
Learning CRFs with Hierarchical Features: An Application to Go

Scott Sanner ssanner@cs.toronto.edu
Department of Computer Science, University of Toronto, Toronto, ON, Canada

Thore Graepel thoreg@microsoft.com
Microsoft Research Ltd., Cambridge, UK

Ralf Herbrich rherb@microsoft.com
Microsoft Research Ltd., Cambridge, UK

Tom Minka minka@microsoft.com
Microsoft Research Ltd., Cambridge, UK

Abstract

We investigate the task of learning grid-based
CRFs with hierarchical features motivated by
the task of territory prediction in Go. We
first analyze various independent and grid-
based CRF classification models and state-of-
the-art training/inference algorithms to de-
termine which offers the best performance
across a variety of metrics. Faced with
the performance drawbacks of independent
models and the computational drawbacks
of intractable CRF models, we introduce
the BMA-Tree algorithm that uses Bayesian
model averaging of tree-structured predictors
to exploit hierarchical feature structure. Our
results demonstrate that BMA-Tree is supe-
rior to other independent classifiers and pro-
vides a computationally efficient alternative
to intractable grid-based CRF models when
training is too slow or approximate inference
is inadequate for the task at hand.

1. Introduction

Go is an ancient oriental board game of two play-
ers, ‘Black’ and ‘White’.1 The players take turns to
place stones on the intersections of a grid with the
aim of making territory by surrounding areas of the
board. All the stones of each player are identical. Once
placed, a stone is not moved but may be captured (by
being surrounded with opponent stones). The result-
ing game is very complex and challenging and the most
successful attempts to date have been knowledge in-

Appearing in the ICML ’2007 Workshop on Constrained
Optimization and Structured Output Spaces, Corvallis, OR,
2007. Copyright 2007 by the author(s)/owner(s).

(a) Board Configuration

(b) Expected Territory

Figure 1. The territory prediction task: Given (a) the con-
figuration of Black and White stones on the Go board,
predict (b) the expected territory outcome for each board
vertex (shown as superimposed squares whose size scales
with the strength of the expectation).

tensive and require the management of complex board
representations (see surveys by Bouzy and Cazenave
(2001) and Müller (2002)).

Given the complexity of Go and the seeming impos-
sibility of manually encoding all knowledge required
for a master-level player, a machine learning approach
would seem to be crucial to the success of Computer
Go. And among various aspects of Go knowledge that
could be learned, perhaps one of the simplest and most
useful is that of territory prediction as shown in Fig-
ure 1. In this paper, we focus on a pure machine learn-
ing approach to territory prediction in Go. That is,
given a set of expert training data and a set of hi-
erarchical features, we want to find the best territory
prediction algorithm w.r.t. a variety of metrics includ-
ing training and inference time, memory requirements,
and a range of measurements for prediction error.

Previous work by Stern et al. (2004) investigated
grid-based conditional random fields (CRFs) (Lafferty
et al., 2001) for the task of territory prediction in
Go. We begin our work by evaluating alternate ap-

1A wealth of additional information about Go can be
found at http://www.gobase.org.

Learning CRFs with Hierarchical Features: An Application to Go

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

+

+

14

14

14

14

14

14

14

13

13

13

14

14

14

14

14

14

14

+

+

14

14

14

14

14

14

13

13

12

13

13

14

14

14

14

14

14

+

+

14

14

14

14

14

13

12

12

11

12

12

13

14

14

14

14

14

+

+

14

14

14

14

13

12

11

11

9

11

11

12

13

14

14

14

14

+

+

14

14

14

13

12

11

10

8

6

8

10

11

12

13

14

14

14

+

+

14

14

13

12

11

10

7

5

4

5

7

10

11

12

13

14

14

+

+

14

13

13

12

11

8

5

3

2

3

5

8

11

12

13

13

14

+

+

14

13

12

11

9

6

4

2

1

2

4

6

9

11

12

13

14

+

+

14

13

13

12

11

8

5

3

2

3

5

8

11

12

13

13

14

+

+

14

14

13

12

11

10

7

5

4

5

7

10

11

12

13

14

14

+

+

14

14

14

13

12

11

10

8

6

8

10

11

12

13

14

14

14

+

+

14

14

14

14

13

12

11

11

9

11

11

12

13

14

14

14

14

+

+

14

14

14

14

14

13

12

12

11

12

12

13

14

14

14

14

14

+

+

14

14

14

14

14

14

13

13

12

13

13

14

14

14

14

14

14

+

+

14

14

14

14

14

14

14

13

13

13

14

14

14

14

14

14

14

+

+

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

Figure 2. The sequence of nested pattern templates Ti with
i ∈ {1, . . . , 14}; these patterns are similar tode Groot
(2005). T14 extends beyond the plot as indicated by “+”.

proaches for CRF training with augmented feature sets
to improve upon their approach. Faced with the lim-
ited success of these methods, we introduce an alter-
nate territory prediction framework based on Bayesian
model averaging of tree-structured predictors (Oliver
& Dowe, 1995) that offers computational efficiency and
accurate score predictions in contrast to intractable
grid-based CRF models.

2. Hierarchical Pattern Features

Board and Pattern Representation: Our board
and pattern representation is borrowed from Stern
et al. (2006) with a few modifications owing to the
fact that our patterns are not move-specific, but rather
general properties of any position on the board. We
represent the Go board as a lattice G := {1, . . . , N}2

where N is the board size and is usually 9 or 19. In or-
der to represent patterns that extend across the edge of
the board in a unified way, we expand the board lattice
to include the off-board areas. The extended board lat-
tice is2 Ĝ := {~v + ~∆ : ~v ∈ G, ~∆ ∈ D} where the offset
vectors are given by D := {−(N − 1), . . . , (N − 1)}2.
We define a set of “colors” C := {b, w, e, o} (black,
white, empty, off). Then a board configuration is given
by a coloring function c : Ĝ → C and we fix the position
for off-board vertices, ∀~v ∈ Ĝ \ G : c(~v) = o.

Our analysis is based on a fixed set T of pattern tem-
plates T ⊆ T where each T consists of a set of vertices

2We will use the notation ~v := (vx, vy) to represent 2-
dimensional vertex vectors.

~v ∈ D relative to the origin vertex ~0. We define a set
Π of patterns π : T → C that will be used to repre-
sent the color configuration of all vertices in T . The
patterns have the following properties (see Figure 2):

(1) The pattern templates T are rotation and mirror
symmetric with respect to their origin, i.e., we have
that (vx; vy) ∈ T ⇒ (−vx, vy) ∈ T and (vx,−vy) ∈ T ,
thus displaying 8-fold symmetry.

(2) Any two pattern templates T , T ′ ∈ T satisfy that
either T ⊂ T ′ or T ′ ⊂ T . For convenience, we index
the templates T ∈ T with the convention that i <
j implies Ti ⊂ Tj , resulting in a nested sequence of
hierarchical patterns (see Figure 2).

(3) The set of patterns is closed under rotation, mir-
roring and color reversal, i.e., if π ∈ Π and π′ is such
that it can be generated from π by any of these trans-
formations then π′ ∈ Π. In this case, π and π′ are
considered equivalent, π ∼ π′, and we define a set Π̃
of equivalence classes π̃ ⊂ Π̃.3

We say that a pattern π ∈ Π matches configuration c
at vertex ~v if for all ~∆ ∈ T (π) we have c(~v+~∆) = π(~∆).
Note that T (π) is the template for the pattern π. We
say that pattern class π̃ ∈ Π̃ matches configuration c
at vertex ~v if one of its constituent patterns π ∈ π̃
matches c at ~v.

Pattern Matching and Storing: We do not use
an explicit representation of the patterns but define
a hash key k̃π̃ for pattern classes π̃ and store their
properties in a hash table (e.g., relevant statistics for
π̃). We use a variant of Zobrist hashing (Zobrist, 1990)
that is detailed in Stern et al. (2006) to calculate k̃π̃.

Pattern Harvesting: From a database of expert Go
game records we let the computer play through each
of the games in the collection and maintain a |T | ·
|Ĝ| table H of hash-keys corresponding to each of the
pattern templates Ti at each of the vertices ~v ∈ Ĝ.
The update after each move makes sure that if pattern
class π̃ matches the resulting conguration c at vertex
~v then Hi,~v = k̃(π̃). Whenever an entry in H changes,
the new hash-key can be used to mark that pattern
as being present in the collection. To limit storage
requirements and to ensure generalization to as yet
unseen positions we limit |T | = 8 and include only
those patterns that appear in expert games at least
three times in the collection.4 We use the filtering
technique from Stern et al. (2006) to perform this
task efficiently without resorting to secondary storage.

3Note that Π̃ is a partition of Π and thus mutually
exclusive,

T

π̃∈Π̃ π̃ = ∅, and exhaustive,
S

π̃∈Π̃ π̃ = Π.
4A pattern that appears in the same position over con-

secutive moves is only counted once.

Learning CRFs with Hierarchical Features: An Application to Go

Territory Labeling: We define a set of final terri-
tory outcomes S := {+1 (black) ,−1 (white) }. For
convenience, we score from the point of view of black
so that a position is valued +1 if it belongs to Black
at the end of the game, and −1 if it belongs to White.
The final territory outcome for a board is given by a
scoring function s : G → S. Go players will note that
we are adopting the Chinese method of scoring empty
as well as occupied intersections.

In order to have training and test sets of expert games
for territory prediction, we must have a final terri-
tory labeling for each of these games. Since we often
do not have information in expert game records per-
taining to the final agreed-upon territory outcome, we
use the following simple procedure to label outcomes:
From the final position in each game5, we play out 500
games by randomly selecting moves for each player in
turn according to a uniform distribution, avoiding only
those moves that would force a player to fill in its own
eyes.6 A final territory position is considered to be
black (white) iff all 500 simulated games resulted in
that position having a black (white) stone. Otherwise
a position is not labeled with an outcome to avoid
training and testing w.r.t. incorrectly labeled data.

3. CRFs for Territory Prediction

3.1. Models

For notational convenience in the following presenta-
tion, let ~c = (c1, . . . , c|G|) and ~s = (s1, . . . , s|G|) respec-
tively denote a full board configuration and a full terri-
tory outcome. For every vertex index i ∈ {1, . . . , |G|},
we assume there exists a unique ~v ∈ G such that i 7→ ~v.
Then we can map between our 2D board representa-
tion used for patterns and vectors ~c and ~s as follows:
i 7→ ~v ⇒ ci = c(~v) and i 7→ ~v ⇒ si = s(~v).

Given a board configuration ~c, we would like to model
the joint probability distribution P (~s|~c) over all terri-
tory outcomes ~s so that we can calculate the territory
expectation at each vertex, EP (~s|~c)[si]. We can ap-
proximately factor P (~s|~c) in the form of a conditional
random field (CRF) (Lafferty et al., 2001):

p(~s|~c) =
1

Z(~c)

∏

f∈F

ψf (~sf ,~cf). (1)

Z(~c) is the standard normalizing factor for CRFs.
Each factor f ∈ F is a member of the exponential
family and represents a potential over all possible con-

5Near-finished positions permit high accuracy labeling.
6An eye is – roughly speaking – an empty vertex sur-

rounded in the four cardinal directions by stones of the
same color or off-board vertices.

figurations of the subset of variables ~sf and ~cf in f .
In this paper, we focus solely on two types of factors:
a set of independent pattern-based factors Fu and a
set of coupling factors Fc.

7 Three different ways of
combining these factors into CRF models are shown
in Figures 3(a,b,c)

Independent Pattern-based Factors: We have in-
dependent factors i ∈ Fu for each vertex index i so
that ψi(~s,~c) = ψi(si,~c). These factors are pattern-
based so that there is one weight λπ̃ for each π̃. For
every pattern class π̃, we define an indicator function
Iπ̃(~c, i) that indicates when π̃ matches ~c at vertex in-
dex i. We only provide the factor model for si = +1
since ψi(si = −1,~c) = 1.

ψi(si = +1,~c) = exp

∑

π̃∈Π̃

λπ̃ · Iπ̃(~c, i)

 (2)

Coupling Factors: We have coupling factors (i, j) ∈
Fc for each pair of neighboring vertices i, j so that
ψ(i,j)(~s,~c) = ψ(i,j)(si, sj , ci, cj). We assign a weight
λk to each of the 36 distinct configurations of these
factors and use an indicator Ik for each configuration:8

ψ(i,j)(si, sj , ci, cj) = exp

(

36
∑

k=1

λk · Ik(si, sj , ci, cj , k)

)

.

(3)
3.2. Inference

Exact Inference: It is efficient (and trivial) to per-
form exact inference in the Independent Classifiers
model. However, exact inference in our Coupling CRF
models are impractical due to prohibitive time require-
ments. See Stern et al. (2004) for a discussion.

Loopy Belief Propagation: Where exact inference
is intractable, loopy belief propagation (BP) (Weiss,
1997) is a biased approximate inference algorithm that
is nonetheless widely used for its relative efficiency and
reasonable empirical performance in many domains.

Sampling Methods: While sampling methods for
CRF inference are unbiased, they tend to be much
slower than Loopy BP. Stern et al. (2004) provide a
discussion of Gibbs and Swendsen-Wang sampling.

3.3. Training

Maximum Likelihood: The objective of maximum
likelihood CRF training is to maximize the following

7F = Fu ∪ Fc and Fu ∩ Fc = ∅.
8We note that after enforcing parameter tying for sym-

metries in color reversal (swapping white/black) and di-
rection reversal (swapping i, j), there are only 11 distinct
parameters per factor. We also tie parameters across all
factors ψ(i,j).

Learning CRFs with Hierarchical Features: An Application to Go

ψ4 ψ5 ψ6

ψ7 ψ8 ψ9

ψ1 ψ3ψ2

1 2 3

4 5 6

7 8 9

(a) Indep. PatternClassifiers

ψ(1,2)

ψ(1,4)
ψ(2,5)

ψ(2,3)

ψ(3,6)

ψ(4,5)

ψ(4,7)

ψ(5,6)

ψ(5,8) ψ(6,9)

ψ(7,8) ψ(8,9)

1 2 3

4 5 6

7 8 9

(b) Coupling-only CRF

ψ(1,2)

ψ(1,4)
ψ(2,5)

ψ(2,3)

ψ(3,6)

ψ(4,5)

ψ(4,7)

ψ(5,6)

ψ(5,8) ψ(6,9)

ψ(7,8) ψ(8,9)

ψ4 ψ5 ψ6

ψ7 ψ8 ψ9

ψ1 ψ3ψ2

1 2 3

4 5 6

7 8 9

(c) Pattern CRF

(1,2)

ψ4

4
ψ(4,5)

4 5

ψ1

1

1

4

21

ψ(2,5)

2

5

ψ5

5

ψ2

2

ψ(1,4)

ψ

(d) Piecewise view of (c)

Figure 3. (a,b,c) Three different structured prediction models. We abbreviate Indep. Pattern Classifiers as Indep and
Coupling-only CRF as CRF. (d) A view of the Independent + CRF model used during Piecewise training.

conditional log likelihood given a data set D:

l(~λ) =
∑

d∈D

∑

f∈F

logψf (~s
(d)
f ,~c

(d)
f) − logZ(~c(d))

 (4)

When the parameters ~λ that maximize this log like-
lihood cannot be solved for in closed-form, one must
resort to gradient ascent techniques using the following
gradient that requires CRF inference for every d ∈ D:

∂l(~λ)

∂λj
=
∑

d∈D

(

Ij(~s
(d),~c(d)) −

∑

~s

Ij(~s,~c
(d))P (~s|~c(d))

)

.

(5)

Maximum Pseudolikelihood: We define an edge-
based variant of this pseudolikelihood that is factor-
rather than variable-oriented and has been shown to
have performance comparable to maximum likelihood
in many cases (Sutton & McCallum, 2005). We denote
the Markov blanket of factor f (i.e., the set of variables
occurring in factors that share variables with f , non-
inclusive of the variables in f) w.r.t. a set of factors
F as MBF (f). This yields the following edge-based
conditional log pseudolikelihood:

pl(~λ) =
∑

d∈D

∑

f∈F

logP (~s
(d)
f |~c

(d)
f ,MBF (f)(d)) (6)

The gradient of this function can be calculated simi-
larly to Eq. 5 except that P (~s|~c(d)) is also conditioned
on the Markov blanket of the enclosing factor f , thus
leading to very fast inference for every d ∈ D.

Piecewise Training: Piecewise training is a recently
introduced technique for calculating CRF parameters
in closed-form by decomposing the models into disjoint
pieces and training each separately by maximum like-
lihood (Sutton & McCallum, 2005). Figure 3(d) shows
part of the piecewise decomposition of Figure 3(c). A
slight variant of this method known as shared unary

1

∼ π∼

π∼

π∼ π∼ π∼

π∼ π∼π∼= = =1 2 3

τ1 τ3τ2

1π 1τθ∼
1τθ θ τ2

θ τ3

πτ22
∼θ π1τ2

∼θ
1πτ3

∼θ

πτ32
∼θ

πτ3
∼

3
θ

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

2 2

3

1 1

π

Figure 4. Hierarchical patterns organized into tree-
structured Bernoulli models. A solid (dashed) line
indicates a pattern π̃i (does not) match. Leaf nodes
provide a Bernoulli distribution over the territory outcome
corresponding to the respective data sorted into that leaf.

piecewise is given in Sutton and Minka (2006) where
all independent factors are first trained and then du-
plicated among the higher-order factors to correct for
the bias contributed by the independent factors.

4. Bayesian Model Averaging of Trees

Here we derive an alternative to the independent clas-
sifier model of CRFs given by Eq. 2 that specifically
exploits the hierarchical pattern structure of our fea-
tures. For insight, we examine Figure 4, which shows
three different pattern classes π̃1, π̃2, and π̃3.

9

Now, we exploit the hierarchical nature of the pat-
terns and organize them into three tree-structured
Bernoulli models τ1, τ2 and τ3 described in Figure 4.10

9We assume that a pattern π̃∅ represents the empty
pattern and matches every possible position.

10These trees are not stored but rather efficiently com-
puted by starting with the largest pattern class π̃ and re-
moving context from the pattern key k̃π̃ to retrieve smaller

Learning CRFs with Hierarchical Features: An Application to Go

For a set of training data D, we can maintain em-
pirical counts of respective black and white territory
outcomes cb(π̃iτj) and cw(π̃iτj) for the training data
sorted into each leaf. This allows us to derive a sim-
ple Bernoulli model of territory outcome at each leaf:
θπ̃iτj

= cb(π̃iτj)/(cb(π̃iτj) + cw(π̃iτj)). The key idea
behind the tree models (vs. the individual pattern
models) is that the tree models provide a prediction for
all data; this will be crucial to our following derivation.

Let us now introduce Bayesian model averaging. Given
the task to predict P (~s|~c,D), we derive the following:

P (~s|~c,D) =

|G|
Y

j=1

P (sj |~c,D) =

|G|
Y

j=1

X

τ∈Υ

P (sj |τ,~c,D)P (τ |~c,D).

(7)

This equation is the essence of Bayesian model averag-
ing – it provides a “weighted” average of each model
τ ’s prediction P (sj |τ,~c,D) over all data d ∈ D.

Let us now examine the “weight” P (τ |~c,D) – following
Bayes rule, we can rewrite it as the following:

P (τ |~c,D) =
P (D|τ,~c)P (τ |~c)

∑

τ∈Υ P (D|τ,~c)P (τ |~c)
(8)

Following (Oliver & Dowe, 1995), we select the “path-
set” of tree-models for Υ. This is the set of trees
corresponding to pruning out pattern decision nodes
matching at a vertex in order from largest to small-
est; our example in Figure 4 provides the path-set if
π̃3 matches a given vertex. We assume each vertex
can potentially choose a different pruning of the tree
model.

For the prior on trees, we assume P (τ |~c) = P (τ) and
provide results using both a uniform tree prior and
an exponential tree prior recommended by (Oliver &
Dowe, 1995).

Finally, we note that calculating P (D|τ,~c) can be done
very efficiently for any tree τj given that the pattern-
specific counts cb/w(π̃i) are stored for each π̃i. Then
the tree-specific leaf counts cb/w(π̃iτj) can be easily
calculated due to the subset/superset relationship of
all patterns. Given this data, we only need multi-
ply each Bernoulli parameter of each leaf by its cor-
responding data count to compute the likelihood. We
note that this likelihood can be efficiently calculated
in linear time w.r.t. the maximum depth of the tree.

parent patterns known to be in the hash-table. These con-
veniences are afforded to us by the Zobrist hashing and
frequency-based pattern harvesting described in Section 2.

5. Empirical Results

5.1. Algorithms

Monte Carlo: Monte Carlo algorithms for Go (Bouzy
& Helmstetter, 2003) have proven to be extremely ca-
pable predictors of territory (but can be slow). The
Monte Carlo algorithm we use for baseline compari-
son is identical to that used for territory labeling in
Section 2 except that the final expectations for each
board position are simply the average over 500 simu-
lations.

Indep / Smallest & Largest Pattern: These are
independent classifiers where pattern size is respec-
tively limited to |T | = 1 and the largest size |T |
matching a vertex. The independent factors reduce
to Bernoulli models, thus training is by closed-form
maximum likelihood.

Indep / BMA-Tree: An independent classifier de-
scribed previously in Section 4. We provide results for
both Uniform and Exponential priors.

Indep / Logistic Regression: This is an indepen-
dent classifier that uses maximum likelihood training
of the pattern weights in Eq. 2 via gradient ascent.
Exact inference is simple and efficient.

CRF / Loopy BP: Since our results for max like-
lihood training of the weights of a grid-based CRF
model are comparable to the Boltzmann5 coupling-
only model of Stern et al. (2004), we use their results
for direct comparison of previous work. Inference dur-
ing training was Loopy BP; inference at run-time is
via loopy BP, unless otherwise specified.

Pattern CRF / (S.U.) Piecewise: This is a CRF
with both independent pattern-based factors and cou-
pling factors. Piecewise (or the shared unary variant)
training was used for the coupling weights and BMA-
Tree was used to train the independent weights (since
it outperforms piecewise training of the independent
weights). Inference at run-time is via loopy BP.

Pattern CRF / Pseudolikelihood: This is a CRF
with both independent pattern-based factors and cou-
pling factors trained via pseudolikelihood. In the Edge
variant, independent factors were trained by logistic
regression and coupling factors trained via pseudolike-
lihood. Inference at run-time is via loopy BP.

5.2. Summary of Results

Time and Memory: We trained the territory predic-
tion algorithms on 4524 labeled games and tested on
462 held-out labeled games as summarized in Tables 1
and 2. The first three closed-form training methods

Learning CRFs with Hierarchical Features: An Application to Go

0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34
0

0.02

0.04

0.06

0.08

0.1

0.12

Vertex Error

N
et

 E
rr

or

Net Error vs. Vertex Error Tradeoff

Indep / Smallest Pattern
Indep / Largest Pattern
Indep / BMA−Tree Uniform
Indep / BMA−Tree Exp
Indep / Log Regr
CRF / Loopy BP
CRF / Loopy BP / Swendsen−Wang
Pattern CRF / Psuedolikelihood Edge
Pattern CRF / Psuedolikelihood
Pattern CRF / Piecewise
Pattern CRF / S.U. Piecewise
Monte Carlo

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
0

0.02

0.04

0.06

0.08

0.1

0.12

−Log Likelihood

N
et

 E
rr

or

Net Error vs. −Log Likelihood Tradeoff

Figure 5. An analysis of the tradeoffs between Net Error, Vertex Error and -Log Likelihood. Smaller values indicate
better performance and all differences are statistically significant at a 99% level. Algorithms are specified by the model
/ training algorithm (/ inference algorithm, if not default). See text for full explanation.

Table 1. Approximate time for various CRF models /
training approaches to reach convergence.

Algorithm Training Time

Indep / Largest Pattern < 45 min
Indep / BMA-Tree < 45 min
Pattern CRF / Piecewise ∼ 2 hrs
Indep / Log Regr ∼ 5 hrs
Pattern CRF / Pseudolikelihood ∼ 12 hrs
CRF / Loopy BP > 2 days

beat all other methods while among the three slower
gradient ascent methods, CRF / Loopy BP performs
worst as it requires Loopy BP inference on each train-
ing example. For test performance, all inference in the
Indep models required ≤ 6 ms per Go board whereas
Loopy BP inference in the CRF (+ Indep) models is
at least an order of magnitude more expensive. Monte
Carlo and CRF / Swendsen-Wang are much slower due
to sampling.

Pattern harvesting yielded 3.6 million patterns, for
which pattern and parameter storage requires 432 Mb.
Coupling-only CRF models do not use patterns, re-
quiring ≤ 1 Kb for parameter storage.

Performance Comparison: There are three perfor-
mance metrics that we would like to optimize:

Vertex Error: 1
|G|

P|G|
i=1 I(sgn(EP (~s|~c(d))[si]) 6= sgn(s

(d)
i))

Net Error: 1
2|G| |

P|G|
i=1 EP (~s|~c(d))[si] −

P|G|
i=1 s

(d)
i |

Log Likelihood: logP (~s(d)|~c(d))

Vertex Error corresponds to the average classification
error per vertex while Net Error corresponds to the
average error in net score calculation. Log Likelihood
provides an indicator of model fit to the data. All
metrics are averaged over test cases at all game stages.

In Figure 5 (left), we see a few notable trends. Monte
Carlo shows perhaps the best tradeoff between Vertex

Table 2. Average time for various CRF models / inference
algorithms to evaluate P (~s|~c) on a 19 × 19 Go board.

Algorithm Inference Time

Indep / Sm. & Largest Pattern 1.7 ms
Indep / BMA-Tree & Log Regr 6.0 ms
CRF / Loopy BP 101.0 ms
Pattern CRF / Loopy BP 214.6 ms
Monte Carlo 2,967.5 ms
CRF / Swendsen-Wang 10,568.7 ms

and Net Error and serves as our baseline prediction al-
gorithm to beat with machine learning methods (where
inference is typically also much faster). All models
that could be efficiently trained by non-gradient meth-
ods exhibit low Net Error predictions with Indep /
BMA-Tree Exp providing the best Vertex Error among
these models. While the slower gradient training of the
Indep and CRF models does offer lower Vertex Error
in some cases, we see this is at the tradeoff of worse
Net Error performance.

These trends can be partially explained by the compar-
ative examples in Figure 6: In (a), we see that Indep
models (in this case BMA-Tree) can make inconsis-
tent predictions w.r.t. neighboring vertices that can
be remedied by the influence of coupling factors in the
more complex CRF models. While this leads to lower
Vertex Error for the CRF models, we see in (b) that
biased Loopy BP inference can be over-confident in its
predictions when compared to unbiased inference, thus
leading to increased Net Error. And finally in (c), the
poor Net Error performance of Piecewise training can
be seen in the compounding bias of Piecewise trained
parameters and Loopy BP inference.

While one might expect Net Error to be correlated
with -Log Likelihood since both reward accurate prob-
ability predictions, Figure 5 (right) shows this is not
necessarily the case. In some sense, Net Error gives an

Learning CRFs with Hierarchical Features: An Application to Go

(a) Indep / BMA-Tree Exp vs. CRF / Loopy BP

(b) Loopy BP vs. Swendsen-Wang CRF Inference

(c) CRF / Loopy BP vs. CRF / S.U. Piecewise

Figure 6. (a,b) Pairwise performance comparisons of CRF
models / training algorithms. (c) A comparison of two
inference methods on the same underlying CRF. See text
for full explanation.

indicator of error correlation: if errors are highly ran-
dom, then they will average out to 0 in the long run;
however, if errors are correlated, as they are likely to
be with the cyclic feedback of Loopy BP, an algorithm
can score a low -Log Likelihood but a high Net Error.
Thus, aside from its utility as an accurate score pre-
diction in Go, good performance on Net Error could
be a useful additional performance measure for general
structured prediction tasks as it discourages correlated
errors that may be a sign of poor approximations.

6. Concluding Remarks

We have investigated the task of learning grid-based
CRFs with hierarchical features motivated by the task
of territory prediction in Go. Our overall results
demonstrate that the BMA-Tree approach to exploit-
ing hierarchical feature structure in an independent
classification model poses a competitive alternative to
grid-based CRF training when viewed in terms of its
computational efficiency and predictive performance,
most notably its low -Log Likelihood and Net Error
(important for accurate score predictions in Go).

There are two general conclusions that we can draw
from these results. First, while coupled pattern CRF
classifiers should theoretically be better than indepen-

dent pattern classifiers, their time cost is high and
when trying to save time with approximate inference,
one can suffer worse performance than by simply us-
ing independent classifiers. Secondly, when using in-
dependent pattern classifiers, the problem of choos-
ing an appropriate neighborhood can be finessed by
Bayesian averaging techniques. Altogether, the BMA-
Tree algorithm provides the CRF learning community
with an effective and efficient alternative to intractable
grid-based CRF models when training is too slow or
approximate inference is inadequate for the task at
hand.

Acknowledgements

The authors thank David Stern for providing the
the data and base software used to run these ex-
periments and Mykel Kochenderfer for providing the
LATEX source used to generate the Go board diagrams.

References

Besag, J. E. (1975). Statistical analysis of non-lattice data.
The Statistician, 24, 179–195.

Bouzy, B., & Cazenave, T. (2001). Computer go: An AI
oriented survey. Artificial Intelligence, 132, 39–103.

Bouzy, B., & Helmstetter, B. (2003). Developments on
Monte Carlo Go. Advances in Computer Games.

Coulom, R. (2006). Efficient selectivity and backup oper-
ators in Monte-Carlo tree search. 5th ICCG-2006.

de Groot, F. (2005). Moyogo studio.
http://www.moyogo.com.

Lafferty, J., McCallum, A., & Pereira, F. (2001). Condi-
tional random fields: Probabilistic models for segment-
ing and labeling sequence data. ICML-2001.

Müller, M. (2002). Computer go. Artificial Intelligence,
134, 145–179.

Oliver, J. J., & Dowe, D. L. (1995). On pruning and aver-
aging decision trees. ICML-1995.

Stern, D., Herbrich, R., & Graepel, T. (2006). Bayesian
pattern ranking for move prediction in the game of Go.
ICML-2006.

Stern, D. H., Graepel, T., & MacKay, D. J. C. (2004).
Modelling uncertainty in the game of Go. NIPS-2004.

Sutton, C., & McCallum, A. (2005). Piecewise training for
undirected models. UAI-05.

Sutton, C., & Minka, T. (2006). Local training and be-
lief propagation (Technical Report MSR-TR-2006-121).
Microsoft Research, Cambridge, UK.

Weiss, Y. (1997). Belief propagation and revision in net-
works with loops (Technical Report). M.I.T., Cambridge,
MA, USA.

Zobrist, A. (1990). A new hashing method with applica-
tions for game playing. ICCA Journal, 13, 69–73.

