GetDirParents(c1; ajcjdjs);

case (target is a restriction)
c1 � f concept referent of target g ;
par � c1 [GetAllParents(c1; ajcjdjs);
foreach (c2 2 par) do

foreach (restriction r with concept ref-
erent c2) do

if (r 6= target and r subsumes
target according to intensional sub-
sumption rules) then

mss � mss [r;

// Filter out non-most specific subsumers
foreach (c 2 mss) do

mss � mss nGetAllParents(c; ajcjdjs);

return mss;
end

Algorithm 5: MGS(target)

begin
// Find the subsumers of target
mgs � ;;
switch (type of target)

case (target is conjunctively defined)
cons � GetDirParents(target; c);
for (i = 1 : : : jconsj) do

MarkAllChildren(cons
i
; ajcjdjs; i);

frontier � fcons1g;
while (frontier 6= ;) do

Remove c1 2 frontier;
if (c1 contains all jconsj marks) then

mgs � mgs [c1;
dp � GetDirParents(c1; d);
foreach (c2 2 dp) do

if (all GetDirChildren(c2; d)
contain all jconsj marks) then

mgs � mgs [c2 n c1;

else
frontier � frontier [
GetDirChildren(c1; ajcjdjs);

case (target is disjunctively defined)
MarkAllChildren(target; ajcjdjs; 1);
frontier � f?g;
while (frontier 6= ;) do

Remove c 2 frontier;
dc � GetDirParents(c; ajcjdjs);
foreach (par 2 dc) do

if (par is primitive and marked
with 1 or par is disjunctive and
all GetDirChildren(cld; d) are
marked with 1) then

frontier � frontier [par;

if (no parent subsumer exists) then
mgs � mgs [par;

case (target is a restriction)
c1 � f concept referent of target g;
cld � c1 [GetAllChildren(c1; ajcjdjs);
foreach (c2 2 cld) do

foreach (restriction r with concept ref-
erent c2) do

if (r 6= target and r is subsumed
by target according to intensional
subsumption rules) then

mgs � mgs [r;

// Filter out non-most specific subsumees
foreach (c 2 mgs) do

mgs � mgs nGetAllChildren(c; ajcjdjs);

return mgs;

end

structure will simply be a primary instance with type-of links
to various concepts. In addition, this primary instance will
have relation links to other instances of the same general
structure. To classify such an instance, one need only run
the conjunctive portion of MSS classification using the in-
stance concept types as the constituents instead of the in-
stances themselves. This should yield a structural algorithm
for instance classification with the same soundness and com-
pleteness guarantees as that of the language being classified.

4.7 Remarks on incremental classification
For reasons of simplicity of presentation and analysis, we
have chosen to provide a classification algorithm that requires
full knowledge of all kb contents prior to the start of classifi-
cation. This is a somewhat unreasonable assumption for the
real world since we would like to add knowledge incremen-
tally as it is encountered. It would not be difficult to add such
enhancements - one would simply need to add classification
rules for primitive concepts since their conjunctive subsumers
or disjunctive subsumees may have already been classified.
Otherwise, conversion of this algorithm to an extensionally
sound and complete incremental version for L1 or a slightly
incomplete incremental algorithm for L2 would be relatively
straightforward.

5 Algorithm properties
In the following sections, we prove various properties of this
algorithm regarding soundness, completeness, and time com-
plexity.

5.1 Soundness and completeness
Soundness for classification in L1 and L2
Before we prove soundness of classification, it is first impor-
tant to establish three important theorems:

5.1 Normalization preserves the extension of a concept if
classification is sound for its constituents.

5.2 The classification algorithm correctly implements the
intensional subsumption definition for normalized con-
cepts.

5.3 The intensional subsumption definition is extensionally
sound.

From these theorems, it is relatively simple to prove the
following two additional lemmas:

5.4 The classification algorithm is extensionally sound for
normalized concepts.

5.5 All concepts are extensionally equivalent to their nor-
malized counterparts.

And from these lemmas, it is relatively straightforward to
show that the overall classification algorithm is sound.

Theorem 5.1 Normalization preserves the extension of a
concept (i.e. if concept A has normalized form A 0 then
A � A0) if classification is sound for its constituents.

To prove this, we show that each normalization step pre-
serves extensional equivalence to the concept before the step
was executed:

1. Expand definitions: Since we are replacing concepts by
their equivalent definitions, extensional equivalence is
preserved.

2. Convert to DNF: Since the DNF format is known to be
logically equivalent to the original format, extensional
equivalence is preserved.

3. Convert restrictions to canonical form: Based on the
previously stated role conversions, it is trivial to show
that every instance which satisfies the role restriction on
the left will satisfy that on the right and vice versa.

4. Merge conjoined universal role restrictions: It is
straightforward to show that any instance which satisfies
8R:A u 8R:B must also satisfy 8R:(A u B) and vice
versa. Clearly an instance of the former concept must
restrict all objects related via R to be an instance of both
A and B and this is exactly what the second concept
states so equivalence is maintained.

5. Classify all role restrictions: This step does not affect
concept structure and therefore trivially maintains equiv-
alence.

6. Rewrite tautologous and inconsistent role restrictions:
Obviously these role restrictions have the same exten-
sion as the > and? concepts that replace them.

7. Eliminate redundant conjoined elements: If one con-
stituent is found to be subsumed by another conjoined
constituent via a sound classification procedure, the ex-
tension of that conjunction is at most the extension of
that of the subsumee. Since the extension of the sub-
sumer is a superset of the subsumee and cannot further
constrain the extension of the conjunction, the subsumer
can be safely eliminated from the conjunction without
changing the extension of the concept.

8. Merge, classify, rewrite, and eliminate disjoined univer-
sal role restrictions: It is straightforward to show that
any instance that satisfies (C u 8R:A) t (C u 8R:B)
must also satisfy C u 8R:(A t B) and vice versa.
Clearly, an instance of the former concept must be an
instance of both C and restrict any relations via R to
be an instance of A or B depending on which part of
the disjunction is classified. This is clearly what the
second concept states so equivalence is maintained. To
show that equivalence is maintained for the classifica-
tion, rewriting, and elimination steps we refer to steps
6–7.

9. Build and classify conjunctive substructure: This step is
simply for defining the concept within the taxonomy and
has no effect whatsoever on concept structure.

10. Eliminate redundant disjoined elements: If one con-
stituent is found to subsume another disjoined con-
stituent via a sound classification procedure, the exten-
sion of that disjunction is at least the extension of that
of the subsumer. Since the extension of the subsumee is
a subset of the subsumer and cannot further contribute
to the extension of the disjunction, the subsumee can be
safely eliminated from the disjunction without changing
the extension of the concept.

11. Build disjunctive concept structure: Again, this step is
simply for defining the concept within the taxonomy and
has no effect on concept structure.

Since each step preserves extensional equivalence of the
concept if classification is sound, the overall normalization
algorithm must preserve extensional equivalence if classifi-
cation is sound for its constituents. �

Theorem 5.2 The classification algorithm correctly imple-
ments the provided intensional subsumption definition for
normalized concepts.

A formal proof of correctness would be quite involved so
we will instead provide a proof sketch that should make the
formalization relatively obvious.

We prove correctness of classification including normal-
ization with respect to the intensional subsumption definition
by showing that any subsumption returned by the classifica-
tion algorithm11 satisfies the intensional subsumption defini-
tion and vice versa. Both proofs rely on structural induction
on the complexity of the concept being classified and make
the recursive case assumption that correctness holds for any
concepts of lesser complexity.

To make the proof easier, we assume that the concepts be-
ing compared via the classification algorithm and the inten-
sional subsumption definition have both been normalized –
this simplifies the correctness proof since concepts on both
sides can be assumed to have the same structure. Furthermore
this is a valid strategy since by structural induction, if the
algorithms agree on subsumption for all concepts less com-
plex than the ones being classified, they will also agree on the
structure of the normalized concept.12 This results from the
fact that normalization relies only on the subsumption rela-
tionships between constituents of the concept being classified
(i.e. lower complexity concepts than the one being classified)
and by structural induction, we can assume that the classifica-
tion algorithm and intensional subsumption definition agree
on these subsumptions.

In the following proof, we start first with the base cases and
proceed to the recursive cases showing that both directions of
the equivalence classification$ intensional subsumption def
hold for each case. Furthermore, whenever two concepts are
listed separated by a /, the first concept denotes the subsumee
in question which we label A and the second denotes the sub-
sumer in question which we label B.

� (Base) Role restriction combination not mentioned in
Table 2:

$: Neither the algorithm or the intensional subsump-
tion definition make any subsumption inferences
for role restrictions not explicitly mentioned in Ta-
ble 2.

� (Base) Primitive/Primitive:
11Here a subsumption returned by the classifiation algorithm is

any subsumption that can be inferred from the transitive closure of
subsumption links in the taxonomy.

12Note that the base cases do not require normalization, i.e. see
the first line of Algorithm 3. This is quite crucial to the validity of
the proof strategy given here.

$: ClassifyKb() handles this inference and clearly
any concept A found to be subsumed via transitive
role closure ofv

a
andv

s
links inserted by this pro-

cedure must satisfy the intensional definition. Like-
wise, the intensional definition is effectively imple-
mented by ClassifyKb().

� (Recursive) Primitive/Conjunctive:

$: When the conjunctive portion of the MGS algo-
rithm runs for concept B, it will clearly find any
concept A that is subsumed according to the inten-
sional subsumption definition. Thus, the conjunc-
tive MGS algorithm and this intensional subsump-
tion rule clearly compute the same thing.

� (Recursive) Primitive/Disjunctive:

$: This case reduces to a subsumption test between
the primitive concept and the primitive constituents
of the disjunctive concept that is effectively han-
dled by the Primitive/Primitive case. Correspon-
dence for the Primitive/Primitive case has already
been shown, therefore the classification algorithm
and intensional subsumption definition compute
the same subsumptions for this case.

� (Recursive) Conjunctive/Primitive:

$: This case reduces to a subsumption test between
the primitive concept and the primitive constituents
of the disjunctive concept that is effectively han-
dled by the Primitive/Primitive case. Correspon-
dence for the Primitive/Primitive case has already
been shown, therefore the classification algorithm
and intensional subsumption definition compute
the same subsumptions for this case.

� (Recursive) Conjunctive/Conjunctive:

Since this structural comparison along with the Disjunc-
tive/Disjunctive comparison likely accounts for the ma-
jority of subsumptions between structured concepts, we
examine this case a little more in-depth to show infer-
ence equivalence of the intensional subsumption defini-
tion and the classification algorithm.

!: This type of subsumption inference can be made in
two places in the classification algorithm, i.e. the
conjunctive portions of the MSS and MGS algo-
rithms. For MSS, if a conjunctive concept is in-
ferred to be a parent then its constituents must all be
subsumers of the consituents of the subsumee. This
is exactly what the intensional rule states for sub-
sumption between conjunctive concepts. If MGS
infers a conjunctive concept as child, the child’s
constituents must contain subsumees of all the par-
ent concept’s constituents. Again, this is exactly
what the intensional rule states. Consequently, if
a concept is inferred to be a conjunctive subsumer
of subsumee via classification, it must satisfy the
intensional subsumption definition.

 : To show that no intensional rule inferences are
missed by the conjunctive portions of either the

MSS or MGS algorithms, it suffices to show that
both algorithms examine all possible candidates.
The MSS algorithm starts at > and examines all
concepts which satisfy the intensional rule (termi-
nating only in places where a concept is not a sub-
sumer and therefore neither are its children), con-
sequently, no concept could be missed. The MGS
algorithm examines all concepts that are children
of one of the target’s constituents. Since a sub-
sumee of this consituent is required to be a con-
stituent of all MGS subsumees, the MGS algorithm
also examines all possible MGS candidates. Given
that the MGS candidate checking algorithm exactly
implements the intensional semantics, no candidate
could be missed by MGS. Thus, any subsumption
between conjunctively defined concepts satisfying
the intensional subsumption definition can be in-
ferred through the classification algorithm.

� (Recursive) Conjunctive/Disjunctive:

$: This case reduces to a subsumption test between
the primitive concept and the primitive constituents
of the disjunctive concept that is effectively han-
dled by the Primitive/Primitive case. Correspon-
dence for the Primitive/Primitive case has already
been shown, therefore the classification algorithm
and intensional subsumption definition compute
the same subsumptions for this case.

� (Recursive) Disjunctive/Primitive:

$: When the disjunctive portion of the MSS algorithm
runs for concept A, it will clearly find any con-
cept B that is a subsumer according to the inten-
sional subsumption definition. Thus, the disjunc-
tive MSS algorithm and this intensional subsump-
tion rule clearly compute the same subsumptions.

� (Recursive) Disjunctive/Conjunctive:

$: This intensional subsumption rule is determined in
two places in the classification algorithm. If con-
cept B is classified after concept A, then A will be
found as a subsumee of B in the conjunctive por-
tion of the MGS algorithm (there is a special test in
this algorithm for this subsumption). If concept A
is classified after concept B, then B will be found
as a subsumer of A in the disjunctive portion of the
MSS algorithm (again, there is a special test in this
algorithm for this subsumption). A careful analy-
sis of both of these algorithms should reveal that
they both correctly implement the intensional sub-
sumption rule for this concept structure combina-
tion. That is, they examine all possible candidates
and correctly retain those that satisfy the definition.
Thus, this portion of the intensional subsumption
definition and the classification algorithm compute
the same subsumptions.

� (Recursive) Disjunctive/Disjunctive:

$: Since the classification algorithm and intensional
definitions are completely symmetric with the Con-

junctive/Conjunctive case, we can use the exact
same proof structure for that case to prove equiva-
lence of this case. Thus, we will omit further formal
proof of this case, instead referring to the Conjunc-
tive/Conjunctive proof with the direction of infer-
ence reversed.

� (Recursive) Role restriction/Role restriction:

$: This is the one part of the algorithm that was not
optimized for sake of brevity and thus it is rela-
tively straightforward to prove equivalence of the
intensional subsumption definition and the algo-
rithm in this case. Clearly, the restriction portion
of the MSS and MGS algorithms examine all pos-
sible candidates that might conform to the inten-
sional subsumption definition. This is because the
examine any role restriction that concept referents
which are subsumers or subsumees of the target
concept being classified. Since this is a requirement
for role restriction subsumption (in either case), we
can be sure that all possible candidates are exam-
ined. From this point, all candidates are tested di-
rectly against the intensional subsumption defini-
tion. Thus the classification algorithm and inten-
sional subsumption definition infer the same sub-
sumptions.

Consequently, by structural induction we have shown that
the classification algorithm given in Algorithms 1–5 and the
intensional subsumption definition given in Table 2 are equiv-
alent in terms of subsumption inference. Therefore, we can
deduce that the classification algorithm correctly implements
the intensional subsumption definition for L1 and L2. �

Theorem 5.3 The provided intensional subsumption defini-
tion is extensionally sound.

For every structural comparison rule given in Table 2, it
is straightforward to show that any instance satisfying con-
cept B must also satisfy concept A. In the following listing,
we provide the type of concept A followed by the type of
concept B. Additionally, if A or B are conjunctively or dis-
junctively defined, we refer to their constituents as A

i
or B

j

respectively.

� Primitive/Primitive: Clearly by the constraint axioms
linking concept A and concept B, every instance in AI

must also be in BI .

� Primitive/Conjunctive: If A is subsumed by every B
j

then clearly every instance in AI is in every BI

j
and

therefore in the intersection of all BI .

� Primitive/Disjunctive: If A is subsumed by some B
j

then clearly the following relationship holds by defini-
tion and subsumption constraints: AI

� BI

j
� BI .

� Conjunctive/Primitive: If some A
i

is subsumed by B
then clearly the following relationship holds by defini-
tion and subsumption constraints: AI

� AI

i
� BI .

� Conjunctive/Conjunctive: This rule requires that every
B

j
subsumes some A

i
. Additionally, from the defini-

tion, any instance in the intersection ofAI

i
, i.e. AI , must

obviously be in everyAI

i
. Since an instance in everyAI

i

must necessarily be in each BI

j
due to the subsumption

constraint, this instance must also be in the intersection
BI . Thus, any instance in AI must necessarily be in
BI .

� Conjunctive/Disjunctive: This rule requires that some
B

j
subsumes some A

i
. Since B subsumes B

j

and A
i

subsumes A by default, clearly by transi-
tivity of subsumption, the following relation holds:
AI
� AI

i
� BI

j
� BI . Thus, any instance of A must

also be an instance of B.

� Disjunctive/Primitive: If B subsumes every A
i
, then

clearly every instance in the union of all AI

i
, (i.e. AI),

is also necessarily in BI .

� Disjunctive/Conjunctive: This rule requires that every
B

j
must subsume every A

i
. It should also be clear that

any instance in the disjunction AI must be in one of
the AI

i
. Since every AI

i
must be a subset of every BI

j
,

clearly any instance in AI

i
is also in everyBI

j
and there-

fore the intersection BI . Thus, any instance in AI must
necessarily be in BI .

� Disjunctive/Disjunctive: This rule requires that everyA
i

must be subsumed by some B
j
. Additionally, from the

definition, an instance in AI must be in some AI

i
. Since

an instance in AI

i
must be in BI

j
by the subsumption

constraint, it must also be in the disjunctionBI . Thus, it
should be clear that any instance in AI must necessarily
be in BI .

� Role restriction/Role restriction: Given the rules for role
restriction subsumption, it is straightforward to show
that each part of the rule (i.e. relation subsumption, re-
striction referent subsumption, and number comparison
if relevant) restrict the set of instances in AI to be a nec-
essary subset of those in BI .

� Concept/Role restriction or Role restriction/Concept:
There is no such rule for this combination. Conse-
quently, false is returned by default and this is trivially
sound.

� Role restriction combination not mentioned in Table 2:
This rule only returns false which is trivially sound.

Consequently, each individual intensional subsumption
rule is sound, and false is returned otherwise, thus the inten-
sional subsumption definition is sound. �

Lemma 5.4 The classification algorithm is extensionally
sound for normalized concepts in L1 and L2.

We know from theorem 5.2 that the classification algo-
rithm correctly implements the intensional semantics, assum-
ing both are using normalized concepts A 0 and B0 derived
from A and B. Thus, if classification infers A 0

v B0 then by
the definition in Table 2 A0

v
i
B0. Second, we know from

theorem 5.3 that the intensional subsumption definition is ex-
tensionally sound. Thus, we know that A 0I

� B0I . Thus, the
classification algorithm is extensionally sound for normalized
concepts. �

Lemma 5.5 The normalized version of a concept is exten-
sionally equivalent to its unnormalized version for all concept
structures in L1 and L2.

To prove equivalence between all normalized and unnor-
malized concepts using the classification algorithm, we show
this by structural induction on the complexity of a concept:

� Base case: We start with a base case of primitive con-
cepts for which this trivially holds. Since classification
of concepts is sound for all normalized concepts, it must
also be sound for unnormalized primitive concepts since
they are syntactically identical to their normalized coun-
terparts.

� Recursive case: We assume that here we are trying to
classify some target concept for which we can assume its
constituents are all equivalent to their normalized coun-
terparts via the inductive hypothesis. Since equivalence
holds for the constituents, we know that extensionally
sound classification as given in lemma 5.4 for normal-
ized constituents yields extensionally sound classifica-
tion for the unnormalized constituents. Thus via theo-
rem 5.1, we know that equivalence must be maintained
for the target concept.

Thus, equivalence holds for all normalized and unnormal-
ized concepts using the provided classification algorithm. �

Theorem 5.6 Subsumption inference for concepts in L1 and
L2 using the provided classification algorithm is extension-
ally sound.

Given lemmas 5.4 and 5.5, it is a fairly straightforward
argument to show that the classification algorithm is exten-
sionally sound. We simply need to show that if classification
infers A v B then it must hold that AI

� BI .
Lemma 5.4 implies that if classification infersA v B, then

A0I
� B0I must hold for the normalized versions of the con-

cepts. And from lemma 5.5, it is straightforward to show that
we can infer AI

� BI from A0I
� B0I . Thus, classification

is extensionally sound for L1 and L2. �

Completeness for classification in L1
To show completeness of subsumption inference in L1, we
need to show one main property, i.e. that the intensional sub-
sumption definition given in Table 2 is complete for normal-
ized concepts. From this, it is relatively straightforward from
previously proved theorems and lemmas to establish that clas-
sification is complete for all concepts in L1.

Theorem 5.7 Subsumption inference for normalized con-
cepts inL1 using the intensional subsumption definition given
in Table 2 is extensionally complete.

Here we rely on the fact that we know that a concept is
normalized and proceed to show via structural induction that
if any subsumption inference is not made according to the
intensional subsumption definition, then there always exists a
countermodel for that subsumption inference.

In the following listing, we provide the type of concept
A followed by the type of concept B. Additionally, if A or
B is conjunctively or disjunctively defined, we refer to its
constituents as A

i
or B

j
respectively.

1B
2B

2B1B

1A 2A

A 1 A 2

B 1 Bn
.....

1A An
.....

1B nB

1A An An
A 1

.....

nB1B

BnB 1

An
A 1

b)

d)

a)

c)

A

*

c c
B

*

d d

.....

.....

.....

.....

.....

.....

*
*

c c

c cd d

d d

.

.

Figure 3: Sample diagrams to illustrate parts of the com-
pleteness proof for the following subsumee(A)/subsumer(B)
concept structure pairs: a) Primitive/Conjunctive b) Dis-
junctive/Primitive c) Conjunctive/Disjunctive d) Disjunc-
tive/Conjunctive. Solid lines indicate the subsumptions due
to definitions, solid lines with a star indicate the intended
structural subsumption inference, and dashed lines indicate
the subsumptions of which all or a subset must hold true in
order for the intended structural subsumption relation to hold.
To avoid an excess of arrows, it is assumed that a vertically
higher concept subsumes a vertically lower concept if a link
exists.

� Primitive/Primitive: Clearly, if a subsumption inference
was not made then there was no chain of axiomatic or
structural subsumption links leading from A up to B.
Consequently, if no such chain exists then it is easy to
construct a model forAI that contains an instance not in
BI but is still consistent with the knowledge base con-
straints.

� Primitive/Conjunctive: If A is not subsumed by every
B

j
then clearly not every instance in AI is in every

BI

j
. Thus, not every instance in AI is in the intersection

BI and this demonstrates a way to construct a counter-
model. Figure 3a helps one to visualize the constraints
for this proof.

� Primitive/Disjunctive: This rule requires that some B
j

subsume A. If this is not the case, then a countermodel
can be constructed by the following procedure: Simply
take a valid model and add a new instance i1 to A but
not to any B

j
. This instance clearly satisfies i1 2 AI .

However, since no B
j

subsume A, i1 =2
S
BI

j
can hold

and by definition i1 =2 BI can hold as well. This clearly
violates A v B and thus a countermodel exists for any
subsumption failing to meet this rule. Figure 3b helps
one to visualize the constraints for this proof.

� Conjunctive/Primitive: This rule requires that some A
i

be subsumed by B. If this is not the case, then a coun-
termodel can be constructed by the following procedure:
Simply take a valid model and add a new instance i1 to
each A

i
but not to B. This instance satisfies i1 2

T
AI

i

and by definition, i1 2 AI . However, since no A
i

are
subsumed by B, i1 =2 BI can hold. This clearly vi-
olates A v B and thus a countermodel exists for any
subsumption failing to meet this rule. Figure 3b helps
one to visualize the constraints for this proof.

� Conjunctive/Conjunctive: This rule requires that every
B

j
subsumes some A

i
. If this rule does not hold then it

is straightforward to build a countermodel. We simply
assume that A is non-empty and for the B

j
which does

not subsume some A
i
, we set BI

j
� ;. Then clearly

BI
�
T
BI

j
� ; while AI is not empty and thus B

does not subsume A in this model.

� Conjunctive/Disjunctive: This rule requires that some
B

j
subsumes some A

i
. If this does not hold then clearly

it is possible to construct a countermodel for this sub-
sumption. Figure 3c shows in part why this is the case:
If no A

i
is subsumed by a B

j
then it is easy to construct

a model with an instance i1 in all AI

i
but no BI

j
such

that i1 2
T
AI

i
but i1 =2

S
BI

j
. (This is not perhaps as

straightforward as it sounds. See the note below on why
this must hold for all normalized concepts.) Thus, by
the definition of A and B, a countermodel clearly exists
where an instance in AI is not in BI and the subsump-
tion cannot hold.

F There is one extremely important note to be made here:
This is the one case of structural subsumption which re-
quires that the concepts be in disjunctive normal form.
Otherwise, if both concepts had structured components,
they may not obey this rule but still indirectly constrain
each other to be subsumers. An example of this is given
in Figure 4. In this case, A t (B u C) is not inferred to
be a parent of (AtC)u (AuB) and yet these concepts
are obviously equivalent. So, why does this occur? Be-
cause any instance in (AtC)u (AuB) must belong to
both (AtC) and (AtB). Consequently, if the instance
belongs to either A in these disjunctions,At (B uC) is
satisfied. And if the instance belongs to neither A in the
disjunctions then it must belong to both B uC thus also
satisfying A t (B u C).

Thus, extensionally there clearly is a subsumption re-
lationship. However, with a little thought it becomes
apparent that if either conjunctions or disjunctions are
restricted to have primitive constituents as in DNF or
CNF, then such a structurally unidentifiable subsump-
tion is impossible (i.e. adding an instance to all prim-
itive constituents of a concept could not indirectly add
the instance to any other concepts without adding it di-
rectly to its constituents or a constituent of one of its
constituents).13 Consequently, this underscores the need
for DNF normalization to prove completeness here. 14

13This is a bit tricky so it is worth taking the time to understand.
14CNF normalization could have been chosen as well but this

B C

A (B C)

(A C) (A B)

A BA C

B

A

C

c

dd

d

d

d
dc

c

c

Figure 4: Example case where lack of DNF normalization
leads to a structurally unidentifiable subsumption. Dotted
lines indicate extensionally inferred subsumptions, solid lines
indicate definitionally inferred subsumptions. See the section
denoted withF for a discussion of this example.

� Disjunctive/Primitive: If B does not subsume every A
i
,

then clearly every instance in the union of all AI

i
, (i.e.

AI), is not necessarily inBI . Thus it is easy to construct
a countermodel that demonstrates this. Figure 3b helps
one to visualize the constraints for this proof.

� Disjunctive/Conjunctive: This rule requires that every
B

j
must subsume every A

i
. If this rule does not hold

then it is possible to construct a countermodel for this
subsumption. We demonstrate this by referring to Fig-
ure 3d: Clearly if there is someA

i
in this diagram which

does not have a subsumption link to all B
j

then it is
easy to construct a model with an instance i1 such that
i1 2 AI

i
but i1 =2 BI

j
. Then clearly i1 2

S
AI

i
but

i1 =2
T
BI

j
and by the definition of A and B, a coun-

termodel clearly exists where an instance in AI is not in
BI and the subsumption cannot hold.

� Disjunctive/Disjunctive: This rule requires that everyA
i

must be subsumed by some B
j
. If this rule does not

hold then it is straightforward to build a countermodel.
We do this with the following procedure: First, take a
valid model of A v B. Next, add some new instance
i1 not mentioned anywhere in the current model and add
it to AI

i
for the A

i
which breaks the subsumption rule

above. Now, clearly i1 2
S
AI

i
but i1 =2

S
BI

j
. Thus,

by the definition of A and B, a countermodel clearly

would conflict with the upcoming discussion of the expected DNF
structure of concepts on the Semantic Web.

exists where an instance in AI is not in BI and the sub-
sumption cannot hold.

� Role restriction/Role restriction: Given the rules for role
restriction subsumption, it is straightforward to show
that each part of the rule (i.e. relation subsumption, re-
striction referent subsumption, and number comparison
if relevant) restrict the set of instances in AI to be a nec-
essary subset of those in BI . If a subsumption inference
is not made then clearly one of these subrules does not
hold and it is easy to construct a countermodel which
disproves the subsumption.

Here we briefly discuss some issue involving normaliza-
tion and its completeness implications for subsumption
of role restrictions:

– Note that while role restriction merging is required
to achieve as much completeness as possible in L2,
it is only used for the 8R:C restriction which is not
in L1.

– Role conversion is only important for inference of
> 0R:C �! > and completeness implications for
this normalization are discussed below in the Con-
cept/Role restriction section.

– Redundant role removal is only important for cor-
rect role restriction merging which does not apply
for L1 and for inference of pure > and ? concepts
which is only important for role conversion in L2.
In general, the presence of redundant role restric-
tions in L1 does not affect completeness and this
can be easily seen by examining a few example
cases.

Thus we will not discuss the effect of role restriction
normalization on completeness since it is not important
for this proof.

� Role restriction combination not mentioned in Table 2:
Note that we only provide subsumption rules for role
restrictions of the same type. Furthermore, we note that
in L1 (i.e. the language we are proving completeness
for here), all of the role restrictions 9R:C, > nR, and
> nR:C can be normalized to > nR:C. Thus, after
normalization for L1, this rule becomes vacuous and is
never used.15 Consequently, this rule has no effect on
completeness for L1.

� Role restriction/Concept or Concept/Role restriction: A
quick look at the extensional semantics for role restric-
tions and concepts should make it clear that it would be
quite easy to construct a countermodel for any subsump-
tion of this type, except for the case where a role re-
striction happens to be equivalent to > or ?. However,
all of these cases have been accounted for in normal-
ization (actually only one case is applicable for L1, i.e.
> 0R:C �! >). Consequently, any other subsump-
tions between structures of this type would clearly have
a countermodel.

15We did prove soundness of this rule in theorem 5.3 but there we
were looking at both L1 and L2

Since a countermodel always exists if the intensional sub-
sumption definition is not met for normalized concepts,
whenever a subsumption holds in all possible models, it must
be inferred via the intensional subsumption definition. This
proves that the intensional subsumption definition is exten-
sionally complete for all normalized concepts in L1. �

Note that we did not discuss the need for all normalization
steps in the above proof, especially the completeness of con-
stituent classification or role merging. This is because these
steps were included to make structural classification of L2 as
complete as possible although as we will see shortly, struc-
tural subsumption inference in L2 is still incomplete. How-
ever, these steps are not required for the completeness of
L1.16 For normalization inL1, the only parts that are required
are expansion, DNF conversion, canonical form conversion of
role restrictions, and role restriction rewriting. The necessity
of each of these normalization steps for completeness were
all discussed above.

Theorem 5.8 Subsumption inference for concepts in L1 us-
ing the provided classification algorithm is extensionally
complete.

We only need to show that if AI
� BI holds then the clas-

sification algorithm must infer A v B.
Lemma 5.4 tells us that for normalized counterpartsA 0 and

B0, it must hold that AI
� A0I and BI

� B0I . From this
we know that if AI

� BI holds then A0I
� B0I must also

hold. Then, from the correspondence between the intensional
subsumption definition and the classification algorithm from
theorem 5.2, we can infer that classification is extensionally
complete for normalized concepts. This tells us that we must
be able to infer A0

v B0 if A0I
� B0I holds. Furthermore,

given that we maintain a syntactic mapping between concepts
and their normalized counterparts, fromA 0

v B0, we can eas-
ily inferA v B using this mapping and the property given by
lemma 5.4. Thus, if AI

� BI holds, we can see that A v B
is a valid inference that must be given by the classification
algorithm. This completes the proof that classification is ex-
tensionally complete for all concepts in L1. �

It is interesting to note that by proving extensional
soundness and completeness of the classification in theo-
rems 5.6 and 5.8 respectively, we have effectively showed
the following equivalence: Extensional subsumption defini-
tion for L1 , Intensional subsumption definition for L1 ,

Subsumptions inferred via classification for L1. Perhaps the
most remarkable part of this equivalence is the efficiency and
elegance with which the structural classification algorithm
implements the other two definitions while performing clas-
sification into an entire taxonomy.

Incompleteness for classification in L2
Theorem 5.9 Subsumption inference for concepts in L2 us-
ing the provided normalization and classification algorithm
is extensionally incomplete.

16In general, these extra normalization steps can be removed if
subsumption is only required for L1 but we left them in the general
algorithm for simplicity of presentation and under the assumption
that most implementers will want to use L2 since inference is still
complete for the L1 subset.

The language L2 only adds the role restrictions 6 nR,
6 nR:C, and 8R:C but unfortunately these tend to interact
with the role restrictions already in L1 to produce subsump-
tion cases that are not structurally identifiable. Here we give a
few counterexamples to completeness of the structural algo-
rithm and proceed to discuss why structural comparison alone
cannot remedy these problems:

� (8R:C1 u 9R:C2) v 9R:C1: Obviously none of the
intensional subsumption rules accounts for this sub-
sumption case. However, this subsumption is ac-
tually valid due to the interaction of the con-
joined 8 and 9 role restrictions. Specifically,
(forallR:C1 u 9R:C2)! 9R:(C1 u C2). From this
implied role restriction it would be easy to structurally
infer the above subsumption. While it may seem that
this problem could be resolved simply by elaborating
the normalization algorithm with rules for inferring im-
plied role restrictions, there are an infinite number of in-
creasingly more subtle cases where implications like this
could occur. Consequently, such role restriction infer-
ence would require full theorem-proving or equivalently
powerful inference such as satisfiability testing and this
would clearly obviate any claims of tractability that we
would expect to achieve with a structural classification
algorithm.

� (8R:Cu 6 0R:C u 9R:C) � ?: This is a slightly more
complex case of interaction between three role restric-
tions. Here (8R:Cu 6 0R:C)! 8R:?which is incon-
sistent with 9R:C causing mutual subsumption to be in-
ferred with ?. Again, one can construct increasingly
more complex cases for such role restriction interac-
tions and there is no general method other than theorem-
proving, satisfiability-testing, or some other computa-
tionally equivalent mechanism for performing complete
inference in L2.

Consequently, we have shown two counterexamples to
completeness of the structural classification algorithm thus
demonstrating that the algorithm is incomplete for L2. �

However, we should generally point out that although such
incompleteness does exist, it represents a number of fringe
cases for subsumption reasoning that we expect to occur
rarely on the Semantic Web. I.e., it is rather difficult to con-
struct natural concepts according to the above definition that
could not be better expressed with a more salient structure.
Consequently, we expect that the majority of important sub-
sumption relationships will stem from structural relations be-
tween concepts and thus we argue that the types of subsump-
tions for which structural inference in L2 is incomplete are
unlikely to occur in practice.

This, this incompleteness does not necessarily pose a threat
to the utility of structural classification algorithms for lan-
guages such as L2. Furthermore, given the computational ef-
ficiency gains of structural classification algorithms, it seems
a small tradeoff to lose a few fringe subsumption inferences
in exchange for computational tractability.

5.2 Time and space complexity
In this section, we prove some time and space complexity
properties of the classification and normalization algorithms.

Time complexity of normalized concept classification
First, we will examine the time complexity of normalized
concept classification with respect to the overall size of the
taxonomy. Note that when we refer to the size of the taxon-
omy, we refer to the combined size of all normalized concepts
currently classified in the taxonomy where the size of a con-
cept is measured in the sum of all concepts, relations, and
constructors used in that concept.

We assume for this analysis that the concept is already
in normalized form and thus that normalization itself sim-
ply performs the task of classifying role restriction referents
while taking additional time only linear in the size of the con-
cept.17

Theorem 5.10 Classification of a normalized concept in L1

or L2 runs in polynomial time in the total size of the nor-
malized concepts in the taxonomy (including the normalized
concept being classified).

It should be apparent that once a concept is normalized,
classification of a concept simply requires performing MSS,
MGS, and link maintenance. For search in the MSS and
MGS algorithms, the constituents of the target concept may
be compared to the constituents of all concepts in the tax-
onomy in the worst case. We can bound the search for all
concepts by a constant times the number of concepts plus the
worst-case number of links between them: c1 � (jkbj+ jkbj2).
And we can bound the number of constituents of a concept
by a constant times the size of the kb, i.e. c2 � jkbj. Conse-
quently, simplifying the product of these expressions and per-
forming asymptotic analysis, we can bound the time for MSS
and MGS by O(jkbj3). Furthermore, link maintenance only
requires at most c4 � jkbj2 operations (i.e. no more than the
total number of links in the kb). Consequently, summing this
with the previous time bound for MSS and MGS and perform-
ing asymptotic analysis still yields O(jkbj3) time complexity
for a single classification pass.

However, this only covers classification of the top-level
concept and does not consider the fact that all of its con-
stituents must be recursively classified. As stated above, we
are assuming that since the concept has already been normal-
ized, normalization takes only linear time aside from that re-
quired for recursive classification of role referents. Conse-
quently, if we can show that at most a polynomial number of
recursive classifications occur, than we can show that normal-
ized concept classification is overall polynomial.

To bound the number of possible concepts that need to be
recursively classified, we note that we can build a tree with
each concept representing a node and children representing
constituents of that node. Clearly at the leaves we have only
primitive concepts which are bounded by the length of the
normalized concept. And at each non-leaf node we have
a composite concept or role restriction that consumes some

17The fact that normalization only takes linear time on an already
normalized concept outside of the time required for subclassification
should be obvious from inspection of Algorithm 3.

number of the children below it (note this is strictly a tree
and not a DAG). Thus, at most we have to classify all of the
non-leaf nodes and this is proportional to the number of leaf
nodes. Since the number of leaf nodes are linear in the size
of the normalized concept, we must perform at most a linear
number of recursive classifications in the size of the normal-
ized concept which is in the worst case proportional to the
total size of the knowledge base.18

Thus, at O(jkbj3) per classification of a normalized con-
cept and performing at most O(jkbj) classifications, we can
bound the total cost of classification by O(jkbj4) constant
time operations. 19 Thus, classification of a normalized con-
cept runs in time polynomial in the size of the knowledge
base. �

Space complexity of concept normalization
We know that classification of a normalized concept runs in
polynomial time in the total size of the normalized knowledge
base, but this leaves open the question of the space complex-
ity of normalization. That is, is a normalized concept’s size
bounded to be polynomial in the size of the concept?

The immediate answer is no, and this stems from the fact
that the DNF expansion of a concept is known to have worst-
case exponential behavior. However, we make the claim be-
low that for the expected class of concept structures that we
will likely see on the Semantic Web, such worst-case expo-
nential blow-ups do not occur.

Hypothesis 5.11 Normalization of a concept in L1 or L2
takes expected-case polynomial space in the size of the orig-
inal concept for the expected class of concept structures that
we expect to encounter on the Semantic Web.

First, let us quickly show that other than DNF expansion,
normalization takes linear space in the size of the concept:
Normalization has a total of 11 steps aside from DNF expan-
sion. An insepection of each of these 11 steps demonstrates
that some of these steps shrink the size of the concept while
others do not affect the size at all. Consequently, the only
source of a non-polynomial expansion in size can come from
the DNF expansion.

Thus, let us examine the space properties of DNF expan-
sion: The case where DNF conversion will require exponen-
tial space to convert a formula from its given form to its nor-
malized form is for a conjunction of several disjuncts. For ex-
ample, the DNF conversion of (A1 t B1) u (A2 tB2) yields
(A1 u A2) t (A1 u B2) t (B1 u A2) t (B2 uB2). In gen-
eral for n conjuncts in the original form, the normalized form
will yield 2n disjuncts.

We claim that such a concept structure is rare because
disjoined concepts usually derive their constituents from

18This would only happen though if the concept being classified
happened to dwarf the size of all other concepts in the knowledge
base.

19Note that the classification algorithm is typically orders of mag-
nitude much more efficient than this but our only goal here is to
show that classification is polynomial. A more detailed algorithmic
analysis would involve a substantially greater amount of derivation.
However, empirically, algorithms like the one presented here tend to
run in quadratic time in the size of the knowledge base.

heterogeneous knowledge bases and thus are likely to use
incompatible conjunctive restrictions. Thus, the conjunctive
restrictions are usually associated inside the disjunction as in
((Pencil1 u 9:color1:Red1) t (Pencil2 u 9:color2:Red2))
rather than outside the disjunction as in
(Pencil1 t Pencil2) u (9:color2:Red2 t 9:color2:Red2).20

While the latter definition could be used, in practice it seems
that concepts and restrictions from similar KB’s will be
composed with conjunction to achieve the right level of
concept specificity, and these conjoined concepts will then
be disjoined at a higher level to group similar objects from
heterogeneous KB’s. Such organizational principles lend
these concepts a natural format that is very similar to DNF
therefore tending to yield polynomial conversion space in
the expected case. While this is by no means a proof, we
have not found sufficient evidence to the contrary from our
empirical experiences working with knowledge bases on the
Semantic Web. However, is such evidence existed, it would
clearly require a revision of the assumptions here.

Thus, based on our assumptions that the expected type of
concept structure found on the Semantic Web will likely al-
ready exhibit a DNF-like structure, it follows that the normal-
ization of such concepts will occur in polynomial space. �

Time complexity of knowledge base classification
Given the previously defined theorems and hypotheses, we
now state the overall time complexity result for the classifica-
tion algorithm given in this paper.

Theorem 5.12 If Hypothesis 5.11 holds for a given knowl-
edge base in L1 or L2, then taxonomic classification of all
concepts in that knowledge base runs in time polynomial to
the size of the original (unnormalized) knowledge base.

The proof of this theorem is relatively straightforward
based on the implications of theorem 5.10 and hypothe-
sis 5.11. From theorem 5.10, we know that classification of
a normalized concept runs in polynomial time in the normal-
ized size of the kb. And under the assumptions required for
hypothesis 5.11, we know that the size of a normalized con-
cept is polynomial in the size of the original concept. From
this we can easily infer that the normalized kb (including the
concept being classified) requires space polynomial in the
size of the original kb. Thus, under the assumptions of hy-
pothesis 5.11, classification of a concept (i.e. not kb) requires
polynomial time in the size of the original kb.

From this previous result for the time complexity of classi-
fication of a single concept, let us now infer the time complex-
ity for classification of an entire kb: Let us denote the polyno-
mial time to classify a concept in a kb of size s as p(s). Then
it is trivial to show that classification of a number of concepts
proportional to jkbj is simply p(1) + p(2) + : : :+ p(c � jkbj).
Clearly this sum is still polynomial in the size of the original
kb and thus under the assumptions of hypothesis 5.11, tax-
onomic classification of all concepts in that knowledge base
runs in time polynomial to the size of the original kb. �

Finally we note that this result along with the expressivity
of languages L1 and L2 is precisely what was required in

20The subscripts 1 and 2 indicate the KB from which the concepts
and roles were drawn.

Section 1.3.

6 Conclusion
Before we proceed with our conclusions, we should reiterate
that we are not arguing for a general purpose subsumption al-
gorithm to tackle all description logic problems. Rather, we
are identifying an important use of description logics in the
context of reasoning over distributed knowledge bases on the
Semantic Web, identifying the major sources of intractabil-
ity for such reasoning, and fine tuning an algorithm based
on this analysis to achieve expected case polynomial-time
performance in the size of the kb. Since a sound and com-
plete algorithm for a language as expressive as L1 is likely
NP-Complete (although no formal complexity result has been
given for L1), in some sense, adapting and optimizing an al-
gorithm to its expected use cases is perhaps the best that can
be hoped for. Furthermore, as we did forL2, we believe that it
is desirable to allow some incompleteness to avoid exponen-
tial complexity cases if one can show that this is relatively
benign. We belive this is far superior to working with an al-
gorithm for a less expressive language or using an algorithm
that is likely to exceed a reasonable running time on a large
knowledge base. Thus, it is our opinion that such tradeoffs as
described in this paper must be taken in order to achieve scal-
able and practical description logic classification algorithms
in practice.

6.1 Summary
In summary, let us review the basic motivations behind this
work and the results presented here.

In reasoning on the Semantic Web, it is likely that as
knowledge bases grow and make use of terms defined in other
knowledge bases, a large source of logically composed de-
scription logic concepts will begin to emerge. Consequently,
since these composed concepts make use of common primi-
tives, it will likely be useful to have some means of reasoning
about subsumption relationships between such concepts.

Autonomous taxonomic classification as pioneered in the
field of description logics seems to pose an elegant solution to
this problem with the one caveat of computational intractabil-
ity. Specifically, for the language expressiveness needed for
representation on the Semantic Web (namely conjunctive and
disjunctive composition as well as many commonly used role
restrictions), it is likely impossible to achieve a sound and ex-
tensionally complete, polynomial-time inference algorithm.
Yet, given the size of the Semantic Web, a polynomial-time
inference algorithm is almost a necessity, soundness is clearly
a necessity, and completeness is generally desired unless we
can show that the sources of incompleteness in an algorithm
are benign.

Additionally, there is one other concern with reasoning on
the Semantic Web that underscores the limitations of current
approaches and is perhaps one of the most important points
in this paper. As previously argued by Woods, the primary
tractability concern in description logic reasoning over large
databases is not the cost of subsumption, but rather the cost of
classifying into a large taxonomy. That is, efficient subsump-
tion techniques alone do not guarantee efficient taxonomic

classification and yet the latter should be our primary goal for
most real-world problems. Thus, in order to satisfy the above
requirements of the Semantic Web while providing an algo-
rithm that focuses on efficient taxonomic classification, we
propose the following solution:

Intensional definitions of subsumption have traditionally
lent themselves to efficient taxonomic classification via struc-
tural comparison. However, the drawback to these ap-
proaches has traditionally been that they could not handle ex-
pressive languages. Consequently, we have relied on three
arguments to make the case that intensional subsumption ap-
proaches can indeed provide the reasoning capabilities that
we require for the Semantic Web:

� There are certain language constructs that are rarely used
and which can be omitted from consideration. For ex-
ample, axioms between two structured concepts (e.g.
AtB v C uD) are rare in practice and can be omitted
without a practical loss in expressiveness.

� While inference in more expressive description lan-
guages is incomplete, this incompleteness stems from
subsumptions that are often infrequent in practice and
therefore overall relatively benign.

� While in the general case, we cannot omit the possibil-
ity of any valid concept structure, in practice, we expect
to encounter concepts that are fairly similar to disjunc-
tive normal form in compositional structure. This means
that normalization of these concepts to DNF is likely to
be possible in polynomial space. Since we can show
that DNF conversion is the only source of exponential
algorithm behavior for structural subsumption in L 1, we
can show that under the assumption of polynomial-space
DNF conversion, classification will run in polynomial-
time in the size of the knowledge base for L1.

With the above assumptions, we then proceeded to ex-
tend traditional intensional subsumption definitions to sup-
port both conjunction and disjunction. We provided a novel
structural subsumption algorithm to handle two languages
(L1 and L2) of differing expressivity, the latter providing a
major subset of the DAML+OIL language used on the Se-
mantic Web. We then proved soundness of the classification
algorithm for L1 and L2 and completeness for inference in
L1. We showed that the application of the inference algo-
rithm applied to L2 yielded incompleteness, but was rela-
tively benign with respect to practical reasoning as argued
above. Finally, we showed that if DNF normalization of a
concept could be performed in polynomial space then the
overall algorithm required time polynomial in the size of the
taxonomy.

6.2 Future work
The previous decade of description logic research has seen lit-
tle focus on structural subsumption techniques likely due to
the traditional perception of its inability to handle expressive
languages in an extensionally sound and complete manner.
However, this work has intended to challenge some of these
perceptions by showing that structural subsumption could be
extended to handle sound and complete subsumption for con-
junctive and disjunctive definitions and a reasonable set of

role restrictions. Additionally this paper has intended to sup-
port the notion that some expressiveness (i.e. complement) is
not practically useful for some applications and some incom-
pleteness can be considered relatively benign (i.e. as for L2).
Such ideas challenge previous beliefs about structural classi-
fication approaches thus paving the way for future research
in taxonomic classification as opposed to the recent focus on
subsumption testing between individual concepts.

One important question for future research is what addi-
tional expressiveness can be handled via an intensional sub-
sumption definition and an associated structural classification
algorithm? For example, could an augmented version of the
above algorithm allow for extensionally sound and complete
subsumption in L1 augmented with full complement? Or is
better to only allow complement of primitive concepts? Also,
what additional restriction constructors or role constructors
can be added to the algorithm? For example, how easy would
it be to augment L1 or L2 with instance specific role restric-
tions such as fills? Such role restrictions prove quite useful
in practice but would require an extension to the previously
given intensional subsumption definition as well as an anal-
ysis of the completeness of such a definition with respect to
the other constructors in L1 or L2.

Another important question for future research is that of
improving the efficiency of classification algorithms. For ex-
ample, for the languageL1 minus disjunction, research in the
Conceptual Indexing group at Sun Microsystems Research
Labs has yielded structural classification algorithms that are
orders of magnitude more efficient than the basic algorithms
presented here (see [Woods, 1997] for an introduction to this
research domain). The optimizations in these algorithms al-
low much of the search to be pruned based on provable tech-
niques for constraining search. Furthermore, even more ag-
gressive partitioning techniques may allow us to prune many
more subsumption tests. Consequently, while the algorithm
presented here was chosen for simplicity, there is clearly
much potential for further optimization of this algorithm that
can yield speedups of a few orders of magnitude.

At the very least, future work along both of these lines
will be a necessity to ensure that description logic classifi-
cation algorithms can practically apply and tractably scale to
the many applications of description logic reasoning that will
likely emerge as the Semantic Web matures.

7 Software
A limited implementation of the algorithms discussed here
has been implemented and integrated with JTP [Frank, 1999],
a Java-based theorem prover, developed at the Stanford Uni-
versiry Knowledge Systems Lab. The following sections in-
dicate how to obtain the software, its limitations compared
to the full algorithm given in this paper, directions for using
the subsumption reasoner from the JTP command line or inte-
grating it with other software, and finally a sample application
demonstrating its usage.

7.1 Obtaining the software
The latest release of the JTP software which includes
a special purpose DAML+OIL taxonomic reasoner based

on the ideas presented here can be downloaded from
http://www.ksl.stanford.edu/software/JTP/ . In-
structions are available from this site for how to install JTP
and run it. To determine that the software and taxonomic
reasoner are running correctly, one can compare the sample
application output at the end of this section with the same
commands executed on the reasoner under test.

7.2 Implementation discussion

The implementation provided in JTP differs slightly from that
presented here. It is implemented for L2 which means that
it does have some incompleteness as discussed previously.
However this implementation additionally lacks two features
which lead to additional incompleteness:

1. This software does not implement definition expansion
or DNF conversion although it does implement conver-
sion of role restrictions to canonical form. This means
that structural subsumption is applied directly to the log-
ical concept structure as it is was defined when it was
created. Consequently two concepts that would normal-
ize to the same structure are not guaranteed to be found
as mutual subsumers.

2. This software does not implement all of the intensional
subsumption rules as defined in Table 2. Specifically, it
does not implement all subsumption tests between prim-
itive and conjunctive or disjunctive concepts and it does
not implement the subsumption test between conjunctive
and disjunctive concepts (this latter subsumption occurs
so rarely in practice that it can be safely ignored).

In the future, we hope to add full normalization and all
intensional subsumption rules to make the reasoner complete
forL1. Then it will only be incomplete forL2 w.r.t. the previ-
ous section’s discussion of incompleteness for the intensional
subsumption rules defined in Table 2.

7.3 Code overview

The Java code for the JTP classifier can be broken down into
two distinct portions: a JTP specific interface located in the
JTP package jtp.frame.classifier and a general de-
scription logic classifier located in dl.classifierwhich
is imported from jtp\lib\dl.jar. We will discuss each
of these code portions in more detail:

� jtp.frame.classifier: This package contains
two classes which implement the telling and asking in-
terfaces for the description logic special purpose rea-
soner. ClassifierTellingReasoner simply caches all
DAML+OIL RDF statements as JTP broadcasts the
statements to registered telling listeners. It also imple-
ments an undo/redo mechanism for restoring the cache
to a given checkpoint state when requested by JTP.
ClassifierAskingReasoner is where the bulk of the in-
terface occurs and performs three main tasks: First,
it answers JTP queries concerning daml:subClassOf
and daml:disjointWith statements. Second, whenever a
query is made, the reasoner attempts to recursively con-
struct and classify all classes and restrictions whose defi-

nition is complete.21 This involves retrieving all relevant
RDF statements for a given class, restriction, or rela-
tion, and notifying the classifier in the dl package of the
structure and names for these new objects. Once these
objects are added to the classifier, the classifier automat-
ically classifies them. Third, this class also implements
an undo/redo mechanism that maintains and restores the
classifier state when requested by JTP.

� dl.classifier: This package implements a
classifier for language L2 that is independent
of the DAML+OIL syntax. This is why the
jtp.frame.classifier must take care of all
translation between JTP and the classifier. The classifier
itself is quite complex and will not be discussed in its
entirety here. However there are two main classes that
one should be familiar with. KbInterface implements
a Java String-based interface to the classifier. This
class is used exclusively by ClassifierAskingReasoner
for both adding concepts and restrictions to the clas-
sifier and for the querying the classifier’s taxonomy
structure. Classifier implements all of the classification
algorithms and is basically equivalent to a direct imple-
mentation of Algorithms 1-5 with the exception of the
afore-mentioned missing normalization steps. It also
implements all required helper functions outlined in
section 4.4. All other classes in this package implement
basic functionality for the classifier and should not
require modification.

7.4 Command line interface
Since the taxonomic reasoner interacts with JTP as a
backchaining reasoner, it will be dispatched any time a sub-
sumption or disjointness query is made. 22 Consequently,
one can invoke the taxonomic reasoner simply by asking a
daml:subClassOf or daml:disjointWith question from the JTP
command line interface.

For a more versatile interface, one can invoke a text-based
taxonomy browser from the JTP command line interface by
using the tax command. While there is an extensive set of
commands for viewing the taxonomy structure, the following
commands are likely to prove most useful:

� hg <conc-name> <depth>: This is perhaps the
most useful command which allows one to browse the
taxonomy in an hourglass format (i.e. centered on a pro-
vided concept and showing the parents above and chil-

21Since a DAML+OIL knowledge base is read one RDF statement
at a time rather than as a whole, it is possible that a definition may
not be complete when a query is made. Consequently the reasoner
takes a lazy approach to class and restriction building by adding all
complete definitions to the classifier at query-time. Incomplete def-
initions are not compiled into their respective classes or restrictions
and are checked on each subsequent query until their definition is
complete.

22Subsumption is invoked for disjointness reasoning since taxo-
nomic structure can be used to determine whether the superclasses
of any two concepts have a disjointness relationship asserted. Note
however that this type of disjointness reasoning is very simple and
is extensionally incomplete.

dren below to the given depth). In the output, ... indi-
cate that more concepts exist but are not being displayed
since the depth limit has been exceeded. And [*] in-
dicates that a concept has already been seen and its par-
ent or child structure will be truncated since it has been
printed elsewhere. Note that in text form, TOP stands
for >, BOTTOM for ?, and MOD for>

rel
. See the ap-

plications section for sample commands and output from
applying this to a web-accessible DAML+OIL kb.

� showc c <none|direct|all> <conc-name> :
This command allows one to view the detailed structure
of a concept.

� showc m <none|direct|all> <conc-name> :
This command allows one to view the detailed structure
of a modifier including it’s type, relation, and concept
referent.

� listc <none|direct|all>: This command al-
lows one to browse all concept names that have been
loaded into the taxonomy. This is useful for finding a
concept name once a kb has been loaded.

� help: This command gives an extensive help printout
on all commands available from the taxonomy broswer.

� exit: This command exits the taxonomy broswer and
returns control to JTP’s command line interface.

7.5 Integration with other software
Figure 5 provides a brief introduction to the Taxonomy API
in JTP. And figure 6 provides sample code for using the Tax-
onomy API.

7.6 Sample applications
Figure 7 provides an excerpt of the Dogs kb used in the fol-
lowing examples. Figures 8 and 9 demonstrate the applica-
tion of JTP’s taxonomic reasoning facility to a sample web
accessible DAML+OIL knowledge base. This application
demonstrates use of the taxonomy browser on a kb with a
wide variety of subsuming concept structures. Such a struc-
ture could also be retrieved directly through the Taxonomy
API discussed in figures 5 and 6.

Acknowledgments
The author would like to thank Bill Woods for providing
the foundational motivations for subsumption, taxonomy, and
the design of classification algorithms; none of this work
could have been accomplished without the knowledge ac-
quired from many summer internships working for Bill at Sun
Microsystems Research Labs. The author would also like to
thank Richard Fikes for his guidance, support, and sugges-
tions throughout the completion of this work. This work was
primarily completed at and funded by the Knowledge Sys-
tems Lab (KSL) at Stanford University.

References
[Bemers-Lee et al., 2001] Tim Bemers-Lee, Jim Hendler,

and Ora Lassila. The semantic web. Scientific American,
284(5):34–43, 2001.

[Borgida et al., 1989] Alexander Borgida, Ronald J. Brach-
man, Deborah L. McGuinness, and Lori Alperin Resnick.
CLASSIC: a structural data model for objects. In Pro-
ceedings of the ACM SIGMOD International Conference
on Management of Data, pages 58–67, Portland, Oregon,
1989.

[Brachman et al., 1991] Ronald J. Brachman, Deborah L.
McGuiness, Peter F. Patel-Schneider, and Lori A. Resnick.
Living with CLASSIC: when and how to use a KL-ONE-
like language. In John Sowa, editor, Principles of Semantic
Networks: Explorations in the Representation of Knowl-
edge. Morgan Kaufmann, San Mateo, US, 1991.

[Donini, 2002] Francesco M. Donini. Complexity of reason-
ing. In Franz Baader, Diego Calvanese, Deborah McGuin-
ness, Daniele Nardi, and Peter F. Patel-Schneider, editors,
The Description Logic Handbook: Theory, Implementa-
tion, and Applications, chapter 3. Cambridge University
Press, 2002.

[Frank, 1999] Gleb Frank. A general interface for interaction
of special-purpose reasoners within a modular reasoning
system. In Papers from the AAAI Fall Symposium, pages
57–62, 1999.

[Horrocks et al., 2000] Ian Horrocks, Ulrike Sattler, and
Stephan Tobies. Practical reasoning for very expressive
description logics. Logic Journal of the IGPL, 8(3):239–
264, 2000.

[Horrocks et al., 2001] Ian Horrocks, Frank van Harmelen,
and Peter Patel-Schneider. DAML+OIL language spec-
ification, March 2001. Document located on-line at
http://www.daml.org/2001/03/daml+oil-index.html.

[Levesque and Brachman, 1985] H. J. Levesque and R. J.
Brachman. A fundamental tradeoff in knowledge repre-
sentation and reasoning (revised version). In R. J. Brach-
man and H. J. Levesque, editors, Readings in Knowledge
Representation, pages 41–70. Morgan-Kaufmann, Inc.,
1985.

[Woods and Schmolze, 1992] William A. Woods and
James G. Schmolze. The KL-ONE family. Semantic
Networks in Artificial Intelligence, 23(2-5):133–178,
1992. Published as a special issue of Computers &
Mathematics with Applications.

[Woods, 1991] William A. Woods. Understanding subsump-
tion and taxonomy: A framework for progress. In John
Sowa, editor, Principles of Semantic Networks: Explo-
rations in the Representation of Knowledge. Morgan Kauf-
mann, San Mateo, US, 1991.

[Woods, 1997] William A. Woods. Conceptual indexing: A
better way to organize knowledge. Technical report, Sun
Microsystems Laboratories, 1997.

The core of the description logic utilities are located in the package ’dl.jar’. To interface with the taxonomy API
in Java, you’ll first need to get the classification kb itself which is an instance of dl.classifier.Kb. This is
’public static’ in the JTP interface so you can access it via the following code:

import dl.classifier.*; // The source of class ’Kb’
import jtp.frame.classifier.*; // The source of class

// ’ClassifierAskingReasoner’

...

Kb _myKb = ClassifierAskingReasoner._ClassifierKb;

Once you have an instance of Kb, it is important to realize that the dl utilities use the class dl.classifier.Concept
as the primary object for talking about DAML classes. So, everything will need to be translated to and from
dl.classifier.Concept in order to interact directly with the taxonomy.

To get a Concept from a String ’str’:

// Note that str has be in the same format used in the taxonomy
// browser ("kb#::classname"). So for example,
// "http://dogs.com/dogs.daml#::Dog"
Concept c = Concept.CastToConcept(Resource.GetResource(str));

To get a Concept from a JTP symbol ’sym’:

Concept c = Concept.CastToConcept(Resource.GetResource(
ClassifierAskingReasoner.ConvertSymObjectToString(sym)));

To get the string from a Concept ’conc’:

String s = conc.toString();

Now that we have the classification kb as well as the methods for Concept translation, one can use the following
interface method to access the taxonomy links:

java.util.Set s = _myKb.getTransitiveLinkClosure(conc, rel,
link_type, direct_only);

where the parameters are the following:

conc: (Concept) The root concept whose links we are looking at

rel: (Relation) Either Relation._KIND_OF (subsumers) or
Relation._INV_KIND_OF (subsumees)

link_type: (int) A bitwise OR of one or more of the following:
Kb._A_LINK - links to axiomatic subsumers/subsumees
Kb._I_LINK - links to or from conjunctive constituents
Kb._D_LINK - links to or from disjunctive constituents
Kb._S_LINK - links to structural subsumers/subsumees
Kb._R_LINK - redundant links to or from conjunctive

constituents

direct_only: (boolean) Do we want just direct links (true), or the
full transitive closure (false)

Note that the above link names are slightly different than those referenced in the paper. For all intents and
purposes, I and R links should be considered equivalent to the C links discussed in the paper.

Figure 5: Introduction to the Taxonomy API

Following is some sample code to print out the direct subsumers and all subsumees of a ’Dog’ concept that has
been loaded into JTP:

// Assuming dl.classifier.*, jtp.frame.classifier.*, and java.util.*
// have been imported.

// Get the taxonomy
Kb _myKb = ClassifierAskingReasoner._ClassifierKb;

// Get a concept object for the following DAML class
Concept myConc = Concept.CastToConcept(

Resource.GetResource("http://dogs.com/dogs.daml#::Dog"));

// Get a set of the direct subsumers of myConc
Set dir = _myKb.getTransitiveLinkClosure(myConc, Relation._KIND_OF,

Kb._A_LINK | Kb._I_LINK | Kb._D_LINK |
Kb._S_LINK | Kb._R_LINK, true);

// Get a set of *all* subsumees of myConc
Set all = _myKb.getTransitiveLinkClosure(myConc, Relation._INV_KIND_OF,

Kb._A_LINK | Kb._I_LINK | Kb._D_LINK |
Kb._S_LINK | Kb._R_LINK, false);

// Print out the answers
Iterator i = dir.iterator();
System.out.println("Displaying direct subsumers of Dog:");
while (i.hasNext()) {

System.out.println(((Concept)i.next()).toString() + " ");
}

i = all.iterator();
System.out.println("Displaying all subsumees of Dog:");
while (i.hasNext()) {

System.out.println(((Concept)i.next()).toString() + " ");
}

Figure 6: Sample usage of Taxonomy API

Source kb: http://www.ksl.stanford.edu/people/sscott/dogs.daml

<rdf:RDF
xmlns:rdf ="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:daml="http://www.daml.org/2001/03/daml+oil#"
...
xmlns ="http://www.ksl.stanford.edu/people/sscott/dogs.daml#"

>

<!-- =========== Primitive class/relation definitions ========== -->

<daml:Class rdf:ID="Animal"> </daml:Class>

<daml:Class rdf:ID="Dog">
<rdfs:subClassOf rdf:resource="#Animal"/>
<daml:disjointWith rdf:resource="#Cat"/>

</daml:Class>

<daml:ObjectProperty rdf:ID="with">
<rdfs:subPropertyOf rdf:resource="#mod"/>

</daml:ObjectProperty>

...

<!-- =========== Composite class definitions ========== -->

<daml:Class rdf:ID="BlackSpots">
<daml:intersectionOf rdf:parseType="daml:collection">
<daml:Class rdf:about="#Spots"/>
<daml:Restriction>

<daml:onProperty rdf:resource="#mod"/>
<daml:hasClass rdf:resource="#Black"/>

</daml:Restriction>
</daml:intersectionOf>

</daml:Class>

<daml:Class rdf:ID="DogWithMinFiveBlackSpots">
<daml:intersectionOf rdf:parseType="daml:collection">
<daml:Class rdf:about="#Dog"/>
<daml:Restriction daml:minCardinalityQ="5">

<daml:onProperty rdf:resource="#with"/>
<daml:hasClassQ rdf:resource="#BlackSpots"/>

</daml:Restriction>
</daml:intersectionOf>

</daml:Class>

<daml:Class rdf:ID="DogOrBrownFurOrBlackFur">
<daml:unionOf rdf:parseType="daml:collection">
<daml:Class rdf:about="#Dog"/>
<daml:Restriction>

<daml:onProperty rdf:resource="#with"/>
<daml:hasClass rdf:resource="#BrownFur"/>

</daml:Restriction>
<daml:Restriction>

<daml:onProperty rdf:resource="#with"/>
<daml:hasClass rdf:resource="#BlackFur"/>

</daml:Restriction>
</daml:unionOf>

</daml:Class>

...

</rdf:RDF>

Figure 7: Excerpt from the DAML+OIL Dogs kb used in the following examples.

Taxonomy from Dogs Kb centered at ’Dog’ (note use of different restrictions - existential,
qualified cardinality, etc. . .).

Source kb: http://www.ksl.stanford.edu/people/sscott/dogs.daml

Command: hg http://www.ksl.stanford.edu/people/sscott/dogs.daml#::Dog

|- TOP
|- http://.../dogs.daml#::Thing
| |- TOP [*]
|- http://.../dogs.daml#::AnimalOrDarkFur

|- http://.../dogs.daml#::Animal
| |- ...
| |- http://.../dogs.daml#::AnimalOrDarkFur [*]
| |- http://.../dogs.daml#::DogOrBrownFurOrBlackFur
|- http://.../dogs.daml#::DogOrBrownFur
| |- ...
|- http://.../dogs.daml#::DogOrBrownFurOrBlackFur [*]
http://.../dogs.daml#::Dog
|- http://.../dogs.daml#::LittleDog
| |- http://.../dogs.daml#::LittleDogModOld
| |- http://.../dogs.daml#::DogModOldModLittle
| |- http://.../dogs.daml#::LittleDogModOld [*]
| |- ...
|- http://.../dogs.daml#::BigDog
| |- http://.../dogs.daml#::BigDogWithDarkFur
| |- http://.../dogs.daml#::BigDogWithBrownFur
| |- BOTTOM
|- http://.../dogs.daml#::DogWithSpots
| |- http://.../dogs.daml#::DogWithMinFiveSpots
| | |- http://.../dogs.daml#::DogWithMinFiveBlackSpots
| | |- BOTTOM [*]
| |- http://.../dogs.daml#::DogWithDarkSpots
| |- http://.../dogs.daml#::DogWithBrownSpots
| | |- BOTTOM [*]
| |- http://.../dogs.daml#::DogWithBlackSpots
| |- http://.../dogs.daml#::DogWithMinFiveBlackSpots [*]
| |- ...
|- http://.../dogs.daml#::DogWithFur

|- http://.../dogs.daml#::DogWithDarkFur
|- http://.../dogs.daml#::BigDogWithDarkFur [*]

|- ...

Figure 8: DAML+OIL taxonomy generated by the JTP taxonomy browser.

Taxonomy from Dogs Kb centered at ’BigDog’ (note the mix of disjunctive and conjunctive concept structure).

Source kb: http://www.ksl.stanford.edu/people/sscott/dogs.daml

Command: hg http://www.ksl.stanford.edu/people/sscott/dogs.daml#::BigDog

|- TOP
|- http://.../dogs.daml#::Thing
| |- TOP [*]
|- http://.../dogs.daml#::AnimalOrDarkFur

|- http://.../dogs.daml#::Animal
| | |- ...
| |- http://.../dogs.daml#::AnimalOrDarkFur [*]
| |- http://.../dogs.daml#::DogOrBrownFurOrBlackFur
|- http://.../dogs.daml#::DogOrBrownFur
| |- ...
|- http://.../dogs.daml#::DogOrBrownFurOrBlackFur [*]

|- http://.../dogs.daml#::Dog
| |- [_GEN_ <_MOD_>]
|- [_EXISTS_ <http://.../dogs.daml#::mod,
| http://.../dogs.daml#::Big,1>]
| |- ...
| |- http://.../dogs.daml#::DogOrBrownFur [*]
|- http://.../dogs.daml#::BigDogOrBrownFur
http://.../dogs.daml#::BigDog
|- http://.../dogs.daml#::BigDogWithDarkFur

|- http://.../dogs.daml#::BigDogWithBrownFur
|- BOTTOM

Figure 9: Another DAML+OIL taxonomy generated by the JTP taxonomy browser.

