Simultaneous Learning of Structure and Value
in Relational Reinforcement Learning

Scott Sanner

SSANNERQCS.TORONTO.EDU

Department of Computer Science, University of Toronto, Toronto, ON M5S 3H5, CANADA

Abstract

We introduce an approach to model-free
relational reinforcement learning in finite-
horizon, undiscounted domains with a sin-
gle terminal reward of success or failure. We
represent the value function as a relational
naive Bayes network and show that both the
value (parameters) and structure of this net-
work can be learned efficiently under a min-
imum description length (MDL) framework.
We describe the SVRRL and FAA-SVRRL
algorithms for efficiently performing simulta-
neous structure and value learning and apply
FAA-SVRRL to the domain of Backgammon.
FAA-SVRRL produces a high-performance
agent in very few training games and with
little computational effort, thus demonstrat-
ing the efficacy of the SVRRL approach for
large relational domains.

1. Introduction

The field of relational reinforcement learning (RRL)
has emerged in recent years as a major area of focus
in the reinforcement learning community (Tadepalli
et al., 2004; van Otterlo & Kersting, 2004). While
RRL is an attractive approach for learning from de-
layed reward in a relational state representation, its
generality does not come without severe representa-
tional and computational drawbacks:

e As the number of ground domain objects and the
arity of the relations increase, there is a combina-
torial explosion in the number of ground relations
that describe a state. This results in an extremely
large state space that can quickly become unman-
ageable, even if there are only a few relations in
the problem specification.

Appearing in Proceedings of the ICML’05 Workshop on
Rich Representations for Reinforcement Learming, Bonn,
Germany, 2005. Copyright 2005 by the author(s)/owner(s).

e One must carefully decide on the hypothesis space
from which a value function or policy may be se-
lected. If too simple of a space is used, the learner
may not be able to obtain a good representation
of the value function. And if too complex of a
space is used, the learner may never be able to
find a good representation or obtain enough data
to achieve a low-variance estimate of the value
function.

e Finding a relational structure for a value func-
tion or policy that is optimal for all domain in-
stantiations is extremely computationally diffi-
cult. Although a few approaches have provided
algorithms for exact representations of relational
value functions (Boutilier et al., 2001; Holldobler
& Skvortsova, 2004; Kersting et al., 2004), these
techniques have only been applied successfully to
relatively simple problem descriptions. In prac-
tice, exact value function representations are dif-
ficult to obtain and the driving research question
is how to efficiently find good approximations of
a value function (or policy).

In this paper we attempt to address the above issues by
introducing an approach to model-free relational rein-
forcement learning that induces structure as it learns.
This approach has the advantage of allowing a learner
to start with a simple relational representation and
augment it as needed to learn structure that is useful
for predicting the value function. We apply this learn-
ing technique to Backgammon and demonstrate that it
can produce a high-performance agent with very little
computational effort and in very few training games
in comparison to other state-of-the-art Backgammon
learning algorithms.

2. Background and Related Work

2.1. Relational Reinforcement Learning

There are two major approaches to RRL: model-based
and model-free. In model-based RRL, one usually as-

sumes the problem is modelled explicitly as a Markov
decision process (MDP) (Puterman, 1994) with rela-
tional state space structure (RMDP). Then it is possi-
ble to use a relational generalization of an MDP solu-
tion algorithm to solve for the value function or policy
of the RMDP. In contrast, model-free RRL usually
assumes an implicit underlying RMDP and attempts
to learn the parameters (and possibly structure) of a
value function via direct experience without access to
the underlying model. Since we focus on model-free
approaches in this work, we refer the reader to recent
work this area (Sanner & Boutilier, 2005) that includes
a discussion of related work.

While all of the model-free RRL approaches are too
numerous to mention, many algorithms are variants of
an approach that approximates the value or Q-function
with logical regression trees (Dzeroski et al., 1998).
While this learning approach is top-down in that it
recursively partitions the state space into finer value
distinctions, more recent work (Walker et al., 2004;
Croonenborghs et al., 2004) has taken a bottom-up
approach to finding useful features for predicting value
and combining them to make a predictive estimation
of state value. While our SVRRL algorithm takes this
latter approach, it focuses specifically on a relational
naive Bayes net representation of the value function
and presents efficient techniques for learning both the
value (parameters) and structure of this network under
a minimum description length (MDL) framework.

2.2. Bayes Net Structure Learning

Since our goal is to learn relational naive Bayes net
structure, the most relevant work along these lines is
in the field of Bayes net structure learning. Friedman
and Goldschmidt (1996) evaluate the tree-augmented
naive Bayes (TAN) network structure for learning clas-
sifiers in propositional domains. While we opt for a
naive relational Bayes network rather than a propo-
sitional TAN network, we do leverage a similar the-
oretical framework in our approach. In the area of
learning structure in relational Bayes nets, Friedman
et al (1999) propose techniques for learning a general
class of probabilistic relational models (PRMs) from
a fixed dataset. While this explicit search-based ap-
proach seems too computationally expensive to per-
form on-line in an RRL agent, future extensions of
SVRRL could incorporate some of these ideas.

3. Relational Reinforcement Learning
Framework

In this paper, we restrict ourselves to undiscounted,
finite-horizon domains with a single terminal reward

Trial 1 Trial m

State 1
State 2

Attack(1), Expose(3,5)
Block(2,7), Expose(9,10)

Block(2,3), Block(7,9)
Block(3,4), Attack(11,5)

State n—-1 Block(19,1), Expose(9,1) Block(23,1)
State n Expose(24,1) Expose(8,1), Expose(9,1)
owcome (Fal) oo -

Figure 1. A diagram depicting training of the RRL agent
in the domain of Backgammon (see Figure 2 for a de-
tailed explanation of the relations). During each trial, the
agent keeps track of all positive (i.e. true) ground atoms
of these templates at every intermediate state (we’ve re-
duced the arity of the relations for readability). Once a
terminal win or loss has been reached, the prior P(W) and
the conditional probability tables for the relational features
P(F;|W) appearing during the trial are updated. This pro-
gresses for m trials.

of success or failure. Additionally, we assume that
the state is described using a fixed set of relations
R ={Ry,...,R;}, each having some finite arity. Each
relation argument is assigned an attribute type from
aset A= {A4,...,A;} where each attribute is itself
a set of legal values the attribute can take. We re-
fer to a relation and the attribute specification for its
arguments as a relation template.

To make this more concrete, we provide a simple exam-
ple domain with a single relation template R (Aq, As)
where 41 = {a,b} and Ay = {1,2} so that there are
four possible ground instantiations of this template:
R(a,1), R(a,2), R(b,1), and R(b,2). Treating each
ground atom as a binary proposition, the state is given
by the full truth assignment (i.e. true or false) to each
of the four propositions. Thus, in this simple relational
domain, there are 2% or 16 possible states.

In the following discussion, we use binary proposi-
tions F; to denote generic ground atoms (a.k.a. fea-
tures) which can take on the value true denoted by
fi and the value false denoted by f;. For represen-
tational efficiency, we assume the state is represented
by only the positive (true) atoms, which we arbitrar-
ily label {f1,..., fp}. Then, given that that there are
a total of n ground atoms in a problem domain, we
use absence-as-negation to infer that the remaining
atoms {fpi1,. .., fn} are false. Welet F' = {F; ... F,}
(all ground atoms) and represent a state instantiation

feFasf={fi,....fofpt1,---, fn} (a truth assign-
ment to all ground atoms). The omission of negative

Relational Bayes Net Before Join on Expose | nstances

tack (1,0,0,0)
aD)

Attack (24,15,1,15)
Block (1,0,0,0,1) Expose (115)
Block (24,15,1,15,7)

Figure 2. The relational naive Bayes net representation of the value function in Backgammon. In this domain, there are
24 points on a Backgammon board where a player’s pieces can be placed (each player is assigned 15 pieces in the beginning
and this number decreases as they manage to successfully bear each piece off the board). There is also a bar position
where pieces can be placed when they have been blotted (i.e. attacked by the opponent because they were exposed by
themselves on a point) and must wait to reenter the board. We use five attribute types, PT = {1,...,24} for point
locations, OP = {1,...,15} for a count of opponents ahead of a point, ON = {1,...,15} for a count of opponents within
7 points, OB = {1,...,15} for a count of opponents on the bar, and SZ = {1,...,15} as the number of consecutive
points with at least two of a player’s pieces (a block in Backgammon). From this, we define three relation templates
Attack(PT,OP,OB,0ON), Expose(PT,OP,OB,ON), and Block(PT,OP,OB,ON,SZ). Here we have a child node for
each ground atom derived from these templates. As SVRRL progresses, the system keeps track of the prior over winning
P(W) and the conditional probability tables P(F;|W) for each ground child node. As the system learns, it may decide

Relational Bayes Net After Join on Expose I nstances

Expose(1,0) Expose(2,0)

D

Block (24,15,1,15,7)

Attack (1,0,0,0)

Block (1,0,0,0,1) D)

to join two ground features as is done above for two ground atoms of the Expose relation.

atoms from the state is efficient since we expect the
number of positive atoms to be small (and easily iden-
tifiable) in comparison to the total number of atoms
(p < n). And as we will show, it is also computation-
ally efficient for comparison of state values.

Figure 1 shows the learning task. Given a number of
trials, each involving some finite number of time steps,
the learner is presented with a relational specification
of the positive state features {f1,..., fp} and chooses
an action according to a fixed policy. This is repeated
in each trial until the terminal state is reached and the
terminal reward is received. If we model the underly-
ing process as a finite-horizon MDP with a terminal
reward of 1 for success/win and 0 for failure/loss, and
a discount factor v = 1 (i.e. no discount), then it is
straightforward to show that the value function w.r.t.
a fixed policy is simply the conditional probability of
success/winning given the state, P(w|f).

Now, the question we must answer is how to estimate
P(w|f). Even very small RRL domains can have hun-
dreds of ground atoms and it would be impossible to
represent the exact distribution, which in its fully enu-
merated form would require roughly one probability
entry for every distinct truth assignment to ground
atoms. For 100 ground atoms, this would require ap-
proximately 2'%° distinct probability entries, which is
clearly intractable. Thus, we need to focus on a com-
pact, factored representation of P(w|f) and one com-

mon way to do this is by using a Bayes net. In our
case, we specifically choose to use the naive Bayes net
representation given in Figure 2 since we need only
record 2 probability entries P(f;|w) and P(f;|w) for
each ground atom and 1 entry P(w) for the prior over
winning. For our previous example of a relational do-
main with 100 ground atoms, we need only record 201
probability entries to approximate the value of P(w|f).
While this is only an approximation, we show that
we can “patch up” this simple representation through
structure learning. But, first we focus on how to learn
the value (parameters) of this network.

Now that we can compactly represent the value func-
tion as a Bayes net, we need to efficiently learn it from
data. Since it is well-known that the max-likelihood
parameters of Bayes net are simply the observed fre-
quencies for each conditional probability table (CPT),
we can efficiently approximate the value function by
keeping track of the observed frequencies (denoted by
P) for each CPT. This allows us to compute the max-
likelihood value for P(w|f):

P(f|w)P(w)
P(f)
P(w) T2, P(filw) TTL, ., P(filw)
S oetwny PO T, P(filo) T, ., P(filo)

P(w|f) = (1)

As noted previously, the number of ground atoms (and
therefore children in the naive Bayes network) is very

large. Yet even in the presence of an infinite number
of negative features, we can still efficiently determine
the best next state or after-state' given a finite set
of the positive features for each state. Based on the
fact that the state f which maximizes P(w]|f) will also
maximize the log winning odds log(%), we obtain
the following representation of the log winning odds of
a state:

P(wlf) P(w)
log — = log —~ +

P(wlf) P(w)

o PUw) S P w)

2% bt 2 e @)

Now, if we let C' = log P(wg +>" log ig;z:wg then we
can express the log winning odds of a state described

by only the set of active feature instances:

wlf lew P(ﬁw)>
=C+ — —lo —— (3)
3 (i it - s 571
Since C' is a constant common to all states, we can
ignore it during comparisons of log winning odds of
states. Thus, even in a relational naive Bayes net with

a large number of negative features, it is still possible
to efficiently determine the highest-valued state.

As one final practical consideration, we typically
use smoothing and non-parametric techniques (e.g.
nearest-neighbor, etc...) as in Sanner et al (2000) to
efficiently store and estimate the CPTs for all ground
atoms of a relation template. This allows us to lever-
age natural similarity measures between attribute val-
ues to obtain more robust estimates of the CPTs.

4. Structure Learning

Given the previous framework for learning the parame-
ters of a fixed relational naive Bayes net value function
in relational reinforcement learning, we now proceed
to determine how to learn structure in this value func-
tion. We restrict our attention to two types of joint
feature learning which we outline next. In the follow-
ing examples, note that we are looking for two ground
atoms F, and Fj that we may want to join:

Feature Attribute Augmentation (FAA) When we
first initialize our relational naive Bayes net for a
problem domain, we obtain a child node for ev-
ery ground feature, e.g. one child node may be
Ezxpose(5,3,0,2). Consequently, we must use the ob-
served frequency counts to estimate the probabilities
for this child node’s CPT, i.e. P(Ezpose(5,3,0,2)|w)

'An after-state (Sutton & Barto, 1998) is simply the
state resulting from an agent’s action before any other
agent, if present, has chosen its respective action.

and P(Ezpose(5,3,0,2)|w). If the relation arity is
high and the number of attribute choices is large, we
can expect to obtain very little data for each poten-
tial ground atom of a relation template. Aside from
non-parametric learning techniques for mitigating the
effects of sparse data, we choose to initially approxi-
mate the above probabilities by assuming that all re-
lation attributes are independent. For example, we es-
timate P(E(5,3,0,2)|w) (abbreviating Expose as 'E’),
by P(E(5,-,-,), E(-,3,+,), E(-,-,0,-), E(-,+, -, 2)|w) where
- in an attribute slot indicates a don’t care. This
may give us a more accurate low-variance estimate
in the presence of sparse data, but as we gain more
experience (i.e. data) over time, we may want to
relax this approximation. For example, we can let
F, =E(5,---), F, = E(-,3,,-), and attempt to de-
termine if the join F,;, = E(5,3,,-) is more informa-
tive than the independent features.?

Feature Conjunction (FC) In contrast to feature at-
tribute augmentation, where in some sense we are sim-
ply dealing with approximations of probabilities within
the CPTs corresponding to each Bayes net child node,
we may also want to ask whether there is any ad-
ditional information gained by joining the CPTs for
two arbitrary child nodes. For example, we could let
F, = FExpose(5,3,0,2) and F, = Attack(10,3,0,1)
and ask whether the joint probability of the conjunc-
tion of both atoms, P(F,, Fy|W), is more informative
than the product of the probabilities given by the naive
Bayes assumption, P(F,|W) - P(Fy|W).3

In general, a learner can use both FAA and FC struc-
ture learning techniques which we denote generically
as the SVRRL algorithm, or just FAA structure learn-

2For FAA-learning we are only looking at joining the
attribute probability estimates in one ground atom, but it
is easy to look at joining the attribute probabilities of each
ground atom of a relation template. This latter learning
approach is more relational in nature and is what we refer
to by FAA-learning.

3For FC-learning, we are simply looking at joining two
ground atoms so it would be misleading to think of this as
relational learning. However, learning arbitrary conjunc-
tions of relations for Bayes nets proves problemantic since
there is no direct correspondence between a relational join
and a manipulation of the underlying ground Bayes net.
While relational learning of this sort has been done for
Markov random fields (MRFs), we note that learning the
optimal parameters for MRF's has no closed-form solution
and must be done iteratively. So, for now, full FC rela-
tional learning in the naive Bayes net framework is the
subject of future research. We note that full FC relational
learning would also enable the use of variable unification
and quantification in relational joins to reduce the number
of ground atoms. Providing the RRL agent with such an
expressive relational-learning space is one of our ultimate
research goals.

ing which we denote as FAA-SVRRL. For whatever al-
gorithm is chosen, the learner must maintain distribu-
tions for each individual feature P(F;|WW) and poten-
tial FAA and FC joint feature instances P(F,, Fp|W).
This requires a quadratic amount of work in the num-
ber of active features during max-likelihood parameter
updating of the relational naive Bayes network. If this
proves to be too computationally intensive for generic
SVRRL, then FAA-SVRRL should be used.

Given the probabilities for our joint feature estimates,
our goal is to add relational structure to the net-
work so that it mazimizes the log-likelihood of the
joint probability of the Bayes met. Thus, given the
current network structure, our goal is to ask which
two feature atoms F,, and Fj to greedily combine via
the FAA or FC methods of structure learning. We
let V,;; denote the set of all Bayes net binary vari-
ables {W, F1,...,Fp, Fypi1,...,Fy} and let & € Vg be
shorthand for the set of instances & € {W x Fy x - - - X
F, x Fpiq x --- x F,}. Let N(Z) be the number of
times that state instantiation & has occurred in the
data. We express the log-likelihood of the naive Bayes
net with parameters 6 and M data samples D as the
following:

D) = > N(@) <logP(W) +
FEVay
log P(Fa, Fo[W) + >

i=1,i¢{a,b}
Now, given that we know the maximum likelihood pa-
rameters for this fixed naive Bayes network structure
are simply the observed probabilities, and adding and
subtracting the same log(P(F,|W)P(F,|W)) term, we
can express the maximum likelihood as the following:

log P(FZW)>

rep) = My P(f)(logP(W)—i-

ZeVan

P(Fa,Fb|W) - -
B W B —&-;logP(F,AW))

—MZP
vy Y

c=1 F.,W

)log P(W) +

(F.,W)log P(F.[W) +

P(F,, Fb\W)
P(Fa|W)P(F,|W)

Z P(F,,Fy,W)log =
Fo,Fp,W

W)+ > HEIW) + I(Fa, Fo| W)

i=1

= M(H(

Finally, we let C = M(H(W) + >, H(E;|W)) (M
times the entropy of W plus the sum of the conditional
entropy of every feature F; in the network, which we
note is constant no matter what features F, and F
are chosen). Thus, we arrive at the following pleas-
ing result expressing the maximum log-likelihood of
a relational naive Bayes network under a single fea-
ture join as a constant plus the the conditional mu-
tual information values of those joined feature nodes,
ie. I*(0|D) =C+ M - I(F,, F,|W)). If, as for FAA-
learning, we want to look at the effects of joining mul-
tiple pairs of features, it is obvious that we need only
sum the mutual information values of each pair be-
ing joined. Thus, FAA and FC-learning require local
evaluations only, thereby leading to a highly efficient
structure learning framework.

Since random noise almost always guarantees non-zero
mutual information, we need a principled way to con-
trol the amount of structure learned. For this purpose,
we choose the minimum description length principle
(MDL) commonly used in Bayes net learning (Lam
& Bacchus, 1994) to allow the SVRRL algorithm to
balance the amount of training experience with the
complexity of the network structure. At each update,
we check whether to add a feature by determining if
it minimizes the following MDL score where | B| is the
number of parameters in the naive relational Bayes
network B:

MDL(BID) = Llog(M|B|) - I'(0D) (4)

Since this computation involves only a negation and
constant addition to the log-likelihood, the update
check to determine whether a joint feature should be
added can be computed quite efficiently.

Finally, we can briefly summmarize the full SVRRL
algorithm: 1) Initialize the naive Bayes network for a
domain with a child for each ground atom, begin by
estimating the probability for each child CPT by treat-
ing the individual relational attributes independently
within each node (see FAA-learning); 2) For the cur-
rent trial, execute the policy* to obtain data and keep
track of all individual and joint feature occurrences; 3)
When the MDL principle permits, augment the child
CPTs (FAA) or child nodes (FC) with the feature joins
which maximize the MDL score; 4) When a terminal
state is reached, update all probability estimates (in-
dividual and joint) for features encountered during the
trial, and goto step 2 to begin the next trial.

4The policy can be determined on-line as the best state
w.r.t. the current value function. Although convergence is
not guaranteed for such a non-stationary policy, this ap-
proach often works well in practice.

PLAYER WINNING PCT # TRAINING GAMES

TD-GAMMON 66.0 % £ 777 1,500,000
1-Pry (EST)

FAA-SVRRL 51.2 % £ 0.02 5,000

PUBEVAL 50.0 % £ 0.00 UNKNOWN

HC-GAMMON 40.0 % =+ 3.46 100,000

Table 1. Asymptotic winning percentage of various

Backgammon programs vs. Pubeval.

5. Empirical Evaluation

Since the SVRRL algorithm is intended to handle do-
mains with only terminal rewards of success or failure,
such an approach is appropriate for learning in goal-
oriented tasks such as games where the outcome is
simply a win or a loss. We choose Backgammon as a
testbed for empirical evaluation since it has a rich re-
lational feature space, a high branching factor, and is
heavily stochastic. This makes it an extremely difficult
game to solve via model-based techniques, making it
a good candidate domain for putting SVRRL to the
test.?

We used FAA-SVRRL as our initial implementation of
a Backgammon learning agent. While we lack space
to show the graphs, we note that FAA-SVRRL learns
more quickly and asymptotically outperforms an algo-
rithm using random structure learning in place of the
greedy-optimal structure learning outlined previously.
Table 1 gives the asymptotic performance and num-
ber of training games of the converged FAA-SVRRL
learning algorithm vs. PubEval (trained linear neural
net) in comparison to results obtained for an estimate
of TD-Gammon 2.1 with 1-ply search (Tesauro, 1992)
(expert level)®, PubEval, and HC-Gammon (Pollack
et al., 1996), a neural net learned via genetic coevolu-
tion. We note that SVRRL not only converges in the
least number of training games, but achieves a com-
mendable level of performance, coming in second only
to expert-level TD-Gammon.

®In support of our efficiency claims, we note that our
FAA-SVRRL learning algorithm completed 5000 training
games in under 10 minutes of computation time on a 1
GHz Pentium IIT with 128 Mb of RAM. The best con-
verged learner required only 240 features (or less than 10
Kb of RAM) to store the full non-parametric representa-
tion of the conditional probability tables. This is a reason-
ably compact representation of a value function for a game
estimated to have over 10'® distinct states.

5The TD-Gammon 1-Ply value is estimated
from (Galperin & Viola, 1998) assuming that the Lin-3
opponent referenced in this paper performs comparably to
Pubeval. This seems to be a reasonable assumption since
both are reasonably strong players based on a single-layer
linear neural net evaluator.

6. Concluding Remarks

In this paper, we have motivated and examined the
problem of learning both structure and value in a re-
lational reinforcement learning framework. This algo-
rithm is not only extremely efficient, involving simple
updates and no search, but by learning only the struc-
ture that maximizes the log likelihood of the relational
naive Bayes net under a minimum description length
framework, the computational burden on the learning
agent is minimized. We have applied our FAA-SVRRL
agent to the domain of Backgammon and have shown
that it learns useful structure in an extremely efficient
manner while achieving a commendable asymptotic
performance level.

Acknowledgments

The author would like to thank Martijn van Otterlo
and the anonymous reviewers for their comments and
suggestions regarding earlier versions of this paper.

References

Boutilier, C., Reiter, R., & Price, B. (2001). Symbolic dynamic program-
ming for first-order MDPs. IJCAI-2001.

Croonenborghs, T., Ramon, J., & Bruynooghe, M. (2004). Towards in-
formed reinforcement learning. ICML-2004 Workshop on Relational Re-
inforcement Learning.

Dzeroski, S., de Raedt, L., , & Blockeel, H. (1998). Relational reinforce-
ment learning. ICML-1998.

Friedman, N., Getoor, L., Koller, D., & Pfeffer, A. (1999). Learning
probabilistic relational models. IJCAI-1999.

Friedman, N., & Goldszmidt, M. (1996).
bayesian networks. AAAI-1996.

Galperin, G., & Viola, P. (1998). Machine learning for prediction and
control (Technical Report). MIT.

Holldobler, S., & Skvortsova, O. (2004). A logic-based approach to dy-
namic programming. AAAI-2004 Workshop on Learning and Planning
in Markov Processes.

Kersting, K., van Otterlo, M., & de Raedt, L. (2004). Bellman goes
relational. ICML -2004.

Lam, W., & Bacchus, F. (1994). Learning bayesian belief networks: An
approach based on the mdl principle. Computational Intelligence, 10,
269-294.

Pollack, J., Blair, A., & Land, M. (1996). Coevolution of a backgammon
player. Fifth Artificial Life Conference. Nara, Japan.

Building classifiers using

Puterman, M. (1994). Markov Decision Processes-Discrete Stochastic Dy-
namic Programming. New York, NY: John Wiley and Sons, Inc.

Sanner, S., Anderson, J. R., Lebiere, C., & Lovett, M. (2000). Achieving
efficient and cognitively plausible learning in backgammon. ICML-
2000.

Sanner, S., & Boutilier, C. (2005). Approximate linear programming for
first-order mdps. UAI-2005.

Sutton, R. S., & Barto, A. (1998). Reinforcement learning: An introduction.
MIT Press.

Tadepalli, P., Givan, R., & Driessens, K. (2004). Relational reinforcement
learning: An overview. ICML-2004 Workshop on Relational Reinforce-
ment Learning.

Tesauro, G. (1992). Practical issues in temporal difference learning. NIPS-
92.

van Otterlo, M., & Kersting, K. (2004). Challenges for relational rein-
forcement learning. ICML-04 Workshop on Relational Reinforcement
Learning.

Walker, T., Shavlik, J., & Maclin, R. (2004). Relational reinforcement

learning via sampling the space of first-order conjunctive features.
ICML-04 Workshop on Relational Reinforcement Learning.

