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Abstract

We propose an occupancy grid mapping algorithm for
mobile robots operating in environments where objects
change their locations over time. Virtually all existing
environment mapping algorithms rely on a static world
assumption, rendering them inapplicable to environments
where things (chairs, desks, . . . ) move. A natural goal
of robotics research, thus, is to learn models of non-
stationary objects, and determine where they are at any
point in time. This paper proposes an extension to the
well-known occupancy grid mapping technique. Our ap-
proach uses a straightforward map differencing technique
to detect changes in an environment over time. It employs
the expectation maximization algorithm to learn models
of non-stationary objects, and to determine the location
of such objects in individual occupancy grid maps built at
different points in time. By combining data from multiple
maps when learning object models, the resulting models
have higher fidelity than could be obtained from any sin-
gle map. A Bayesian complexity measure is applied to de-
termine the number of different objects in the model, mak-
ing it possible to apply the approach to situations where
not all objects are present at all times in the map.

1 Introduction

The field of robotic mapping is among the most active in
mobile robotics research [7, 15]. Mapping addresses the
problem of acquiring an environment model with a mo-
bile robot, suitable for navigation and visualization. Re-
cent innovations include scalable online techniques for
concurrent mapping and localization [5, 8], algorithms
for generating compact three-dimensional maps [6], and
autonomous exploration techniques for controlling robots
during mapping [13].

However, most existing robotic mapping algorithms pos-
sess one important deficiency – they all assume that the
world is static. Thus, things may not move when acquir-
ing a map. Dynamic effects, such as people that may
briefly obstruct the robot’s sensors, are filtered away at
best, and lead to mapping failure at worst. The static world
assumption in robotic mapping is motivated by the fact
that even for static worlds, the mapping problem is very

hard [14]. However, most natural environments are not
stationary. For example, office environments contain ob-
jects such as chairs, desks, and people, which frequently
change their location. The goal of this research, thus, is to
devise methods that can identify such non-stationary ob-
jects and model their time-varying locations.

This paper proposes an occupancy grid mapping
algorithm—called robot object mapping algorithm or
ROMA—capable of modeling non-stationary environ-
ments. Our approach assumes that objects in the envi-
ronment move sufficiently slowly that they can safely be
assumed to be static for the time it takes to build an oc-
cupancy grid map. However, their locations may change
over longer time periods (e.g., from one day to another).
An example of such a situation is an office delivery robot,
which may enter offices in regular time intervals. From
one visit to another, the configuration of the environment
may have changed in unpredictable ways (e.g., chairs
moved around and in or out of a room). Since the robot
may not witness the motion directly, conventional track-
ing techniques [2, 9] are inapplicable. The algorithm de-
scribed in this paper is capable of identifying such moving
objects, learning models of them, and determining their
locations at any point in time. It also estimates the total
number of different objects in the environment, making
the approach applicable to situations where not all non-
stationary objects are visible at all times.

ROMA builds on the well-known occupancy grid map-
ping paradigm [11]. In regular time intervals, the robot
acquires a static occupancy grid map [16]. Each map cap-
tures a “snapshot” of the environment at a specific point
in time. Changes in the environment are detected us-
ing a straightforward map differencing technique. Our
approach learns models of these objects using a mod-
ified version of the expectation maximization (EM) al-
gorithm [4, 10], in a way similar to techniques previ-
ously developed for traffic surveillance [12]. The E-step
of ROMA’s EM establishes correspondence between dif-
ferent object sightings at different points in time. The
M-step uses these probabilistic correspondences to gener-
ate refined object models, represented by occupancy grid
maps. By iterating both steps, high fidelity object mod-
els are learned from multiple sightings, and the location



of each individual object in each map is also determined.
Since the total number of non-stationary objects may be
unknown, our approach employs a model selection tech-
nique for determining the most plausible number of ob-
jects, under an exponential prior.

In our empirical evaluation, we found the ROMA algo-
rithm to be highly reliable in identifying and localizing ob-
jects, and learning high fidelity models of them. The paper
provides experimental results for two room-style environ-
ments, where a collection of natural objects is moved over
time.

2 The ROMA Algorithm

2.1 Static Mapping and Map Segmentation

ROMA identifies objects that move by comparing multi-
ple grid maps of the same environment, recorded at differ-
ent points in time. At each point in time t, the robot builds
a (static) occupancy grid map of its environment, denoted
mt. In a nutshell, occupancy grid maps represent robot
environments by a fine-grained grid, where each grid cell
carries a probability of occupancy [11]. Our implemen-
tation is based on a technique described in [16], which
simultaneously localizes one or more robots during map-
ping.

In a preprocessing step, the ROMA algorithm decomposes
the environmental model into a static occupancy grid map,
and a collection of smaller occupancy grid maps, one for
each non-stationary object. Non-stationary objects are
identified by a map differencing technique, which builds
on well-known algorithms in the field of computer vision.
Our approach identifies objects by finding regions that in
some of the maps are occupied, and free in others. If the
occupancy of a grid cell is the same in all maps, it does
not belong to a non-stationary object; instead, it is either
part of a permanent free region or part of a static object
such as a wall. If the occupancy varies across maps, it is
potentially part of a non-stationary object in those maps
where the grid cell is occupied. This map differencing
technique yields a set of candidate objects. A standard
low-pass computer vision filter [17] is then employed to
remove noise, which is usually found on the border of free
and occupied space. The result is a list of “snapshots” of
non-stationary objects, each represented by a local occu-
pancy grid map.

Let us denote the number of non-stationary objects (snap-
shots) found in the t-th map by Kt, and the individual
objects by

µt = {µ1,t, µ2,t, . . . , µKt,t} (1)

Here µk,t is the k-th snapshot extracted from t-th map
mt, where extracted objects are arranged in no specific
order. Each snapshot µk,t is a local occupancy grid map
extracted from a single occupancy grid map mt. The set
of all sets of object snapshots µt will be denoted

µ = {µ1, µ2, . . . , µT }, (2)
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Figure 1: (a) The Pioneer robot used to collect laser
range data. (b) The robotics lab where the second data
set was collected. (c) Actual images of non-stationary ob-
jects used in the second data set.

where T is the total number of available maps. The set µ
is the input to the ROMA algorithm.

2.2 Models of Moving Objects

From these object snapshots, the ROMA algorithm con-
structs models of the non-stationary objects. Let the to-
tal number of non-stationary objects be N . The non-
stationary object model, which refers to the set of all non-
stationary objects, will be denoted

θ = {θ1, . . . , θN}. (3)

Each θn is a model of an individual non-stationary object,
represented by a small occupancy grid map.

To learn θ from the snapshots µ, ROMA uses the follow-
ing probabilistic model. Notice that both the models θn
and the snapshots µk,t are represented by grid cells. Each
grid cell θn[j] in θn is a real number in the interval [0, 1].
We interpret each occupancy value as a probability of oc-
cupancy. Since the robot scans each grid cell multiple
times during mapping, we use a Gaussian distribution rep-
resenting a single real-valued observation. This yields the
following probability of observing µk,t given that the true
underlying object is θn:

p(µk,t | θn, δk,t) ∝ e
− 1

2σ2

∑
j
(f(µk,t,δk,t)[j]−θn[j])2

(4)

The function f(µk,t, δk,t) denotes the snapshot µk,t at
its optimal alignment, and f(µk,t, δk,t)[j] denotes its j-
th grid cell. The rotation and translation parameters of
the alignment are specified by the δk,t. This alignment is
easily determined by search in the space of all possible
alignments. The parameter σ2 is the variance of the noise.

2.3 Expected Log Likelihood of the Data

The measurement probability p(µk,t|θn) enables us to cal-
culate the likelihood of the snapshots µ given the models
θ—a necessary step for defining our maximum likelihood
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Figure 2: (a) Four maps used for learning models of non-
stationary objects using a fixed number of objects per
map. (b) Overlay of optimally aligned maps. (c) Differ-
ence map before low-pass filtering.

algorithm for finding new models θ. To do so, it will be
convenient to define so-called correspondence variables:
αt. Each αt specifies the correspondence between the set
of snapshots µt, and the set of models θ. Thus,

αt = {α1,t, . . . , αKt,t} (5)

where each correspondence variable αk,t assigns to the k-
th observed object in µt the index of the corresponding
model θn. Thus,

αk,t ∈ {1, . . . , N} (6)

Of great importance is a mutual exclusion constraint [3,
9, 12] which specifies that the same model θn cannot be
observed at two different locations in any of the maps mt.
This implies that for any two different snapshots k and k′

we have that the correspondence variables point to differ-
ent models in θ:

k 6= k′ =⇒ αk,t 6= αk′,t (7)

Clearly, the correspondences αt are latent variables, that
is, they cannot be observed. Thus, the problem of identify-
ing the maximum likelihood models θ is an optimization
problem with latent variables.

We will now derive the exact likelihood function, used to
maximize the joint probability over the snapshots µ, the
learned occupancy grids θ and the alignment parameters

(a)

(b) (c)

Figure 3: (a) Nine maps used for learning models of non-
stationary objects using a variable number of objects per
map. (b) Overlay of optimally aligned maps. (c) Dif-
ference map before low-pass filtering. The objects are
clearly identifiable.

δ:

argmax
θ,δ

p(θ, δ, µ) (8)

EM starts with a random initial set of correspondences and
generate a sequence of models θ[1], θ[2], . . . and alignment
parameters δ[1], δ[2], . . . with non-decreasing likelihood.
Let 〈θ[i], δ[i]〉 be the i-th such set of parameters. EM find
an (i+ 1)th model 〈θ[i+1], δ[i+1]〉 for which

p(θ[i+1], δ[i+1], µ) ≥ p(θ[i], δ[i], µ) (9)

We achieve this goal by maximizing the expected log like-
lihood [10]

〈θ[i+1], δ[i+1]〉
= argmax

θ,δ
Eα

[
log p(α, θ, δ, µ)

∣∣∣θ[i], δ[i], µ
]

(10)

Here Eα is the mathematical expectation over the latent
correspondence variables α, relative to the distribution



p(α | θ[i], δ[i], µ). The probability inside the logarithm in
(10) factors as follows, exploiting natural independences
and assuming uniform priors over correspondences α:

p(α, θ, δ, µ) = p(α) p(δ) p(θ) p(µ | δ, α, θ)
∝ p(µ | δ, α, θ) (11)

The probability p(µ | δ, α, θ) of the snapshots µ given the
object models θ and the correspondences α is essentially
defined via (4). Here we recast it using a notation that
makes the conditioning on α explicit:

p(µ | δ, α, θ) ∝ (12)
T∏

t=1

Kt∏

k=1

e
− 1

2σ2

∑N

n=1
I(αt(k)=n)

∑
j
(f(µk,t,δk,t)[j]−θn[j])2

where I( ) is an indicator function which is 1 if its ar-
gument is true, and 0 otherwise. Substituting the product
(11) with (12) into the expected log likelihood (10) gives
us:

〈θ[i+1], δ[i+1]〉 = argmax
θ,δ

−
N∑

n=1

T∑

t=1

Kt∑

k=1

p(αt(k)=n | Ψ[i], µ)

σ2

∑

j

(f(µk,t, δk,t)[j]− θn[j])2

In deriving this expression, we exploit the linearity of the
expectation, which allows us to replace the indicator vari-
ables with probabilities (expectations).

That defines the E-step of the EM algorithm. The next
step is the M-step through which we generate a new set of
models. The M-step requires the calculation of the most
likely object models θn given the snapshots µ and cor-
respondences α. Assuming constant alignment, this cal-
culation can be carried out separately for each grid cell,
exploiting the additive nature of (4). The occupancy value
of model grid cell θ[i]

n [j] is set to the weighted sum of the
corresponding snapshot grid cells:

T∑

t=1

∑

αt

p(αt|θ[i−1], µ)

Kt∑

k=1

dk,t[j]

T∑

t=1

∑

αt

p(αt|θ[i−1], µ)Kt

(13)

After calculating a new set of models θ[i], the alignments
between the models θn and the individual snapshots µk,t
are recomputed.

One disadvantage of the formulation above is that the sum
over all αt in (13) is exponential in the number of map ob-
jectsKt. In our test environments,Kt was generally small
(e.g., less than 4), in which case the full sum could easily
be computed. In cases where this exponential complexity
poses a serious computational burden, however, MCMC
sampling techniques such as the chain flipping algorithm
in [3, 12] can be adopted to lead to provably polynomial
approximations of the true expectation.
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Figure 4: (a) Seven iterations of EM for the data set con-
taining a fixed number of objects per map. (b) Seven itera-
tions of EM for the data set containing a variable number
of objects per map. (c) Correspondence probabilities be-
tween an observed object and different object models.

2.4 Determining the Number of Objects

The ROMA algorithm outlined so far assumes knowledge
of the total number of objects N . In practice, N is un-
known. Bounds on N can easily be extracted from the
data. In particular, N is bounded below by the maxi-
mum number of objects identified in a single map Kt, and
bounded above by the total number of object snapshots:

max
t=1...T

Kt ≤ N ≤
∑

t=1...T

Kt (14)

¿From an estimation standpoint, increasing the model ca-
pacity N increases the likelihood. Thus, maximum likeli-
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hood estimation would fail to estimate the number of ob-
jects N in any reasonable way. Our approach follows
common statistical methodology by assigning an expo-
nential prior overN . That is, a priori we assume that large
values of N are exponentially less likely:

p(N) = const · e−pN (15)

where p > 0 is a penalty factor. The robot object mapping
algorithm optimized the Bayesian posterior, given (in log-
arithmic form) by:

log p(N, θ|µ) = const + log p(µ|N, θ) + log p(N)

= const + log p(µ|N, θ)− pN (16)

where log p(µ|N, θ) is approximated by the expected log-
likelihood (12) defined in the previous section. Put differ-
ently, our approach maximizes the expected log likelihood
while simultaneously minimizing a complexity penalty
term. Since N is usually small, our approach does this
by running EM with fixed values of N , starting with the
lower bound established in (14). When the log posterior
goes down, the search is terminated, and the value of N
that maximizes the log posterior is assumed to reflect the
correct number of objects in the map.

3 Experimental Results

The ROMA algorithm was extensively tested in both sim-
ulated and physical environments. For brevity, we omit
any simulation results and only provide real robot results.
We consistently found that ROMA is able to infer the cor-
rect number of objects, and to learn models that are more
accurate than the snapshots extracted from a single occu-
pancy grid map—as long as the objects were sufficiently
apart from each other that they were segmented correctly
in the preprocessing stage. The correspondence estimates
were accurate when all objects looked different. When
multiple objects of the same shape were present, the cor-
respondence estimates were split accordingly.

In the following sections, we cover our results for data
collected from two real-world room-style environments.
The laser range data used for mapping was collected with

the Pioneer robot shown in Figure 1a. In the first data set,
we collected maps with a fixed number of objects per map
which are shown in Figure 2a. In the second data set we
collected maps from the robotics lab shown in Figure 1b.
These maps used a variable number of non-stationary ob-
jects per map; actual photos of the four objects used in
these maps are shown in Figure 1c. The collected maps
for this data set are shown in Figure 3a.

3.1 Map Segmentation and Object Extraction

The object snapshot extraction worked very reliably. Fig-
ures 2a and 3a show the maps used for learning in the two
data sets. An overlay of these maps for each of the respec-
tive data sets is shown in Figures 2b and 3b. Results from
image differencing with the overlay are shown for the re-
spective data sets in Figures 2c and 3c. Once the differ-
enced maps are produced, they are run through a low-pass
noise filter [17]. After filtering, each object of sufficient
size is extracted into its own occupancy grid map. For the
given data sets, this final step worked flawlessly, extract-
ing exactly the number of expected non-stationary objects
for each of the respective static maps.

3.2 ROMA Applied to a Fixed Number of Objects

The first set of results that we provide assumes a fixed
number of objects and uses the map data shown in Fig-
ure 2a. Figure 4a shows successive EM iterations of the
ROMA algorithm starting from an initial random models
(unshown). On each successive iteration of the EM algo-
rithm we note that the models resemble the objects in the
original maps with increasingly higher fidelity and that the
final set of objects clearly represents a fairly accurate rep-
resentation of the four objects in the original maps. Fur-
thermore, the final maximum likelihood correspondences
perfectly match the objects in the original maps with the
objects in the final iteration models.

3.3 ROMA Applied to a Variable Number of Objects

The second set of results that we provide allows a variable
number of objects per map and uses the map data shown
in Figure 3a. This algorithm uses the extension previously
described for determining the number of objects in the
model (Equations 14-16). Since the entire ROMA algo-
rithm has to be run once for each hypothesized number
of objects, we can compute the final iteration model score
(i.e. Bayesian posterior) of each algorithm run. This score
is the log of the model likelihood minus the complex-
ity penalty as given in (16). Figure 5 shows the model
score for a varying number of model objects for the cur-
rent data set. Note that for a complexity penalty coeffi-
cient of p = 120.0 this graph peaks for N = 4 objects
which is in fact the actual number of different objects in
the original set of maps.

Figure 4b shows successive EM iterations for the data set
in Figure 3 under the maximal Bayesian posterior esti-
mate of N = 4 objects. The correspondences between a
sample observed object and the different models is shown



in Figure 4c. While the correspondences are initially ran-
domly distributed, the observed object quickly establishes
a strong correspondence to the correct model as EM pro-
gresses. Moreover, on each successive iteration, it is clear
that the object models more closely reflect the objects in
the original maps. Additionally, under the maximal model
score hypothesis of N = 4 objects, the final maximum
likelihood correspondences perfectly match the objects in
the original maps with the objects in the final iteration
models.

4 Conclusion

The paper proposed an occupancy grid mapping algo-
rithm for non-stationary environments, where objects may
change their locations over time. In a preprocessing stage,
the algorithm extracts sets of non-stationary object “snap-
shots” from a collection of occupancy grid maps, recorded
at different points in time. The EM algorithm is applied to
learn object models of the individual non-stationary ob-
jects in the world, represented as local occupancy grid
maps. The number of objects is estimated as well. Exper-
imental results presented in this paper demonstrate the ro-
bustness of the approach. In simulated and real-world set-
ting, we consistently found that high-fidelity object mod-
els were learned from multiple sightings of the same ob-
ject at different locations.

In its present state, the ROMA algorithm possesses a range
of limitations which warrant future research. First, ob-
jects have to move slowly enough that they are captured as
static objects in each occupancy grid map. This precludes
the inclusion of fast-moving people in the map. Second,
it would be desirable to develop a hierarchy of objects,
paying tribute to the fact that many objects may look alike
(e.g., chairs; see [1]). Finally, we believe that the same
techniques can be applied to more advanced representa-
tion than occupancy grid maps (e.g. integrating multi-
modal sensor input from camera images, etc. . . ). How-
ever, such an extension is subject to future research.
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