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Abstract

Preference elicitation (PE) is an important
component of interactive decision support
systems that aim to make optimal recom-
mendations to users by actively querying
their preferences. In this paper, we out-
line five principles important for PE in real-
world problems: (1) real-time, (2) multiat-
tribute, (3) low cognitive load, (4) robust to
noise, and (5) scalable. In light of these re-
quirements, we introduce an approximate PE
framework based on TrueSkill for performing
efficient closed-form Bayesian updates and
query selection for a multiattribute utility be-
lief state — a novel PE approach that nat-
urally facilitates the efficient evaluation of
value of information (VOI) heuristics for use
in query selection strategies. Our best VOI
query strategy satisfies all five principles (in
contrast to related work) and performs on par
with the most accurate (and often computa-
tionally intensive) algorithms on experiments
with synthetic and real-world datasets.

1 Introduction

Preference elicitation (PE) is an important component
of eCommerce and recommender systems that propose
items or services from a potentially large set of avail-
able choices but due to practical constraints may only
query a limited number of preferences. The PE task
consists of (a) querying the user about their prefer-
ences and (b) recommending an item that maximizes
the user’s latent utility. Of course, a PE system is lim-
ited by real-world performance constraints that require
phase (a) to be efficient while ensuring phase (b) can
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make an optimal recommendation with high certainty.
To this end, we outline five principles important for
the practical application of PE in real-world settings
used to guide our research in this work:

1. Real-time: A PE system that takes more than a
few seconds to propose a query or that asks a large
number of uninformative queries will likely not be
viewed as useful by a user.

2. Multiattribute: Exploiting the natural attribute
structure of services or items in the form of mul-
tiattribute utility functions (Keeney and Raiffa,
1976) is crucial when the number of recommend-
able items exceeds the number of queries a PE
system can reasonably ask. In this case, learning
preferences over attribute dimensions can simul-
taneously inform preferences over many items.

3. Low cognitive load : Since the task of util-
ity elicitation is cognitively difficult and error
prone (Chajewska et al., 2000), queries that are
more difficult for users lead to higher noise and
less certainty in the utility elicited. Thus, we focus
on pairwise comparison queries known to require
low cognitive load for users (Conitzer, 2009).

4. Robust to noise: A real-world PE system has
to make robust utility predictions in the pres-
ence of noisy query responses. Bayesian PE ap-
proaches that maintain a belief distribution over
utility functions and update beliefs using a real-
istic query confusion model are one natural way
to handle noise, although exact inference in these
Bayesian models may often be intractable.

5. Scalable: Since many real-world decision prob-
lems (real estate, consumer electronics) involve
large numbers of items (Chajewska et al., 2000),
a scalable PE system should not evaluate more
than O(m) queries per PE stage. Furthermore, for
scalability, it is crucial for a PE system not only
to choose informative queries, but also to choose
queries that help it discriminate among the high-
est utility items actually available in the item set.
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In the following sections, we develop an approximate
Bayesian PE framework to satisfy all five of these prin-
ciples (in contrast to related work) and demonstrate
this empirically on synthetic and real-world datasets.

2 Bayesian Preference Elicitation

2.1 User Utility Model

In multiattribute utility theory (MAUT) (Keeney
and Raiffa, 1976), utilities are modeled over a D-
dimensional attribute set X = {X1, . . . , XD} with at-
tribute choices Xd = {xd1, . . . , xd|Xd|} (where |Xd| de-
notes the cardinality of Xd). An item is described
by its attribute choice assignments x = (x1, . . . , xD)
where xd ∈ Xd. In our model, an attribute weight
vector w = (w11, . . . , w1|X1|, . . . , wD1, . . . , wD|XD|) de-
scribes the utility of each attribute choice in each at-
tribute dimension.

We assume that the utility u(x|w) of item x w.r.t.
attribute weight vector w decomposes additively over
the attribute choices of x, i.e.,

u(x|w) =
D∑

d=1

wd,#(x,d), u∗(x) =
D∑

d=1

w∗
d,#(x,d) (1)

where #(x, d) returns index in {1, . . . , |Xd|} for at-
tribute choice xd of x and u∗ represents the user’s true
utility w.r.t. their true (but hidden) w∗.

Since w∗ is unknown to the decision support system,
it is the goal of preference elicitation to learn an es-
timate w of w∗ with enough certainty to yield a low
expected loss on the item recommended. We take a
Bayesian perspective on learning w (Chajewska and
Koller, 2000) and thus maintain a probability distri-
bution P (w) representing our beliefs over w∗.

Because P (w) is a distribution over a multidimen-
sional continuous random variable w, we represent this
distribution as a Gaussian with diagonal covariance,
represented compactly in a factorized format as fol-
lows:

P (w) =
D∏

d=1

|Xd|∏
i=1

p(wdi) =
D∏

d=1

|Xd|∏
i=1

N (wdi;µdi, σ
2
di).

(2)
We assume the vectors µ and σ represent the respec-
tive mean and standard deviation for the normal dis-
tribution over each corresponding attribute choice in
w. While the use of a diagonal covariance is a strong
modeling assumption, we can exploit its properties for
efficient computation; furthermore, the number of pa-
rameters to learn (i.e, µ and σ) scales linearly with
the size of w rather than quadratically as would be
the case with a full covariance assumption.

2.2 Query & User Response Model

In this paper, we focus on pairwise comparison
queries known to require low cognitive load for
users (Conitzer, 2009), hence reducing noise in the elic-
itation process. We use Qij = {i � j, i ≺ j, i ∼ j} to
represent a pairwise comparison query indicating the
user’s preferences of item xi vs. item xj (henceforth
just i and j). Depending on the user’s attribute weight
vector w and the corresponding item utilities, u(i|w)
and u(j|w), the user’s response qij ∈ Qij indicates the
following:

• i � j: the user prefers i to j,

• i ≺ j: the user prefers j to i,

• i ∼ j: the user is indifferent between i and j.

If the difference between two item utilities is large, it
is easy for the user to answer the query; otherwise,
confusion plays a role in deciding the preference. The
Bradley-Terry model of confusion (Bradley and Terry,
1952) provides one way to model such noise in the case
of strict pairwise preference i � j or i ≺ j; while nu-
merous extensions attempt to model the additional in-
difference choice i ∼ j we require, none of these exten-
sions directly lend themselves to closed-form Bayesian
updates with a tractable family of belief distributions.

To facilitate efficient approximate Bayesian inference
(as shown in the next section), we represent the user
query model in (4) with an indicator function1 over
the pairwise utility difference

P (Qij = i � j|w) = I[u(i|w)− u(j|w) > ε]
P (Qij = i ≺ j|w) = I[u(j|w)− u(i|w) > ε]
P (Qij = i ∼ j|w) = I[|u(i|w)− u(j|w)| ≤ ε], (3)

where we can modulate the range of utility differences
for which the user is indifferent by adjusting ε. Note
that by definition,

∑
qij

P̂ (qij |w) = 1.

2.3 PE Graphical Model and Inference

In this paper, we take a Bayesian approach to PE.
Thus, given a prior utility belief P (w|Rn) w.r.t. a (pos-
sibly empty) set of n ≥ 0 query responses Rn = {qkl}
and a new query response qij , we perform the fol-
lowing Bayesian update to obtain a posterior belief
P (w|Rn+1) where Rn+1 = Rn ∪ {qij}:

P (w|Rn+1) ∝ P (qij |w, Rn)P (w|Rn)
∝ P (qij |w)P (w|Rn). (4)

1We use I[·] as an indicator function taking the value 1
when its argument is true and 0 otherwise.
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Figure 1: PE factor graph from TrueSkill (Herbrich et al.,
2006) for qij = i � j. Items i and j have two attribute
choices each with respective weights (w1, w2) and (w3, w4).
The posterior over (w1, w2, w3, w4) can be inferred with
the following message passing schedule: (1) messages pass
along gray arrows from top to bottom, (2) the marginal
over d is updated via message 1 followed by message 2
(which required moment matching), (3) messages pass from
bottom to top along black arrows.

Assuming that our query likelihood P (qij |w) is mod-
eled as described in (3), we note that the form of the
exact posterior is not a diagonal Gaussian as is the ini-
tial prior P (w|R0) = P (w|∅) = P (w) defined in (2),
rather, it is a mixture of truncated Gaussians where
the number of mixture components grows exponen-
tially with the number of queries.

To avoid this exponential exact inference, we must
turn to approximate Bayesian inference techniques.
First we note that the use of (4) leads to a slight
variation on the TrueSkillTM (Herbrich et al., 2006)
graphical model for multiattribute PE shown in Fig-
ure 1. Consequently, our approximate Bayesian in-
ference method for (4) will be to adopt the TrueSkill
approach of approximating the posterior in the family
of diagonal Gaussians using the technique of moment
matching, known to minimize the Kullback-Leibler di-
vergence for Gaussian distributions. By combining
moment matching and the sum-product algorithm for
factor graphs (Kschischang et al., 2001), we can then
obtain the approximate posterior marginal over w in
the approximate Bayesian updating scheme known as
assumed density filtering. We set β = 1 and use the
TrueSkill model as shown for Bayesian updating, how-
ever we note that the variables v do not play a role in
our value of information analysis.

Of key importance in this approximate Bayesian up-
dating scheme is to note that from prior sufficient
statistics µn and σn for P (w) in the form of (2), the
update with the n + 1st query response qij results in
posterior sufficient statistics µn+1 and σn+1. While
not guaranteed in practice due to approximation, ide-
ally we would expect in the limit of queries as n →∞,
our belief distribution will approach full certainty in
the user’s hidden utility, i.e., µn → w∗ and σn → 0.

Update equations for the (cached) marginals and mes-
sages for different factor types in Figure 1 have been
presented for the “team model” in (Herbrich et al.,
2006). One exception is the update equations for fac-
tors and variables involving shared attribute choices.
Unlike TrueSkill that assumes “team players” are not
shared, our preference elicitation queries permit two
multiattribute items to share up to D − 1 common
attribute choices, which leads to shared variables and
factors in the PE factor graph.

Shared variables and factors induce loops in the
TrueSkill factor graph, though we note that the in-
troduction of shared attributes does not make any dif-
ference for the variable d as follows. Imagine that item
i and j have a shared attribute choice indicated by w2

and w3, we thus have that v2 and v3 correspond to the
same variable. It is easy to see that the deterministic
factors encode the following equations (Figure 1):

ui = v1 + v2,

uj = v3 + v4,

d = ui − uj .

Hence we obtain

d = ui − uj = (v1 + v2)− (v3 + v4) = v1 − v4, (5)

where we note that d does not depend on v2 or v3.
Clearly, in exact Bayesian inference, this algebraic
transformation would not make any difference. There-
fore, we can simply omit shared attributes when per-
forming Bayesian updating.

3 Value of Information

Now that we know how to efficiently update our mul-
tiattribute utility distribution based on a user’s query
responses, we are left with the question of how to for-
mulate a query strategy. While all queries should im-
prove the certainty of our utility estimate w.r.t. some
items, we are most concerned with finding the optimal
item with high certainty.

One way to evaluate different queries is to measure the
extent to which they help the PE system reach this
optimal decision, which can be formalized using value
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of information (VOI) (Howard, 1966). VOI plays an
important role in many Bayesian PE strategies, as first
proposed in (Chajewska et al., 2000) and our Bayesian
PE framework naturally facilitates an approximation
of VOI as we show next.

One way to formalize the VOI of a query in our PE
framework is to note that the query which maximizes
our VOI is the one that most reduces our loss. Unfor-
tunately, we can never know our true loss for recom-
mending an item, we can only calculate our expected
loss — the query leading to the maximum reduction
in expected loss will then maximize our expected VOI.

But how do we define the expected loss at any stage
of PE? First we note that if we stop PE after elicit-
ing query response set R, then we have posterior util-
ity beliefs P (w|R) summarized by sufficient statistics
(µR, σR). From this, we can efficiently compute the
highest expected utility item i∗R:2

i∗R = arg max
i

EP (w|R)[u(i|w)]

= arg max
i

∫
· · ·
∫

RD

D∏
e=1

N (w;µ,diag(σ2))
D∑

d=1

wd,#(i,d)dw

= arg max
i

D∑
d=1

∫
R
N (wd,#(i,d);µd,#(i,d), σ

2
d,#(i,d))

· wd,#(i,d)dwd,#(i,d)

= arg max
i

u(i|µR). (6)

This straightforward result exploits the fact that
P (w|R) is diagonal Gaussian and thus the expecta-
tion factorizes along each attribute dimension.

Now let us assume that we have access to the true
utilities of items i and k, respectively u∗(i) and u∗(k)
recalling (1). If we recommend item i in place of item
k, then our loss for doing so is max(0, u∗(k) − u∗(i)),
i.e., if u∗(k) > u∗(i) then we lose u∗(k) − u∗(i) by
recommending i, otherwise we incur no loss.

Of course, we do not have the true item utilities to
compute the actual loss. However, in the Bayesian
setting, we do have a belief distribution over the item
utilities, which we can use to compute the expected
loss. Thus, to compute the expected loss (EL) of rec-
ommending the best item i∗R instead of recommending
item k, we would evaluate the following expectation:

EL(k, R) = EP (w|R) [max (0, u(k|w)− u(i∗R|w))] .
(7)

Unfortunately, the computation of EL is difficult be-
cause the expectation integral over the max prevents

2We assume any item is synonomous with its feature
vector (e.g., i∗R and xi∗

R
are used interchangeably).

the calculation from factorizing along attribute dimen-
sions of the Gaussian utility beliefs. For this reason,
we opt for a computationally simpler approximation
of the expected loss (ÊL) where we use the expected
utility u(i∗R|µR) of i∗R from (6) as a surrogate for its
true utility, leading to the closed-form calculation:

ÊL(k, R) = EP (w|R)

[
max(0, u(k|w)− u(i∗R|µR))

]
=
∫

R

(
max(0, u(k|w)− u(i∗R|µR))

)
P (w|R)dw

= (µi∗R
− µk)(1− Φµk,σ2

k
(µi∗R

))

− σk√
2π

exp

(
−

(µi∗R
− µk)2

2σ2
k

)
. (8)

Here, Φµk,σ2
k

is the normal CDF, µk =
∑

d µd,#(k,d),
σ2

k =
∑

d σ2
d,#(k,d), and µi∗R

=
∑

d µd,#(i∗R,d). (Space
limitations require omission of the derivation.)

From this single item expected loss, we can then de-
termine the maximum expected loss (MEL) we might
incur by recommending i∗R instead of some other k:

MEL(R) = max
k

ÊL(k,R). (9)

From MEL, we can finally approximate the expected
reduction in loss — the expected VOI (EVOI) — of
obtaining query response qij for items i and j:

EVOI(R, i, j) (10)

= −MEL(R) + EP (w|R)

∑
qij

[P (qij |w)MEL(R ∪ {qij})]

= −MEL(R) +
∑
qij

[
EP (w|R)P (qij |w)

]
MEL(R ∪ {qij}).

The only part of the last expression that we have not
covered yet is the computation of EP (w|R)P (qij |w).
Recalling the definition of P (qij |w) from (3) based on
the difference of ui = u(i|w) and uj = u(j|w), we note
this can be computed easily in closed-form as follows.
First, we define the difference random variable d =
ui − uj and note that it has univariate distribution
N (d;µd, σ

2
d) where µd =

∑
d(µd,#(i,d) − µd,#(j,d)) and

σ2
d =

∑
d(σ

2
d,#(i,d)−σ2

d,#(j,d)) (which follow from well-
known sums and differences of normally distributed
random variables). Then using the same draw margin
ε ≥ 0 as (3), we use the normal CDF function Φµd,σ2

d

to compute the probability that d exceeds ε:

EP (w|R)[P (Qij = i � j|w)] = 1− Φµd,σ2
d
(ε). (11)

Likewise, we compute:

EP (w|R)[P (Qij =i ≺ j|w)] = Φµd,σ2
d
(−ε), (12)

EP (w|R)[P (Qij =i ∼ j|w)]
= 1−EP (w|R)[P (Qij = i � j|w)]

−EP (w|R)[P (Qij = i ≺ j|w)]. (13)



Shengbo Guo, Scott Sanner

With this, we now have all of ingredients required to
efficiently compute an efficient approximation of the
EVOI for use in PE.

4 PE Query Selection Strategies

A query strategy simply specifies what comparison
query between item i and item j should be asked when
given the current query response set Rn = {qkl} after
n queries have been asked.

The primary aim of any query strategy should be
to choose a query so that the updated response set
Rn+1 = Rn ∪ {qij} optimally reduces the true loss
(maxj u∗(j) − i∗R) of stopping after the query re-
sponse and recommending the optimal item i∗Rn+1 .3

Of course, the true loss is not actually known to the
PE system, so it must heuristically choose queries in
an attempt to reduce this loss. In this section, we
describe heuristic query strategies for doing so.

We begin first with value of information based heuris-
tics for Bayesian PE based on the derivation in the
previous section. If given response set Rn, we sim-
ply choose a comparison query between items i and j
based on arg maxi,j = EVOI(Rn, i, j) defined in (10)
using approximations of the Qij outcomes provided
by (11,12,13), we refer to this as Informed VOI. Al-
ternately, one might suggest that the approximations
may be inaccurate and hence a simple fixed weighting
such as (p1, p2, p3) (s.t.

∑3
i=1 pi = 1) respectively for

query responses {i � j; i ≺ j; i ∼ j} might be better.
We call this alternate approximate weighting the Un-
informed VOI scheme and note that (0.45, 0.45, 0.1)
yielded best results and is used in the experiments.

Unfortunately, if there are m items then both Informed
VOI and Uninformed VOI must evaluate O(m2) pair-
wise queries per preference elicitation stage.4 Clearly,
this will become intractable as m grows very large.
Consequently, we provide an additional Restricted
variant of the above algorithms that at any stage re-
stricts the pairwise query between item i and item j
given query response set Rn to include i∗Rn . We note
the complexity of the Restricted variant is O(m) query
evaluations per PE stage and as we will see, yields very
little loss compared to unrestricted O(m2) strategies.

3This optimal item can be computed from (6) for
Bayesian PE systems; for non-Bayesian systems, we ex-
plicitly note which item is recommended.

4In general, we note that even though the EVOI calcu-
lation for a single query qij requires examining all m items,
this computation time is dominated by the more expensive
approximate Bayesian update required in MEL(R∪{qij}),
even for large item sets up to m = 104 items. Hence the
number of queries for which EVOI is evaluated effectively
determines the time complexity of a PE query selection.

We also define strategy Simple VOI : given response
set Rn, we simply choose a comparison query between
items i∗Rn and j using arg maxj = ÊL(Rn, i∗Rn , j) de-
fined in (8). This query leads to either j becoming the
optimal item or the certainty in j’s utility increasing
— both reducing expected loss w.r.t. i∗Rn .

Aside from the above strategies, we also experimented
with the PE query strategies below that use the
Bayesian update defined in Section 2.3 and recommend
the best expected item, but do not use VOI heuristics:

• Random Two: a baseline strategy that randomly
picks two items for a query and serves as an upper
bound for worst-case performance.

• Best Two: picks the current highest and sec-
ond highest items in expectation. This algorithm
works best when repeated queries are explicitly
prohibited and is the version reported here.

• Best & Largest Uncertainty : selects the current
best item and the one with largest uncertainty.

5 Experimental Results

5.1 Datasets

In this section, we present experimental results on
three datasets, a synthetic dataset and two real
datasets. For synthetic data, we generate items with
all combinations of three item attributes of interest,
with 2, 2, and 5 choices, respectively, making 20 items
total. In this dataset, we assume all attribute com-
binations are feasible. Two real datasets we used
are the PC dataset (McGinty and Smyth, 2003) and
the Boston Housing dataset (Asuncion and Newman,
2007). The PC dataset consists of actual 120 PC
items, each described in terms of 8 attributes includ-
ing manufacturer, processor, memory, etc. The Boston
housing data has 506 items, each annotated with 13
continuous attributes and 1 binary valued attribute
where the continuous attributes have been discretized.
We note that neither of the item sets for Boston Hous-
ing or PC were fully exhaustive of all attribute combi-
nations, reflecting implicit real-world constraints.

5.2 User Simulation

To simulate the user response process, we drew random
utilities for the attribute choice vector w according to
two models: (a) a uniform distribution over [1, 100] for
each attribute choice, and (b) a normal distribution
with mean µ drawn uniformly from [1, 100] for each
attribute choice and covariance Σ = diag(µ

3 ). We also
experimented with sampling random positive semidef-
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Psim(i ∼ j|w)

i ∼ j Psim(i � j|w,¬[i ∼ j])

i � j i ≺ j

Figure 2: A generative query response model Psim(qij |w):
left branches indicate true results for the sampled argument
of P (·), right branches indicate false. Sampling proceeds
from the root at each � until a leaf is encountered, the
probability of a leaf being the probability of parent deci-
sions �. Definitions of each � are given in (14) and (15).

inite matrices for use as full covariance matrices but
noted little deviation in results from (b).

We simulate the user’s query response given the fol-
lowing Bradley-Terry confusion model (Bradley and
Terry, 1952) extended with indifference. We note that
this model intentionally does not match the query por-
tion of the Bayesian graphical model used for updating
in Section 2.3; this will provide evidence of whether
inference in our Bayesian PE approach is robust to a
different and more complex user response model.

For qij , the Bradley-Terry model provides the proba-
bility of a user responding i � j given their attribute
weight vector w and assuming the user is not indiffer-
ent between i and j:

Psim(i � j|w,¬[i ∼ j]) =
exp(α[u(i|w)− u(j|w)])

1 + exp(α[u(i|w)− u(j|w)])
.

(14)

Here, α > 0 is a user-specific model parameter that
must be fit for a specific user or user population. For
the simulations, we simply assume α = 1.

We model the case of indifference as an exponential
distribution

Psim(i ∼ j|w) = exp(−β|u(i|w)− u(j|w)|), (15)

where the probability of indifference peaks at 1 when
the true utilities are equal and trails off to 0 as the ab-
solute utility difference increases. As for the Bradley-
Terry model, the parameter β > 0 must be fit for a
specific user or user population; for the simulations,
we use β = 1. While many alternate models may
yield similar qualitative properties for modeling indif-
ference, we use (15) since it is log-linear in the units
of utility as for the Bradley-Terry model.

With both the indifference and preference model pieces
in place, we now provide a generative model for
Psim(qij |w) in Figure 2, where we exploit context-
specific independence (CSI) (Boutilier et al., 1996) in-
herent in the definition of (14) w.r.t. (15) to repre-
sent the different cases as paths in a tree. To simulate

the user’s query response, we first draw a sample from
Psim(i ∼ j|w) returning indifference (i ∼ j) if true,
otherwise we sample from Psim(i � j|w,¬[i ∼ j]) re-
turning i � j if true, otherwise i ≺ j if false.

5.3 Results

All of the following experiments were implemented
in Matlab (code available on request), under Win-
dows, using an Intel(R) CoreTM2 Quad CPU Q9550,
2.83GHz, 3Gb RAM PC. ε = 10 for Bayesian updates.

5.3.1 Time per Query

In Table 1, we show the time it took for each of the
main PE algorithms to propose a query on the syn-
thetic dataset. With only 20 items, we already see that
the full Informed and Uninformed VOI algorithms re-
quire unreasonable times for query selection and thus
are too slow to evaluate on the larger datasets.

Table 1: Time (ms) required to propose a query on the
synthetic dataset.

Query Strategy Mean Std
Random Two 0.1 0.0057

Best & Larg. Uncer. 0.7 0.0150
Best Two 1 0.1521

Simplified VOI 2 0.0347
Restr. Inform VOI 1045 2.1168

Informed VOI 10427 9.9465
Uninformed VOI 10365 8.2497

Consequently, we note that it is absolutely crucial for
the time efficiency of PE on large item sets to restrict
query evaluation to always include the best item; this
reduces the query evaluation complexity for m items
from O(m2) to O(m). Of course this naturally raises
the question as to how much Restricted Informed VOI
loses by limiting VOI query strategies in this way? To
answer, very little — after the 2nd query, 100% of all
Informed and Uninformed VOI queries were selected
from the Restricted set for all of our experiments!

5.3.2 Expected Loss

We show a plot of the normalized average loss
(maxj u∗(j) − i∗R) of all algorithms vs. the number
of query responses elicited in Figure 3. That is, on the
y-axis, we show for 20 averaged trials what fraction
of the total loss was incurred by each algorithm after
the x-axis specified number of queries. A result of 0
indicates no loss and is optimal.

The key observations here are that the VOI heuris-
tics always perform the best, with the Restricted In-
formed VOI heuristic in particular among the top per-
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forming query strategies over all domains while being
fast enough to run efficiently on the PC and Hous-
ing datasets (unlike the unrestricted versions). We
also note that Restricted Informed VOI has excellent
anytime performance — it always reduces the average
loss on each additional query and over all numbers of
queries, it is among the best algorithms in terms of
quickly reducing average loss.

6 Related Work

Space limitations prevent a thorough literature review;
we briefly discuss how related work addresses the five
principles from Section 1 as summarized in Table 2.

While a variety of early PE research influenced many
of the design decisions in this work (Chajewska et al.,
2000, 2001; Boutilier, 2002) such as the Bayesian mod-
eling approach, factorized belief representation, and
VOI, these papers typically relied on either standard
gamble queries requiring users to state their preference
over a probability distribution of outcomes or they di-
rectly elicit utility values. While theoretically sound,
these methods may require high cognitive load for elic-
itation, and thus are prone to error (Chajewska et al.,
2000); we rely on pairwise comparison queries known
to require low cognitive load (Conitzer, 2009).

Noise-free methods optimize queries to minimize tar-
get regret functions, but assume that no confusion
takes place in the user’s query response (Conitzer,
2009; Viappiani and Boutilier, 2009). Because these
systems cannot always recover from the inevitable con-
fused user response (thus potentially ruling out the
true utility), we refer to these methods as non-robust.

While recent work (Doshi and Roy, 2008) has pushed
on scalability by extending Boutilier (2002) to exploit
symmetries in sequential query optimization (ideas
that could be incorporated in future work with our ap-
proach), such work has not explicitly addressed a fac-
torized belief representation for scaling to large asym-
metric multiattribute problems with hundreds of items
like the PC and Boston Housing datasets we used.

7 Conclusion

In light of the PE requirements in Section 1, we devel-
oped a highly efficient Bayesian PE framework based
on TrueSkill for performing efficient closed-form multi-
attribute utility belief updates — a novel PE approach
that facilitated efficient closed-form VOI approxima-
tions for PE query selection. This contrasted with
related work that failed to satisfy all requirements. As
demonstrated on synthetic and real-world data, the
Restricted Informed VOI query strategy is real-time,
multiattribute, low cognitive load via pairwise queries,

robust to noise and mismatched user response simula-
tion models, and scalable — each PE stage evaluates
O(m) queries per m items; this is much more efficient
than the full O(m2) VOI query strategies while achiev-
ing close to the same accuracy and comparable to the
best among the remaining algorithms.
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Figure 3: Expected loss vs. number of queries for various PE strategies on two datasets. Error bars indicate standard
error. Upper panel: results on the synthetic dataset with uniform utility (left) and diagonal Gaussian utility (right).
Middle panel: results on the PC dataset with uniform utility (left) and diagonal Gaussian utility (right). Bottom panel:
results on the Housing data set with uniform utility (left) and diagonal Gaussian utility (right).

Table 2: Comparison among PE algorithms in terms of five requirements.

Literature Real-time Multiattribute Low cognitive load Robustness Scalable
(Chajewska et al., 2000)

√ √

(Chajewska et al., 2001)
√ √

(Boutilier, 2002)
√

(Doshi and Roy, 2008)
√ √ √

(Conitzer, 2009)
√ √ √

(Viappiani and Boutilier, 2009)
√ √

Our approach
√ √ √ √ √


