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Abstract

In this article we review the 2011 International Planning Competition. We give
an overview of the history of the competition, discussing how it has developed
since its first edition in 1998. The 2011 competition was run in three main sepa-
rate tracks: the Deterministic (Classical) Track; the Learning Track; and the Un-
certainty Track. Each track proposed its own distinct set of new challenges and the
participants rose to these admirably, the results of each track showing promising
progress in each area. The competition attracted a record number of participants
this year, showing its continued and strong position as a major central pillar of the
international planning research community.

1 Introduction
Automated Planning is the process of finding an ordered sequence of actions that, start-
ing from a given initial state, allows the transition to a state where a series of objectives
are achieved. Actions are usually expressed in terms of preconditions and effects;
i.e. the requirements a state must meet for the action to be applied, and the changes
subsequently made. Domain-independent planning relies on general problem solving
techniques to find an (approximately) optimal sequence of actions and has been the
focus of numerous International Planning Competitions (IPCs) over the years.

The first IPC was organised by Drew McDermott in 1998. For the following 10
years it was a biennial event and remains a keystone in the world-wide planning re-
search community: the most recent, seventh, IPC took place in 2011. The major
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important contribution of the first competition was to establish a common standard
language for defining planning problems — the Planning Domain Definition Language
(PDDL) [McDermott, 1998] — which has been developed and extended throughout
the competition series. Today, the extended PDDL is still widely used, and is key in
allowing fair benchmarking of planners. Participation has increased dramatically over
the years and a growing number of tracks have formed, representing the broadening
community — see Figure 1 for details. The three main tracks now operating are the
Deterministic, Learning and Uncertainty Tracks.

The IPC has two main goals: to produce new benchmarks; and to gather and dis-
seminate data about the current state-of-the-art. Entering a planner represents signif-
icant work, and the contribution of all participants in pushing planner development,
along with the data gathered, are the major prized value of the competition. The impact
of the IPC on the planning and scheduling community is broader than just determining
a winner: benchmarking test sets are used for evaluating new ideas, and the defined
state-of-the-art, the most recent winner, is a useful benchmark. Typically, entrants in
the competition come from academia, though some industrial colleagues have been in-
volved, and industrial sponsorship secured. The independent assessment of available
systems is useful to potential users of planners outside the research community.

The competition is run by the organisers over a period of several months, with par-
ticipants submitting their planning systems electronically. The results of each edition
of the competition are presented in a special session of the International Conference on
Automated Planning and Scheduling, ICAPS1. The IPC council, chaired by Lee Mc-
Cluskey, oversee the competition series (and the knowledge engineering competition
series ICKEPS) and are seeking chairs for the next competition, expected to take place
in 2013. More information about the competition can be found on the IPC2 website.

2 Deterministic Track
The deterministic part of the competition is the longest-running track. Its focus is on
the ability of planners to solve problems across a wide range of unseen domains: a
challenging test of the ability of planners to succeed as domain-independent systems.
Several sub-tracks of the competition have developed over the years, with all tracks
at the centre of Figure 1 being considered sub-tracks of the deterministic competition.
The 2011 competition saw the introduction of a new track for multi-core planners.
Furthermore, another key contribution was to release all the software used to run the
competition3, thus reducing workload for future potential organisers.

The 2011 competition followed the successful 2008 competition, and was run in
a very similar way. For 2011 we decided to keep the language the same, without in-
troducing extensions, as planners still need to ‘catch up’ with the currently available
features. We also made use of the plan validator VAL [Howey et al., 2004]. We main-
tained the evaluation metrics introduced in IPC-2008, favouring quality and coverage

1Videos of the 2011 presentations are at http://videolectures.net/icaps2011 freiburg/
2http://icaps-conference.org/index.php/Main/Competitions
3available at http://www.plg.inf.uc3m.es/ipc2011-deterministic/FrontPage/Software
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Figure 1: The History of the International Planning Competition

over problem-solving speed. Briefly, each planner is allowed 30 minutes on each plan-
ning task, and receives a score between 0 and 1. The score is the ratio between the
quality of the solution found, if any (if not, it is given zero), and the quality of the best
solution found by any entrant. The score is summed across all problems for a given
planner: the winner and runner up for each track being those with the highest scores.
Scores are not aggregated amongst tracks. We included in the results a comparison to
the winner of the last competition to ensure progress is being made.

The 2011 competition was extremely popular: a record number of 55 entrants took
part in the deterministic track alone, almost eight and three times more than the first and
sixth competitions respectively, showing significant growth in community involvement.
A summary of each of the sub-tracks follows.

2.1 Satisficing Track
LAMA won the satisficing track for the second year running, in its new incarnation
LAMA-2011 (Richter, Westphal, Helmert & Röger). LAMA follows in a long history of
successful planners using forward-chaining search — including previous winners HSP

3



(Bonet & Geffner) in 1998, FF (Hoffmann) in 2000 and FAST DOWNWARD (Helmert
& Richter) in 2004 — with further guidance obtained from landmarks (facts that must
be true in any solution plan). Interestingly the only non-forward-search planner to
win this track was LPG (Gerevini & Serina) in 2002, using stochastic local search. A
number of other interesting techniques have been seen throughout the years, including
the use of pattern databases, and planning as satisfiability. 9 out of 27 of the planners
in 2011 outperformed the 2008 winner LAMA-2008 (Richter & Westphal), showing
good progress in the state-of-the-art.

2.2 Multi-Core Track
With the advent of parallel computers at affordable prices we wanted to ask the ques-
tion: can planners using multiple cores at the same time perform better than using
the single core allowed in the classical track? The winner of the multi-core track was
ARVANDHERD (Nakhost, Mueller, Schaeffer, Sturtevant & Valenzano); but it did not
outperform the classical-track winner, LAMA-2011. This is not so concerning, how-
ever — the history of the IPC shows that classical planners are highly engineered in
terms of data structures, and are difficult to beat in the first editions of new tracks.

2.3 Temporal Track
Since the introduction of PDDL 2.1 in 2003, only a subset of the temporal planners
available have been able to reason with the full temporal semantics of the language. As
such, for the 2011 temporal track, we included a special class of temporal problems that
include required concurrency [Cushing et al., 2007]. That is, no solution to the problem
exists if the planner is not able to run two actions in parallel at the same time. The
most successful planners in this track were the winner DAEYAHSP (Dréo, Schoenauer,
Savéant & Vidal) and runner up ex-aequo YAHSP2-MT (Vidal) which performed best
on the standard temporal problems, and runner up ex-aequo POPF2 (Coles, Coles, Fox
& Long), which was the only planner to solve problems in all domains with required
concurrency.

2.4 Optimal Track
As planning technology develops, writing planners that find optimal, as opposed to
simply satisfying, solutions to problems becomes more feasible. FAST DOWNWARD
STONE SOUP 1 (Helmert, Hoffmann, Karpas, Keyder, Nissim, Richter, Röger, Seipp
& Westphal) won this year’s competition outperforming the new version of the 2008
winner, GAMER (Edelkamp & Kissmann). FAST DOWNWARD STONE SOUP is port-
folio based, in contrast to the symbolic search using BDDs of GAMER. The major shift
towards forward search and away from planning as satisfiability in the two most recent
competitions can be attributed to a change in the definition of optimality: the last two
competitions have required a lowest-cost plan; whereas previous editions required a
solution with the minimum number of actions. The former is much less amenable to a
planning as satisfiability approach.
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3 Learning Track
Efficient domain-independent search is a major challenge for AI. Using a single solver
for many different problems significantly reduces human effort; the trade-off being that
domain-specific systems, whilst time consuming to write, are generally much more effi-
cient. Creating a system that can automatically learn to solve problems more efficiently
is a promising approach for combining the advantages of both types of systems. This
is the inspiration for research in learning for planning, a topic widely explored since
the 1970s. The first IPC learning track in 2008 [Fern et al., 2011], was an important
milestone for research in learning in planning, providing a platform for fair compar-
ison. The track comprises two phases: a learning phase where the planners, given
training problems, learn domain-specific knowledge; and an evaluation phase, where
the planners exploit this knowledge in solving a set of unseen problems.

We took much inspiration from the 2008 learning track in organising its 2011 suc-
cessor. However, in light of lessons learnt we make several changes to the running of
the competition. A somewhat controversial outcome of the first learning track was that
best-performing planners on the evaluation phase were not those that improved the
most upon learning, indeed the winner showed little improvement, and several plan-
ners performed worse after learning. OBTUSEWEDGE (Yoon, Fern & Givan), awarded
best learner in 2008, was one of the few planners to improve. A major innovation in
2011 was to use Pareto dominance as the metric for determining competition winners:
a planner must both perform better than other planners and must have improved more
by learning in order to be considered ‘better’ than its competitor. We further extended
the scope for learning by allowing a longer learning period and providing problem
generators, to allow an unrestricted number of available training problems.

A total of eight systems participated, broadly falling in to two categories: parame-
ter tuners, learning to adjust the parameters of planners (or portfolios) for best perfor-
mance; and knowledge learners, planners learning heuristics or policies for the given
domain. The competition made use of many previous planning benchmarks, gener-
ating larger challenging instances, and introduced two new domains challenging for
commonly used delete relaxation heuristics. These were the Spanner domain, in which
delete relaxation planners tend to head towards dead ends, challenging planners to
learn to avoid them; and the Barman domain, in which delete relaxation misses rele-
vant knowledge about the state of limited resources.

The results of the 2011 competition painted a much more positive picture of learn-
ing in planning than those of its predecessor. Out of eight participants, six improved
performance with learning in seven of the nine domains. Further, four of the com-
petitors outperformed the deterministic track winner, LAMA-2011 (Richter, Westphal,
Helmert & Röger), demonstrating that learning can improve upon the state-of-the-art.
The winner PBP2 (Gerevini, Saetti & Vallati), uses statistical learning to define the
time-slots dedicated to each planner in its portfolio. The runner up, FD-AUTOTUNE
(Fawcett, Helmert, Hoos, Karpas, Röger & Seipp), learns the best set of parameters for
the popular planner FAST-DOWNWARD (Helmert). The most successful group of plan-
ners were parameter tuning systems, the results reveal a major open challenge: making
planners that learn knowledge from the domain (e.g. macro-action, heuristic or policy
learners) competitive with the state-of-the art.
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4 Uncertainty Track
The uncertainty part of the IPC was initiated in 2004 by Michael Littman and
Håkan Younes with the introduction of PPDDL, the probabilistic extension of
PDDL [Younes et al., 2005]. PPDDL extends PDDL with stochastic action effects,
allowing a variety of Markov Decision Processes (MDPs) to be encoded in a relational
PDDL-like manner. The 2006 competition (Givan & Bonet) added a track for Confor-
mant planning (i.e., non-observable non-deterministic domains) and the 2008 compe-
tition (Bryce & Buffet) added a track for fully-observable non-deterministic (FOND)
domains. In the 2011 competition, we dropped the Conformant and FOND tracks
due to lack of interest, but added a partially observed MDP (POMDP) track. We also
made a major change of language from PPDDL to RDDL [Sanner, 2010] (while pro-
viding automated translations from RDDL to ground PPDDL and factored MDPs and
POMDPs), which allowed modeling a variety of new problems with stochasticity, con-
currency, and complex reward and transition structure not jointly representable in lifted
PPDDL. The 2011 competition saw five MDP and six POMDP planner entrants.

Previous competitions saw the emergence of FF-REPLAN [Yoon et al., 2007] —
which replanned on unexpected outcomes in a determinised translation of PPDDL
— as an influential and top-performing planner. With our language change from
PPDDL to RDDL in 2011 and our variety of new problem domains, planners based
largely on the UCT Monte Carlo tree search algorithm [Kocsis and Szepesvári, 2006]
placed first in both the MDP and POMDP tracks in the 2011 competition. For the
MDP track, the winner was PROST (Keller & Eyerich), which used UCT in com-
bination with determinisation techniques to initialise heuristics; the runner up was
GLUTTON (Kolobov, Dai, Mausam & Weld), which used an iterative deepening ver-
sion of RTDP [Barto et al., 1995] with sampled Bellman backups. For the POMDP
track, the winner was POMDPX NUS (Wu, Lee & Hsu), which used a Point-based
Value Iteration (PBVI) technique [Kurniawati et al., 2008] for smaller problems, but
a POMDP-variant of UCT [Silver and Veness, 2010] for larger problems; the run-
ner up was KAIST AILAB (Kim, Lee & Kim), which used a symbolic variant of
PBVI [Sim et al., 2008] with a number of enhancements.

Evaluation for the 2004, 2006, and 2008 competitions relied on analysis of one or
more of the following metrics: (1) average action cost to reach the goal, (2) average
number of time steps to reach the goal, (3) percent of runs ending in a goal state, and
(4) average wall-clock planning time per problem instance. Because lack of planner
attempts on some harder domains made it difficult to aggregate average performance
results on these metrics, we introduced an alternate purely reward-based evaluation ap-
proach in 2011 — for every problem instance of every domain, a planner was assigned
a normalised [0, 1] score with the lower bound determined by the maximum average
performance of a noop and random policy and the upper bound determined by the best
competitor; any planner not competing or underperforming the lower bound was as-
signed a score of 0 and all normalised [0, 1] instance scores were averaged to arrive at
a single final score for each planner.

A recurring debate at each competition is whether problem domains have reflected
the full spectrum of probabilistic planning (e.g., [Little and Thiébaux, 2007]). This is-
sue partially motivated our change from PPDDL to RDDL in 2011 in order to model
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stochastic domains like multi-intersection traffic control and multi-elevator control that
could not be modeled in lifted PPDDL. How the language and domain choice for the
2013 IPC shapes up remains to be seen; however, given the profound influence the
uncertainty track of the IPC has had on the direction of planning under uncertainty re-
search in the past seven years, we believe it is imperative that the competition domains
in 2013 are chosen to ensure the greatest relevance to end applications of interest to the
planning under uncertainty community.
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