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Abstract
Recent advances in solutions to Hybrid MDPs with
discrete and continuous state and action spaces
have significantly extended the class of MDPs for
which exact solutions can be derived, albeit at the
expense of a restricted transition noise model. In
this paper, we work around limitations of previ-
ous solutions by adopting a robust optimization ap-
proach in which Nature is allowed to adversarially
determine transition noise within pre-specified con-
fidence intervals. This allows one to derive an op-
timal policy with an arbitrary (user-specified) level
of success probability and significantly extends the
class of transition noise models for which Hybrid
MDPs can be solved. This work also significantly
extends results for the related “chance-constrained”
approach in stochastic hybrid control to accommo-
date state-dependent noise. We demonstrate our ap-
proach working on a variety of hybrid MDPs taken
from AI planning, operations research, and control
theory, noting that this is the first time robust so-
lutions with strong guarantees over all states have
been automatically derived for such problems.

1 Introduction
Many real-world sequential decision-making problems are
naturally modeled with both discrete and continuous (hybrid)
state and action spaces. When state transitions are stochastic,
these problems can be modeled as Hybrid Markov Decision
Processes (HMDPs), which have been studied extensively in
AI planning [Boyan and Littman, 2001; Feng et al., 2004;
Li and Littman, 2005; Kveton et al., 2006; Marecki et al.,
2007; Meuleau et al., 2009; Zamani et al., 2012] as well
as control theory [Henzinger et al., 1997; Hu et al., 2000;
De Schutter et al., 2009] and operations research [Puterman,
1994]. However, all previous solutions to hybrid MDPs either
take an approximation approach or restrict stochastic noise on
continuous transitions to be state-independent or discretized
(i.e., requiring continuous transitions to be a finite mixture
over deterministic transitions).

Unfortunately, each of these assumptions can be quite lim-
iting in practice when strong a priori guarantees on perfor-
mance are required in the presence of general forms of state-

dependent noise. For example, in a UAV NAVIGATION prob-
lem [Blackmore et al., 2011], a human controller must be
aware of all positions from which a UAV with a given amount
of fuel reserves can return to its landing strip with high prob-
ability of success given known areas of (state-dependent) tur-
bulence and weather events. In a SPACE TELESCOPE CON-
TROL problem [Löhr et al., 2012], one must carefully man-
age inertial moments and rotational velocities as the telescope
maneuvers between different angular orientations and zoom
positions, where noise margins increase when the telescope is
in unstable positions (extended zooms). And in a RESERVOIR
CONTROL problem, one must manage reservoir levels to en-
sure a sufficient water supply for a population while avoiding
overflow conditions subject to uncertainty over daily rainfall
amounts. In all of these problems, there is no room for error:
a UAV crash, a space telescope spinning uncontrollably, or
a flooded reservoir can all cause substantial physical, mone-
tary, and/or environmental damage. What is needed are ro-
bust solutions to these problems that are cost-optimal while
guaranteed not to exceed a prespecified margin of error.

To achieve cost-optimal robust solutions we build on ideas
used in the chance-constrained control literature [Schwarm
and Nikolaou, 1999; Li et al., 2002; Ono and Williams, 2008;
Blackmore et al., 2011] that maintain confidence intervals on
(multivariate) noise distributions and ensure that all reach-
able states are within these noise margins. However, previous
methods restrict either to linear systems with Gaussian uncer-
tainty and state-independent noise or resort to approximation
techniques. Furthermore, as these works are all inherently fo-
cused on control from a given initial state, they are unable to
prove properties such as robust controllability, i.e., over all
states, which have a policy that can achieve a given cost with
high certainty over some horizon?

In this work, we adopt a robust optimization receding hori-
zon control approach in which Nature is allowed to adver-
sarially determine transition noise w.r.t. constrained non-
deterministic transitions in HMDPs. This permits us to
find robust solutions for a wide range of non-deterministic
HMDPs and allows us to answer questions of robust con-
trollability in very general state-dependent continuous noise
settings. Altogether, this work significantly extends previous
results in both the HMDP literature in AI and robust hybrid
control literature and permits the solution of a new class of
robust HMDP control problems.



2 Non-deterministic Hybrid MDPs
We first formally introduce the framework of Hybrid (dis-
crete and continuous) Markov decision processes with non-
deterministic continuous noise (ND-HMDPs) by extending
the HMDP framework of [Zamani et al., 2012]. A robust
solution for this model is then defined via robust dynamic
programming.

2.1 Factored Representation
An HMDP is modelled using state variables (~b, ~x) =
(b1, . . . , ba, x1, . . . , xc) where each bi ∈ {0, 1} (1 ≤ i ≤ a)
represents a discrete boolean variable and each xj ∈ R (1 ≤
j ≤ c) is continuous. To model continuous uncertainty in
ND-HMDPs we additionally define intermediate noise vari-
ables ~n = n1, . . . , ne where each nl ∈ R (1 ≤ l ≤ e).
Both discrete and continuous actions are represented in the
set A = {a1(~y1), . . . , ap(~yp)} where each action a(~y) ∈ A
references a (possibly empty) vector of continuous parame-
ters ~y ∈ R|~y|; we say an action is discrete if it has no contin-
uous parameters (|~y| = 0), otherwise it is continuous.

Given a current state (~b, ~x) and next state (~b′, ~x′) and an
executed action a(~y) at the current state, a real-valued re-
ward function R(~b, ~x,~b′, ~x′, a, ~y) specifies the immediate re-
ward obtained at the current state. The probability of the
next state (~b′, ~x′) is defined by a joint state transition model
P (~b′, ~x′|~b, ~x, a, ~y, ~n) which depends on the current state, ac-
tion and noise. In a factored setting, we do not typically rep-
resent the transition distribution jointly but rather we factorize
it into a dynamic Bayes net (DBN) as follows:

P (~b′, ~x′|~b, ~x, a, ~y, ~n) =
a∏

i=1

P (b′i|~b, ~x,~b′, ~x′, a, ~y, ~n)

c∏
j=1

P (x′j |~b, ~x,~b′, ~x′, a, ~y, ~n) (1)

Here we allow synchronic arcs among our conditional
probabilities under the condition that all conditional prob-
abilities in the above DBN form a proper directed acyclic
graph (DAG). For binary variables bi (1 ≤ i ≤ a),
P (b′i|~b, ~x,~b′, ~x′, ~x, a, ~y, ~n) are defined as general conditional
probability functions (CPFs), which are not necessarily tab-
ular since they may condition on inequalities of continuous
variables. For continuous variables xj (1 ≤ j ≤ c), the
CPFs P (x′j |~b, ~x,~b′, ~x′, a, ~y, ~n) are represented with piecewise
linear equations (PLEs) that may have piecewise conditions
which are arbitrary logical combinations of~b,~b′ and linear in-
equalities over ~x, ~x′, and ~n. Examples of PLEs follow shortly.

In general, we assume that for each intermediate continu-
ous noise variable nl (1 ≤ l ≤ e) a non-deterministic noise
interval constraint function N(nl|~b, ~x, a, ~y) has been defined
that represents a range covering α of the probability mass for
nl and evaluates to −∞ for legal values of nl and +∞ other-
wise. The reason for the±∞ evaluation is simple: in a robust
solution to HMDPs with non-deterministic noise constraints,
Nature will attempt to adversarially minimize the reward the
agent can achieve and hence we let N(nl|~b, ~x, a, ~y) take the
value +∞ for illegal values of nl to ensure Nature will never
choose illegal assignments of nl when minimizing.

As an intuitive example, if P (nl|~b, ~x, a, ~y) = N (nl;µ;σ2)
is a simple Normal distribution with mean µ and variance σ2

and we let α = 0.95 then we know that that the 95% of the
probability mass lies within µ± 2σ, hence

N(nl|~b, ~x, a, ~y) =

{
µ− 2σ ≤ nl ≤ µ+ 2σ : −∞ (legal)
otherwise : +∞ (illegal)

.

Of course, there is no requirement for this interval to be sym-
metric, so there are technically many ways one could define
N to achieve α = 0.95. Thus, the method for defining N
given an α must be specified by the modeler.

To make the ND-HMDP framework concrete, we now in-
troduce a running example used throughout the paper:
Example (RESERVOIR CONTROL). The problem of main-
taining maximal reservoir levels subject to uncertain amounts
of rainfall is an important problem in operations research
(OR) literature [Mahootchi, 2009; Yeh, 1985]. In one vari-
ant of this problem, a reservoir operator must make a daily
decision to drain some water from a reservoir or not subject
to weather forecasts over some time horizon. Specifically
in a seven day period, we assume that the weather forecast
calls for a substantial amount of rain on the fourth day and
chances of less rain on the others. The objective of the reser-
voir operator is to avoid underflow or overflow conditions
while maximizing reservoir capacity.

Formally, we assume a state consisting of continuous reser-
voir level l1 ∈ R and 3 boolean variables ~b to encode a
time period of eight days. We have two actions a ∈ A =
{drain,no-drain}. The reward function R is used to prevent
overflow and underflow by assigning −∞ penalty to water
levels outside of lower reserve and upper capacity limits and
a reward for the amount of water stored at the end of the time
step. For both a ∈ A this is formally defined as:

R(l1, l
′
1,~b,~b

′, a) =

{
(200≤ l1≤4500) ∧ (200≤ l′1≤4500) : l′1
otherwise : −∞

(2)

For the transition function, we assume that on each time step
~b′ = ~b + 1 (not shown) and the reservoir level changes ac-
cording to the amount of outflow (2000 units of water on a
drain and 0 units on a no-drain action) plus a noisy (uncer-
tain) amount of rain n:

P (l′1|l1, n, a = drain) = δ
(
l′1 − (n+ l1 − 2000)

)
(3)

P (l′1|l1, n, a = no-drain) = δ
(
l′1 − (n+ l1)

)
(4)

The use of the δ[·] function here ensures that the continuous
CPF over l′ integrates to 1, which is crucial for defining a
proper probability distribution. While these PLEs are deter-
ministic note that all continuous noise in this framework en-
ters via the non-deterministic noise variables in ND-HMDPs.
The noisy level of rainfall n is state-dependent and legal in-
tervals are defined as follows:

N(n|~b, l1) =


~b = 4 ∧ (1200 ≤ n ≤ 2000) : −∞
~b 6= 4 ∧ (0 ≤ n ≤ 400) : −∞
otherwise : +∞

(5)

In short, on day four (~b = 4) the amount of rain is expected
to be between 1200 and 2000 units, whereas on the other days
it is expected to be between 0 and 400 units.



A policy π(~b, ~x) specifies the action a(~y) = π(~b, ~x) to
take at state (~b, ~x). In a robust solution to HMDPs with non-
deterministic noise constraints, a sequence of finite horizon
policies Π∗ = (π∗,1, . . . , π∗,H) is desired such that given
the initial state (~b0, ~x0) at h = 0 and a discount factor
γ, 0 ≤ γ ≤ 1, the expected sum of discounted rewards over
horizon h ∈ H (H ≥ 0) is maximized subject to Nature’s
adversarial attempt to choose value minimizing assignments
of the noise variables. The value function V w.r.t. Π∗ in this
case is defined via a recursive expectation

V Π∗,H (~b, ~x) = min
~n

max
(
N(n1|~b, ~x,Π∗,H), . . . ,

max
(
N(ne|~b, ~x,Π∗,H), EΠ∗,H

[
rh+γV Π∗,H−1

(~b′,~x′)
∣∣∣~b0,~x0

])
· · ·
)

where rh is the reward obtained at horizon h following policy
Π∗ and using Nature’s minimizing choice of ~n at each h.

The effect of “max’ing” in each of the previously defined
N(nl|~b, ~x, a, ~y) (1 ≤ l ≤ e) with the value function is one of
the major insights and contributions of this paper. We noted
before that Nature will never choose an illegal value of nl
where N(nl|~b, ~x, a, ~y) = +∞, instead it will choose a legal
value of nl for which N(nl|~b, ~x, a, ~y) = −∞ which when
“max’ed” in with the value function effectively vanishes ow-
ing to the identity max(v,−∞) = v.

Finally, by leveraging the simple union bound, we can eas-
ily prove that that a policy will achieve V Π∗,H with at least
1−H(1−α) probability since the probability of encountering
a noise value outside the confidence interval is only (1 − α)
at any time step. Hence for a success probability of at least
β, one should choose α = 1 − 1−β

H , e.g., β = 0.95 success
probability requires an α = 0.99 for H = 5.

2.2 Robust Dynamic Programming
We extend the value iteration dynamic programming algo-
rithm [Bellman, 1957] and specifically the form used for
HMDPs in [Zamani et al., 2012] to a robust dynamic pro-
gramming (RDP) algorithm for ND-HMDPs that may be con-
sidered a continuous action generalization of zero-sum al-
ternating turn Markov games [Littman, 1994]. Initializing
V 0(~b, ~x) = 0 the algorithm builds the h-stage-to-go value
function V h(~b, ~x).

The quality Qha(~b, ~x, ~y, ~n) of taking action a(~y) in state
(~b, ~x) with noise parameters ~n and acting so as to obtain
V h−1(~b′, ~x′) thereafter is defined as the following:

Qh
a(~b, ~x, ~y, ~n)=max

(
N(n1|~b, ~x, a, ~y),. . .,max

(
N(ne|~b, ~x, a, ~y),∑

~b′

∫ a∏
i=1

P (b′i|~b, ~x,~b′, ~x′, a, ~y, ~n)

c∏
j=1

P (x′j |~b, ~x,~b′, ~x′, a, ~y, ~n)

[
R(~b, ~x,~b′, ~x′, a, ~y) + γV h−1(~b′, ~x′)d~x′

])
· · ·
)

(6)

Here the noise constraints N(nl|~b, ~x, a, ~y) are “max’ed” in
with the value function to ensure Nature chooses a legal set-
ting of nl, thus reducing each max to an identity operation.

Next, givenQha(~b, ~x, ~y, ~n) as above for each a ∈ A, we can
proceed to define the h-stage-to-go value function assuming

that the agent attempts to maximize value subject to Nature’s
adversarial choice of value-minimizing noise:

V h(~b, ~x) = max
a∈A

max
~y∈R|~y|

min
~n∈R|~e|

{
Qh

a(~b, ~x, ~y, ~n)
}

(7)

The optimal policy at horizon h can also be determined using
the Q-function as below:

π∗,h(~b, ~x) = arg max
a∈A

arg max
~y∈R|~y|

min
~n∈R|~e|

Qh
a(~b, ~x, ~y, ~n) (8)

For finite-horizon HMDPs the optimal value function and
policy are obtained up to horizon H. For infinite horizons
where the optimal policy has finitely bounded value then
value iteration terminates when two values are equal in sub-
sequent horizons (V h = V h−1). In this case V∞ = V h and
π∗,∞ = π∗,h.

Up to this point we have only provided the abstract math-
ematical framework for ND-HMDPs and RDP. Fortuitously
though, all of the required RDP operations in (6) and (7) can
be computed exactly and in closed-form as we discuss next.

3 Robust Symbolic Dynamic Programming
In order to compute the equations above, we propose a robust
symbolic dynamic programming (RSDP) approach building
on the work of [Zamani et al., 2012; Sanner et al., 2011]. This
requires a value iteration algorithm described in Algorithm 1
(VI) and the regression subroutine described in Algorithm 2.
All required operations have been previously defined in [Za-
mani et al., 2012; Sanner et al., 2011]. In what follows we
show how these operations can be used to compute RSDP
from the previous section exactly and in closed-form.

In general we define all symbolic functions to be repre-
sented in case form [Boutilier et al., 2001] for which a binary
“cross-sum” operation can be defined as follows:

{
φ1 : f1

φ2 : f2
⊕
{
ψ1 : g1

ψ2 : g2
=


φ1 ∧ ψ1 : f1 + g1

φ1 ∧ ψ2 : f1 + g2

φ2 ∧ ψ1 : f2 + g1

φ2 ∧ ψ2 : f2 + g2

Here φi and ψj are logical formulae defined over the state
(~b, ~x) and can include arbitrary logical (∧,∨,¬) combina-
tions of boolean variables and linear inequalities (≥, >,≤
, <) over continuous variables – we call this linear case form
(LCF). The fi and gj are restricted to be linear functions.
Similarly operations such as 	 and ⊗ may be defined with
operations applied to LCF functions yielded LCF results.

In addition to 	 and ⊗, another key binary operation on
case statements the preserves the LCF property is symbolic
case maximization:

casemax

({
φ1 : f1

φ2 : f2
,

{
ψ1 : g1

ψ2 : g2

)
=



φ1 ∧ ψ1 ∧ f1 > g1 : f1

φ1 ∧ ψ1 ∧ f1 ≤ g1 : g1

φ1 ∧ ψ2 ∧ f1 > g2 : f1

φ1 ∧ ψ2 ∧ f1 ≤ g2 : g2

...
...

We refer the reader to [Zamani et al., 2012; Sanner et al.,
2011] for further details on operations required by RSDP.



Algorithm 1: VI(CSA-MDP, H) −→ (V h, π∗,h)

begin1

V 0 := 0, h := 02
while h < H do3

h := h+ 14
foreach a(~y) ∈ A do5

Qha(~y, ~n) :=Regress(V h−1, a, ~y)6

Qha(~y) := min~n Q
h
a(~y, ~n) // noise min7

Qha := max~y Q
h
a(~y) // action max8

V h := casemaxaQ
h
a // max over all Qa9

π∗,h := arg max(a,~y) Q
h
a(~y)10

if V h = V h−1 then11
break // Terminate if early convergence12

13

return (V h, π∗,h)14

end15

Algorithm 2: Regress(V, a, ~y) −→ Q

begin1
Q = Prime(V ) // All bi → b′i and all xi → x′i2
if R contains primed variables then3

Q := R(~b,~b′, ~x, ~x′, a, ~y)⊕ (γ ·Q)4
5

foreach v′ in Q do6
if v′ is x′j then7

// Continuous marginal integration8

Q :=
∫
Q⊗ P (x′j |~b,~b′, ~x, ~x′, a, ~y, ~n) dx′j9

if v′ is b′i then10
// Discrete marginal summation11

Q :=
[
Q⊗ P (b′i|~b,~b′, ~x, ~x′, a, ~y, ~n)

]
|b′i=112

⊕
[
Q⊗ P (b′i|~b,~b, ~x, ~x′, a, ~y, ~n)

]
|b′i=0

13

if R does not contain primed variables then14

Q := R(~b, ~x, a, ~y)⊕ (γ ·Q)15
16

foreach nl in Q do17
// Sequence of max-in for noise variables18

Q(~y, ~n) := casemaxnl
(Q,N(nl,~b, ~x))19

return Q20

end21

To demonstrate how VI symbolically implements RSDP,
we compute V 1 for the RESERVOIR CONTROL example with
no boolean variables (assume ~b = 1). For both actions, the
function Q1

a is computed in line 6 using Alg 1, e.g., this calls
Alg 2 to compute the following operations for Q1

no-drain :

• In line 2 of Algorithm 2, we prime V which requires a
substitution Q = V σ where σ = {di/d′i, lj/l′j}. Here,
V = V 0 = 0 so Q = V σ = 0.

• Since the reward function contains the primed variable
l′1, line 4 is performed (and not line 15). Hence Q =

R⊕ γ · 0 = R where R is as defined in (2) with~b = 1.
• For boolean variables, discrete marginalization is per-

formed on line 12 using f |b=v (restriction operator)
which assigns the value v ∈ {0, 1} to any occurrence
of b in f — not applicable to the example. For continu-
ous variables, line 9 follows the rules of integration w.r.t.
a δ function [Sanner et al., 2011] which simply yields a
symbolic substitution:∫

f(x′j)⊗ δ[x′j − h(~z)]dx′j = f(x′j){x′j/h(~z)}

In the case of the transition for no-drain in (4), we ob-
serve that on integration of l′1, the only non-zero proba-
bility mass occurs when l′1 = l1 +n, hence we substitute
l′1/(l1 + n) wherever l′1 occurs in our current Q (from
line 4, described above). This results in the following Q
after the for loop in line 6 of Algorithm 2 has completed:{

(200 ≤ l1 ≤ 4500) ∧ (200 ≤ (l1 + n) ≤ 4500) :l1 + n

otherwise : −∞

• In lines 17–20, we maximize Q with each of the noise
functions N using a sequence of symbolic maximiza-
tions. Each noise variable assigns -∞ for legal values
of nl and +∞ for illegal values of nl defined by the
noise model N(nl,~b, ~x). The Q obtained by max’ing in
N(n|~b = 1, l1) from (5) in our running example is

l1 ∈ safe ∧ (l1 + n) ∈ safe ∧ (n ∈ legal) : l1 + n

(l1 /∈ safe ∨ (l1 + n) /∈ safe) ∧ (n ∈ legal) : −∞
n /∈ legal : +∞

where safe water levels correspond to the range
[200,4500] and legal noise values corresponds to the
range [0,400].

• Next, the regressed Qha(~y, ~n) from Alg 2 is minimized
over the noise variables ~n in line 7 of Alg 1. Intuitively,
this continuous minimization will never choose +∞ as
there is always some legal noise value that can be cho-
sen leading to Qha(~y, ~n) < +∞. We refer to [Zamani et
al., 2012] for details of continuous variable maximiza-
tion (from which minimization follows). Even though
the minimizing n will be a function of l1, for simplicity,
let us assume in the first two partitions that n = 0 is the
minimizer. After this substitution and casemin’ing (fol-
lows from casemax) the partitions together as required
in the minn operation, we obtain the following result:

Q1
no-drain =

{
l1 ∈ safe : l1
l1 /∈ safe : −∞ (9)

Here, we see Nature would have minimized rainfall
to minimize reward and that no +∞ values remain as
the +∞ partition was dominated by other partitions of
lesser value after the minimizing substitution for n and
casemin of all partitions as done in the minn operation.

• The resulting Q-value with minimal noise would now be
maximized over any continuous action parameters (not
available in our example) in line 8.
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Figure 1: Space and elapsed time (between current and previous
horizon) vs. horizon.

• Now we have Q1
no-drain . Once we have obtained Q1

drain
in a similar manner (for simplicity, let us assume it is
the same as (9) but with l1 replaced with l1 − 2000), we
would casemax these two functions together to arrive at
our final V 1:

V 1 =


(200 ≤ l1 ≤ 4500) : l1 (no-drain)

(4500 ≤ l1 ≤ 6500) : l1 − 2000 (drain)

otherwise : −∞ (uncontrollable)

While we used approximated Q-values for space and
readability reasons by making simplifying assumptions
(described above), we can still understand the meaning
of the final form of V 1. If the dam levels are high –
we drain, if lower – we do not drain. We remark that
the −∞ that occurs here indicates that these values of
l1 are not robustly controllable over a horizon of 1, i.e.,
there exist legal choices of noise that occur with prob-
ability greater than α used to define N preventing the
agent from choosing an action that avoids a state trajec-
tory in the illegal −∞ region defined by the reward.

To implement the case statements efficiently with con-
tinuous variables, extended Algebraic Decision diagrams
(XADDs) are used from [Sanner et al., 2011] extended from
ADDs [Bahar et al., 1993].

In summary we remark that all operations including the
continuous max and min operations preserve the LCF prop-
erty, hence all operations for Robust SDP (RSDP) can be per-
formed exactly in closed-form – a novel result for robust so-
lutions to hybrid MDPs with state-dependent noise.

4 Empirical Results
We evaluated RSDP on the RESERVOIR CONTROL problem
used as a running example, a UAV NAVIGATION problem

and a SPACE TELESCOPE CONTROL problem — all risk-
sensitive problems as described below.1

Figure 2 (left) shows the value function for the RESERVOIR
CONTROL problem in horizon seven. We can observe that we
can gain approximately 11000 units of reward if the reservoir
begins with a water level approximately equal to 3000 at day
zero. Otherwise, a lower initial starting state or the need to
drain when the reservoir is near full lead to lower rewards
for all states. Discontinuities in the value function occur at
critical points where the policy changes over the time horizon.

SPACE TELESCOPE CONTROL: We have extended the
problem of slewing a space telescope in order to look a new
objective as given in [Löhr et al., 2012]. This problem has six
actions a0, · · · , a5 that change the continuous angle k and
angular rate v. The problem has one boolean state variable
z for the telescope zoom state, one g for reaching the goal
state, and one continuous noise variable. To model noise in
this problem, we have only modified the transition function
for the a5 action in the description from [Löhr et al., 2012]
(which could not handle noise) to add noise n when v < 1
deg
seg and z = false yielding state updates for a5 as follows:

k′ = (k + 40.55 ∗ v)

v′ = (2/3v + n)

z′ = (true),

We model the noise in the transition function of the angular
velocity v for a5 (which changes the zoom of the telescope
and for which the dynamical model is only approximate) as
follows:

n =

{
¬(z) ∧ (n ≤ 0.04 ∗ v) ∧ (n ≥ −0.04 ∗ v) : −∞
else : +∞

where we note that noise depends linearly on the angular
velocity.

The reward for actions a0, · · · , a5 is given by

R =

{
(z) ∧ (v≤0.02) ∧ (k≤1.683) ∧ (v≥−0.02) ∧ (k≥1.283) : 100

else : −cost(a)

where the cost(a) of action a0 is 0, 1 for actions ai i ∈
{1, 2, 3, 4} and 10 for action a5. Figure 2 (middle) shows
the value function for the horizon four. We observe there are
states with low angular rate (approximately −0.04 ≤ v ≤
0.04) that have a policy to achieve a goal (a reward of 100)
with high certainty over this horizon.

UAV NAVIGATION: In this problem a UAV needs to be
able to plan trajectories that take the aircraft from its current
location to a goal given constraints on time or fuel consump-
tion and known areas of state-dependent turbulence (e.g.,
from localized weather events).

The state consists of a UAVs continuous position x and y
and a boolean variable l indicating whether it has landed. In
a given time step, the UAV may move a continuous distance
ax ∈ [−40, 40] and ay ∈ [−40, 40]. The turbulence intro-
duces noise nx and ny in the ax and ay movements, given

1All source code and domain definitions can be found at
http://code.google.com/p/xadd-inference.
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Figure 2: (left) V 7(l1,~b = 0) RESERVOIR CONTROL problem; (middle) V 4(k, v, z = true, g = false) SPACE TELESCOPE CONTROL
problem; (right) V 4(x, y, l = false) UAV NAVIGATION problem.

by:

nx =


(y ≥ 50 + x) ∧ (nx ≤ −20) ∧ (nx ≥ 20) : −∞
(y < 50 + x) ∧ (nx ≤ −5) ∧ (nx ≥ 5) : −∞
else : +∞

ny =


(y ≥ 50 + x) ∧ (ny ≤ −20) ∧ (ny ≥ 20) : −∞
(y < 50 + x) ∧ (ny ≤ −5) ∧ (ny ≥ 5) : −∞
else : +∞

The UAV goal is to achieve the region x + y > 200. It
receives a reward penalty (−∞) for being in positions from
which a UAV with a given amount of fuel reserves cannot
return to its landing strip with high certainty.

R =


(l) ∧ (x ≤ 130) ∧ (y ≤ 130) ∧ (x ≥ 0) ∧ (y ≥ 0) : 0

(¬l) ∧ (x ≤ 130) ∧ (y ≤ 130) ∧ (x ≥ 0) ∧ (y ≥ 0) : −20

else : −∞

If the UAV is not in the goal position (¬l), the action reward
is a cost of -20 fuel units for the given time period. We note
that with six continuous variables in the regression (2 state, 2
action, 2 noise), this problem is relatively high-dimensional
and could not be easily solved via discretization methods,
which also incur approximation error not encountered in our
exact solution provided here.

Figure 2 (right) shows the converged value function for a
horizon of four time steps showing the relative cost of return-
ing to the landing strip from different positions with lower
values near high levels of turbulence.

Time and Space: Figure 1 shows the time and space for
each of the solved problems. The UAV NAVIGATION prob-
lem has more continuous variables, however we can see that
it is easier to solve than the SPACE TELESCOPE CONTROL,
one possible reason is that the latter has more actions with
more complex forms of linearly state dependent noise.

5 Related Work
This work extends results in HMDP in AI [Boyan and
Littman, 2001; Feng et al., 2004; Li and Littman, 2005;
Kveton et al., 2006; Marecki et al., 2007; Meuleau et al.,
2009; Zamani et al., 2012] and hybrid system control liter-
ature [Henzinger et al., 1997; Hu et al., 2000; De Schutter et
al., 2009] to handled state-dependent noise.

In the hybrid control literature, a challenging topic is to
solve the controllability problem that is NP hard [Blondel
and Tsitsiklis, 1999]. A hybrid system is called hybrid
controllable if, for any pair of valid states, there exists at

least one permitted control sequence (correct control-laws)
between them [Tittus and Egardt, 1998; Yang and Blanke,
2007]. Another challenging topic for stochastic hybrid sys-
tems, a class of hybrid systems that allows uncertainty, is
tried to maximize the probability that the execution will re-
main in safe states as long as possible [Hu et al., 2000].
This work is related with both topics, however we want to
answer a slightly different question, called the robust con-
trollability problem: what states have a policy to achieve a
goal (that can be modeled as a reward or cost function) with
high certainty over some horizon? To the authors knowl-
edge, in the control area there are few results to answer a
similar question except in the chance-constrained predictive
stochastic sub-area, that finds the optimal sequence of control
inputs subject to the constraint that the probability of fail-
ure must be below a user-specified threshold [Blackmore et
al., 2011]. However all the previous work in this sub-area
is focused on linear systems subject to Gaussian uncertainty
and state-independence noise [Schwarm and Nikolaou, 1999;
Li et al., 2002; Ono and Williams, 2008; Blackmore et al.,
2011] or resort to approximation techniques [Blackmore et
al., 2010]. We note that our approach is not approximate and
can provably provide robust solutions to problems with state-
dependent noise in a receding horizon control framework that
answers the robust controllability question for all states.

6 Concluding Remarks
This work has combined symbolic techniques from the
HMDP literature in AI with techniques from chance-
constrained control theory to find provably robust solutions
over all states on problems with piecewise linear transitions
and state-dependent noise for which no general exact closed-
form solutions previously existed. For future work, combin-
ing RSDP with search techniques as in HAO* [Meuleau et
al., 2009] will preserve robust optimality guarantees for a set
of initial states while substantially increasing scalability. Fur-
thermore, [Ono and Williams, 2008] observe that the proba-
bility of failure (risk) need not be allocated uniformly at each
decision stage — we can dynamically allocate risk over deci-
sions to achieve robust controllability for a larger set of states.
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