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Abstract

When modeling real-world decision-theoretic planning problems in the Markov De-
cision Process (MDP) framework, it is often impossible to obtain a completely ac-
curate estimate of transition probabilities. For example,natural uncertainty arises in
the transition specification due to elicitation of MDP transition models from an expert
or estimation from data, or non-stationary transition distributions arising from insuffi-
cient state knowledge. In the interest of obtaining the mostrobust policy under transi-
tion uncertainty, the Markov Decision Process with Imprecise Transition Probabilities
(MDP-IPs) has been introduced to model such scenarios. Unfortunately, while various
solution algorithms exist for MDP-IPs, they often require external calls to optimiza-
tion routines and thus can be extremely time-consuming in practice. To address this
deficiency, we introduce thefactoredMDP-IP and propose efficient dynamic program-
ming methods to exploit its structure. Noting that the key computational bottleneck
in the solution of factored MDP-IPs is the need to repeatedlysolve nonlinear con-
strained optimization problems, we show how to target approximation techniques to
drastically reduce the computational overhead of the nonlinear solver while producing
bounded, approximately optimal solutions. Our results show up to two orders of mag-
nitude speedup in comparison to traditional “flat” dynamic programming approaches
and up to an order of magnitude speedup over the extension of factored MDP approx-
imate value iteration techniques to MDP-IPs while producing the lowest error of any
approximation algorithm evaluated.
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1. Introduction

Markov Decision Processes (MDP) [1] have become thede factostandard model
for decision-theoretic planning problems and a great deal of research in recent years has
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aimed to exploit structure in order to compactly represent and efficiently solve factored
MDPs [2, 3, 4, 5]. However, in many real-world problems, it issimply impossible
to obtain a precise representation of the transition probabilities in an MDP. This may
occur for many reasons, including (a) imprecise or conflicting elicitations from experts,
(b) insufficient data from which to estimate reliable precise transition models, or (c)
non-stationary transition probabilities due to insufficient state information.

For example, in an MDP for traffic light control, it is difficult to estimate the turn
probabilities for each traffic lane that has the option of going straight or turning. These
lane-turning probabilities may change during the day or throughout the year, as a func-
tion of traffic at other intersections, and based on holidaysand special events; in general
it is impossible to accurately model all of these complex dependencies. In this case it
would be ideal to have a traffic control policy optimized overa range of turn probabil-
ities in order to be robust to inherent non-stationarity in the turn probabilities.

To accommodate optimal models of sequential decision-making in the presence of
strict uncertainty over the transition model, the MDP with imprecise transition proba-
bilities (MDP-IP) was introduced [6, 7]. While the MDP-IP poses a robust framework
for the real-world application of decision-theoretic planning, its general solution re-
quires the use of computationally expensive optimization routines that are extremely
time-consuming in practice.

To address this computational deficiency, we extend the factored MDP model to
MDP-IPs by proposing to replace the usual Dynamic Bayes Net (DBN) [8] used in
factored MDPs with Dynamic Credal Nets (DCNs) [9] to supportcompact factored
structure in the imprecise transition model of factored MDP-IPs. Then we propose
efficient, scalable algorithms for solving these factored MDP-IPs. This leads to the
following novel contributions in this work:

• We introduce the parameterized ADD (PADD) with polynomial expressions at
its leaves and explain how to extend ADD properties and operations to PADDs.

• We extend the decision-diagram based SPUDD and APRICODD algorithms for
MDPs [3, 4] to MDP-IP algorithms that exploit DCN structure via PADDs.

• As shown in our experimental evaluation, the generalization of SPUDD and
APRICODD to MDP-IPs using PADDs is just the first step in obtaining effi-
cient solutions. Observing that the key computational bottleneck in the solu-
tion of MDP-IPs is the need to repeatedly solve nonlinear constrained optimiza-
tion problems, we show how to target our approximations to drastically reduce
the computational overhead of the nonlinear solver while producing provably
bounded, approximately optimal solutions.

As our results will demonstrate, using the above contributions we can obtain up
to two orders of magnitude speedup in comparison to traditional “flat” dynamic pro-
gramming approaches [6]. In addition, our best approximatefactored MDP-IP solver
yields an order of magnitude speedup over a direct generalization of state-of-the-art
approximate factored MDP solvers [4] for factored MDP-IPs (also implemented in this
work) and consistently produces the lowest error of all approximate solution algorithms
evaluated.
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2. Markov Decision Processes

Formally, an MDP is defined by the tupleM = 〈S,A, P,R, T, γ〉, where [1, 10]:

• S is a finite set of fully observable states;

• A is a finite set of actions;

• P (s′|s, a) is the conditional probability of reaching states′ ∈ S when action
a ∈ A is taken from states ∈ S;

• R : S×A → R is a fixed reward function associated with every state and action;

• T is the time horizon (number of decision stages remaining) for decision-making;

• γ = [0, 1) is a discount factor(the reward obtainedt stages into the future is
discounted in the sense that it is multiplied byγt).

A stationary policyπ : S → A indicates the actiona = π(s) to take in each states
(regardless of stage). The value of a stationary policyπ is defined as the expected sum
of discounted rewards over an infinite horizon(|T | = ∞) starting in states0 at stage 0
and followingπ

Vπ(s) = Eπ

[
∞∑

t=0

γtRt|s0 = s

]
, (1)

whereRt (abbreviation ofRt(st, π(st)) is the reward obtained at staget when the agent
is in statest and takes actionπ(st). (1) can be decomposed and rewritten recursively
based on the values of the possible successor statess′ ∈ S as follows:

Vπ(s) = R(s, π(s)) + γ
∑

s′∈S

P (s′|s, π(s))Vπ(s′). (2)

Our objective is to find an optimal policyπ∗ that yields the maximal value in each state,
i.e.,∀s, π′ Vπ∗(s) ≥ Vπ′(s).

A well-known algorithm to solve an MDP isvalue iteration[1]. For t > 0, it
constructs a series oft-stage-to-go value functionsV t. Starting with arbitraryV 0,
value iteration performs value updates for all statess, computingV t based onV t−1.
The Q-value for states and actiona is:

Qt(s, a) = R(s, a) + γ
∑

s′∈S

P (s′|s, a)V t−1(s′) (3)

where the best value attainable at decision staget and states is

V t(s) = max
a∈A

Qt(s, a). (4)

We define the greedy policyπV w.r.t. someV as follows:

πV (s) = arg max
a∈A

(
R(s, a) + γ

∑

s′∈S

P (s′|s, a)V (s′)

)
(5)
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At the infinite horizon, the value function provably converges

lim
t→∞

max
s

|V t(s) − V t−1(s)| = 0 (6)

leading to a stationary, deterministic optimal policyπ∗ = πV ∞ [1]. For practical MDP
solutions, we are often only concerned withǫ-optimality. If we terminate the MDP
when the following condition is met:

max
s

|V t(s) − V t−1(s)| <
ǫ(1 − γ)

2γ
(7)

then we guarantee that the greedy policyπV t loses no more thanǫ in value over an
infinite horizon in comparison toπ∗ [1].

3. MDPs with Imprecise Transitions

As described in our introductory traffic example, it is oftennecessary to work with
imprecise probabilities in order to represent incomplete,ambiguous or conflicting ex-
pert beliefs about transition probabilities. AnMDP with imprecise transition proba-
bilities (MDP-IP) 1 is specifically designed for this setting and is simply an extension
of the MDP where the transition probabilities can be imprecisely specified. That is,
instead of a probability measureP (·|s, a) over the state spaceS, we have aset of
probability measures. For example, letP (X) be the probability density function for
X = {x1, x2, x3} defined with the following constraint set:

C = {P (x1) ≤ 2/3,

P (x3) ≤ 2/3,

2P (x1) ≥ P (x2),

P (x1) + P (x2) + P (x3) = 1}. (8)

The two-dimensional region of all probability measures that satisfyC is shown as the
gray region in Figure 1. This is referred to as acredal set, i.e., a set of probability
measures (or a set of distributions for a random variable) [11]. We denote a credal set
of distributions for variableX by K(X).

Next we slightly specialize the definition of credal set to specify uncertainty in
MDP-IP transition probabilities:

Definition 3.1. Transition credal set.A credal set containing conditional distributions
over the next states′, given a states and an actiona, is referred to as atransition credal
sets[11] and denoted byK(s′|s, a). Thus, we haveP (·|s, a) ∈ K(·|s, a) to define
imprecisely specified transition probabilities.

1The term MDP-IP was proposed by White III and Eldeib [7], whileSatia and Lave Jr. [6] adopt instead
the termMDP with Uncertain Transition Probabilities.
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Figure 1: A credal set example represented by the gray region.The credal set is defined by the triplets
{P (x1), P (x2), P (x3)} that belong to this region.

We assume that all credal sets are closed and convex, an assumption that is often
used in the literature, and that encompasses most practicalapplications [12]. We further
assume stationarity for the transition credal setsK(s′|s, a); that is, they do not depend
on the staget. While K(s′|s, a) is non-stationary, we note that this does not require
P (s′|s, a) to be stationary in an MDP-IP: distributionsP (s′|s, a) may be selected from
the corresponding credal sets in a time-dependent manner [13].

Formally, an MDP-IP is defined byMIP = (S,A,K,R, T, γ). This definition is
identical to the MDPM, except that the transition distributionP is replaced with a
transition credal setK. We will representK implicitly as the set of transition proba-
bilities consistent with a set of side linear inequality constraintsC, like (8), over the
probability parameters.

There are several optimization criteria that can be used to define the value of a
policy in an MDP-IP. In the context of the discounted infinitehorizon setting that we
focus on in this work, there is always a deterministic stationary policy that ismaximin
optimal [6] (i.e., no other policy could achieve greater value under the assumption
that Nature’s selectsP (s′|s, a) adversarially to minimize value); moreover, given the
assumption thatA is finite and the credal setK is closed, this policy induces an optimal
value function that is the unique fixed-point solution of

V
∗(s) = max

a∈A
min
P∈K

(
R(s, a) + γ

X

s′∈S

P (s′|s, a)V ∗(s′)

)
. (9)

There are various algorithms for solvingflat (i.e., enumerated state) MDP-IPs based
on dynamic programming [6, 7]. In this work, we build on a flat value iteration solution
to MDP-IPs [6]:

V
t(s) = max

a∈A
min
P∈K

(
R(s, a) + γ

X

s′∈S

P (s′|s, a)V t−1(s′)

)
(10)
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Value iteration for MDP-IPs is the same as that given in (3) and (4) for MDPs except
that now foreverystates, we optimize our action choicea ∈ A w.r.t. theworst-case
distributionP ∈ K that minimizes the future expected value. Thus we ensure that the
resulting value function and policy are robust to the worst outcome that Nature could
choose in light of the future valueV t−1(s′) that we expect to achieve.

As we noted before, Nature’strue transition functionP may be non-stationary;
Nature can choose adifferentP ∈ K for everyactiona andeverystates andevery
decision staget. As an example of such non-stationarity that may occur in practice, in
the previously discussed traffic scenario, we observed thattraffic turn probabilities may
differ on holidays versus normal weekdays even though the embedded traffic controller
may not be explicitly aware of the holiday in its state description. However, as long as
such transition non-stationarity can be bounded byP ∈ K, convergence properties of
MDP-IP value iteration in (10)still hold [13].

In [14, 9] we have shown how MDP-IP solutions can be formulated as a bilevel
or multilinear programming problem. In this paper we are interested in extending the
dynamic programming solution for MDP-IPs [6, 7] outlined above to efficiently solve
problems with a factored state description, which we discuss next.

4. Factored MDP and MDP-IPs

4.1. Factored MDP

In many MDPs, it is often natural to think of the state as an assignment to multi-
ple state variables and a transition function that compactly specifies the probabilistic
dependence of variables in the next state on a subset of variables in the current state.
Such an approach naturally leads us to define aFactored MDP[2], whereS = {~x}
with ~x ∈ {0, 1}n. Here,~x = (x1, . . . , xn) is a joint assignment to a vectorX of n
binary state variablesX = (X1, . . . ,Xn).2

The definition of actionsa ∈ A is unchanged between MDPs and factored MDPs,
so the reward can simply be specified asR(~x, a). The transition probabilities in a
factored MDP are encoded usingDynamic Bayesian Networks (DBNs)[8]. A DBN is
a directed acyclic graph (DAG)with two layers: one layer represents the variables in
the current state and the other layer represents the next state (Figure 2a). NodesXi

andX ′
i refer to the respective current and next state variables. The connection between

these two layers defines the dependences between state variables w.r.t. the execution
of an actiona ∈ A. Directed edges are allowedfrom nodes in the first layerinto the
second layer, and also between nodes in the second layer (these latter edges are termed
synchronic arcs). We denote bypaa(X ′

i) the parents ofX ′
i in the graph for action

a. The graph encodes the standard Bayes net conditional independence assumption
that a variableX ′

i is conditionally independent of its nondescendants given its parents,
which incidentally for a DBN also encodes the Markov assumption (the current state
is independent of the history given the previous state). Theuse of a DBN leads to the

2While our extensions are not necessarily restricted to binary state variables, we make this restriction
here for simplicity of notation.
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Figure 2: a) A Dynamic Bayesian Network (DBN) for an actiona; b) conditional probability table for
X′

2 = 1; c) conditional probability table forX′

2 = 0.

following factorization of transition probabilities:

P (~x′|~x, a) =

n∏

i=1

P (x′
i|paa(X ′

i), a). (11)

Figure 2b shows the conditional probability table (CPT) forP (X ′
2 = 1|paa(X ′

2), a);
Figure 2c shows the same CPT forX ′

2 = 0. The tables show all combinations of vari-
able assignments for the parents ofX ′

2, i.e.,pa(X ′
2); by definition, the sum of each row

in Figure 2b and Figure 2c must be 1, which can be easily verified.

4.2. Factored MDP-IP

As our first major contribution, we extend the factored MDP representation [2] to
compactly represent MDP-IPs. This simply requires modifying the DBN transition
representation to account for uncertainty over the exact transition probabilities. Before
we formally describe this transition function though, we first introduce one possible ex-
tension of the SYSADMIN factored MDP to allow for imprecise transition probabilities,
which we use from here out as a running example of a factored MDP-IP.

SYSADMIN domain [5]. In the SYSADMIN domain we haven computersc1, . . . , cn

connected via different directed graph topologies: (a) unidirectional ring, (b) bidirec-
tional ring and (c) independent bidirectional rings of pairs of computers (Figure 3).

Let state variableXi denote whether computerci is up and running (Xi = 1) or
not (Xi = 0). Let Conn(cj , ci) denote a connection fromcj to ci. Formally, the CPTs
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Figure 3: Connection topologies for the SYSADMIN example: a) unidirectional-ring, b) bidirectional ring
and c) independent bidirectional rings of pairs of computers[5]

.

in the transition DCN [9] for this domain have the following form:

P (X ′
i = 1|~x, a) =






(i) if a = reboot(ci) : then 1
(ii) if a 6= reboot(ci) ∧ xi = 1 : then

pi1 ·
|{xj |j 6=i∧xj=1∧Conn(cj ,ci)}|+1

|{xj |j 6=i∧Conn(cj ,ci)}|+1

(iii) if a 6= reboot(ci) ∧ xi = 0 : then

pi2 ·
|{xj |j 6=i∧xj=1∧Conn(cj ,ci)}|+1

|{xj |j 6=i∧Conn(cj ,ci)}|+1

(12)
and the constraintsC on the probabilities variables are

C = {0.85+pi2 ≤ pi1 ≤ 0.95}.

We haven + 1 actions: reboot(c1), . . . , reboot(cn) andnotreboot, the latter of
which indicates that no machine is rebooted. The intuition behind Equation (12) is
that if a computer is rebooted then its probability of running in the next time step is 1
(situation i); if a computer is not rebooted and its current state is running (situation ii)
or not running (situation iii), the probability depends on the fraction of computers with
incoming connections that are also currently running. The probability parameterspi1,
pi2 and the constraintC over them define the credal setsK(·|~x, a).

The reward for SYSADMIN is simply 1 if all computers are running at any time step
otherwise the reward is 0, i.e.,R(~x) =

∏n
i=1 xi. An optimal policy in this problem

will reboot the computer that has the most impact on the expected future discounted
reward given the network configuration.

Like the previous definition of an enumerated state MDP-IP, the set of all legal tran-
sition distributions for a factored MDP-IP is defined as acredal setK. The challenge
then is to specify such transition credal sets in a factored manner that is itself compact.
For this, we propose to usedynamic credal networks (DCNs), a special case of credal
networks [11, 15], as an appropriate language to express factored transition credal sets.

Definition 4.1. Factored transition credal set. A credal set containing conditional
distributions over the values of a variableXi, given the values ofpaa(Xi) (the parents
of Xi in the graph for actiona), is referred to as afactored transition credal setand
denoted byKa(xi|paa(Xi)).
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Figure 4: a) Dynamic Credal Network for actionnotrebootfor an unidirectional-ring topology of SYSAD-
MIN domain with 2 computers. b) Conditional probability table forthe state variablesX′

1 = 1 and
X′

2 = 1 and the constraints related to the probabilities. c) The Parameterized ADD representation for

P (x′

1|x1, x2,notreboot) that we callCPT
x′

1

notreboot
. A solid line indicates the true (1) branch of a variable

test and a dashed line indicates the false (0) branch.

Definition 4.2. Dynamic credal network.A Dynamic credal network (DCN) is a gen-
eralization of a DBN. Different from the definition of a DBN, in a DCN each variable
Xi is associated with factored transition credal setsKa(xi|paa(Xi)) for each value of
paa(Xi). We assume that a DCN represents ajoint credal set[15, 11] over all of its
variables consisting of all distributions that satisfy thefactorization in Equation (11),
where each CPT distributionP (x′

i|paa(X ′
i), a) is an element of the transition credal

setKa(x′
i|paa(X ′

i)) associated with the DCN.

A DCN example is shown in Figure 4a. For each variableX ′
i in a DCN, we have

a conditional probability table (CPT)with imprecise probabilities. If we examine the
CPTs in Figure 4b, we note that entries are specified by probability parameterspij (i
for variableX ′

i andj for thejth parameter in the CPT forX ′
i). Furthermore, we note

that we have a set of side linear constraints on thesepij (shown in the boxes below the
CPT, collectively call this constraint setC). We use~p to denote a vector containing all
parameter values that are free to vary within the given credal sets (i.e., that satisfy the
probability constraintsC of the DCN).

We note that the joint transition probability may be nonlinear in the probability
parameters~p. However, we explicitly introduce the following restriction to prevent
such nonlinearities:

Restriction 4.3. DCN parameter restriction for factored MDP-IP CPTs: a param-
eterpij may only appear in the CPT forX ′

i.

This restriction prevents the multiplication ofpij by itself when CPTs for eachX ′
i

are multiplied together to determine the joint transition distribution in the DCN. This
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subset of nonlinear expressions, where the exponent of eachpij is either 0 or 1, is
referred to as amultilinear expression. To see the multilinearity of the transition prob-
ability in Figure 4, we observeP (X ′

1 = 1,X ′
2 = 1|X1 = 1,X2 = 1, notreboot) =

p11p21.
When combined with a set of constraintsC on thepij , there are efficient implemen-

tations that we can use in practice to solve the resultingmultilinear program. Interest-
ingly, because there are no additional restrictions on the linear constraintsC defined
over thepij in a multilinear program, Restriction 4.3 actually turns out to be a minor
limitation in practice as we demonstrate in the experimental domains of Section 8.

Even though we can qualitatively represent the conditionalindependence properties
of a distribution using DCNs, there are certain independences that we cannot represent
with the Credal network structure, e.g., independences that hold for specific contexts
(assignments of values to certain variables) known ascontext-specific independence
(CSI) [16]. In order to compactly represent CSI and shared function structure in the
CPTs for an MDP-IP, we propose a novel extension ofalgebraic decision diagrams
(ADDs) [17] calledparameterized ADDs (PADDs)since the leaves are parameterized
expressions as shown in Figure 4c. PADDs will not only allow us to compactly repre-
sent the CPTs for factored MDP-IPs, but they will also enableefficient computations
for factored MDP-IP value iteration operations as we outline next.

5. Parameterized Algebraic Decision Diagrams

Algebraic decision diagrams (ADDs)[17] are a generalization of orderedbinary
decision diagrams (BDDs)that represent boolean functions{0, 1}n → {0, 1} [18]. A
BDD is a data structure that has decision nodes, each node labeled with a booleantest
variable with two successor nodes:l (low) andh (high). The arc from a node to its suc-
cessorl (h) represents an assignment0(1) to the test variable. BDDs are DAGs whose
variable tests on any path from root to leaf follow a fixed total variable ordering. BDDs
are used to generate the value of a boolean function as follows: given assignments to
the boolean test variables in a BDD, we follow branchesl or h, until we get to a leaf,
which is the boolean value returned by the function. The onlydifference between an
ADD and a BDD is that terminal nodes in an ADD are real values, i.e., ADDs permit
the compact representation of functions{0, 1}n → R. BDDs and ADDs often provide
an efficient representation of functions with context-specific independence [16] and
shared function structure. For example, the reward function R(x1, x2, x3) =

∑3
i=1 xi

represented in Figure 5 as an ADD exploits the redundant structure of subdiagrams
through its DAG representation.

Operations on ADDs can be performed efficiently by exploiting their DAG struc-
ture and fixed variable ordering. Examples of efficient ADD operations are unary op-
erations such asmin, max (return the minimum or maximum value in the leaves of a
given ADD), marginalization over variables (

∑
xi∈Xi

) that eliminates a variablexi of
an ADD; binary operations such as addition (⊕), subtraction (⊖), multiplication (⊗),
division (⊘), and evenmin(·, ·) andmax(·, ·) (return an ADD with min/max values in
the leaves). We refer the reader to [17] for details.

Parameterized ADDs (PADDs)are an extension of ADDs that allow for a com-
pact representation of functions from{0, 1}n → E, whereE is the space of expressions

10



Figure 5: An example reward functionR(x1, x2, x3) =
P3

i=1 xi represented as an ADD.

Figure 6: a) Conditional probability table for the state variableX′

2 for actiona1. b) The Parameterized ADD
representation forP (X′

2 = 1|x1, x2, x3, x4, a1).

parameterized by~p (in our case, we further restrict this to the space of multilinear ex-
pressions of~p). For example, the CPT in Figure 6 represented as a PADD contains
leaves consisting of single parameters while Figure 8d shows a PADD with a leaf con-
taining a more complex parameterized expression.

In the following, we formally define PADDs and their basic operations needed
to construct efficient solutions for MDP-IPs. Because PADDsare introduced to solve
MDP-IPs, we make the following restrictive assumptions: (a) we allow only multilinear
expressions in the leaves; (b) we only define a subset of PADD operations that could
be inherited from ADDs; and (c) we only show these operationsare closed (i.e., yield a
resulting PADD with multilinear leaves) for the operationsneeded in MDP-IPs. Finally,
we contribute a new unary operationMinParameterOut(min~p) specific to PADDs.

5.1. PADD: Formal Definition, Properties and Operations

PADDs generalize the constant real-valued leaves of ADDs topolynomials (Poly)
expressed in a sum-of-products canonical form:

d0 +
∑

i

di

∏

j

pij (13)
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where thedi are constants and thepij are parameters. Formally, we can define a PADD
by the following BNF grammar:3

F ::= Poly |if(F var) then Fh else Fl

Poly ::= d0 +
∑

i di

∏
j pij

This grammar is notationally overloaded, so we briefly explain: a PADD nodeF
can either be a terminal node with an expression of typePoly or a decision node with
variable testF var (e.g.,X1 or Xn) and two branchesFh andFl (both of grammar non-
terminal typeF ), whereFh is taken whenF var = 1 andFl is taken whenF var = 0.

The value returned by a functionf represented as a PADDF containing (a subset
of) the variables{X1, · · · ,Xn} with variable assignmentρ ∈ {0, 1}n can be defined
recursively by:

V al(F, ρ) =






if F = Poly : Poly

if F 6= Poly ∧ ρ(F var) = true : Val(Fh, ρ)
if F 6= Poly ∧ ρ(F var) = false : Val(Fl, ρ)

This recursive definition ofV al(F, ρ) reflects the structural evaluation of a PADDF by
starting at its root node and following the branch at each decision node corresponding
to the variable assignment inρ — this continuing until a leaf node is reached, which
is then returned asV al(F, ρ). As an example, for the PADD represented in Figure 6,
assigningρ = {1, 0, 1, 0} for variables{x1, x2, x3, x4} yieldsV al(F, ρ) = p21.

Like ADDs, for any functionf(x1, · · · , xn) and a fixed variable ordering over
x1, · · · , xn, a reduced PADD is defined as the minimally sized ordered decision dia-
gram representation of a functionf .

Lemma 5.1. There exists a unique reduced PADDF (the canonical PADD represen-
tation off ) satisfying the given variable ordering such that for allρ ∈ {0, 1}n we have
f(ρ) = V al(F, ρ).

The proof of this lemma for BDDs was provided by [19] and can betrivially gener-
alized to ADDs and PADDs. Since PADDs allow polynomial leaves, the only change
for demonstrating this lemma is that we need to ensure that there exists a way to iden-
tify when two leaf expressions are identical, which can be easily done by (a) sorting the
parameters in each multilinear term, (b) factoring out (grouping terms with the same
ordered set of parameters) and summing constants in identical multilinear terms, and
(c) sorting the list of terms according to the lowest variable index and number of pa-
rameters. With such a unique leaf identification method, theproof of [19] generalizes
to PADDs and shows that there is a unique canonical PADD representation for every
function from{0, 1}n to polynomials in the form of (13).

In fact, not only does such a minimal, reduced PADD always exist for a functionf
that can be represented as a PADD, but there is a straightforward algorithm for com-
puting it calledReducePADD, which we present in Section 5.2.1. Before we present

3We will adopt lowercase (f ) to refer to a mathematical function, and uppercase (F ) to refer to the
function represented structurally as a PADD.
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formal PADD algorithms though, we first discuss extensions of the unary and binary
operations from ADDs to PADDs. Fortunately, this only requires that operations on the
leaves of ADDs are modified to accept and produce resulting polynomials in the form
of (13).

5.1.1. Binary Operations on PADDs
The binary operations⊕ (sum) and⊖ (subtraction) as defined for ADDs [17] can

be extended for PADDs and are alwaysclosedsince these operations yield PADDs with
leaves in the form of (13). However, the binary operation⊗ (product) can only yield a
PADD with leaves in the form of (13) if the set of parameters~p in the leaves of each
operand are disjoint. Fortunately, for factored MDP-IPs, we note that the only place
⊗ is used is to compute the product of the DCN CPTs; because of Restriction 4.3 on
the usage of parameterspij in these CPTs, we note that the condition for closed⊗
operations on PADDs is always satisfied for the required factored MDP-IP operations.

However, not all PADD binary operations have simple conditions under which they
are closed. We note that PADDs are not closed under⊘ (binary division), i.e., the
resulting leaves could be a polynomial fraction and hence cannot be expressed as (13).
Similarly, thebinary min(·, ·) andmax(·, ·) operations defined for ADDs [17] cannot
generally be computed in closed form unless the actual assignment to the parameters~p
is known. Fortunately,⊘,min(·, ·), andmax(·, ·) will not be needed in our proposed
solution to factored MDP-IPs.

5.1.2. Unary operations on PADDs
The two important classical unary operations for ADDs arerestriction (F |Xi

) and
marginalization(

∑
xi∈Xi

) and can be easily extended to PADDs as follows:

• Restrictionof a variablexi to eithertrue (F |xi=true) or false(F |xi=false) can
be calculated by replacing all decision nodes for variablexi with either thehigh
or low branch, respectively. This operation can be used to do marginalization as
we show next. This operation does not affect the leaves of thedecision diagram,
so its extension from ADDs to PADDs is straightforward.

• The marginalizationor sumout operation (represented as
∑

xi∈Xi
or simply∑

xi
) eliminates a variableXi from a ADD. It is computed as the sum of the

true and false restricted functions, i.e., (F |xi=true ⊕ F |xi=false). Since⊕ is
closed for PADDs, marginalization is also closed for PADDs.An example is
shown in Figure 7.

The classicalunarymin(·) andmax(·) operations for ADDs cannot generally be
computed for PADDs unless the actual assignment to the parameters~p is known. How-
ever, we will not need this particular PADD operation for factored MDP-IPs, but rather
a new unary operation for PADDs calledMinParameterOut, which in our case will
make the choices of Nature in Equation (9).

Definition 5.2. MinParameterOut operation. Represented asmin~p(F ), this opera-
tion takes as input (1) a PADDF and (2) a setC of global constraints over the PADD’s
parameters, and returns an ADD. We note that an ADD is a special case of a PADD with
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Figure 7: An example application ofRestrictoperation andMarginalizationoperation on a PADD.

constant expressions at its leaves, which implies thatmin~p(F ) is closed for PADDs.
This unary operation calls a nonlinear solver for each leaf expressione in the form
of (13) to computec = min~p(e) w.r.t. constraintsC and replaces the leafe with the
constantc.

Because the set of variable assignments that can reach each PADD leaf are disjoint,
each leaf can be minimized independently of the others. Thisis precisely the operation
we’ll need for factored MDP-IPs, since we note that Nature performs it’s minimization
independently per states in (9), and every path in the PADD will correspond to a
different state assignment. An example ofmin~p(F ) is shown in Figure 12.

5.2. PADD Algorithms

Previously we have discussed PADD algorithms conceptually, in this subsection,
we discuss how to implement efficient operations for PADDs. In the following algo-
rithms we use four hash tables:ReduceCache, NodeCache, ApplyCacheandMinPar-
Cache. We use the notationkey→ valueto represent key/value pairs in the hash table.
The tableNodeCachestores a unique identification for each node (representing subdia-
grams by unique identifiers), the hash tableReduceCachestores the reduced canonical
nodes (the results of previousReduceoperations), the tableApplyCachestores the re-
sults of previousApply operations (so we can avoid redundant calculations) and the
hash tableMinParCachestores the results of previousMinParameterOutoperations.

5.2.1. Reduce Algorithm for PADDs
While we know there exists a unique canonical form for every function express-

ible as a PADD (Lemma 5.1), the algorithmReducePADDactually allows the efficient
construction of this unique canonical PADD representationfrom an arbitrary ordered
decision diagram with polynomial leaves of type (13).

Algorithm 1 recursively constructs such a reduced PADD fromthe bottom up. In
this algorithm, an internal node is represented as〈F var , Fh, Fl〉, whereF var is the
variable name, andFh andFl are the true and false branch node ids, respectively. Ad-
ditionally, the inputF refers to an arbitrary node, while the returned valueFr refers to a
canonical node id. Reduced canonical nodes are stored in thehash tableReduceCache
and the helper functionGetNode(Algorithm 2) ensures that redundant decision tests at
internal nodes are removed. The tableNodeCacheused in the functionGetNodestores
a unique identification for each node.

14



Algorithm 1 : REDUCEPADD(F)
input : F (root node id for an arbitrary ordered decision diagram)
output: Fr (root node id for reduced PADD)

begin1

//if terminal node, return canonical terminal node2

if F is terminal nodethen3

return canonical terminal node for polynomial ofF ;4

//use recursion to reduce sub diagrams5

if F → Fr is not in ReduceCachethen6

Fh = REDUCEPADD(Fh);7

Fl = REDUCEPADD(Fl);8

//get a canonical internal node id9

Fr = GETNODE(F var , Fh, Fl);10

insertF → Fr in ReduceCache;11

return Fr;12

end13

An example of the application of theReducePADDalgorithm is shown in Figure 8.
The hollow arrow points to the internal nodeF that is being evaluated byReducePADD
after the two recursive calls toReducePADD(lines 7 and 8) but before line 10. Figure 8a
shows the input diagram for the algorithm wherex3 is being evaluated byReducePADD
creating two canonical terminal nodes for0.3 + 5p12 and0. Note that while evaluating
nodex3 (on the left), the execution of line 10 will result in the insertion of 〈x3, 0.3 +
5p12, 0〉 in the NodeCachehash table. Figure 8b shows the resulting evaluation of
nodex3 on the right, which returns the same previous canonical terminal nodes for
0.3+5p12 and0. And again, after executing line 10, theGetNodealgorithm will return
the same id for〈x3, 0.3 + 5p12, 0〉, previously inserted in theNodeCache. Figure
8c shows the evaluation ofx2. Note thatFh andFl are equal, thus aftergetNodeis
called,Fl is returned and as a consequencex2 disappears. Finally, Figure 8d shows the
canonical PADD representation of the input. Note thatReducePADD(Fl) returned the
same canonical teminal node that exists previously for the node0.

The running time and space ofReducePADDare linear in the size of the input
diagram since the use of theReduceCacheguarantees that each node is visited only
once and at most one unique reduced node is generated in the canonical diagram for
every node visited.

5.2.2. Apply Algorithm for binary operations for PADDs
The notation we will use in this paper for PADDs is shown in Figure 9. Any opera-

tion with two PADDs,F1 andF2, results in a new canonical PADDFr, with eventually
a new root nodeF var

r and two new sub-diagramsFh andFl. Note thatFi,h andFi,l

represent sub-diagrams.
Forall binary operations, we use the generic functionApply(F1, F2, op) (Algorithm

3) and the result computation table in the helper functionComputeResult(Table 1) that
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Algorithm 2 : GETNODE(〈var , Fh, Fl〉)

input : 〈var , Fh, Fl〉 (variable and true and false branches node ids for internal
node)

output: Fr (canonical internal node id)

begin1

//redundant branches2

if Fl = Fh then3

return Fl;4

//check if the node exists previously5

if 〈var , Fh, Fl〉 → id is not in NodeCachethen6

id = new unllocated id;7

insert〈var , Fh, Fl〉 → id in NodeCache;8

return id;9

end10

Figure 8: A step-by-step ilustration of the application ofReducePADDalgorithm (Algorithm 1) where a) and
d) are the input and output PADDs, respectively.

supports operations between arbitrary PADD nodes and polynomial leaves. Table 1
is implemented as a method namedComputeResult, which is simply a case structure
for each line of Table 1. Notice that lines 2–9 of Table 1 definethe result of PADD
operations in special cases that avoid unnecessary computation in Apply.

TheApplyalgorithm (Algorithm 3) has as input two operands represented as canon-
ical PADDs,F1 andF2, and a binary operatorop ∈ {⊕,⊖,⊗}; the output is the result
of the function application represented as a canonical PADDFr. Apply(F1, F2, op) first
checks if the result can be immediately computed by calling the methodComputeResult
(line 3). If the result isnull, it then checks whether the result was previously computed
by checking in theApplyCache, which stores the results of previousApplyoperations
(line 6). If there is not a cache hit,Applychooses the earliest variable in the ordering to
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Figure 9: The notation used in theApplyandChooseVarBranchalgorithms.

Figure 10: An example of PADDs multiplication.

branch on by calling the auxiliary functionChooseVarBranch(Algorithm 4) and then
branches on this variable with two recursiveApplycalls, one to computeFl and other
to computeFh. After that, the results of these two operations are checkedfor redun-
dancy elimination throughoutGetNodefunction. An example of PADD multiplication
via Applyalgorithm is shown in Figure 10.

5.2.3. MinParameterOut Algorithm for PADDs
The MinParameterOutalgorithm (Algorithm 5) has as input a canonical PADD

F and a set of constraintsC over the PADD’s parameters; the output is the result of
calling the nonlinear solver for each PADD leaf, represented as a canonical ADDFr.
MinParameterOutfirst checks ifF is a constant terminal node, in this case it is not
necessary to call the nonlinear solver for this leaf. If the terminal node is not a constant
then we need to make a call to the nonlinear solver passing theleaf expression as an
objective to minimize subject toC (line 7). If F is not a terminal node, Algorithm
5 recursively traverses the PADD. Similar toReducePADD, an internal node is repre-
sented as〈F var , Fh, Fl〉 and previously computed canonical nodes are stored in the
hash tableMinParCache. The helper functionGetNode(Algorithm 2) ensures again
that redundant decision tests at internal nodes are removed.

With this last specification ofMinParameterOut, we have formally described al-
most all of the PADD algorithms we will need in our factored MDP-IP solution. We
omit the restriction and marginalization algorithms for PADDs since they are identical
to the same operations for ADDs (i.e., these operations don’t modify the leaves, which
is the only place that PADDs and ADDs differ).
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Algorithm 3 : APPLY(F1, F2, op)
input : F1 (root node id for operand 1),

F2 (root node id for operand 2),
op (binary operator,op ∈ {⊕,⊖,⊗})

output: Fr (root node id for the resulting reduced PADD)
begin1

//check if the result can be immediately computed2

if COMPUTERESULT(F1, F2, op)→ Fr 6= null then3

return Fr;4

//chech if we previously computed the same operation5

if 〈F1, F2, op〉 → Fr is not inApplyCachethen6

//choose variable to branch7

var = CHOOSEVARBRANCH(F1, F2);8

//set up nodes for recursion9

if F1 is non-terminal∧ var = F var
1 then10

F v1
l = F1,l;11

F v1
h = F1,h;12

else13

F v1
l,h = F1;14

if F2 is non-terminal∧ var = F var
2 then15

F v2
l = F2,l;16

F v2
h = F2,h;17

else18

F v2
l,h = F2;19

//use recursion to compute true and false branches for resulting PADD20

Fl = Apply(F v1
l , F v2

l , op);21

Fh = Apply(F v1
h , F v2

h , op);22

Fr = GETNODE(var, Fh, Fl);23

//save the result to reuse in the future24

insert〈F1, F2, op〉 → Fr into ApplyCache;25

return Fr;26

end27

6. Factored MDP-IP Value Iteration

In the two previous sections, we showed a compact representation for factored
MDP-IPs based on dynamic credal networks (DCNs) and parameterized ADDs (PADDs)
and the respective algorithms needed to manipulate DCNs andPADDs. In this section,
we will present our first exact value iteration solution thatexploits both of these repre-
sentations. This solution is an extension of theSPUDD[3] algorithm. First, we give a
mathematical description of the proposed solution and thenproceed to formally specify
the algorithm that computes it.
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Algorithm 4 : CHOOSEVARBRANCH(F1, F2)
input : F1 (root node id for operand 1),

F2 (root node id for operand 2)
output: var (selected variable to branch)
begin1

//select the variable to branch based on the order criterion2

if F1 is a non-terminal nodethen3

if F2 is a non-terminal nodethen4

if F var
1 comes beforeF var

2 then5

var = F var
1 ;6

else7

var = F var
2 ;8

9

else10

var = F var
1 ;11

12

else13

var = F var
2 ;14

return var ;15

end16

Case number Case operation Return

1 F1 op F2;F1 = Poly1;F2 = Poly2 Poly1 op Poly2

2 F1 ⊕ F2;F2 = 0 F1

3 F1 ⊕ F2;F1 = 0 F2

4 F1 ⊖ F2;F2 = 0 F1

5 F1 ⊗ F2;F2 = 1 F1

6 F1 ⊗ F2;F1 = 1 F2

7 F1 ⊗ F2;F2 = 0 0
8 F1 ⊗ F2;F1 = 0 0
9 other null

Table 1: Input case and result for the methodComputeResultfor binary operations⊕, ⊖ and⊗ for PADDs.

6.1. SPUDD-IP Description

We extend theSPUDD [3] algorithm for exploiting DBN and ADD structure in
the solution of factored MDPs to a novel algorithmSPUDD-IP for exploiting DCN
and PADD structure in the solution of factored MDP-IPs. We begin by expressing
MDP-IP value iteration from (10) in the following factored form using the transition
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Algorithm 5 : M INPARAMETEROUT(F, C)
input : F (root node id for a PADD),

C (set of constraints)
output: Fr (root node id for an ADD)

begin1

//if terminal node, call the solver and return the value2

if F is terminal nodethen3

node=canonical terminal node for polynomial ofF ;4

if node is a constantthen5

return node;6

c=CALL NONL INEARSOLVER(node,C);7

return canonical terminal node for the constantc;8

//use recursion to compute sub diagrams9

if F → Fr is not in ReduceCacheMinParthen10

Fh = M INPARAMETEROUT(Fh);11

Fl = M INPARAMETEROUT(Fl);12

//get a canonical internal node id13

Fr = GETNODE(F var , Fh, Fl);14

insertF → Fr in ReduceCacheMinPar;15

return Fr;16

end17

representation of (11) and operations on decision diagrams:4

V t
DD(~x) = max

a∈A




RDD(~x, a) ⊕ γ min
~p

∑

~x′

n⊗

i=1

PDD(x′
i|paa(x′

i), a)V t−1
DD (~x′)






(14)
Because the transition CPTs in the MDP-IP DCN contain parameters~p, these CPTs
must be represented in decision diagram format as PADDs (PDD(x′

i|paa(x′
i), a)). On

the other hand, the rewardRDD(~x, a) can be represented as an ADD since it con-
tains only constants (for the purpose of operations, recallthat ADDs are special cases
of PADDs). Although it may appear that the form ofV t

DD(~x) is a PADD, we note
that the parameters~p are “minimized”-out w.r.t. the side constraints on~p during the
min~p 2 operation in (14) (remember thatmin~p 2 is theMinParameterOutoperation
on PADDs, that performs the minimization over the parameters by calling a nonlinear
solver for each leaf and returns an ADD). This is crucial, because themaxa∈A can
only be performed on ADDs (recall thatmax is not a closed operation on PADDs).
Thus the resultingV t

DD(~x) computed from themaxa∈A has constant leaves and can be
expressed as the ADD special case of PADDs.

4We useDD for the functions represented by ADDs or PADDs, since the first is a special case of the
second.
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Figure 11: a) We showV 0
ADD = R(x1, x2) for the unidirectional-ring topology of SYSADMIN do-

main with 2 computers represented as an ADD. b) The PADD representation forP (x′

1|x1, x2,notreboot)

(CPT
x′

1

notreboot
). c) The multiplicationV 0

ADD ⊗ CPT
x′

1

notreboot
resulting in a PADD. d) The result of

summing out overx′

1, which is a PADD.

To explain the efficient evaluation of (14) in more detail, wecan exploit the vari-
able elimination algorithm [20] in the marginalization over all next states

∑
~x′ . For

example, ifx′
1 is not dependent on any otherx′

i for i 6= 1, we can “push” the sum over
x′

1 inwards to obtain:

V t
DD(~x) = max

a∈A

{
RDD(~x, a) ⊕ γ min

~p
(15)

∑

x′

i
(i6=1)

n⊗

i=1(i6=1)

PDD(x′
i|paa(X ′

i), a)
∑

x′

1

PDD(x′
1|paa(X ′

1), a)V t−1
DD (~x′)






We show this graphically in the example of Figure 11. Here, wehave the ADD rep-
resentation for the first value functionV 0

DD = RDD (Figure 11a), which we multiply
by PDD(x′

1|paa(X ′
1), a) (Figure 11b) yielding the result (Figure 11c) and sum this out

overx′
1 to obtain the final result (Figure 11d). Then we can continue with x′

2, multi-
plying this result by thePDD(x′

2|paa(X ′
2), a), summing out overx′

2, and repeating for
all x′

i to compute2.
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Representing the contents of2 asf(~x, a, ~p), we obtain

V t
DD(~x) = max

a∈A

{
RDD(~x, a) ⊕ γ min

~p
f(~x, a, ~p)

}
. (16)

Note thatmin~p f(~x, a, ~p) leads to a separate nonlinear expression minimization for ev-
ery ~x and everya subject to the setC of side linear constraints on~p (given with the
DCN specification) since this follows from the definition of the MDP-IP Bellman equa-
tion — every state gets its own minimizer and each PADD leaf corresponds to a set of
states with exactly the same minimization objective. This optimization problem may
be represented as a simplemultilinear programdue to Restriction 4.3 that guarantees
eachpij only appears in the DCN CPT forX ′

i (this prevents multiplication ofpij by
itself, thereby preventing exponents exceeding 1). This restriction is important to guar-
antee the existence of exact solutions and the existence of efficient implementations
that we can use in practice to solve multilinear programs. Wenote that this is only a
restriction on the factored MDP-IP models themselves.

To demonstrate how themin~p f(~x, a, ~p) is performed on PADDs, we refer to Fig-
ure 12. Here, each leaf expression inf(~x, a, ~p) (Figure 12a) given by the PADD cor-
responds to the function that Nature must minimize in each state. We crucially note
that the PADD aggregates states with the same minimization objective, thus saving
time-consuming calls to the multilinear solver. We will observe this time savings in
our experiments. Now, we need to make a call to the multilinear solver for each leaf,
passing the leaf expression as the objective to minimize subject to the side constraints
C of our DCN that specify the legal~p – after the minimization, we can replace this
leaf with a constant for the optimal objective value returned by the multilinear solver
(Figure 12b). We can see that after themin~p operation, all PADDs are simplified to the
special case of ADDs with leaf nodes that are constants.

To complete one step of factored MDP-IP value iteration, we take the ADD result-
ing from themin~p operation, multiply it by the scalarγ, add in the rewardRDD(~x, a),
and finally perform a sequence of binaryADD max(·, ·) operations to compute the
maxa, thus yielding the ADDV t

DD(~x) from the ADD for V t−1
DD (~x) and completing

one step of value iteration from (14).

6.2. SPUDD-IP Algorithm

Factored MDP-IP value iteration is formally specified in thefollowing two proce-
dures:

Solve (Algorithm 6) constructs a series oft-stage-to-go value functionsV t
DD that

are represented as ADDs. First we create the PADD representation of all DCN CPTs in
the MDP-IP and initialize the first value function to0 (line 3). The loop is repeated un-
til a maximum number of iterations or until a Bellman errorBE termination condition
(BE < tol ) is met. We note that setting the tolerancetol according to (7) guaran-
teesǫ-optimality for MDP-IPs since the same termination conditions used for MDPs
directly generalize to MDP-IPs in the discounted case (γ < 1). At each iteration the
Regress algorithm is called (line 13) andV t

DD is updated with themax over all
Qt

DD (there is aQt
DD for each actiona). After this,BE = max~x|V

t(~x) − V t−1(~x)|
is computed and tested for termination. We observe in Algorithm 6 the parameters
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Figure 12: TheMinParameterOutoperation example. a) The PADD before minimization and a multilinear
program for the first leaf, the solution for this leaf is the constant valuec1. b) The resulting ADD after the
minimization at all leaves.

δ,APRICODD ,Objective, andVmax play no role now; they are used for approxi-
mation as we explain in the next section (in particular we useδ = 0 to obtain an exact
solution by the SPUDD-IP).

Regress (Algorithm 7) computesQt
DD, i.e, it regressesV t−1

DD through actiona that
provides the valuesQt

DD that could be obtained if executinga and acting so as to
obtainV t−1

DD thereafter. During regression we “prime” the variables using the function
CONVERTTOPRIMES that converts eachXi to X ′

i (since theV i
DD is now part of the

“next” state) and the CPTs for actiona are multiplied in and summed out (lines 4-6).5

After this, theMinParameterOutfunction is performed that calls the multilinear solver
to find the minimizing~p for each leaf in the PADD w.r.t. the side linear constraints
C on the DCN (line 11), resulting in an ADD. We note that if a leafis already a
constant, then the multilinear solver call can be avoided altogether; this observation will
prove important later when we introduce objective pruning.Finally, the future value is
discounted and the reward ADD is added in to complete the regression.Objective and
error are used for approximate value iteration and will be discussed later.

7. Factored MDP-IP Approximate Value Iteration

The previous SPUDD-IP exact value iteration solution to factored MDP-IPs often
yields an improvement over flat value iteration as we will demonstrate in our experi-
ments. But as the number of state variables in a problem growslarger, it often becomes
impossible to obtain an exact solution due to time and space limitations.

5We assume here there are no synchronic arcs among variablesX′

i, X′

j for i 6= j in the DCN. If sychronic
arcs are present, the algorithm can be simply modified to multiply in all relevant CPTs.
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Algorithm 6 : SOLVE(MDP-IP, tol , maxIter , δ, APRICODD , Objective)

input : MDP-IP (given by〈S,A,R,K, γ〉),
tol (tolerance that guaranteesǫ-optimality),
maxIter (maximum number of iterations),
//variables used for approximate value iteration
δ (fraction of the maximum possible value, with0 < δ ≤ 1),
APRICODD (APRICODD = true to execute APRICODD-IP),
Objective (Objective = true to execute OBJECTIVE-IP)

output: V t
DD

(t-state-to-go value function)

begin1

Create PADD:PDD(x′
i|pa(X ′

i), a) for MDP-IP;2

V 0
ADD

= 0;3

//Vmax is the maximum possible value at each iteration4

Vmax = max(RDD);5

t = 0;6

//construct t-stage-to-go value functionsV t
DD

until termination condition is7

met
while i < maxIter do8

t = t + 1;9

V t
DD

= −∞;10

//updateV t
DD

with the max over allQt
DD

11

foreacha ∈ A do12

Qt
DD

=REGRESS(V t−1
DD

, a, δ · Vmax ,Objective);13

V t
DD

=max(V t
DD

,Qt
DD

);14

//compute Bellman Error (BE) and check for termination15

Diff DD = V t
DD

⊖ V t−1
DD

;16

BE = max(max(Diff DD),−min(Diff DD));17

if BE < tol then18

break;19

//approximate value iteration: APRICODD-IP20

if APRICODD pruningthen21

V t
DD

=APPROXADD (V t
DD

, δ · Vmax );22

Vmax = max(RDD) + γVmax ;23

return V t
DD

;24

end25

Approximate value iteration (AVI)is one way to trade off time and space with error
by approximating the value function after each iteration. In this section, we propose
two (bounded) AVI extensions of SPUDD-IP: the APRICODD-IP and the Objective-
IP algorithms. Each method uses a different way to approximate the value, but both
methods incur a maximum ofδ · Vmax error per iteration whereVmax as computed
in Solve represents the maximum possible value at each step of value iteration (with
0 < δ ≤ 1). By making the approximation error sensitive toVmax we prevent over-

24



Algorithm 7 : REGRESS(VDD , a, error ,Objective)
input : VDD (value function),

a (action),
error (maximum error),
Objective (Objective = true to execute OBJECTIVE-IP)

output: QDD (the value function obtained if executinga and acting so as obtain
VDD thereafter)

begin1

QDD = CONVERTTOPRIMES(VDD); //convert variablesXi to X ′
i2

//CPTs are multiplied in and summed out3

for all X ′
i in QDD do4

QDD = QDD ⊗ PDD(x′
i|pa(X ′

i), a);5

QDD =
∑

x′

i
∈X′

i
QDD ;6

//approximate value iteration: OBJECTIVE-IP7

if Objective pruningthen8

QDD =APPROXPADDLEAVES (QDD , error );9

//call the non-linear solver for each PADD leaf — returns an ADD10

QDD = M INPARAMETEROUT (QDD ,C);11

QDD = RDD ⊕ (γ ⊗ QDD) ;12

return QDD ;13

end14

Algorithm 8 : APPROXADD(valuei
DD,error )

input : valuei
DD (an ADD),

error (maximum error)
output: a new ADD

begin1

//collect all leaves of the ADD2

leavesold=COLLECTLEAVESADD (valuei
DD);3

//group the leaves that can be merged within maximum error4

{leavesold → leavesnew}=MERGELEAVES (leavesold , error );5

//return a simplified ADD6

return CREATENEWDD (valuei
DD, {leavesold → leavesnew});7

end8

aggressive value approximation in the initial stages of AVIwhen values are relatively
small as suggested in [4]. Even with this value approximation at every iteration, satis-
fying the termination conditionBE < tol for sometol still yields strict guarantees on
the overall approximation error given by (7) as discussed previously for SPUDD-IP.
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Figure 13: a) The value functionV t
DD represented as an ADD. b) the result ofApproxADD applied to

V t
DD with approximationerror = 1; note that the leaves withinerror of each other have been merged and

averaged and the resulting ADD simplified.

7.1. APRICODD-IP Algorithm

The APRICODD algorithm [4] provides an efficient way ofapproximating the
ADD value representationfor a factored MDP, reducing its size and thus reducing
computation time per iteration. This approach immediatelygeneralizes to MDP-IPs
since the value functionV t

DD is also an ADD. To executeAPRICODD-IPAVI for
MDP-IPs, we simply callSolve (Algorithm 6) with APRICODD = true and setδ
(0 < δ ≤ 1) to some fraction of the maximum possible valueVmax with which to
approximate calling the algorithmApproxADD (line 22 Algorithm 6).

ApproxADD (Algorithm 8) has two inputs: (1) a value function represented as an
ADD and (2) an approximation error to merge the leaves. The output is a new ADD
with the merged leaves. The algorithm first collects all leaves of the ADD and de-
termines which can be merged to form new values without approximating more than
error . The old values are then replaced with these new values creating a new (mini-
mally reduced) ADD that represents the approximated value function. An illustrative
example is shown in Figure 13.

collectLeavesADD compiles the leaves of the ADD and puts them in a set (leavesold).
In the example in Figure 13, the set of old leaves is{9, 0, 10, 1}.

mergeLeaves groups together the leaves that can be merged withinerror and com-
putes the average for each group, creating a new set of leaves(leavesnew ). In the ex-
ample of Figure 13, the groups than can be merged within anerror = 1 are{9, 10}
and{0, 1}; and the new leaves are9.5 and0.5.

createNewDD creates a simplified ADD, replacing the old leaves by the new ones.
The result of this operation in the example is shown in Figure13b).

7.2. Objective-IP Algorithm

APRICODD is an effective extension of SPUDD for factored MDPs (not MDP-
IPs) because it reduces the size of the value function ADDs, which largely dictate the
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time complexity of the SPUDD algorithm. However, in solving(factored) MDP-IPs,
the time is dictated less by the size of the value function ADDand more by the num-
ber of calls to the multilinear optimizer to compute themin~p 2. SPUDD-IP started to
attack this source of time complexity by aggregating stateswith the same objective for
themin~p 2. Our goal with theObjective-IPpruning algorithm will be to more closely
target the source of time complexity in an AVI version of SPUDD-IP byapproximating
the objectivesin an attempt to avoid calling the solver altogether. To executeObjective-
IP for MDP-IPs, we simply callSolve (Algorithm 6) with APRICODD = false,
Objective = true and setδ (0 < δ ≤ 1) to some fraction of the maximum possible
valueVmax . Noting that each PADD leaf inRegress function is a multilinear objec-
tive, we simplify it by callingApproxPADDLeaves (line 9 Algorithm 7) just prior to
carrying out the multilinear optimization at the leaves of that PADD (line 11 Algorithm
7).

ApproxPADDLeaves (Algorithm 9) is called for a PADD byRegress whenOb-
jective = true. It takes as input a PADD and the maximum error, and the outputis a
new PADD with approximated leaves using the upper and lower bounds of the param-
eters. The main loop of the algorithm attempts to approximate each leaf in a PADD
(lines 3-17). To approximate the multilinear termi, Algorithm 9 first computes the
average of their maximum and minimum values (line 8), this requires knowing the ab-
solute upperpU

ij and lower boundspL
ij for anypij , which can be easily precomputed

once for the entire MDP-IP by calling the nonlinear solver tocomputepU
ij = max pij

andpL
ij = min pij subject to the side linear constraintsC on all CPTs. After that, Al-

gorithm 9 computes the error incurred by using these maximumand minimum values
(line 10). If the actual accumulated error for the leaf (curError + termError i) is less
than the maximum error (error ), the termi is removed (line 13) and replaced by the
average (line 14). In some cases the complexity of the leaf expression may be reduced,
in others, it may actually be reduced to a constant. Note thatthe leaves are each ap-
proximated independently, this can be done since each leaf corresponds to a different
state (or set of states) and the system can only be in one stateat a time. Furthermore,
we can guarantee that no objective pruning at the leaves of the PADD incurs more than
error after the multilinear optimization is performed:

Theorem (ApproxPADDLeaves Error Bound). Given an MDP-IP, its precomputed
constantspL

ij andpU
ij for all pij , and the maximum approximationerror , then whenever

ApproxPADDLeaves (Algorithm 9) reduces a leafd0 +
∑#terms

i=1 di

∏
j pij to a

simpler expression, the approximation error in the objective minimization (min~p) of
that leaf is bounded byerror .

Proof. We begin by showing that the approximation error induced by removing a single
term i from the objective is bounded bytermError i. To do this, we first find upper
and lower bounds on termi (diΠjpij) based on the legal values of~p. We know the
maximal (minimal) possible value for eachpij is pU

ij (pL
ij). Thus for any possible legal

values of~p the termi must be bounded in the interval[Li, Ui] with Li andUi defined
as follows:

Li =


di > 0 diΠjp

L
ij

di < 0 diΠjp
U
ij

, Ui =


di > 0 diΠjp

U
ij

di < 0 diΠjp
L
ij
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Algorithm 9 : APPROXPADDLEAVES(DD, error )
input : DD (parameterized ADD),

error (maximum error)
output: DD (simplified parameterized ADD)

begin1

//approximate each leaf independently2

foreach leaf : d0 +
∑#terms

i=1 di

∏
j pij ∈ DD do3

i = 1, curError = 0;4

//for all terms of the leaf, prune them if possible5

while curError < error ∧ i ≤ #terms do6

//compute the average of max and min values for termi7

newValue = di

2

(∏
j pU

ij +
∏

j pL
ij

)
;8

//compute the error of using max and min values for termi9

termError i =
∣∣di

2

(∏
j pU

ij −
∏

j pL
ij

) ∣∣ ;10

//if within error, prune termi from leaf11

if curError + termError i < error then12

remove termdi

∏
j pij from leaf ;13

d0 = d0 + newValue;14

curError = curError + termError i;15

i = i + 1;16

17

return DD ;18

end19

Let g be a value for termi andĝ = Li+Ui

2 , thenmaxg|g − ĝ| occurs atg = Li or g =

Ui. So the maxtermError i = max (|Li − ĝ|, |Ui − ĝ|) = max
(
|Li−Ui

2 |, |Ui−Li

2 |
)

=

|Li−Ui

2 | as computed in Algorithm 9.

Now, let OBJ1 = d0 +
∑#terms

i=1 diΠjpij be the originalnon-approximated ob-
jective expressionto minimize andv1 the optimal objective value using~p = ~p1. Let
OBJ2 = d0 + ĝ+

∑#terms

i=2 diΠjpij be theapproximated objective expressionto min-
imize after replacing term1 with L1+U1

2 andv2 the optimal objective using~p = ~p2.
We want to prove that−

∣∣L1−U1

2

∣∣ < v1 − v2 <
∣∣L1−U1

2

∣∣. First we prove the second
part of this inequality. Using~p2 in OBJ1 and theapproximated objective expression
we obtainv′

1 = d0 + eval(d1Πjp1j , ~p2) + v2 − d0 − ĝ (whereeval is a function to
evaluate the term with the assigned values). Becausev1 is optimalv1 ≤ v′

1 then:

v1 − v2 ≤ eval(d1Πjp1j , ~p2) − bg (17)

Additionally for any possible legal values of~p and for ~p2, |eval(d1Πjp1j , ~p2) − ĝ| <

|L1−U1

2 |, i.e.,−
∣∣L1−U1

2

∣∣ < eval(d1Πjp1j , ~p2)− ĝ <
∣∣L1−U1

2

∣∣. From this equation and
(17) we obtainv1−v2 <

∣∣L1−U1

2

∣∣. The proof of the first inequality follows by the same
reasoning, but this time substituting~p1 into OBJ2 and using thenon-approximated
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objective expression.Thus, we obtainv′
2 = d0 + ĝ + v1 − d0 − eval(d1Πjp1j , ~p1).

Becausev2 is optimalv2 ≤ v′
2 then:

v2 − v1 ≤ bg − eval(d1Πjp1j , ~p1) (18)

Additionally for any possible legal values of~p and for~p1,−
∣∣L1−U1

2

∣∣ < eval(d1Πjp1j , ~p1)−

ĝ <
∣∣L1−U1

2

∣∣. From this equation and (18) we obtainv1 − v2 > −
∣∣L1−U1

2

∣∣.
This bounds the objective approximation error for one term approximation and by

simple induction, we can additively bound the accumulated error for multiple approxi-
mations as calculated usingcurError in Algorithm 9.

8. Experimental Results

Before we delve into experimental results involving theSPUDD-IP, APRICODD-
IP, andObjective-IPalgorithms contributed in the previous sections, we begin by de-
scribing the factored MDP-IP domains used in our experiments.

8.1. Domains

We perform experiments with three factored MDP-IP domains:FACTORY [4],
SYSADMIN [5] and TRAFFIC (a new domain). In the following, we review FACTORY

and introduce the new TRAFFIC domain; SYSADMIN was already introduced in Sec-
tion 4.

8.1.1. FACTORY domain
The FACTORY domain [4] is based on a manufacturing problem in which con-

nected, finished parts are produced. The parts must be shaped, polished, painted and
connected by bolting, welding or gluing them. In particularin FACTORY domain the
agent’s task is connect two objects A and B. The agent can choose between the fol-
lowing actions:shape(x), handPaint(x), polish(x), drill(x) , weld(x,y), dip(x) (paint x by
dipping it), bolt(x,y)(connect objects x and y by bolting them) andglue(x,y)(connect
objects x and y by gluing them) andsprayPaint(x). sprayPaint(x)yields a lower quality
of painting thanhandPaint(x).

The main variables in this domain are:

• connectedandconnectedWell, that represent if objects A and B are simply con-
nected (e.g. by gluing) or are well connected (e.g. by welding them). The only
reason for the objects well connected became not connected is when the agent
shapes one of them.

• apainted, bpainted, apaintedWellandbpaintedWellare variables to represent the
painted state of the object respectively. Painted object remains painted if it is not
shaped, polished or drilled.

• ashaped bshapedrepresent object A shaped and B shaped respectively. Shaped
part remains shaped if it is not drilled.
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• asmoothandbsmooth, an object becames smoothed if the agent execute the ac-
tion polish and it succeeds. Smoothed object remains smoothed if it is not shaped
or drilled.

• adrilled andbdrilled, an object becames drilled if the action drill is apply and it
succeeds.

There are other variables that describe the things that are available in the environ-
ment to be used by the agent such as:spraygun, glue, bolts, drill andclamps. Addi-
tionally, the variableskilledlabrepresents the existence of skilled labor.

The quality required for the finished product is representedby the variabletype-
neededand can be high-quality or low-quality. The process and the reward depend
directly on the quality required. For example, when high-quality is required, hand-
painted, drilled and bolted objects will have more reward while spray-painted and glued
objects will obtain little reward. Aditional variables canbe included in the problem to
generate different instances.

To obtain a factored MDP-IP, we introduce uncertainty in thebolt action for the
variableconnectedas follows. The success probability of thebolt action for two objects
that are not connected before, when there are bolts, A is drilled and B is drilled isp1. In
the case when the two objects are not drilled but there are bolts, the success probability
is p2. These probabilities are constrained by0.2 + p2 ≤ p1 ≤ 1 and0.5 ≤ p2 ≤ 1.
Note thatp1 should always be an equal or higher probability thanp2 (since the process
associated withp1 is more likely to succeed), hence the implied constraintp2 ≤ p1.

8.1.2. A New Domain:TRAFFIC

We introduce TRAFFIC, a factored MDP-IP domain motivated by a real traffic inter-
section control problem modeled usingcellular transition model dynamics[21]. While
this is not meant to be an accurate large-scale traffic model over long stretches of road,
it should still approximately model local traffic propagation at busy intersections where
speeds are necessarily limited by queueing and traffic turn delays.

A graphical representation with examples of state variables are given in Figure 14.
We encode our traffic state as~x = (x1, . . . , xn) where~x ∈ {O,U}n indicating that
each traffic cellxi (1 ≤ i ≤ n) is either occupiedO or unoccupiedU .

Our basic traffic model forintermediate road cellsis that a car will move forward
into the next cell as long as it is unoccupied, otherwise it stops in its current cell and
waits.

For eachintersection road cellxj (i.e., leading into an intersection), we define a
state variabletj ∈ {turn, no-turn} indicating whether a car inxi will intend to turn
into oncoming traffic or not. The state variabletj is drawn randomly with probability
pt that a car will turn when a new car arrives. When determining the update forxj , we
note that it can always go straight or turn left on a green, butwhether it can cross the
opposing lane to make a right turn depends on the opposing traffic light state and the
opposing traffic cell statesto andxo (two opposing right-turning cars may safely turn
though and this is allowed by conditioning onto).

We refer to a boundary traffic cellxk as afeeder road cellsince new cars are
introduced at these points. We assume that when the cell is not occupied, new cars
arrive on a time step with probabilitypa.
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Finally, we have state variables~c encoding the current state of the light cycle.
The action set is simply to remain in the same state or advancein the sequence:
A = {advance, no-change}. In Figure 14, we have~c = (c1, c2, c3, c4), where one
may interpret each binaryci as indicating whether the intended light is green (or not).
However, eachci need not be binary, it could have an additional state for the period be-
tween green lights before advancing to the next cycle. We need not commit to a particu-
lar state sequence here, rather we simply rely on a model-specific functionnext-state(~c)
to generate the next state from the current when the lights advance.

With this high-level description, we now proceed to define the DCN, reward, and
specific TRAFFIC instance configurations used in this article.

Figure 14: Diagram showing a 4-way single-lane intersection with cells (dotted boxes) and various state
variables used in our state description. Note that we do not model road cells that exit the intersection as we
assume that cars freely exit the boundaries of the model once they have passed through the intersection.

TRAFFIC DCN Transition Model. Based on the above description, the transition
model is provided in a compact factored format as a dynamic credal network (DCN) [11,
15], subdivided into different functional subcomponents as follows.

Light cycle transition.Here we simply model the effect of ano-changeor advance
action on the light state:
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P (~c′|~c, a) =






1.0 a = no-change∧ ~c′ = ~c

1.0 a = advance∧ ~c′ = next-state(~c)

0.0 otherwise

Lane turning indicator.Here we assume that the probability of a car at the head of the
queue making a right turn ispt and that while a car is waiting, its turn decision does
not change:

P (t′j = turn|tj , xj) =






1.0 xj = O ∧ tj = turn

0.0 xj = O ∧ tj = no-turn

pt xj = U

It is difficult in traffic models to obtain an accurate estimate ofpt over all hours of the
day, so using our DCN, we allow the turn probability to fluctuate over time and thus
modelpmin

t ≤ pt ≤ pmax
t for 0 ≤ pmin

t ≤ pmax
t ≤ 1 (to be defined for specific problem

instances).

Intermediate road cell.The occupancy of a car in an intermediate road cellxi de-
pends on whether an occupying car can move forward into the next cell xi+1 and if so,
whether there is a car in the previous cellxi−1 that can move forward to take its place:

P (x′
i = O|xi−1, xi, xi+1) =






1.0 xi = O ∧ xi+1 = O

1.0 xi = U ∧ xi−1 = O

0.0 xi = otherwise

Feeder road cell.A feeder road cell simply serves as an input to the traffic network
with cars arriving at each unoccupied feeder cell with probability pa:
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P (x′
k = O|xk) =

{
1.0 xk = O ∧ xk+1 = O

pa otherwise

It is difficult in traffic models to obtain an accurate estimate of arrival probabilitiespa

over all hours of the day, so using our DCN, we allow the arrival probability to fluctuate
over time and thus modelpmin

a ≤ pa ≤ pmax
a for 0 ≤ pmin

a ≤ pmax
a ≤ 1 (to be defined

for specific problem instances).

Intersection road cell.The intersection road cells are the most complex cells to model
in a traffic network as traffic behavior depends on the light state, the occupancy of all
cells with green access to the intersection, and the state ofturning traffic. Here we
attempt to implement a basic model of traffic behavior takinginto account all of these
contingencies:

P (x′
j = O|xj , tj , xo, to,~c) =






0.0 xj = U ∧ xj−1 = U

1.0 xj = U ∧ xj−1 = O

0.0 xj = O ∧ tj = no-turn

0.0 xj = O ∧ tj = turn∧ xo = U

0.0 xj = O ∧ tj = turn∧ xo = O ∧ ¬green(~c, o)

1.0 xj = O ∧ tj = turn∧ xo = O ∧ green(~c, o)∧

to = no-turn

0.0 xj = O ∧ tj = turn∧ xo = O ∧ green(~c, o)∧

to = turn

Here we assume there are user-defined helper functionsgreen(~c, j) that extract the part
of the state~c indicating whether the intersection cellj has a green light (or not). We
also assume that when¬green(~c, o) holds, thenx′

j = xj (thereby making a simplifying
assumption of no turns on red).

TRAFFIC Reward Model. Because our goal is to reduce traffic congestion in the in-
tersection, our objective is to minimize the count of occupied road cells around an in-
tersection. Thus, an appropriate reward to maximize would be the count ofunoccupied
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cells6:

R(~x) =
n∑

i=1

I[Xi = U ]

Here, we get +1 reward for every cell that is unoccupied.

TRAFFIC Problem Instances. In this article we solve instances of TRAFFIC domain
with two opposing lanes. In these particular instances, we set the turn probability
minimum aspmin

t = 0 and maximum aspmax
t = 1 and furthermore constrain the

turn probabilitiesp1 andp2 of the two different lanes to be highly correlated using the
constraint|p1 − p2| ≤ 0.1. Additionally, the probabilitiesp3 andp4 of a car arriving
at either of the feeder cells for each lane use the probability boundspmin

a = 0.4 and
pmax

a = 0.6 and are constrained by|p3 − p4| ≤ 0.1.

8.2. Evaluation

In this section, we empirically evaluate four algorithms:Flat Value Iterationfrom
(10) and our three contributions from the previous section for solving factored MDP-
IPs: (i)SPUDD-IPthat offers an exact solution; (ii)APRICODD-IPand (iii) Objective-
IP that offer bounded approximate solutions.

As an additional point of comparison, we note that recent years have seen the emer-
gence of very fast approximate factored MDP solvers based onApproximate Linear
Programming(ALP) [5]. Recently, such techniques have been extended to factored
MDP-IPs [9]. Thus, wealsocompare the approximate solutionsAPRICODD-IPand
Objective-IPbased on approximate value iteration with anApproximate Multilinear
Programming(AMP) algorithm from [9].AMPperforms linear-value function approx-
imation using a fixed set of basis functions and a compact constraint encoding for
multilinear optimization problems that exploits structure in the DCN.

For all algorithms, we setmaxIter = 50 for SYSADMIN andmaxIter = 75 for
the other domains withγ = 0.9. In the next subsections we present our main results.

8.2.1. Flat Value Iteration vs. SPUDD-IP
In Figure 15 we compare the running time of the two exact solution methods:

SPUDD-IP and Flat Value Iteration which computeV ∗(~x). 7 Solutions not complet-
ing in five hours are markedDid Not Finish (DNF). We note that SPUDD-IP did not
outperform Flat Value Iteration on the SYSADMIN domains because the exact value
function has little structure as an ADD. However, both TRAFFIC and FACTORY had
highly structured value functions andup to two orders magnitude time improvementis
demonstrated by SPUDD-IP, largely due to the ability of the PADDs to aggregate com-
mon nonlinear objectives, thus saving a substantial numberof calls to the nonlinear
solver and therefore time.

6We useI[·] as an indicator function taking the value1 when its argument is true and0 otherwise.
7We note that to do this comparison, we need to slightly extend Flat Value Iteration algorithm from (10)

to allow for multilinear expressions in the transition probability table.
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Figure 15: Time performance comparison for TRAFFIC, SYSADMIN and FACTORY problems using SPUDD-
IP and Flat Value Iteration. The name includes the number of variables in each problem, so the corresponding
number of states is2#variables.

8.2.2. APRICODD-IP vs. Objective-IP
In order to see the scalability of our approximate solutions, in Figure 16 we com-

pare the running time for APRICODD-IP and Objective-IP vs. the number of state vari-
ables usingδ = 0.1 for FACTORY, TRAFFIC, and the three configurations of SYSAD-
MIN . We note that Objective-IP runs faster than APRICODD-IP inall domains when
running with a fixed bound on maximum error per iteration (i.e., δ = 0.1).

In order to evaluate the policy returned by our AVI solutions, we compute for each
fixed value ofδ (δ is the maximum error per iteration w.r.t.Vmax), the True Approxi-
mation Error (TAE) given by:

max~x|V
∗(~x) − Vapprox(~x)| (19)

whereVapprox(~x) is the value returned by APRICODD-IP or Objective-IP andV ∗(~x)
is the optimal value computed by SPUDD-IP.

In the following plots we ranSolvefor a range ofδ. In Figures 17 and 18 we
present a detailed comparison of the time, size (number of nodes in the ADD of the
last iteration), and number of nonlinear solver calls required by APRICODD-IP and
Objective-IP plotted vs. the TAE fortraffic-10, respectively. We note little relationship
between the space required by the ADD value representation (number of nodes) and
the running times of the two algorithms (space actually increases slightly for Objective-
IP while running time decreases, see Figure 18). But what is striking about these
plots is that the running time of each algorithm is directly correlated with the number
of nonlinear solver calls made by the algorithm (taking up to100ms in some cases),
reflecting our intuitions that the time complexity of solving MDP-IPs is governed by
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Figure 16: Time performance of APRICODD-IP and Objective-IP for TRAFFIC, SYSADMIN and FACTORY

problems forδ = 0.1.

the computational overhead of nonlinear optimization.
Figure 19 shows the advantage of Objective-IP pruning that uses the upper and

lower values to approximate the leaves in PADDs. For all problems, as the number of
nodes reduced to a constant grows, we see that the True Approximation Error increases,
but also the number of calls to the multilinear solver decreases. These figures also show
cases where the Objective-IP approach to PADD reduction occurs with great success,
since the original PADD sizes for the exact cases are very large, but can be reduced by
orders of magnitude in exchange for a reasonable amount of approximation error.

In Figures 20, 21, 22, 23 and 24 we show a comparison of the TrueApproximation
Error (TAE) vs. running times for three problems and three different sizes of each
problem (varyingδ). The results here echo one conclusion: Objective-IP consistently
takes less time than APRICODD-IP to achieve the same approximation error andup
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Figure 17: Time, nonlinear solver calls and ADD size of APRICODD-IP prun-
ing for the traffic problem with 10 variables. Results are plotted for δ ∈
{0.0, 0.025, 0.05, 0.075, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}.
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Figure 18: Time, nonlinear solver calls and ADD size of Objective-IP prun-
ing for the traffic problem with 10 variables. Results are plotted for δ ∈
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to one order of magnitude less timethan APRICODD-IP. This time reduction can be
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Figure 19: Number of nonlinear solver calls and number of nodesreduced to a constant vs. True Ap-
proximation Error for Objective-IP pruning for three different problems. Results are plotted forδ ∈
{0.0, 0.025, 0.05, 0.075, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}.

explained by the decreased number of calls to the multilinear solver.

8.2.3. Approximate Value Iteration vs. Approximate Multilinear Programming
In Figures 20, 21, 22, 23 and 24 we compare the two approximatesolution methods,

APRICODD-IP and Objective-IP, with our implementation of approximate multilinear
programming (AMP) [9] for MDP-IPs. We usedsimplebasis functions (one for each
variable in the problem description) andpairwisebasis functions (one for each pair of
variables that have a common child variable in the DCN).

When it does finish within a limit of ten hours, AMP takes only a few seconds to
produce an approximate solution for each problem (except for the FACTORY domain
for which it did not return a solution). Comparing the algorithms in terms of their
true approximation error, we observe that: (a) in the SYSADMIN problem (Figures
22, 23, 24), AMP withpair basis functions outperforms APRICODD-IP and obtains
a solution 2-3× larger than the error of Objective-IP, but in significantly less time; (b)
for the TRAFFIC problem (Figure 21), AMP with thesimplebasis solution obtains a
solution with 2-3× more error than Objective-IP, still in significantly less time; and (c)
in the case of the FACTORY problem (Figure 20), AMP only can solve one instance,
while Objective-IP can solve the rest within the time limit with much lower error. These
results lead us to conclude that Objective-IP consistentlygives an error at least 2-3×
lower than AMP and sometimes runs as fast as the AMP solution,while in other cases
running slower.
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Figure 20: True Approximation Error vs. time required for APRICODD-IP, Objective-IP and MPA with
simple basis functions (MPA pairwise did not finish in a ten hour time limit and MPA with simple basis
functions did not finish for two problems) for three FACTORY problems.

8.2.4. Results Summary
Over all problems, given the unpredictable performance of AMP (which has no

error guarantees and often does not finish within the time limit) and the consistently
worse performance of APRICODD-IP compared to Objective-IP, Objective-IP stands
out as the more reliable option: it offers guaranteed error bounds and empirically it of-
fers consistently lower error rates (the lowest of any algorithm) with overall reasonable
running times (if not the fastest).

9. Related Work

TheBounded-parameter Markov Decision Process (BMDP)[22] is a special case
of an MDP-IP, where the probabilities and rewards are specified by constant inter-
vals. Exploiting the specific structure available in a BMDP given by the intervals, the
algorithm in [22] can directly derive the solution without requiring expensive optimiza-
tion techniques. Recent solutions to BMDPs include extensions of real-time dynamic
programming (RTDP) [23] and LAO* [24, 25] that search for thebest policy under
the worst model. TheMarkov Decision Process with Set-valued Transitions (MDP-
STs)[26] is another subclass of MDP-IPs where probability distributions are given
over finite sets of states. Since BMDP and MDPST are special cases of MDP-IPs,
we can represent both by “flat” MDP-IPs. Then the algorithms defined in this paper
clearly apply to both BMDPs and MDPSTs, howevertheir solutions do not generalize
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Figure 21: True Approximation Error vs. time required for APRICODD-IP, Objective-IP and MPA with
simple basis and pairwise basis functions for TRAFFIC problem.

to the factored MDP-IPswe examined in this paper, which allow amultilinear prob-
ability representation resulting from the use of a DCN. Furthermore, MDP-IPs allow
for general linear constraints between probabilities, which are prohibited in interval
bounded probability settings like BMDPs. This use of general linear constraints is par-
ticularly useful when we do not know the probabilities, but only relative constraints
between them (e.g., two probabilities in the TRAFFIC problem are unknown but highly
correlated).

Previous work on “flat” MDP-IPs [6, 7, 27] focused on credal sets (represented as
polytopes) proposed algorithms based on dynamic programming, but they only solved
very small problems. It is important to notice that our factored MDP-IP model is
more expressive than the simple “flat” MDP-IPs referred to inthose papers; as we
saw in Section 4, the joint DCN transition probabilities in factored MDP-IPs may be
nonlinear, while for flat MDP-IPs, the transition probability for any next state, given a
previous state and action, can only be trivially linear (a single parameterpi).

As we have discussed in Section 8, it is interesting to note that if we allow only
interval bounds on the parameters in the CPTs of the DCN of thefactored MDP-IP
then the result is still a more expressive model than a “flat” MDP-IP or BMDP, i.e., the
transition expression for any next state given a previous state and action can be a multi-
linear expression of~p. Consequently, to defineFlat Value Iterationfor the comparative
analysis from the previous section, we note that we already needed to slightly extend
previous work to allow for multilinear expressions in the transition probability tables
required to match the expressivity of factored MDP-IPs.
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Figure 22: True Approximation Error vs. time required for APRICODD-IP, Objective-IP and MPA with
simple basis and pairwise basis functions for SYSADMIN problem with unidirectional-ring topology.

A final piece of work that is related with MDP-IPs is atwo-player zero-sum alter-
nating Markov Game[28] (a.k.a, aStochastic Game[29]). This is a subset of “flat”
MDP-IPs if intermediate state variables are introduced to represent opponent actions
and the parameters specify the distribution over opponent actions is allowed to vary in
the full interval[0, 1]. However, it might be computationally wasteful to use a “flat” or
factored MDP-IP algorithm to solve a Stochastic Game since aminimization over a fi-
nite set of opponent actions would likely be computationally cheaper than a (nonlinear)
optimization over the probability parameters required in an MDP-IP solution. Hence, it
seems more computationally advantageous to use specialized algorithms for the solu-
tion of finite action Stochastic Games to exploit the specificstructure found there than
to attempt to use any of the more general-purpose MDP-IP algorithms presented here.

Finally, probability trees were also used to represent convex sets of probabilities as-
sociated to intervals to obtain posterior intervals of probability [30]. Probability trees
can compactly representcontext-specific independence(CSI), but as we saw in Sec-
tion 5, our parameterized ADDs are DAGs that not only exploitCSI but also shared
function structure. Additionally, we used PADDs to represent general probability ex-
pressions (multilinear for the case of factored MDP-IPs), not just probability intervals.

10. Concluding Remarks

Motivated by the real-world need to solve MDPs with uncertainty in the transition
model, we made a number of novel contributions to the literature in this article. In
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Figure 23: True Approximation Error vs. time required for APRICODD-IP, Objective-IP and MPA with
simple basis and pairwise basis functions for SYSADMIN problem with bidirectional-ring topology.

Section 4, we introduced the factored MDP-IP model based on Dynamic Credal Net-
works (DCNs). In Section 5, we contributed the novel parameterized ADD (PADD)
data structure containing leaves with parameterized expressions; we showed how to
efficiently obtain a minimal canonical representation of a PADD; and we showed how
to efficiently perform a variety of unary and binary operations on PADDs. In Section 6,
we contributed the exact factored MDP-IP solution algorithm SPUDD-IP and showed
how to efficiently make use of the PADD in all steps of this factored MDP-IP value
iteration algorithm. The resulting SPUDD-IP algorithm yielded up to two orders of
magnitude speedup over existing value iteration techniques for MDP-IPs.

To futher enhance the SPUDD-IP algorithm, in Section 7, we contributed two
novel approximate value iteration extensions: APRICODD-IP and Objective-IP. While
APRICODD-IP is the obvious extension based on previous work, it did not specifically
target the main source of time complexity for solving MDP-IPs — calls to the non-
linear solver during MDP-IP value iteration. Based on this observation, we developed
an alternate and novel approximation method that directly approximated the objec-
tive of multilinear solver calls, proving the theoretical correctness of this innovative
bounded error approximation approach and substantially reducing the number of non-
linear solver calls and thus running time of approximate value iteration. In Section 8,
we performed comparisons of the above algorithms to a previously existing “flat” value
iteration algorithm as well as a state-of-the-art approximate multilinear programming
(AMP) solver for MDP-IPs.

Altogether these novel contributions — and particularly their culmination in the
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Figure 24: True Approximation Error vs. time required for APRICODD-IP, Objective-IP and MPA with
simple basis and pairwise basis functions for SYSADMIN problem with independent bidirectional topology.

Objective-IP algorithm — enable the (bounded approximate)solution of factored MDP-
IPs that canscale orders of magnitudebeyond existing flat value iteration approaches to
MDP-IPs and yieldsubstantially lower errorsthan other existing approximate MDP-IP
solvers like approximate multilinear programming (AMP) that have noa priori error
guarantees and depend on appropriate basis function generation algorithms.

For future work, we note that PADDs represent the tip of the iceberg in the use of
advanced decision diagram techniques for solving factoredMDP-IPs. Following the
success of the Affine extension of ADDs for solving factored MDPs [31] with additive
and multiplicative structure, it would be interesting to extend this technique to PADDs
to exploit the same structure in MDP-IPs. Such advances would ideally reduce the
running time of solutions for factored MDP-IP problems likeTRAFFIC that contains
significant additive structure in their reward definition and might be amenable to even
further exploitation of factored MDP-IP problem structure.

Finally, we note that the exploration of objectives other than maximin optimality
for factored MDP-IPs would also be interesting. Although the maximin criteria works
fine in a domain with many imprecise parameters (like in the SYSADMIN domain we
have used in our experiments), we observe that for a problem with large imprecision
in terms of very loose constraints (e.g.0.1 ≥ pij ≥ 0.9), the maximin criterion may
be too adversarial — it may reflect a worst-case that would be extremely unlikely in
practice. Hence, future work might also examine other methods of handling transition
uncertainty, such as a Bayesian approach [32], and determine whether factored MDP-
IPs and PADDs could enhance solution approaches for those alternate criteria.
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