
Online Feature Discovery in Relational Reinforcement Learning

Scott Sanner SSANNER@CS.TORONTO.EDU

Computer Science Department, University of Toronto, Toronto, ON, M5S 3H5, CANADA

Abstract
We introduce a technique for model-free relational
reinforcement learning in indefinite horizon undis-
counted domains with bounded reward. Previous work
has represented the value function as a ground rela-
tional naive Bayes net and has leveraged Bayes net pa-
rameter and structure learning techniques to refine suc-
cessive approximations of the value function. Unfor-
tunately, while value function evaluation and param-
eter inference are very efficient under this framework,
even greedy optimal learning of highly restricted naive
Bayes net structure can be computationally prohibitive
in practice. In this paper, we propose a novel learning
algorithm that focuses Bayes net structure learning on
the frequently visited portions of state space. Inspired
by the Apriori frequent-itemset data mining algorithm,
this structure learning algorithm has the dual benefits
of efficiency and low-variance parameter estimates. To
demonstrate the efficacy of this approach, we present
encouraging initial results in the game domains of Tic-
Tac-Toe, Backgammon, and Othello.

1. Introduction

Relational reinforcement learning (RRL) has emerged in
recent years as a major area of focus in the reinforcement
learning community (Tadepalli et al., 2004; van Otterlo &
Kersting, 2004). Relational representations are a natural
paradigm for modeling learning domains where states con-
sist of configurations of objects and the relations between
them. While RRL is an attractive approach for learning
from delayed reward in such state representations, its gen-
erality does not come without severe representational and
computational drawbacks:

• As the domain size and the arity of the relations in-
crease, there is a combinatorial explosion in the num-
ber of ground relations that describe a state. This re-
sults in an intractably large state space, even if there
are only a few relations in the problem specification.

Presented at the ICML Workshop on Open Problems in Statistical
Relational Learning, Pittsburgh, PA, 2006. Copyright 2006 by the
author(s)/owner(s).

• One must carefully decide on the hypothesis space
from which a value function or policy is selected. In
most non-trivial domains, a compact representation of
the optimal value function is impossible thus requir-
ing that the value function be approximated. However,
the approximate representation of the value function
can greatly impact its quality: A representation that
is too simple may not adequately approximate the op-
timal value function, resulting in poor policies; And
a more complex representation capable of a good ap-
proximation of the optimal value function may have
intractable data complexity requirements for learning
a low-variance estimate of the value function.

In the special case of reinforcement learning in indefinite
horizon undiscounted domains with a single terminal re-
ward of success or failure (e.g. planning tasks or games
with stationary opponents), the value function has a proba-
bilistic interpretation: it is simply the conditional probabil-
ity of eventual success (or failure) given an observed state.1

Armed with this insight, previous work (Sanner, 2005)
has sought to mitigate the aforementioned computational
and representational drawbacks of relational reinforcement
learning by representing the value function as a ground re-
lational naive Bayes net. Under this approach, the value
function and restricted versions of its internal structure can
be compactly approximated and well-known Bayes net pa-
rameter and structural inference techniques can be lever-
aged to do this. Given that this technique proposed to learn
both the parameters and structure of the value function, it
has been labelled structure and value relational reinforce-
ment learning (SVRRL).

SVRRL relies on the common relational domain assump-
tion that many fewer ground literals appear positively than
negatively in a given state.2 Based on this, it can be shown
that policy evaluation and parameter inference in the naive

1We can easily handle any domain with bounded reward in this
setting by normalizing all rewards to the range [0, 1] and trans-
forming the terminal nodes of the domain to stochastically tran-
sition to success (failure) with a probability equal to (one minus)
the normalized reward. The optimal policy in this transformed
domain will be equivalent to the optimal policy for the original
domain.

2This is exploited in the closed-world assumption of Prolog
that allows it to compactly represent many relational domains.

Bayes net value function can be computed efficiently by
recording only the relational atoms occurring positively in
a state. Unfortunately, this efficiency does not extend to
naive Bayes net structure learning. In this case the com-
putational overhead of the SVRRL approach has prevented
any known practical implementation aside from a severely
restricted version known as FAA-SVRRL (Sanner, 2005).

However, in some sense the original SVRRL algorithm is
too eager to learn value function structure and we can take
a more pragmatic approach in practice. That is, SVRRL
maintains joint parameter estimates over all nodes in its
naive Bayes network in order to greedily determine the
structure that should be learned. However, many portions
of state space are visited too infrequently to yield low-
variance estimates of joint probabilities. For these rea-
sons, it only makes sense to focus structure learning on
frequently visited portions of state space. Inspired by the
Apriori frequent-itemset data mining (DM) algorithm, we
present a novel structure learning algorithm DM-SVRRL,
which has the dual benefits of efficiency and low-variance
parameter estimates. To demonstrate the efficacy of this ap-
proach, we present encouraging initial results in the game
domains of Tic-Tac-Toe, Backgammon, and Othello.

2. MDPs and Reinforcement Learning

Reinforcement learning (RL) tasks are often cast in a
Markov decision process (MDP) framework. Formally, a
finite state and action MDP (Puterman, 1994) is a tuple
〈S,A, T,R〉 where: S is a finite state space; A is a finite set
of actions; T : S ×A × S → [0, 1] is a transition function,
with T (s, a, ·) a distribution over S for all s ∈ S, a ∈ A;
and R : S × A → R is a bounded reward function. Our
goal is to find a policy π that maximizes the value func-
tion, defined using the infinite horizon, discounted reward
criterion: Vπ(s) = Eπ[

∑∞
t=0 γt · rt|S0 = s], where rt is a

reward obtained at time t, 0 ≤ γ < 1 is a discount factor,
and S0 is the initial state.

A stationary policy takes the form π : S → A, with π(s)
denoting the action to be executed in state s. Policy π is
optimal if Vπ(s) ≥ Vπ′(s) for all s ∈ S and all policies π′.
The optimal value function V ∗ is the value of any optimal
policy and satisfies the following:

V ∗(s) = max
a

[

R(s, a) + γ
∑

t∈S

T (s, a, t) · V ∗(t)

]

(1)

In this paper, we will assume that the horizon is indefi-
nite (i.e., starting from any state, the system will eventually
transition to a terminal state with probability 1), the reward
is undiscounted (i.e., γ = 1), and there is a single reward
of success (1) or failure (0) upon transition into the ter-
minal absorbing states. As mentioned previously, domains

s 999
s 128

s14

s 1

s13

s 524

s 421

s 845

s
654

2s

success

failure

r=1

r=1

r=1

Figure 1. An example Markov chain corresponding to an undis-
counted MDP evaluated under a fixed policy π. States are indexed
by a unique ID and transitions between states are labelled with a
reward r when it is non-zero. Note that in this restricted setting,
there is only a single reward of success (1) or failure (0) upon
transition into the terminal absorbing states. Thus, the value of a
given state under a policy can be interpreted as the probability of
reaching the success state from the given state in the infinite limit.

with bounded reward can be easily transformed to this set-
ting while preserving policy optimality. Consequently, this
setting is adequate for modelling many stochastic planning
tasks or game-playing with stationary opponents. Under a
fixed policy π, such a restricted MDP reduces to a sim-
ple Markov chain as demonstrated in Figure 1. Letting
w denote that an eventual win or success state is reached
(St=∞ = success), we derive the following simple proba-
bilistic interpretation for a value function under a policy:

Vπ(s) = Eπ[
∞
∑

t=0

rt|St=0 = s]

= P (St=∞ = success|St=0 = s) = P (w|s)

We note that this probabilistic interpretation of a policy is
very intuitive – it states that the value of any state under
a fixed policy is just the probability of reaching a success
state in the infinite limit. One way of estimating this value
is simple Monte Carlo reinforcement learning (Sutton &
Barto, 1998) where we sample the value function from real-
world or simulated experience. In the infinite limit of sam-
ples, it is known that the value function estimate will con-
verge to its true value.

So far, we have discussed how to determine the value of a
policy, but we have not discussed how to find the optimal
policy. One approach to doing this in a model-based MDP
setting is known as policy iteration (Puterman, 1994):

1. Pick an arbitrary decision policy π0 and set i = 0.

2. Policy evaluation: Given πi, determine Vπi
(s).

3. Policy improvement: Find a new policy πi+1(s) =
arg maxa∈A

{

R(s, a) + γ
∑

t∈S T (s, a, t) · Vπi
(s)
}

4. If πi+1 6= πi increment i & go to (2) else return πi+1.

Now, if we were to apply policy iteration to the RL set-
ting, we would notice that while Monte Carlo RL suffices

to provide an estimate of Vπi
(s), we do not have the lux-

ury of obtaining an infinite number of samples so that it
converges to the exact estimate. Nonetheless, we note that
using a finite but large number of Monte Carlo samples for
policy evaluation in step 2 still allows policy iteration to
converge in many practical applications.

Setting aside convergence issues of policy evaluation, we
also note that we have a representational problem. In most
practical problems the state space is often too large to al-
low an explicit representation of P (w|s), so we must often
approximate this probability in practice. This brings us to
the topic of the next section.

3. Structure and Value Relational RL

In many RL applications, the state often admits a com-
pact relational description. Consequently, in the restricted
RL setting described above where the value function un-
der a policy can be represented as the conditional proba-
bility P (w|s), we might try approximating this value func-
tion with a relational naive Bayes net. In doing this, we
would ideally like to learn both the structure and param-
eters (i.e. value) of this Bayes net. This is precisely the
objective of the structure and value relational RL algorithm
(SVRRL) (Sanner, 2005).

3.1. Value Learning

In the SVRRL framework, we assume that the state is de-
scribed using a fixed set of relations R = {R1, . . . , Ri},
each having some finite arity. Each relation argument is
assigned an attribute type from a set A = {A1, . . . , Aj}
where each attribute takes an assignment from a set of legal
values. We refer to a relation and the attribute specification
for its arguments as a relation template.

To make this more concrete, we use the example of
Tic-Tac-Toe where we use a single relation template
At(Mark,Row,Col) where Mark = {X,O} and
Row = Col = {1, 2, 3}. This leads to 2 × 3 × 3 = 18
possible ground relational features, each of which can be
treated as a binary proposition taking a truth assignment for
every possible state. The entire game state of Tic-Tac-Toe
can be determined by a truth assignment to each of these
18 ground relations.

In the following discussion, we use binary propositions Fi

to denote generic ground atoms (a.k.a. features) which can
take on the value true denoted by fi and the value false de-
noted by f̄i. For representational parsimony, we assume the
state is represented by only the positive (true) atoms, which
we arbitrarily label {f1, . . . , fp}. Then, given that that
there are a total of n ground atoms in a problem domain, we
use the closed-world assumption to infer that the remaining
atoms {f̄p+1, . . . , f̄n} are false. We let F = {F1 . . . Fn}

Win

...

Relational Naive Bayes Net

At(X,1,1)

At(X,1,2)

At(O,3,3)

At(O,3,2)

At(X,1,3) At(O,3,1)

Figure 2. The initial relational naive Bayes net used in the game of
Tic-Tac-Toe. In all, the binary-valued Win node has 18 binary-
valued children corresponding to each of the ground relational
features Fi in the state description. This representation requires
one conditional probability table (CPT) for P (Win) and 18 in-
dividual CPTs P (Fi|Win), i ∈ {1 . . . 18}. In value learning,
the goal is to learn the parameters of this Bayes net to maximize
log-likelihood. In structure learning,the goal is to learn which
child nodes to join to maximize the log-liklihood. The dashed
lines show two different sets of node joins that can be useful in
Tic-Tac-Toe – if all individual nodes take the value true, they rep-
resent a line of X’s across the top row and a line of O’s across the
bottom row.

(all ground atoms) and represent a state instantiation s ∈
{F1 × · · · × Fn} as s = {f1, . . . , fpf̄p+1, . . . , f̄n} (a truth
assignment to all ground atoms). The omission of nega-
tive atoms from the state often yields a compact represen-
tation since the number of positive atoms is usually small
(and easily identifiable) in comparison to the total number
of atoms (i.e., p � n).

Even very small relational RL domains can have hundreds
of ground atoms and it would be impossible to represent
the exact distribution, which in its fully enumerated form
would require roughly one probability entry for every dis-
tinct truth assignment to ground atoms. For 100 ground
atoms, this would require approximately 2100 distinct prob-
ability entries, which is clearly intractable. Thus, we need
to focus on a compact, factored representation of P (w|s).
SVRRL does this by representing P (w|s) using the simple
relational naive Bayes structure given in Figure 2. For our
previous example of a relational domain with 100 ground
atoms, we need only record 201 probability entries to ap-
proximate the value of P (w|s); two probability entries
P (fi|w) and P (fi|w̄) for each ground atom and one en-
try P (w) for the prior over winning. While this is only an
approximation, we show that we can “patch up” this simple
representation through structure learning. But, first we fo-
cus on how to learn the value (parameters) of this network.

Figure 3 shows the learning task. Given a number of tri-
als, each involving some finite number of time steps, the
learner is presented with a relational specification of the
positive state features {f1, . . . , fp} and chooses an action
according to a fixed policy. This is repeated in each trial
until the terminal state is reached and the terminal reward

O

X

O

X

O

X

X

X

X

X

OO

O

X

After Move

 Update +1 Loss
 Update +1 Win

X Wins, O Loses

{ } X

{At(X,2,2)}X

X {At(X,2,2), At(O,1,3)}
O

X

O

X

X

O

{At(X,2,2), At(O,1,3), At(X,3,3)}
X

O

X

X

OO

X X

{At(X,2,2), At(O,1,3), At(X,3,3)

 At(O,1,1)}

O X

X

X

OO

X

O OX X

O

{At(X,2,2), At(O,1,3), At(X,3,3)

 At(O,1,1), At(X,1,2)}

{At(X,2,2), At(O,1,3), At(X,3,3)

X X

O

O

O X

State 2, Turn O

State 1, Turn X

State 3, Turn X

State 4, Turn O

State 5, Turn X

State 6, Turn O

State 7, Turn X

State DescriptionBefore Move

 At(O,1,1), At(X,1,2), At(O,3,1)}

Outcome

Figure 3. A diagram depicting a single training trial of two SVR-
RLs agent in the domain of Tic-Tac-Toe. In Tic-Tac-Toe, players
alternate turns, placing their mark in a free square until one player
wins by completing a line, or both players draw by running out of
moves. On every turn, the player extracts the true ground rela-
tional features {f1, . . . , fp} of the game state. The At(·, ·, ·) re-
lation has respective attributes indicating the mark placed and its
row and column position. At the end of the game, each SVRRL
agent records all features resulting from its moves and imme-
diately updates their conditional probability tables P (Fi|W) as
well as the global winning prior P (W). Training can proceed for
any number of these trials.

is received. At the end of each trial, the overall win/loss
count is immediately updated along with that of the fea-
tures for the after-states3 occurring in the move history for
the player.

How does SVRRL learn the parameters of the value func-
tion during training and use the value function to determine
a policy? For parameter learning it is well-known that the
max-likelihood parameters of a Bayes net are simply the
observed probabilities (denoted by P̂) for each CPT, so we
can efficiently determine the max-likelihood value function
by tracking overall and feature-specific win/loss counts.

Now, in order to execute the optimal policy w.r.t. to the cur-
rent parameters in our naive Bayes net value function, we
leverage the fact that the state s which maximizes P̂ (w|s)
will also maximize the log winning odds log(P̂ (w|s)

P̂ (w̄|s)
). Pre-

vious work (Sanner, 2005) showed that we can express the
3An after-state (Sutton & Barto, 1998) is simply the state re-

sulting from an agent’s action before any other agent, if present,
has chosen its respective action.

log winning odds of a state described by only the set of
positive feature instances:

log
P̂ (w|s)

P̂ (w̄|s)
= C +

p
∑

i=1

(

log
P̂ (fi|w)

P̂ (fi|w̄)
− log

P̂ (f̄i|w)

P̂ (f̄i|w̄)

)

(2)

Since C is a constant common to all states, we can ignore
it during comparisons of log winning odds of states. Thus,
even in a relational naive Bayes net with a large number
of negative features, it is still possible to efficiently deter-
mine the highest-valued after-state in a comparative man-
ner. This suffices to execute the optimal policy w.r.t. a
value function.

3.2. Exploiting Relational Structure

Before we continue it is important to note that we can
use locally weighted regression techniques (Atkeson et al.,
1997) to exploit relational structure in the conditional prob-
ability tables (CPTs) of the Bayes net. While the ground
Bayes net technique we have proposed so far is not rela-
tional in the traditional sense, it is also not purely proposi-
tional due to the fact that we can exploit relational structure
in the CPT representation to reduce memory usage and in-
crease learning generalization.

Our Tic-Tac-Toe example has been didactic from the stand-
point of structure learning but the relational representation
is too simple to demonstrate how we can exploit structure
within the CPTs. For this, we need to examine more com-
plex domains such as Backgammon and Othello.4

In Backgammon, we find it useful to use the following five
feature attributes: (1) PT : Point on the board {1, . . . , 24}
where the feature occurs. (2) BAR: Number of opponent
pieces {0, . . . , 15} on the bar that must escape to the board
before the opponent can resume normal play. (3) ON :
Number of opponent pieces {0, . . . , 15} nearby, i.e. within
6 points of the current point. (4) OA: Total number of op-
ponent pieces {0, . . . , 15} ahead of the point. (5) SZ: Size
of a block {1, . . . , 7}, i.e. number of contiguous points
with at least two of the player’s pieces. We then use these
attributes to build the following three relational features:

1. Attack(PT,BAR): The current player has attacked
an exposed opponent on a point, moving it to the bar.

2. Expose(PT,BAR,ON,OA): The current player
has exposed a piece alone on a point.

3. Block(PT,BAR,ON,OA, SZ): The current player
has built a block of consecutive points, impeding the
progress of opponents ahead of the block.

4While space limitations provide us from describ-
ing Backgammon and Othello here, we refer the reader
to the web sites http://www.bkgm.com/rules.html and
http://www.rainfall.com/othello/rules/othellorules.asp for a
quick illustrated overview of the respective rules for these games.

In Othello, we use a very simple representation that ab-
stracts heavily over the board state. While in future work,
we plan to extend this representation to more accurately
capture spatial patterns on the board (Buro, 1998), we find
that the current relational representation suffices for rea-
sonable performance against intermediate opponents. In
our representation, we use the following two attributes: (1)
CT : A count {0, . . . , 64} of board positions satisfying the
feature. (2) TURN : The turn number {1, . . . , 60} at which
the feature occurs. Strategy in Othello is highly dependent
upon game stage and the use of this last attribute allows us
to capture this dependency. We use these attributes to build
the following five relational features:

1. Pieces(CT, TURN): A simple count of the number
of the current player’s pieces on the board. Maximiz-
ing pieces is the objective of Othello although it can
be harmful if done too early in the game.

2. Mobility(CT, TURN): A count of the number of
moves available to the current player.

3. Adjacent(CT, TURN): The number of open posi-
tions adjacent to a current player’s pieces.

4. Edges(CT, TURN): The number of the current
player’s pieces at the non-corner edges of the board.

5. Corner(CT, TURN): The number of the current
player’s pieces at the corners of the board.

Given the feature descriptions for these two games, we can
now envision how we might exploit relational structure of
these features to reduce memory usage and increase learn-
ing generalization. Suppose that we have learned that the
Backgammon feature Block(PT = 14, BAR = 0, ON =
7, OA = 8, SZ = 4) is predictive of a win. However,
suppose that in the future, we can encounter the feature
Block(PT = 13, BAR = 0, ON = 6, OA = 7, SZ =
5), for which we have no previous experience. Given the
intuitive similarity of these two features, we should be able
to predict a win for the second. Likewise in Othello, if we
know that the feature Pieces(CT = 16, TURN = 24)
is bad, then we should also be able to generalize that
Pieces(CT = 17, TURN = 26) is potentially bad even
if we have never encountered it before. However, we can
say less about Pieces(CT = 34, TURN = 56) given in-
formation about Pieces(CT = 16, TURN = 24) since
these two features are much less similar.

To formalize these intuitions, we can treat ground atoms
of an n-arity relation as a point in n-D space. To define
the distance measure between points, we assign compari-
son metrics for attributes. In our experiments, we used the
following three attribute distance measures:

1. Linear (Lin): The distance between one attribute value
and another is the difference of the values normalized
by the attribute span (so as to have a range of [0, 1]).

This is a natural distance measure for the PT , SZ and
TURN attributes.

2. Zero-Diff-Linear (ZDL): This distance is identical to
Linear except that the attribute value 0 has a maximal
distance of 1 to all other attribute values. This mea-
sure is useful in features that do counting where the 0
count is extremely dissimilar to any count ≥ 1. For
example, in Backgammon, having 0 opponents on the
bar allows for normal play whereas having ≥ 1 oppo-
nent on the bar severely restricts the opponent’s play.
BAR, ON , OA, and CT use this distance metric.

3. No similarity (NS): Here the max distance of 1 is as-
signed between all attribute values. This is used for
the Tic-Tac-Toe attributes of Mark, Row, and Col

and explains why we cannot exploit ground relational
structure in this domain. The discrete nature of each
of these attributes makes it difficult to generalize from
one attribute value to another in this case.5

Now that we have assigned a distance measure appropri-
ate for each attribute we can easily define the total Eu-
clidean distance D(Fi, Fj) between two ground atoms
Fi = R(vi,1, . . . , vi,k) and Fj = R(vj,1, . . . , vj,k) of the
same k-arity relation template R(A1, . . . , Ak). To make
this concrete, we compute the following function where
d(A, v1, v2) computes the assigned distance measure (i.e.,
(Lin, ZDL or NS) for attribute A given values v1 and v2:

D(Fi, Fj) =

√

√

√

√

k
∑

p=1

(d(Ap, vi,p, vj,p))
2 (3)

Now, when we encounter a true ground atom target feature
t at runtime, we first look in our ground feature cache for
t’s relation to see if we can find a set of features F = {f ∈
ground feature cache | D(t, f) ≤ ε}. If we can, we assign
each feature f ∈ F a match similarity weight normalized
by the sum of all match similarity weights for F :

f.match-weight =

√
k − D(t, f)

∑

g∈F

√
k − D(t, g)

(4)

Then for each f ∈ F , we compute P (t|w) ≈
∑

f∈F P (f |w) · f.match-weight. Likewise when we up-
date feature CPTs at the end of the trial, we update the
respective wins or losses of f by f.match-weight to re-
flect f ’s expected contribution to the outcome. On the other
hand, if F = ∅, then we add t to our ground feature cache
with a win-biased initial CPT and update it with weight 1
at the end of the trial.6 In this way, ε serves as a parameter
that determines how densely we populate our feature/CPT
cache. The lower ε is, the more features/CPTs we will store
and the less we will generalize – albeit for the tradeoff of
higher prediction accuracy with sufficient experience.

5We could exploit relational structure in Tic-Tac-Toe in the
form of spatial symmetry, but this is not yet implemented.

6This optimistic bias guarantees exploration of new features.

3.3. Structure Learning

The above framework permits us to learn a value function
based on a simple relational naive Bayes net and to effi-
ciently execute a policy derived from this value function,
but often the naive Bayes structure is too impoverished
to adequately approximate the optimal value function. To
remedy this problem, previous work (Sanner, 2005) pre-
sented two types of relational Bayes net structure learning:
feature attribute augmentation (FAA) and feature conjunc-
tion (FC). While FAA was intended to fine-tune the prob-
ability estimates in an individual CPT, FC was intended as
the main feature discovery component and is the structure
learning that we focus on here.

The concept of FC-learning is simple: at each structure
learning step, greedily conjoin the CPTs for the two feature
nodes that yield the greatest increase in log likelihood of
the naive Bayes net. Joining feature nodes is a useful type
of structure learning since it can learn non-independent
correlations between features while maintaining the naive
Bayes structure that makes policy evaluation efficient. As
shown previously (Sanner, 2005), the feature join yielding
the highest log-likehood l∗(θ|D) of the network parameters
θ given the data D is the one that maximizes the following
expression where M is the number of data samples, C is
a constant, and I(Fa, Fb|W) is the mutual conditional en-
tropy of two features given the outcome W :

l∗(θ|D) = C + M · I(Fa, Fb|W) (5)

The drawback of this structure learning algorithm is
that it requires maintaining the joint probability over all
node pairs in the naive Bayes net in order to calculate
I(Fa, Fb|W). For a relational naive Bayes net with only
100 ground features, this requires maintaining 10000 ad-
ditional probability estimates. It can be seen that this
quadratic growth quickly becomes intractable as the num-
ber of ground atoms increases. Dealing with this in-
tractability is the main contribution of this paper.

4. Data Mining SVRRL Algorithm
Our goal is to learn structure in the relational naive Bayes
net that maximizes utility to the learning agent. In attempt-
ing this, the first issue we note is that many portions of state
space are visited too infrequently to yield low-variance esti-
mates of joint probabilities (or mutual conditional entropies
for that matter). Thus, it makes sense to focus structure
learning on those portions of state space that are visited
frequently in order to maximize the payoff of learning the
structure while minimizing the variance (and noise) of the
joint probability estimates of the learned features.

One popular method used in data mining for identify-
ing frequent itemsets is the Apriori algorithm (Agrawal &
Srikant, 1994). The basic motivating idea underlying Apri-

ori is that a set of features can only positively co-occur with
some minimum frequency if all proper subsets also posi-
tively co-occur with at least that minimum frequency. By
building up frequent itemsets from the frequent singleton
features, one can very efficiently find all sets of frequently
positively co-occuring features.

In data mining SVRRL (DM-SVRRL), our goal is to dis-
cover structure in the form of frequently positively co-
ocurring features.7 The Apriori algorithm gives us an im-
mediate method for doing this: Whenever two features co-
occur in a state with some minimum threshold frequency,
we build a new joint feature and keep track of its joint fre-
quency (via its win/loss count). This serves two purposes:
The joint frequency estimate allows us to keep track of fre-
quency estimates when building even larger joint features
and it also gives us the parameters for the CPT representing
this joint node in the naive Bayes net. Thus, as a byproduct
of applying an Apriori algorithm variant to a data stream
of after-state features occurring during training, we can
also learn joint probability estimates for all frequently co-
occurring features!

To make the DM-SVRRL algorithm concrete, we present
the training and update procedures for a game context in
Algorithms 1 and 2. We note that each DM-SVRRL player
maintains its own win/loss counts (overall, for each cached
ground feature, and for each learned conjoined feature) in
addition to recording all after-states from the game. The
Train procedure simply plays the game for a number of
trials and updates each player upon receiving an outcome
(a draw is considered a win for both). The Update proce-
dure tracks the overall win/loss counts as well as win/loss
counts for ground and conjoined features occurring in the
recorded after-states. When a conjoined feature reaches the
min frequency threshold, it becomes available to the player
for value estimation during normal game play. Finally we
note that this algorithm always executes the greedy policy
w.r.t. it’s most recently updated value function. While there
are no convergence guarantees for such interleaved policy
evaluation and update methods, we find that we obtain con-
vergent policies in practice.

5. Empirical Evaluation
We applied the DM-SVRRL algorithm to the domains of
Tic-Tac-Toe (18 ground features), Othello (13,200 ground
features), and Backgammon (786,816 ground features). We
used the same relational features and attribute distance met-
rics as outlined for each game in Sections 3.1 and 3.2. In
addition, we set ε to 0.02 (see Section 3.2).

7Ideally we would like to learn joint probabilities for pairs of
positive and negative features as well. Unfortunately, this is non-
trivial since most ground features occur negatively in a state and
this would return us to the same difficulty that made FC-learning
in SVRRL intractable.

Algorithm 1: Train(trials, min-cache-freq)

input : trials, min-cache-freq: number of trials to train and min freq
for using conjoined features

begin
// Both players maintain win/loss counts as well counts for all cached
// ground atom features, conjoined features they have learned so far,
// and a record of all after-states from each game
for (i := 1 . . . trials) do

whose-turn := random choice of BLACK or WHITE;
Initialize game state;
while (who-has-won() = NEITHER) do

Generate set of after-states for all possible moves;
foreach state ∈ after-states do

TargetState := all positive ground features for state;
F := ∅;
foreach t ∈ TargetState do

F := F∪{f ∈ ground feature cache |D(t, f) ≤ ε}
// Note 1: D(t,f) is calculated according to Eq. 3.
// Note 2: Each f is assigned a match-weight from Eq. 4.

Replace sets of ground atoms in F with maximal subsuming
conjoined features from conjoined-features;

state := best state ∈ after-states according to Eq. 2;
Make move corresponding to state and record for player;
whose-turn := get-other-player(whose-turn);

Update(WHITE,who-has-won(), min-cache-freq);
Update(BLACK,who-has-won(), min-cache-freq);

end

We trained for 5000 games in our experiments. In
Tic-Tac-Toe, we trained against an optimal player,
in Backgammon we trained against the linear neural
network player PubEval provided by Gerry Tesauro
(www.netadelica.com/bg/bot/b pubeval.html), and in Oth-
ello, we trained against an opponent using exhaustive 4-ply
lookahead with a specialized evaluation function (interme-
diate level play). We evaluated three algorithms, SVRRL
without structure learning (VRRL), DM-SVRRL (F1) with
a min-cache-freq setting of 1 (i.e., it learns every joint
combination of features seen during a game), and DM-
SVRRL (F50) with a min-cache-freq setting of 50. DM-
SVRRL (F1) was capped at learning the first 2000 joint
features since its unrestricted feature learning would ex-
ceed memory limits otherwise. Having done this, it only
seemed fair to limit DM-SVRRL (F50) to its first 2000 fea-
tures to avoid the possibility that DM-SVRRL (F50) per-
formed better on account of having more features – in this
way, we hope to obtain a reasonably good indication of the
quality of the features learned by each algorithm. Table 1
provides final performance results playing the trained play-
ers against their training opponents for 1000 games.

Training times on a 3.2 Ghz Pentium ranged from 2 min.
for Tic-Tac-Toe to 20 min. for Backgammon. Memory
requirements ranged from 200 Kb for Tic-Tac-Toe to 3
Mb for Backgammon. For Tic-Tac-Toe, DM-SVRRL (F1)
learns to play optimally since it can quickly learn all possi-
ble joint features (there are less than 1000). If we train long
enough for all joint features to meet the minimum thresh-
old of DM-SVRRL (F50), it learns the optimal policy as

Algorithm 2: Update(player, who-won, min-cache-freq)

input : player, who-won, min-cache-freq: the player (WHITE or
BLACK), who won the game, and the min freq for using conjoined
features

begin
// All updates are local to player
for (i := 1 . . . # moves in game) do

if who-won = player then
total-wins := total-wins + 1;

else
total-losses := total-losses + 1;

L1 := all positive features for after-state from move #i;
foreach f ∈ L1 do

if who-won = player then
f.wins := f.wins + f.match-weight;

else
f.losses := f.losses + f.match-weight;

// Use Apriori style alg. to find/update frequent joint feature sets
k := 2;
while (Lk−1 6= ∅) do

Ck := all size k supersets of Lk−1 where all size k − 1 subsets
meet min-cache-freq;
foreach cf ∈ Ck do

if who-won = player then
cf.wins := cf.wins + 1;

else
cf.losses := cf.losses + 1;

Lk := subset of Ck that meet min-cache-freq;
conjoined-features := conjoined-features ∪ Lk ;
k := k + 1;

end

well; unfortunately its learning performance is much worse
in the first 5000 games. On the other hand, the inability to
learn conjoined features severely hurts VRRL. In Othello,
there are more possible joint features than can be stored
in memory so it is useful to learn only the high frequency
features as evidenced by the fact that DM-SVRRL (F50)
nearly doubles the performance of DM-SVRRL (F1). DM-
SVRRL (F50) also far outperforms its non-structure learn-
ing variant VRRL. VRRL outperforms DM-SVRRL (F1)
because the latter’s low frequency joint feature probabil-
ities add considerable statistical noise to the value func-
tion. In Backgammon, DM-SVRRL (F50) has a slight edge
over the other two learners. Since Backgammon is a highly
stochastic game, even a small increase in performance is
evidence of a strategic advantage.

Overall, these results support two observations: (1) online
feature discovery can help the system predict value better
than the non-structure learning version, and (2) focusing
feature discovery on frequently co-occurring features can
outperform near-random structure learning when the rela-
tional state space is very large and the number of learned
features is bounded by memory constraints.

6. Related Work

While all of the model-free relational RL approaches are
too numerous to mention, many algorithms are variants of

ALGORITHM WIN/DRAW % DOMAIN

VRRL 28.3 %
DM-SVRRL (F1) 100.0 % TIC-TAC-TOE
DM-SVRRL (F50) 45.8 %
VRRL 61.3 %
DM-SVRRL (F1) 49.4 % OTHELLO
DM-SVRRL (F50) 99.1 %
VRRL 46.5 %
DM-SVRRL (F1) 45.4 % BACKGAMMON
DM-SVRRL (F50) 51.5 %

Table 1. Win/Draw % (± 1.6 %) of VRRL and DM-SVRRL vari-
ants in Tic-Tac-Toe, Othello, and Backgammon vs. training op-
ponents. Draws are not possible in Backgammon so the values
reported are simply the Win %.

an approach that approximates the value or Q-function with
logical regression trees (Dzeroski et al., 1998). While this
learning approach is top-down in that it recursively parti-
tions the state space into finer value distinctions, more re-
cent work (Walker et al., 2004; Croonenborghs et al., 2004)
has taken a bottom-up approach to finding useful features
for predicting value and combining them to make a predic-
tive estimation of state value. While DM-SVRRL takes this
latter approach, it is the only known relational RL system
to focus on efficient online feature discovery using a rela-
tional naive Bayes net representation of the value function.

Our feature discovery ideas are similar in spirit to previ-
ous work in conjunctive feature construction in the context
of game-playing (Buro, 1998). This work also focused on
constructing frequent feature sets, but it explored this in an
offline supervised learning setting where frequent conjunc-
tive patterns were mined from a large collection of expert
and perfectly evaluated training positions. Using this set of
training data, the algorithm used iterative gradient-descent
algorithms to fit the feature weights of its linear evalua-
tion function. In contrast, while our feature construction
and evaluation functions are quite similar, our algorithms
are intended for an online reinforcement learning setting in
the absence of expert or perfectly evaluated training data.
Consequently, one can characterize our approach as asyn-
chronous policy iteration that continuously bootstraps the
value function from previous policy evaluations. To do this
efficiently we have used a probabilistic intepretation of the
value function that permits efficient closed-form parameter
updates and we have exploited relational structure to reduce
memory usage and increase learning generalization.

7. Concluding Remarks
We have presented a tractable data mining variant of the
SVRRL algorithm that has allowed us to efficiently com-
bine feature discovery with relational reinforcement learn-
ing. The empirical results are encouraging and the ap-
proach has a remarkably low resource consumption for the
large feature domains of Backgammon and Othello.

There are a number of directions for future work, which we
divide into two categories: learning more complex struc-
ture and learning in more complex domains. For the for-
mer, we would like to investigate learning higher level rela-
tional structure such as quantifiers, variable matching, rules
(e.g., (Landwehr et al., 2005)), and probabilistic relational
model (PRM) structure (Friedman et al., 1999). For the lat-
ter, we would like to investigate partially observable MDP
(POMDP) (Kaelbling et al., 1998) and predictive state rep-
resentation (PSR) (Littman et al., 2001) frameworks where
we can introduce temporal attributes in our features re-
quired to learn policies in these domains. Finally, we note
that since DM-SVRRL learns to compress state descrip-
tions by representing states with successively larger joint
features, it could be used as a means of learning a hier-
archical abstraction of the domain to which model-based
techniques could be applied. Altogether these possible ex-
tensions of the DM-SVRRL algorithm make it an exciting
area for future work.

References

Agrawal, R., & Srikant, R. (1994). Fast algorithms for mining
association rules. In Proceedings of VLDB-94 (pp. 487–499).

Atkeson, C. G., Moore, A. W., & Schaal, S. (1997). Locally
weighted learning. Artificial Intelligence Review, 11, 11–73.

Buro, M. (1998). From simple features to sophisticated evaluation
functions. In Proc. of Computers and Games (CG’98).

Croonenborghs, T., Ramon, J., & Bruynooghe, M. (2004). To-
wards informed reinforcement learning. ICML-04 Workshop
on Relational RL.

Dzeroski, S., de Raedt, L., , & Blockeel, H. (1998). Relational
reinforcement learning. ICML-1998 (pp. 11–22).

Friedman, N., Getoor, L., Koller, D., & Pfeffer, A. (1999). Learn-
ing probabilistic relational models. IJCAI (pp. 1300–1309).

Kaelbling, L. P., Littman, M. L., & Cassandra, A. R. (1998). Plan-
ning and acting in partially observable stochastic domains. Ar-
tif. Intell., 101, 99–134.

Landwehr, N., Kersting, K., & de Raedt, L. (2005). nFOIL: Inte-
grating naı̈ve bayes and FOIL. AAAI (pp. 795–800).

Littman, M. L., Sutton, R. S., & Singh, S. P. (2001). Predictive
representations of state. NIPS (pp. 1555–1561).

Puterman, M. L. (1994). Markov decision processes: Discrete
stochastic dynamic programming. New York: Wiley.

Sanner, S. (2005). Simultaneous learning of structure and value in
relational reinforcement learning. ICML’05 Workshop on Rich
Representations for Reinforcement Learning.

Sutton, R. S., & Barto, A. (1998). Reinforcement learning: An
introduction. MIT Press.

Tadepalli, P., Givan, R., & Driessens, K. (2004). Relational re-
inforcement learning: An overview. ICML-04 Workshop on
Relational RL.

van Otterlo, M., & Kersting, K. (2004). Challenges for relational
reinforcement learning. ICML-04 Workshop on Relational RL.

Walker, T., Shavlik, J., & Maclin, R. (2004). Relational reinforce-
ment learning via sampling the space of first-order conjunctive
features. ICML-04 Workshop on Relational RL.

