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Abstract

When modeling real-world decision-theoretic planning peats in the Markov De-
cision Process (MDP) framework, it is often impossible tdaot a completely ac-
curate estimate of transition probabilities. For exampkgural uncertainty arises in
the transition specification due to elicitation of MDP tritiest models from an expert
or estimation from data, or non-stationary transitionribstions arising from insuffi-
cient state knowledge. In the interest of obtaining the malstist policy under transi-
tion uncertainty, the Markov Decision Process with Impseciransition Probabilities
(MDP-IPs) has been introduced to model such scenarios.rtumiately, while various
solution algorithms exist for MDP-IPs, they often requir¢egnal calls to optimiza-
tion routines and thus can be extremely time-consuming actie. To address this
deficiency, we introduce thfactoredMDP-IP and propose efficient dynamic program-
ming methods to exploit its structure. Noting that the kemnpatational bottleneck
in the solution of factored MDP-IPs is the need to repeatsdlye nonlinear con-
strained optimization problems, we show how to target axipration techniques to
drastically reduce the computational overhead of the neali solver while producing
bounded, approximately optimal solutions. Our resultsxshp to two orders of mag-
nitude speedup in comparison to traditional “flat” dynamiogramming approaches
and up to an order of magnitude speedup over the extensi@tifréd MDP approx-
imate value iteration techniques to MDP-IPs while prodgdime lowest error of any
approximation algorithm evaluated.
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1. Introduction

Markov Decision Processes (MDP) [1] have becomedéédactostandard model
for decision-theoretic planning problems and a great daalsearch in recent years has
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aimed to exploit structure in order to compactly represedtefficiently solve factored
MDPs [2, 3, 4, 5]. However, in many real-world problems, itsimply impossible
to obtain a precise representation of the transition pritiiab in an MDP. This may
occur for many reasons, including (a) imprecise or configcglicitations from experts,
(b) insufficient data from which to estimate reliable predsansition models, or (c)
non-stationary transition probabilities due to insuffitistate information.

For example, in an MDP for traffic light control, it is diffiqulo estimate the turn
probabilities for each traffic lane that has the option ohgastraight or turning. These
lane-turning probabilities may change during the day asighout the year, as a func-
tion of traffic at other intersections, and based on holideygspecial events; in general
it is impossible to accurately model all of these complexeselencies. In this case it
would be ideal to have a traffic control policy optimized oaaiange of turn probabil-
ities in order to be robust to inherent non-stationarityhia turn probabilities.

To accommodate optimal models of sequential decision-mggiki the presence of
strict uncertainty over the transition model, the MDP withprecise transition proba-
bilities (MDP-IP) was introduced [6, 7]. While the MDP-IP mssa robust framework
for the real-world application of decision-theoretic piéng, its general solution re-
quires the use of computationally expensive optimizatimutines that are extremely
time-consuming in practice.

To address this computational deficiency, we extend thefedtMDP model to
MDP-IPs by proposing to replace the usual Dynamic Bayes NBMN) [8] used in
factored MDPs with Dynamic Credal Nets (DCNSs) [9] to suppmtpact factored
structure in the imprecise transition model of factored MIPB. Then we propose
efficient, scalable algorithms for solving these factoreBRIPs. This leads to the
following novel contributions in this work:

e We introduce the parameterized ADD (PADD) with polynomigpeessions at
its leaves and explain how to extend ADD properties and dipeisato PADDs.

e We extend the decision-diagram based SPUDD and APRICOD®@itims for
MDPs [3, 4] to MDP-IP algorithms that exploit DCN structuri@a ADDS.

e As shown in our experimental evaluation, the generalinatb SPUDD and
APRICODD to MDP-IPs using PADDs is just the first step in obtag effi-
cient solutions. Observing that the key computationall&o#ck in the solu-
tion of MDP-IPs is the need to repeatedly solve nonlineastramed optimiza-
tion problems, we show how to target our approximations &stically reduce
the computational overhead of the nonlinear solver whikedpcing provably
bounded, approximately optimal solutions.

As our results will demonstrate, using the above contrimgiwe can obtain up
to two orders of magnitude speedup in comparison to trawititflat” dynamic pro-
gramming approaches [6]. In addition, our best approxirfettored MDP-IP solver
yields an order of magnitude speedup over a direct genatigliz of state-of-the-art
approximate factored MDP solvers [4] for factored MDP-I&s¢ implemented in this
work) and consistently produces the lowest error of all epipnate solution algorithms
evaluated.



2. Markov Decision Processes
Formally, an MDP is defined by the tupfet = (S, A, P, R, T, v), where [1, 10]:
e Sis afinite set of fully observable states;

e A is a finite set of actions;

P(s']s,a) is the conditional probability of reaching staie € S when action
a € Ais taken from state € S;

e R:Sx A — Risafixed reward function associated with every state ardract

T is the time horizon (number of decision stages remainingjéaision-making;

~ = [0,1) is adiscount factor(the reward obtained stages into the future is
discounted in the sense that it is multipliedy.

A stationary policyr : S — A indicates the action = 7(s) to take in each state
(regardless of stage). The value of a stationary potity defined as the expected sum
of discounted rewards over an infinite horizg#'| = oo) starting in state at stage 0

and following
Z’Yth‘SO = S] ) 1)
t=0

whereR; (abbreviation ofR; (s, w(s¢)) is the reward obtained at stagehen the agent
is in states; and takes actiom(s;). (1) can be decomposed and rewritten recursively
based on the values of the possible successor states as follows:

Va(s) = Ex

Vi(s) = R(s,m(s) +7v Y P(s'|s,7(s))Va(s'). )
s'eS
Our objective is to find an optimal poliey* that yields the maximal value in each state,
i.e., Vs, Vie(s) > Vur(s).

A well-known algorithm to solve an MDP igalue iteration[1]. Fort > 0, it
constructs a series @fstage-to-go value functiong®. Starting with arbitraryl’®,
value iteration performs value updates for all statesomputingl’* based o/~ 1.
The Q-value for state and actioru is:

Q'(s,a) = R(s,a) +7 Y _ P(s's,a)V' (s 3
s'eS

where the best value attainable at decision stagel states is

Vi(s) = max Q'(s,a). 4)

a€A

We define the greedy policy, w.r.t. somel as follows:

7y (s) = argmax (R(s7 a)+y Z P(s’|s7a)V(s')> (5)

a€A s’es



At the infinite horizon, the value function provably convesg

tlim max [V(s) — ViTl(s) =0 (6)
leading to a stationary, deterministic optimal policy = 7y~ [1]. For practical MDP
solutions, we are often only concerned witloptimality. If we terminate the MDP
when the following condition is met:

e(1-7)

> ™

max [V(s) — Vi7l(s)| <
S
then we guarantee that the greedy poligy: loses no more thaain value over an
infinite horizon in comparison te* [1].

3. MDPs with Imprecise Transitions

As described in our introductory traffic example, it is oftetessary to work with
imprecise probabilities in order to represent incomplatebiguous or conflicting ex-
pert beliefs about transition probabilities. AMDP with imprecise transition proba-
bilities (MDP-IP) ! is specifically designed for this setting and is simply areeston
of the MDP where the transition probabilities can be impelsi specified. That is,
instead of a probability measui®(-|s,a) over the state spac&, we have asetof
probability measures. For example, I{X) be the probability density function for
X = {x1,x9,z3} defined with the following constraint set:

C={(P(e) <23,
P(x3) <2/3,
2P(x1) > P(x2),
P(z1) + P(z2) + P(x3) = 1}. (8)

The two-dimensional region of all probability measureg s&isfyC' is shown as the
gray region in Figure 1. This is referred to asr@dal seti.e., a set of probability
measures (or a set of distributions for a random variablE) Ve denote a credal set
of distributions for variableX by K (X).

Next we slightly specialize the definition of credal set t@&fy uncertainty in
MDP-IP transition probabilities:

Definition 3.1. Transition credal set.A credal set containing conditional distributions
over the next state, given a state and an actiom, is referred to as sansition credal
sets[11] and denoted by<(s’|s,a). Thus, we haveP(-|s,a) € K(:|s,a) to define
imprecisely specified transition probabilities.

1The term MDP-IP was proposed by White Il and Eldeib [7], wiBietia and Lave Jr. [6] adopt instead
the termMDP with Uncertain Transition Probabilities
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Figure 1: A credal set example represented by the gray redidwe credal set is defined by the triplets
{P(z1), P(z2), P(x3)} that belong to this region.

We assume that all credal sets are closed and convex, an @gsuthat is often
used in the literature, and that encompasses most praagiphtations [12]. We further
assume stationarity for the transition credal 9€{s’|s, a); that is, they do not depend
on the stage. While K(s'|s, a) is non-stationary, we note that this does not require
P(s'|s, a) to be stationary in an MDP-IP: distributioi¥ s’ |s, a) may be selected from
the corresponding credal sets in a time-dependent man8kr [1

Formally, an MDP-IP is defined byt ,;p = (S, A, K, R, T, ~). This definition is
identical to the MDPM, except that the transition distributiaf is replaced with a
transition credal sek’. We will represent’ implicitly as the set of transition proba-
bilities consistent with a set of side linear inequality swaintsC, like (8), over the
probability parameters.

There are several optimization criteria that can be usecefimel the value of a
policy in an MDP-IP. In the context of the discounted infirtitlerizon setting that we
focus on in this work, there is always a deterministic staiy policy that ismaximin
optimal [6] (i.e., no other policy could achieve greaternealunder the assumption
that Nature's select®(s’|s, a) adversarially to minimize value); moreover, given the
assumption that is finite and the credal séf is closed, this policy induces an optimal
value function that is the unique fixed-point solution of

V*(s) = max min {R(s, a) + Z P(s']s, a)V*(sl)} . 9)

a€A PeK
s’es

There are various algorithms for solvifigt (i.e., enumerated state) MDP-IPs based
on dynamic programming [6, 7]. In this work, we build on a flatue iteration solution
to MDP-IPs [6]:

V*(s) = max min {R(s, a) + Z P(s'|s, a)th(sl)} (10)

a€A PEK
s'es



Value iteration for MDP-IPs is the same as that given in (3) &) for MDPs except
that now foreverystates, we optimize our action choice € A w.r.t. theworst-case

distribution P € K that minimizes the future expected value. Thus we ensutdttba
resulting value function and policy are robust to the worgtome that Nature could
choose in light of the future valug!~!(s") that we expect to achieve.

As we noted before, Naturetsue transition functionP may be non-stationary;
Nature can choose different P € K for everyactiona andeverystates andevery
decision stage. As an example of such non-stationarity that may occur ictpre, in
the previously discussed traffic scenario, we observedrdifit turn probabilities may
differ on holidays versus normal weekdays even though theeelaed traffic controller
may not be explicitly aware of the holiday in its state dgsttwh. However, as long as
such transition non-stationarity can be boundedtby K, convergence properties of
MDP-IP value iteration in (103till hold [13].

In [14, 9] we have shown how MDP-IP solutions can be formulae a bilevel
or multilinear programming problem. In this paper we areiliasted in extending the
dynamic programming solution for MDP-IPs [6, 7] outlinecbab to efficiently solve
problems with a factored state description, which we discuext.

4. Factored MDP and MDP-IPs

4.1. Factored MDP

In many MDPs, it is often natural to think of the state as angassent to multi-
ple state variables and a transition function that compagécifies the probabilistic
dependence of variables in the next state on a subset oblesim the current state.
Such an approach naturally leads us to defif@etored MDP[2], where S = {Z}
with Z € {0,1}". Here,Z = (x1,...,2,) is a joint assignment to a vectdf of n
binary state variableX = (Xi,...,X,).2

The definition of actions € A is unchanged between MDPs and factored MDPs,
so the reward can simply be specified R&¢, a). The transition probabilities in a
factored MDP are encoded usibynamic Bayesian Networks (DBNS8J. A DBN is
adirected acyclic graph (DAGyith two layers: one layer represents the variables in
the current state and the other layer represents the neat(sigure 2a). NodeX;
andX/ refer to the respective current and next state variables cdhnection between
these two layers defines the dependences between statelemmiar.t. the execution
of an actiona € A. Directed edges are allowdbm nodes in the first layeinto the
second layer, and also between nodes in the second layse (dtter edges are termed
synchronic arcs We denote bypa,(X!) the parents ofX| in the graph for action
a. The graph encodes the standard Bayes net conditionaléndepce assumption
that a variableX! is conditionally independent of its nondescendants giteparents,
which incidentally for a DBN also encodes the Markov assuompfthe current state
is independent of the history given the previous state). (ideeof a DBN leads to the

2While our extensions are not necessarily restricted to pistate variables, we make this restriction
here for simplicity of notation.
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Figure 2: a) A Dynamic Bayesian Network (DBN) for an actienb) conditional probability table for
X! = 1; c) conditional probability table foX’ = 0.

following factorization of transition probabilities:

n

P(@|&,a) = [ [ P(=}lpa,(X}). a). (11)
=1

Figure 2b shows the conditional probability table (CPT)/X), = 1|pa,(X3%), a);
Figure 2c shows the same CPT f&, = 0. The tables show all combinations of vari-
able assignments for the parents\df, i.e., pa(X3); by definition, the sum of each row
in Figure 2b and Figure 2c must be 1, which can be easily vdrifie

4.2. Factored MDP-IP

As our first major contribution, we extend the factored MDPresentation [2] to
compactly represent MDP-IPs. This simply requires modiyithe DBN transition
representation to account for uncertainty over the exaaosttion probabilities. Before
we formally describe this transition function though, wetfintroduce one possible ex-
tension of the 8sADMIN factored MDP to allow for imprecise transition probabdgi
which we use from here out as a running example of a factore&@NMb

SYSADMIN domain [5]. Inthe SrSADMIN domain we have: computers, ..., c,
connected via different directed graph topologies: (ajlnectional ring, (b) bidirec-
tional ring and (c) independent bidirectional rings of paif computers (Figure 3).
Let state variableX; denote whether computey is up and runningX; = 1) or
not (X; = 0). LetConn(c;, ¢;) denote a connection from) to ¢;. Formally, the CPTs
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Figure 3: Connection topologies for thery SADMIN example: a) unidirectional-ring, b) bidirectional ring
and c) independent bidirectional rings of pairs of compuiiglrs

in the transition DCN [9] for this domain have the followingyin:

(1)  if a =reboot(c;) : then 1
(i¢)  if a # reboot(c;) Nx; =1: then
N [{z;|i#inz;=1AConn(c;,c;)}|+1
P(X] = 1|T,a) = Pit (@ TiAConn(e; e 1+
(1ii) if a # reboot(c;) Nx; =0: then
. H=jli#inz;=1nConn(cj,ci) }H+1
Piz " TFiAConn(e; c0) I+

12)

and the constraint§’ on the probabilities variables are
C = {0.85+pi2 < pir < 0.95}.

We haven + 1 actions: reboot(cy), . . ., reboot(c,,) andnotreboot, the latter of
which indicates that no machine is rebooted. The intuitiehibd Equation (12) is
that if a computer is rebooted then its probability of rumnin the next time step is 1
(situation i); if a computer is not rebooted and its curreatesis running (situation ii)
or not running (situation iii), the probability depends be fraction of computers with
incoming connections that are also currently running. Tiobability parameters;;,
pi2 and the constraint’ over them define the credal sé{g-|Z, a).

The reward for 8sSADMIN is simply 1 if all computers are running at any time step
otherwise the reward is 0, i.eR(Z) = []_, z;. An optimal policy in this problem
will reboot the computer that has the most impact on the arpefuture discounted
reward given the network configuration.

Like the previous definition of an enumerated state MDPH®skt of all legal tran-
sition distributions for a factored MDP-IP is defined asradal setK. The challenge
then is to specify such transition credal sets in a factoradmer that is itself compact.
For this, we propose to uslynamic credal networks (DCNs) special case of credal
networks [11, 15], as an appropriate language to expresw éattransition credal sets.

Definition 4.1. Factored transition credal set. A credal set containing conditional
distributions over the values of a variabtg, given the values ofa,,(X;) (the parents
of X; in the graph for actiom), is referred to as &ctored transition credal seind
denoted byK, (z;|pa,(X;)).
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Figure 4: a) Dynamic Credal Network for actiaotrebootfor an unidirectional-ring topology of YSSAD-
MIN domain with 2 computers. b) Conditional probability table fbe state variables; = 1 and
X% = 1 and the constraints related to the probabilities. c¢) Theraterized ADD representation for

P(x)|®1, z2,notrebooj that we callCPTnombm
test and a dashed line indicates the fal§ebfanch.

A solid line indicates the truel{ branch of a variable

Definition 4.2. Dynamic credal network. A Dynamic credal network (DCN) is a gen-
eralization of a DBN. Different from the definition of a DBNy & DCN each variable
X is associated with factored transition credal 9€t$x;|pa,,(X;)) for each value of
pa,(X;). We assume that a DCN represenisiat credal seff15, 11] over all of its
variables consisting of all distributions that satisfy fhetorization in Equation (11),
where each CPT distributioR (z}|pa,(X}),a) is an element of the transition credal
setK,(z}|pa,(X!)) associated with the DCN.

A DCN example is shown in Figure 4a. For each variakilein a DCN, we have
a conditional probability table (CPTith imprecise probabilities. If we examine the
CPTs in Figure 4b, we note that entries are specified by pilitygiarametersp;; (:
for variable X! and; for the jth parameter in the CPT foX|). Furthermore, we note
that we have a set of side linear constraints on tipgséshown in the boxes below the
CPT, collectively call this constraint s€f). We usep’to denote a vector containing all
parameter values that are free to vary within the given dreeta (i.e., that satisfy the
probability constraintg’ of the DCN).

We note that the joint transition probability may be nondinén the probability
parameterg. However, we explicitly introduce the following restricti to prevent
such nonlinearities:

Restriction 4.3. DCN parameter restriction for factored MDP-IP CPTs: a param-
eterp;; may only appear in the CPT fo¥;.

This restriction prevents the multiplication pf; by itself when CPTs for eacK’
are multiplied together to determine the joint transitiastribution in the DCN. This



subset of nonlinear expressions, where the exponent of gadh either 0 or 1, is
referred to as aultilinear expression. To see the multilinearity of the transitiontppro
ability in Figure 4, we observ® (X = 1, X} = 1|X; = 1, X5 = 1, notreboot) =
P11p21-

When combined with a set of constraitsn thep;;, there are efficientimplemen-
tations that we can use in practice to solve the resuttingjilinear program Interest-
ingly, because there are no additional restrictions onitieat constraintg’ defined
over thep;; in a multilinear program, Restriction 4.3 actually turng tbe a minor
limitation in practice as we demonstrate in the experimeddenains of Section 8.

Even though we can qualitatively represent the conditiotEpendence properties
of a distribution using DCNs, there are certain independsiicat we cannot represent
with the Credal network structure, e.g., independenceshitid for specific contexts
(assignments of values to certain variables) knowr@gext-specific independence
(CSI) [16]. In order to compactly represent CSl and sharedtfan structure in the
CPTs for an MDP-IP, we propose a novel extensioralgkbraic decision diagrams
(ADDs)[17] calledparameterized ADDs (PADDs)nce the leaves are parameterized
expressions as shown in Figure 4c. PADDs will not only all@stacompactly repre-
sent the CPTs for factored MDP-IPs, but they will also enalffieient computations
for factored MDP-IP value iteration operations as we oetliext.

5. Parameterized Algebraic Decision Diagrams

Algebraic decision diagrams (ADD$)7] are a generalization of orderddhary
decision diagrams (BDDghat represent boolean functiof®, 1}™ — {0,1} [18]. A
BDD is a data structure that has decision nodes, each nodiethalvith a booleatest
variable with two successor nodéglow) andh (high). The arc from a node to its suc-
cessol (h) represents an assignmeiit ) to the test variable. BDDs are DAGs whose
variable tests on any path from root to leaf follow a fixed tataiable ordering. BDDs
are used to generate the value of a boolean function as fllgiven assignments to
the boolean test variables in a BDD, we follow branchesh, until we get to a leaf,
which is the boolean value returned by the function. The aliffgrence between an
ADD and a BDD is that terminal nodes in an ADD are real values, ADDs permit
the compact representation of functiofts 1} — R. BDDs and ADDs often provide
an efficient representation of functions with context-sfieindependence [16] and
shared function structure. For example, the reward fundtior,, 22, x3) = Zle T;
represented in Figure 5 as an ADD exploits the redundanttsiiel of subdiagrams
through its DAG representation.

Operations on ADDs can be performed efficiently by explgitiheir DAG struc-
ture and fixed variable ordering. Examples of efficient AD2igiions are unary op-
erations such asin, max (return the minimum or maximum value in the leaves of a
given ADD), marginalization over variablei(mexi) that eliminates a variable; of
an ADD; binary operations such as additian)( subtraction ¢©), multiplication (),
division (©), and evemmin(-, -) andmax(-, -) (return an ADD with min/max values in
the leaves). We refer the reader to [17] for details.

Parameterized ADDs (PADDs)are an extension of ADDs that allow for a com-
pact representation of functions frof, 1} — E, whereE is the space of expressions

10
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Figure 6: a) Conditional probability table for the stateiahte X/, for actiona;. b) The Parameterized ADD
representation foP (X} = 1|x1, x2, 3,74, a1).

parameterized by (in our case, we further restrict this to the space of mokiir ex-
pressions op). For example, the CPT in Figure 6 represented as a PADD ioenta
leaves consisting of single parameters while Figure 8d sleoRADD with a leaf con-
taining a more complex parameterized expression.

In the following, we formally define PADDs and their basic cgt®ns needed
to construct efficient solutions for MDP-IPs. Because PARDsintroduced to solve
MDP-IPs, we make the following restrictive assumption$wa allow only multilinear
expressions in the leaves; (b) we only define a subset of PARdDations that could
be inherited from ADDs; and (c) we only show these operatiyeslosed (i.e., yield a
resulting PADD with multilinear leaves) for the operatioveeded in MDP-IPs. Finally,
we contribute a new unary operatibfinParameterOu{ming) specific to PADDs.

5.1. PADD: Formal Definition, Properties and Operations

PADDs generalize the constant real-valued leaves of ADOmtpnomials Poly)
expressed in a sum-of-products canonical form:

do + Z d; H Dij (13)

11



where thel; are constants and the; are parameters. Formally, we can define a PADD
by the following BNF grammat:

F = Poly|if (F"®") then F}, else F}
Poly == do+ Zi d; Hj Pij

This grammar is notationally overloaded, so we briefly expla PADD nodeF
can either be a terminal node with an expression of #pk or a decision node with
variable test"“" (e.g.,X; or X,,) and two branches;, and F; (both of grammar non-
terminal typeF’), whereFj}, is taken wherf**" = 1 and F} is taken whernF%" = 0.

The value returned by a functighirepresented as a PADPD containing (a subset
of) the variables X1, - - - , X,, } with variable assignment € {0,1}" can be defined
recursively by:

if F'= Poly : Poly
Val(F,p) =< if F % Poly A p(F"") = true :  Val(Fp,p)
if F' £ Poly A p(FY*") = false :  Val(Fy, p)

This recursive definition oF al(F, p) reflects the structural evaluation of a PADTby
starting at its root node and following the branch at eaclisttet node corresponding
to the variable assignment jn— this continuing until a leaf node is reached, which
is then returned aBal(F, p). As an example, for the PADD represented in Figure 6,
assigningy = {1,0, 1,0} for variables{z, x2, 3, 24} yieldsVal(F, p) = pa1.

Like ADDs, for any functionf(z1,--- ,z,) and a fixed variable ordering over
x1, -+ , %y, areduced PADD is defined as the minimally sized orderedsateciia-
gram representation of a functigh

Lemma 5.1. There exists a unique reduced PADD(the canonical PADD represen-
tation of f) satisfying the given variable ordering such that foreadt {0, 1}" we have
f(p) = Val(F,p).

The proof of this lemma for BDDs was provided by [19] and catrivally gener-
alized to ADDs and PADDs. Since PADDs allow polynomial leawhe only change
for demonstrating this lemma is that we need to ensure teat #xists a way to iden-
tify when two leaf expressions are identical, which can kslydone by (a) sorting the
parameters in each multilinear term, (b) factoring out ¢giag terms with the same
ordered set of parameters) and summing constants in idéntigltilinear terms, and
(c) sorting the list of terms according to the lowest vamsaindex and number of pa-
rameters. With such a unique leaf identification method pttoef of [19] generalizes
to PADDs and shows that there is a unique canonical PADD septation for every
function from{0, 1}™ to polynomials in the form of (13).

In fact, not only does such a minimal, reduced PADD alwaystdrr a functionf
that can be represented as a PADD, but there is a straiglatfdralgorithm for com-
puting it calledReducePADDwhich we present in Section 5.2.1. Before we present

SWe will adopt lowercasef{) to refer to a mathematical function, and uppercaBg to refer to the
function represented structurally as a PADD.
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formal PADD algorithms though, we first discuss extensioihthe unary and binary
operations from ADDs to PADDSs. Fortunately, this only regaithat operations on the
leaves of ADDs are modified to accept and produce resultifgnpmials in the form
of (13).

5.1.1. Binary Operations on PADDs

The binary operation$ (sum) andS (subtraction) as defined for ADDs [17] can
be extended for PADDs and are alwayssedsince these operations yield PADDs with
leaves in the form of (13). However, the binary operatioproduct) can only yield a
PADD with leaves in the form of (13) if the set of parametgris the leaves of each
operand are disjoint. Fortunately, for factored MDP-IPs, note that the only place
® is used is to compute the product of the DCN CPTs; because sifigt®n 4.3 on
the usage of parameteps; in these CPTs, we note that the condition for closed
operations on PADDs is always satisfied for the requiredfact MDP-IP operations.

However, not all PADD binary operations have simple condgiunder which they
are closed. We note that PADDs are not closed undébinary division), i.e., the
resulting leaves could be a polynomial fraction and henoaatbe expressed as (13).
Similarly, thebinary min(-, -) andmax(-, -) operations defined for ADDs [17] cannot
generally be computed in closed form unless the actual@ssgt to the parameteps
is known. Fortunatelyp, min(:,-), andmax(-, -) will not be needed in our proposed
solution to factored MDP-IPs.

5.1.2. Unary operations on PADDs
The two important classical unary operations for ADDsrasgriction (F'| x,) and
marginalization(3_, . ,) and can be easily extended to PADDs as follows:

¢ Restrictionof a variablex; to eithertrue (F|,,=¢rue) OF false (F|;,=aise) €aN
be calculated by replacing all decision nodes for variableith either thehigh
or low branch, respectively. This operation can be used to do meligation as
we show next. This operation does not affect the leaves al¢kesion diagram,
so its extension from ADDs to PADDs is straightforward.

e The marginalizationor sumout operation (represented 3s, ., Or simply
>_.,) eliminates a variable(; from a ADD. It is computed as the sum of the
true andfalserestricted functions, i.e..F|z;,=true @ Flz,=faise). Sinced is
closed for PADDs, marginalization is also closed for PADDM example is
shown in Figure 7.

The classicalinary min(-) andmax(-) operations for ADDs cannot generally be
computed for PADDs unless the actual assignment to the gaeasy is known. How-
ever, we will not need this particular PADD operation forttaed MDP-IPs, but rather
a new unary operation for PADDs callédinParameterOut which in our case will
make the choices of Nature in Equation (9).

Definition 5.2. MinParameterOut operation. Represented asainz(F), this opera-
tion takes as input (1) a PADD and (2) a se€ of global constraints over the PADD’s
parameters, and returns an ADD. We note that an ADD is a dpasia of a PADD with
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Figure 7: An example application &estrictoperation andvarginalizationoperation on a PADD.

constant expressions at its leaves, which implies ithiat;(F') is closed for PADDs.
This unary operation calls a nonlinear solver for each le@fessione in the form
of (13) to compute: = mingz(e) wW.r.t. constraints” and replaces the leafwith the
constant.

Because the set of variable assignments that can reach &BEhIBaf are disjoint,
each leaf can be minimized independently of the others. iShgecisely the operation
we'll need for factored MDP-IPs, since we note that Natunéguens it's minimization
independently per statein (9), and every path in the PADD will correspond to a
different state assignment. An examplengih;(F) is shown in Figure 12.

5.2. PADD Algorithms

Previously we have discussed PADD algorithms conceptuiallthis subsection,
we discuss how to implement efficient operations for PADDsthie following algo-
rithms we use four hash tableReduceCachéNodeCachgApplyCacheand MinPar-
Cache We use the notatiokey— valueto represent key/value pairs in the hash table.
The tableNodeCacheatores a unique identification for each node (representibdia-
grams by unique identifiers), the hash taBleduceCachstores the reduced canonical
nodes (the results of previokeduceoperations), the tablapplyCachestores the re-
sults of previousApply operations (so we can avoid redundant calculations) and the
hash tableMinParCachestores the results of previoldinParameterOubperations.

5.2.1. Reduce Algorithm for PADDs

While we know there exists a unique canonical form for evencfion express-
ible as a PADD (Lemma 5.1), the algoritiReducePADactually allows the efficient
construction of this unique canonical PADD representatiom an arbitrary ordered
decision diagram with polynomial leaves of type (13).

Algorithm 1 recursively constructs such a reduced PADD ftbmbottom up. In
this algorithm, an internal node is represented B%*", Fj,, F;), where F**" is the
variable name, andl;, and F; are the true and false branch node ids, respectively. Ad-
ditionally, the inputF’ refers to an arbitrary node, while the returned vailieefers to a
canonical node id. Reduced canonical nodes are stored raitetabldReduceCache
and the helper functio@etNodgAlgorithm 2) ensures that redundant decision tests at
internal nodes are removed. The taNledeCacheaised in the functiosetNodestores
a unique identification for each node.
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Algorithm 1: REDUCEPADD(F)

input : F' (root node id for an arbitrary ordered decision diagram)
output: F,. (root node id for reduced PADD)

1 begin

2 /lif terminal node, return canonical terminal node
3 if Fis terminal nodghen

4 return canonical terminal node for polynomial &f;
5 /luse recursion to reduce sub diagrams

6 if ' — F, is notin ReduceCachéen

7 Fy, = REDUCEPADD( F},) ;

8 F; = REDUCEPADD( F}) ;

9 /lget a canonical internal node id

10 F,. = GETNODE( FV*", Iy, F}) ;

11 insert’ — F, in ReduceCache;

12 return F;;

13 end

An example of the application of tHReducePADlgorithm is shown in Figure 8.
The hollow arrow points to the internal nodiethat is being evaluated byeducePADD
after the two recursive calls ®educePADRQines 7 and 8) but before line 10. Figure 8a
shows the input diagram for the algorithm whegds being evaluated bigeducePADD
creating two canonical terminal nodes 38 + 5p;> and0. Note that while evaluating
nodezxs (on the left), the execution of line 10 will result in the imSen of (x3,0.3 +
5p12,0) in the NodeCachehash table. Figure 8b shows the resulting evaluation of
nodexs on the right, which returns the same previous canonicalitermodes for
0.3+ 5p12 and0. And again, after executing line 10, tleetNodealgorithm will return
the same id for(zs, 0.3 + 5p12,0), previously inserted in th&lodeCache Figure
8c shows the evaluation of,. Note thatF}, and F; are equal, thus aftegetNodeis
called, F; is returned and as a consequeng@isappears. Finally, Figure 8d shows the
canonical PADD representation of the input. Note tRatlucePADI¥)) returned the
same canonical teminal node that exists previously for tdukef.

The running time and space &educePADDare linear in the size of the input
diagram since the use of tiReduceCachguarantees that each node is visited only
once and at most one unigue reduced node is generated inrtbrical diagram for
every node visited.

5.2.2. Apply Algorithm for binary operations for PADDs

The notation we will use in this paper for PADDs is shown inl¥&9. Any opera-
tion with two PADDs,F; andFs, results in a new canonical PADB., with eventually
a new root nodd’’*" and two new sub-diagram’s, and F;. Note thatF; , and F; ;
represent sub-diagrams.

Forall binary operations, we use the generic funcqply(Fy, Fs, op) (Algorithm
3) and the result computation table in the helper funcomputeResu(fTable 1) that
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Algorithm 2: GETNoODE((var, F},, F}))

input : (var, Fy, Fy) (variable and true and false branches node ids for internal
node)
output: F). (canonical internal node id)

1 begin

2 /lIredundant branches

3 if F,=F;, then

4 | return Fj;

5 /Icheck if the node exists previously

6 if (var, Fy, F;) — id is not in NodeCachthen
7 id = new unllocated id;

8 insert(var, Fj,, F}) — id in NodeCache;
9 return id;

10 end

X
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Figure 8: A step-by-step ilustration of the applicatiorRefducePADRIgorithm (Algorithm 1) where a) and
d) are the input and output PADDs, respectively.

supports operations between arbitrary PADD nodes and polial leaves. Table 1
is implemented as a method nam@dmputeResultwhich is simply a case structure
for each line of Table 1. Notice that lines 2—-9 of Table 1 defmeresult of PADD
operations in special cases that avoid unnecessary cotigputaApply.
TheApplyalgorithm (Algorithm 3) has as input two operands represgat canon-
ical PADDs, F; and F;, and a binary operatanp € {®, ©, ®}; the output is the result
of the function application represented as a canonical PARDAppIY(F}, F», op) first
checks if the result can be immediately computed by callegtethodComputeResult
(line 3). If the result iswll, it then checks whether the result was previously computed
by checking in theApplyCachewhich stores the results of previoApply operations
(line 6). If there is not a cache hi\pplychooses the earliest variable in the ordering to
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Figure 10: An example of PADDs multiplication.

branch on by calling the auxiliary functidbhooseVarBranclfAlgorithm 4) and then
branches on this variable with two recursifpply calls, one to computé&; and other
to computeF),. After that, the results of these two operations are cheéiecedun-

dancy elimination througho@etNodefunction. An example of PADD multiplication
via Applyalgorithm is shown in Figure 10.

5.2.3. MinParameterOut Algorithm for PADDs

The MinParameterOutalgorithm (Algorithm 5) has as input a canonical PADD
F and a set of constraints over the PADD’s parameters; the output is the result of
calling the nonlinear solver for each PADD leaf, represeére a canonical ADLF,.
MinParameterOuffirst checks ifF' is a constant terminal node, in this case it is not
necessary to call the nonlinear solver for this leaf. If #vertinal node is not a constant
then we need to make a call to the nonlinear solver passintg#fiexpression as an
objective to minimize subject t¢’' (line 7). If F' is not a terminal node, Algorithm
5 recursively traverses the PADD. SimilarReducePADDan internal node is repre-
sented agF"*", Fy,, F;) and previously computed canonical nodes are stored in the
hash tableVinParCache The helper functiorGetNode(Algorithm 2) ensures again
that redundant decision tests at internal nodes are removed

With this last specification oMinParameterOutwe have formally described al-
most all of the PADD algorithms we will need in our factored PP solution. We
omit the restriction and marginalization algorithms forlds since they are identical
to the same operations for ADDs (i.e., these operationg doodify the leaves, which
is the only place that PADDs and ADDs differ).
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Algorithm 3: APPLY(F}, F5, op)

input

. I (root node id for operand 1),

F3 (root node id for operand 2),
op (binary operatorpp € {®, 0, ®})

output: F,. (root node id for the resulting reduced PADD)

© 00 N o o A~ W N B

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

begin
/lcheck if the result can be immediately computed
if COMPUTERESULT( F1, Fy, op) — F,. # null then

return F,;

/lchech if we previously computed the same operation
if (Fy,F», op) — F,.is notinApplyCachethen

/lchoose variable to branch

var = CHOOSEVARBRANCH( Fi, F5) ;
//set up nodes for recursion

if Fy is non-terminal\ var = F7*" then

FPY = Fyy;
FPY = Fip;
else
| mh=n
if 5 is non-terminal\ var = F3*" then
F? = Fy;
Fp? = Fop;
else
| B =P

/luse recursion to compute true and false branches fortieg#HADD
Fy = Appl y( F', FP2, op)

Fy = Appl y(Fy Fi?, op) ;

F,. = GETNODE( var, Fy, F}) ;

/Isave the result to reuse in the future

insert(Fy, F», op) — F, into ApplyCache;

26 return F;

27 end

6. Factored MDP-IP Value Iteration

In the two previous sections, we showed a compact reprasentar factored
MDP-IPs based on dynamic credal networks (DCNs) and parinetl ADDs (PADDs)
and the respective algorithms needed to manipulate DCNBADDs. In this section,
we will present our first exact value iteration solution teaploits both of these repre-
sentations. This solution is an extension of 8fUDD[3] algorithm. First, we give a
mathematical description of the proposed solution and pneceed to formally specify
the algorithm that computes it.
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Algorithm 4: CHOOSEVARBRANCH(FY, F5)
input : F} (root node id for operand 1),
F3 (root node id for operand 2)

output: var (selected variable to branch)

1 begin
2 /Iselect the variable to branch based on the order criterion
3 if F1 is a non-terminal nodéhen
4 if F5 is a non-terminal nodéhen
5 if F7%" comes befordy*" then
6 ‘ var = FPO7,
7 else
8 ‘ var = F3;
9
10 else
11 ‘ var = FPO7;
12
13 else
14 | var = Fpor;
15 return wvar,
16 end
| Case numbef Case operation | Return |
1 Fy op Fy; Fy = Poly; Fy = Poly, | Poly, op Poly,
2 F1 D FQ; F2 = O Fl
3 F1 (&) FQ; F1 =0 F2
4 Fl o FQ; F2 = O Fl
5 F1 & FQ; F2 =1 F1
6 Fl (24 FQ; F1 =1 F2
7 F1 ® FQ; F2 =0 0
8 Fl X FQ; F1 =0 0
9 other null

Table 1: Input case and result for the mett@amputeResufor binary operationsp, © and® for PADDs.

6.1. SPUDD-IP Description

We extend thesPUDD [3] algorithm for exploiting DBN and ADD structure in
the solution of factored MDPs to a novel algoritf®®UDD-IP for exploiting DCN
and PADD structure in the solution of factored MDP-IPs. Wgibeiy expressing
MDP-IP value iteration from (10) in the following factoredrfn using the transition
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Algorithm 5: MINPARAMETEROUT(F, C)
input : F' (root node id for a PADD),

C (set of constraints)
output: F,. (root node id for an ADD)

1 begin

2 /lif terminal node, call the solver and return the value
3 if F is terminal nodghen

4 node=canonical terminal node for polynomialof
5 if node is a constarthen

6 | return nodg

7 ¢=CALL NONLINEARSOLVER( node() ;

8 return canonical terminal node for the constant
9 /luse recursion to compute sub diagrams

10 if ' — F, is not in ReduceCacheMinP#nen

11 Fy, = MINPARAMETEROUT( F}) ;

12 F; = MINPARAMETEROUT( F}) ;

13 /lget a canonical internal node id

14 F,. = GETNODE( F'V*", Fy, F}) ;

15 insertl’ — F, in ReduceCacheMinPar;
16 return F;

17 end

representation of (11) and operations on decision diagfams

Vbp(#) = max{ Rop(@a) @ ymin| 3 Q) Pop(ailpad(e)), a)Vpp ()

' i=1

(14)
Because the transition CPTs in the MDP-IP DCN contain pararsg, these CPTs
must be represented in decision diagram format as PADBRS) (2} |pa,(z}), a)). On
the other hand, the rewatlpp (%, a) can be represented as an ADD since it con-
tains only constants (for the purpose of operations, ré¢lcatlADDs are special cases
of PADDs). Although it may appear that the form Bf,, (%) is a PADD, we note
that the parameterg are “minimized”-out w.r.t. the side constraints grduring the
ming O operation in (14) (remember thatin; O is the MinParameterOutbperation
on PADDs, that performs the minimization over the paransebgrcalling a nonlinear
solver for each leaf and returns an ADD). This is crucial,duse themax,c4 can
only be performed on ADDs (recall thatax is not a closed operation on PADDS).
Thus the resulting’}, , (#) computed from thenax,c 4 has constant leaves and can be
expressed as the ADD special case of PADDs.

4We useDD for the functions represented by ADDs or PADDs, since the ifira. special case of the
second.
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(cpTil, . ). © The multiplicationVy,, ® CPTL
summing out over], which is a PADD.

resulting in a PADD. d) The result of

To explain the efficient evaluation of (14) in more detail, @an exploit the vari-
able elimination algorithm [20] in the marginalization ol next statesy 5. For

) inwards to obtain:

example, ifz} is not dependent on any otheffor i # 1, we can “push” the sum over

Vip (&) = max {RDD(QE, a) @ v min

’
s

(15)

> Q) Poo(ilpaa(X]),a) > Pop(@ilpad(X1), a)Vi (&)
(i£1) i=1(i#1)

We show this graphically in the example of Figure 11. Here haee the ADD rep-
resentation for the first value functidrj,, = Rpp (Figure 11a), which we multiply
by Ppp (2} |pa.(X1),a) (Figure 11b) yielding the result (Figure 11c) and sum this ou

all 2, to computed.

over z to obtain the final result (Figure 11d). Then we can continith w/,, multi-

plying this result by thePp p (z5|paq (X%), a), summing out over’, and repeating for
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Representing the contents@fas f (Z, a, p), we obtain

Viole) = {Ron(@ ) o[ [Ganf. o

Note thatming f(Z, a, p) leads to a separate nonlinear expression minimizationvor e
ery ¥ and everya subject to the sef’ of side linear constraints opi (given with the
DCN specification) since this follows from the definition b&tMDP-IP Bellman equa-
tion — every state gets its own minimizer and each PADD leafesponds to a set of
states with exactly the same minimization objective. Thitimization problem may
be represented as a simpiailtilinear programdue to Restriction 4.3 that guarantees
eachp,; only appears in the DCN CPT fox/ (this prevents multiplication op,; by
itself, thereby preventing exponents exceeding 1). ThiBirtion is important to guar-
antee the existence of exact solutions and the existencHi@émet implementations
that we can use in practice to solve multilinear programs.néte that this is only a
restriction on the factored MDP-IP models themselves.

To demonstrate how theiny f(Z, a, p) is performed on PADDs, we refer to Fig-
ure 12. Here, each leaf expressionfif¥’, a, p) (Figure 12a) given by the PADD cor-
responds to the function that Nature must minimize in eaatestWe crucially note
that the PADD aggregates states with the same minimizatijective, thus saving
time-consuming calls to the multilinear solver. We will ebge this time savings in
our experiments. Now, we need to make a call to the multilisedver for each leaf,
passing the leaf expression as the objective to minimizgestito the side constraints
C of our DCN that specify the legal — after the minimization, we can replace this
leaf with a constant for the optimal objective value retarby the multilinear solver
(Figure 12b). We can see that after theny operation, all PADDs are simplified to the
special case of ADDs with leaf nodes that are constants.

To complete one step of factored MDP-IP value iteration, ake the ADD result-
ing from theminz operation, multiply it by the scalay, add in the rewar® pp (%, a),
and finally perform a sequence of binaypD max(-,-) operations to compute the
max,, thus yielding the ADDV}, (%) from the ADD for V' (¥) and completing
one step of value iteration from (14).

6.2. SPUDD-IP Algorithm

Factored MDP-IP value iteration is formally specified in fbbowing two proce-
dures:

Sol ve (Algorithm 6) constructs a series 6fstage-to-go value functiorigf, , that
are represented as ADDs. First we create the PADD repregentdiall DCN CPTs in
the MDP-IP and initialize the first value function@qline 3). The loop is repeated un-
til a maximum number of iterations or until a Bellman eri®k' termination condition
(BE < tol) is met. We note that setting the toleraneé according to (7) guaran-
teese-optimality for MDP-IPs since the same termination coruiti used for MDPs
directly generalize to MDP-IPs in the discounted cage<(1). At each iteration the
Regr ess algorithm is called (line 13) and’},,, is updated with thenax over all
Q% (there is aQl, , for each action). After this, BE = maxzz|V(Z) — VI=1(Z)]
is computed and tested for termination. We observe in Algori6 the parameters
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Figure 12: TheMinParameterOubperation example. a) The PADD before minimization and a rusr
program for the first leaf, the solution for this leaf is thenstant value:; . b) The resulting ADD after the
minimization at all leaves.

0, APRICODD, Objective, and Vmaz play no role now; they are used for approxi-
mation as we explain in the next section (in particular weduse0 to obtain an exact
solution by the SPUDD-IP).

Regr ess (Algorithm 7) compute®)t, , i.e, it regresseia’jgjj1 through actioru that
provides the value§)’, , that could be obtained if executingand acting so as to
obtainV ' thereafter. During regression we “prime” the variablesigghe function
CONVERTTOPRIMES that converts eacl; to X/ (since theV}, , is now part of the
“next” state) and the CPTs for actianare multiplied in and summed out (lines 4%).
After this, theMinParameterOufunction is performed that calls the multilinear solver
to find the minimizingp for each leaf in the PADD w.r.t. the side linear constraints
C on the DCN (line 11), resulting in an ADD. We note that if a léafalready a
constant, then the multilinear solver call can be avoidesather; this observation will
prove important later when we introduce objective prunigigally, the future value is
discounted and the reward ADD is added in to complete thessign.Objective and
error are used for approximate value iteration and will be diseddater.

7. Factored MDP-IP Approximate Value Iteration

The previous SPUDD-IP exact value iteration solution tddeed MDP-IPs often
yields an improvement over flat value iteration as we will destrate in our experi-
ments. But as the number of state variables in a problem deogsr, it often becomes
impossible to obtain an exact solution due to time and spagt&tions.

5We assume here there are no synchronic arcs among variples’ fori # jinthe DCN. If sychronic
arcs are present, the algorithm can be simply modified to mylitipdll relevant CPTs.
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Algorithm 6 : SOLVE(MDP-IP, tol, mazlter, §, APRICODD, Objective)

input : MDP-IP (given by(S, A, R, K,~)),
tol (tolerance that guaranteesptimality),
maxlter (maximum number of iterations),
/Ivariables used for approximate value iteration
o (fraction of the maximum possible value, with< ¢ < 1),
APRICODD (APRICODD = true to execute APRICODD-IP),
Objective (Objective = true to execute BIECTIVE-IP)

output: V} , (t-state-to-go value function)

1 begin

2 Create PADDPpp(z}|pa(X]), a) for MDP-IP;

3 Vipp =0;

4 Il Vmaz is the maximum possible value at each iteration

5 Vmaz = max(Rpp);

6 t=0;

7 /lconstruct t-stage-to-go value functioi§,, until termination condition is
met

8 while i < mazlter do

9 t=t+1;

10 Vip = —oc;

1 /lupdateV}, , with the max over al)’, ,

12 foreacha € A do

13 & p=REGRESS V', a,d - Vmaz, Objective) ;

14 Vi p=max(Vh,.Q%p)

15 /lcompute Bellman Error (BE) and check for termination

16 Diff pp = Vip © VEL,

17 BE = max(max(Diff pp),— min(Diff pp));

18 if BE < tol then

19 | break;

20 /lapproximate value iteration: APRICODD-IP

21 if APRICODD pruningthen

22 | Vjp =APPROXADD (V},,,6 - Vmaz);

23 Vmax = max(Rpp) + v Vmaxz;

24 | return Vi, ;

25 end

Approximate value iteration (AVI} one way to trade off time and space with error
by approximating the value function after each iteratiomthis section, we propose
two (bounded) AVI extensions of SPUDD-IP: the APRICODD-IRlahe Objective-
IP algorithms. Each method uses a different way to appraeniee value, but both
methods incur a maximum of- Vmazx error per iteration wherédmaz as computed
in Sol ve represents the maximum possible value at each step of aha¢ion (with
0 < § < 1). By making the approximation error sensitive tenax we prevent over-

24



Algorithm 7: REGRESYVpp, a, error, Objective)
input : Vpp (value function),
a (action),
error (Maximum error),
Objective (Objective = true to execute BIECTIVE-IP)
output: Qpp (the value function obtained if executingand acting so as obtain
Vpp thereafter)

1 begin

2 @ pp = CONVERTTOPRIMES( Vpp) ; //convert variablesy; to X/
3 [ICPTs are multiplied in and summed out

4 for all X/ in Qpp do

5 Qpp = Qpp ® Ppp(xjpa(X]),a);

6 Qpp = Zz;exg ®pp;

7 [lapproximate value iteration: YECTIVE-IP

8 if Objective pruningthen

9 | Qpp =APPROXPADDLEAVES (Qpp, error);

10 /lcall the non-linear solver for each PADD leaf — returns dniA
11 Qpp = MINPARAMETEROUT (Qpp,C);

12 Qpp =Rpp ®(y®Qpp) ;

13 return Qpp;

14 end

Algorithm 8: APPROXADD(value’, ;,,error)

input : valuet, , (an ADD),
error (Maximum error)
output: a new ADD

1 begin

2 llcollect all leaves of the ADD

3 | leaves,q=COLLECTLEAVESADD (valuel, p);

4 /lgroup the leaves that can be merged within maximum error
5 {leaves o1g — leaves ey }=MERGELEAVES (leaves 4, error);

6 /Ireturn a simplified ADD

7 return cREATENEWDD (valuel, p,, {leaves yig — leaves ey });
8

end

aggressive value approximation in the initial stages of Alen values are relatively
small as suggested in [4]. Even with this value approxinmasibevery iteration, satis-
fying the termination conditioBE < tol for sometol still yields strict guarantees on
the overall approximation error given by (7) as discussedipusly for SPUDD-IP.
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Figure 13: a) The value functiob(f)D represented as an ADD. b) the resultAifpr ox ADD applied to
V5 p with approximationerror = 1; note that the leaves withievror of each other have been merged and
averaged and the resulting ADD simplified.

7.1. APRICODD-IP Algorithm

The APRICODD algorithm [4] provides an efficient way approximating the
ADD value representatioffor a factored MDP, reducing its size and thus reducing
computation time per iteration. This approach immediatgperalizes to MDP-IPs
since the value functiof,, is also an ADD. To executAPRICODD-IPAVI for
MDP-IPs, we simply calBol ve (Algorithm 6) with APRICODD = true and set
(0 < § < 1) to some fraction of the maximum possible valteraz with which to
approximate calling the algorithdyppr ox ADD (line 22 Algorithm 6).

Appr oxADD (Algorithm 8) has two inputs: (1) a value function represehas an
ADD and (2) an approximation error to merge the leaves. Thputus a new ADD
with the merged leaves. The algorithm first collects all é&saof the ADD and de-
termines which can be merged to form new values without a@mating more than
error. The old values are then replaced with these new valuesmgeainew (mini-
mally reduced) ADD that represents the approximated valanetfon. An illustrative
example is shown in Figure 13.

col | ect LeavesADDcompiles the leaves of the ADD and puts them in akevés ;4 ).
In the example in Figure 13, the set of old leave§dis0, 10, 1}.

nmer geLeaves groups together the leaves that can be merged within- and com-
putes the average for each group, creating a new set of |¢auess,,..,). In the ex-
ample of Figure 13, the groups than can be merged withiarasv = 1 are{9,10}
and{0, 1}; and the new leaves a#e5 ando0.5.

cr eat eNewDD creates a simplified ADD, replacing the old leaves by the neaso
The result of this operation in the example is shown in Fidi8ie).

7.2. Objective-IP Algorithm

APRICODD is an effective extension of SPUDD for factored MDf@ot MDP-
IPs) because it reduces the size of the value function ADDg;twlargely dictate the
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time complexity of the SPUDD algorithm. However, in solvi(fgctored) MDP-IPs,
the time is dictated less by the size of the value function A&¥d more by the num-
ber of calls to the multilinear optimizer to compute thén; 0. SPUDD-IP started to
attack this source of time complexity by aggregating stafésthe same objective for
themin; 0. Our goal with theObjective-IPpruning algorithm will be to more closely
target the source of time complexity in an AVI version of SHDHIP by approximating
the objectivein an attempt to avoid calling the solver altogether. To ake®©bjective-
IP for MDP-IPs, we simply callSol ve (Algorithm 6) with APRICODD = false,
Objective = true and setd (0 < 6 < 1) to some fraction of the maximum possible
value Vmaz. Noting that each PADD leaf iRegr ess function is a multilinear objec-
tive, we simplify it by callingAppr ox PADDLeaves (line 9 Algorithm 7) just prior to
carrying out the multilinear optimization at the leavestattPADD (line 11 Algorithm
7).

Appr oxPADDLeaves (Algorithm 9) is called for a PADD byrRegr ess whenOb-
jective = true It takes as input a PADD and the maximum error, and the ougpait
new PADD with approximated leaves using the upper and lowends of the param-
eters. The main loop of the algorithm attempts to approxénegtch leaf in a PADD
(lines 3-17). To approximate the multilinear termAlgorithm 9 first computes the
average of their maximum and minimum values (line 8), thigines knowing the ab-
solute uppepg- and lower bound$iLj for any p;;, which can be easily precomputed
once for the entire MDP-IP by calling the nonlinear solvecmputep% = Max p;j
andpiLj = min p,; subject to the side linear constrairfison all CPTs. After that, Al-
gorithm 9 computes the error incurred by using these maximndminimum values
(line 10). If the actual accumulated error for the leaf(Frror + termError;) is less
than the maximum errore¢ror), the termi is removed (line 13) and replaced by the
average (line 14). In some cases the complexity of the lgafession may be reduced,
in others, it may actually be reduced to a constant. Notetliwateaves are each ap-
proximated independently, this can be done since each éeefsponds to a different
state (or set of states) and the system can only be in oneastatéme. Furthermore,
we can guarantee that no objective pruning at the leave®dAIDD incurs more than
error after the multilinear optimization is performed:

Theorem (Appr ox PADDLeaves Error Bound) Given an MDP-IP, its precomputed
constant@fj andpg for all p;;, and the maximum approximatiemror, then whenever

Appr oxPADDLeaves (Algorithm 9) reduces a leaf, + .7 4, [I,pi toa
simpler expression, the approximation error in the objecthinimization (niny) of
that leaf is bounded byrror.

Proof. We begin by showing that the approximation error induceddnyaving a single
term from the objective is bounded bygrmError;. To do this, we first find upper
and lower bounds on term(d;11;p;;) based on the legal values gf We know the
maximal (minimal) possible value for eagpky is p% (pfj). Thus for any possible legal
values ofp’ the termi must be bounded in the intenvdl,, U;] with L; andU; defined
as follows: .

I — { di >0  d;Il;p;; U — { di >0 dz'ijin

‘ d; <0 diH]'p%' ’ ¢ d; <0 dl‘ijiLj
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Algorithm 9: ApPPROXPADDLEAVES(DD, error)
input : DD (parameterized ADD),
error (Maximum error)
output: DD (simplified parameterized ADD)

1 begin

2 /lapproximate each leaf independently

3 foreach leaf : do + Z#t”ms d; [1; pij € DD do

4 i =1, curError = 0;

5 /ffor all terms of the leaf, prune them if possible

6 while curError < error A i < #terms do

7 /lcompute the average of max and min values for term
8 newValue = % (ij%—i—]_[jpfj) ;

9 /lcompute the error of using max and min values for térm
10 termError; = |% (HJ Pl — I, sz]) |;

11 [fif within error, prune terni from leaf

12 if curError + termError; < error then

13 remove termd; [ | i Dij from leaf;
14 do = do + newValue;
15 curbrror = curError + termError;;
16 1=1+1;
17
18 return DD;

19 end

Let g be a value for terni andg = £, thenmaz,|g — g| occurs ay = L, org =
U SO the ma)termErrom = maz (|L; — gl, |U; — g]) = max (|25, | %55 ]) =

Now let OBJ1 = dy + Z#te”’“ d;11;p;; be the originahon-approximated ob-
jective expressioto minimize andv, the optimal objective value using = p;. Let
OBJ2 =do+g+ E#t”’”é d;11;p;; be theapproximated objective expressitmmin-
imize after replacing term with L1+Ul andwv, the optimal objective using = ps.

We want to prove that ]Ll | < vy —vy < | L1159, First we prove the second
part of this inequality. Usm@z in OBJ1 and theapproximated objective expression
we obtainv] = dy + eval(d,IL;p1;,p3) + v2 — do — g (Whereeval is a function to
evaluate the term with the assigned values). Becaugeoptimalv; < v] then:

vy —v2 < eval(dill;p1j,p2) — G (17

Additionally for any possible legal values gfand forps, |eval(d1 Iip1j.p2) — gl <
|58 e, — [B5Y | < eval(diIT;pyy, p3) —§ < | 22592 |. From this equation and
(17) we obtainl —v2 < |% . The proof of the firstinequality follows by the same
reasoning, but this time substituting into OBJ2 and using thenon-approximated
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objective expressiomhus, we obtainy, = do + g + v1 — do — eval(d11L;p1;,p1)-
Because; is optimalvs < vj then:

v2 —v1 < g — eval(dill;py;, pi) (18)

Additionally for any possible legal values gand forp;, — | L5 | < eval(di11p1;, pi)—
g < |25Y|. From this equation and (18) we obtaih — v2 > — | L2591 |,

This bounds the objective approximation error for one teppraximation and by
simple induction, we can additively bound the accumulateordor multiple approxi-

mations as calculated usingrError in Algorithm 9. O

8. Experimental Results

Before we delve into experimental results involving 8i2UDD-IP, APRICODD-
IP, andObjective-IPalgorithms contributed in the previous sections, we begidd>
scribing the factored MDP-IP domains used in our experisient

8.1. Domains

We perform experiments with three factored MDP-IP domaiRSCTORY [4],
SYSADMIN [5] and TRAFFIC (a new domain). In the following, we reviewaRETORY
and introduce the newRAFFIC domain; ¥SADMIN was already introduced in Sec-
tion 4.

8.1.1. FACTORY domain

The FACTORY domain [4] is based on a manufacturing problem in which con-
nected, finished parts are produced. The parts must be shageshed, painted and
connected by bolting, welding or gluing them. In particulaFACTORY domain the
agent’s task is connect two objects A and B. The agent cansehbetween the fol-
lowing actions:shape(x)handPaint(x) polish(x) drill(x) , weld(x,y) dip(x) (paint x by
dipping it), bolt(x,y) (connect objects x and y by bolting them) agide(x,y)(connect
objects x and y by gluing them) aisgrayPaint(x) sprayPaint(x)yields a lower quality
of painting tharhandPaint(x)

The main variables in this domain are:

e connectedandconnectedWelthat represent if objects A and B are simply con-
nected (e.g. by gluing) or are well connected (e.g. by weldirem). The only
reason for the objects well connected became not connextgtién the agent
shapes one of them.

e apainted bpainted apaintedWelbndbpaintedWelbre variables to represent the
painted state of the object respectively. Painted objecaies painted if it is not
shaped, polished or drilled.

e ashaped bshapeakpresent object A shaped and B shaped respectively. Shaped
part remains shaped if it is not drilled.
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e asmoothandbsmoothan object becames smoothed if the agent execute the ac-
tion polish and it succeeds. Smoothed object remains sraddttfi is not shaped
or drilled.

¢ adrilled andbdrilled, an object becames drilled if the action drill is apply and it
succeeds.

There are other variables that describe the things thatvaikable in the environ-
ment to be used by the agent such sgraygun glue, bolts drill andclamps Addi-
tionally, the variableskilledlabrepresents the existence of skilled labor.

The quality required for the finished product is represetgdhe variabletype-
neededand can be high-quality or low-quality. The process and #weard depend
directly on the quality required. For example, when higlady is required, hand-
painted, drilled and bolted objects will have more rewardlewpray-painted and glued
objects will obtain little reward. Aditional variables cae included in the problem to
generate different instances.

To obtain a factored MDP-IP, we introduce uncertainty in ltlodt action for the
variableconnecteds follows. The success probability of thelt action for two objects
that are not connected before, when there are bolts, A isdiaind B is drilled i®;. In
the case when the two objects are not drilled but there ats, lthé success probability
is po. These probabilities are constrained®g + po < p; < 1 and0.5 < py < 1.
Note thatp; should always be an equal or higher probability tpaiisince the process
associated witlp, is more likely to succeed), hence the implied constraint p;.

8.1.2. A New DomainTRAFFIC

We introduce RAFFIC, a factored MDP-IP domain motivated by a real traffic inter-
section control problem modeled usiogllular transition model dynamid&1]. While
this is not meant to be an accurate large-scale traffic madgllong stretches of road,
it should still approximately model local traffic propagatiat busy intersections where
speeds are necessarily limited by queueing and traffic tellayd.

A graphical representation with examples of state vargate given in Figure 14.
We encode our traffic state as= (x1,...,z,) whereZ € {O,U}" indicating that
each traffic cell:; (1 < < n) is either occupied or unoccupied’.

Our basic traffic model fointermediate road cellgs that a car will move forward
into the next cell as long as it is unoccupied, otherwiseadpstin its current cell and
waits.

For eachintersection road celk; (i.e., leading into an intersection), we define a
state variable; < {turn, no-turn} indicating whether a car im; will intend to turn
into oncoming traffic or not. The state variableis drawn randomly with probability
p¢ that a car will turn when a new car arrives. When determinirguibdate for: ;, we
note that it can always go straight or turn left on a greenwhather it can cross the
opposing lane to make a right turn depends on the opposifiig tight state and the
opposing traffic cell statefs andzx,, (two opposing right-turning cars may safely turn
though and this is allowed by conditioning ¢j).

We refer to a boundary traffic celt, as afeeder road cellsince new cars are
introduced at these points. We assume that when the celltisaqooipied, new cars
arrive on a time step with probability, .
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Finally, we have state variablésencoding the current state of the light cycle.
The action set is simply to remain in the same state or advantke sequence:
A = {advanceno-changé. In Figure 14, we hav€ = (¢, c2,c3,c4), Where one
may interpret each binary as indicating whether the intended light is green (or not).
However, eacle; need not be binary, it could have an additional state for gred be-
tween green lights before advancing to the next cycle. Wd neecommit to a particu-
lar state sequence here, rather we simply rely on a modelfggeinctionnext-statéc)
to generate the next state from the current when the lightzsran.

With this high-level description, we now proceed to define BCN, reward, and
specific TRAFFIC instance configurations used in this article.

}

Co
1 Xo
— imn :
. e - - | -
Xi-1 )Fi Xit+1 | _C3
TS TS T T T T T T o 7-77 - LA ST T T LT
C1 o= /I{l 7 Xk+1:0 Xk i Pa
el I | -
?j‘} C4
‘Xj_li

Figure 14: Diagram showing a 4-way single-lane intersectidith cells (dotted boxes) and various state
variables used in our state description. Note that we do ndiehmoad cells that exit the intersection as we
assume that cars freely exit the boundaries of the model opgéehtive passed through the intersection.

TRAFFIC DCN Transition Model. Based on the above description, the transition
model is provided in a compact factored format as a dynamigatmetwork (DCN) [11,
15], subdivided into different functional subcomponerggalows.

Light cycle transition. Here we simply model the effect of @o-changeor advance
action on the light state:

a

@ @
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1.0 a=no-changend =¢
P(Z|¢,a) = { 1.0 a = advancen & = next-statéc)
0.0 otherwise

Lane turning indicator. Here we assume that the probability of a car at the head of the
queue making a right turn jg; and that while a car is waiting, its turn decision does

e o N

1.0 z; =0 At; =turn
P(t; =turn|t;, ;) = < 0.0 z; = O At; = no-turn
pe x;=U
It is difficult in traffic models to obtain an accurate estimaf p; over all hours of the
day, so using our DCN, we allow the turn probability to fluceuaver time and thus
modelpi® < p, < piaxfor () < pitin < pitax < 1 (to be defined for specific problem
instances).

Intermediate road cell.The occupancy of a car in an intermediate road celte-
pends on whether an occupying car can move forward into thieced «;, ; and if so,
whether there is a car in the previous cell ; that can move forward to take its place:

5
o

10 "Ll:OA.’El+1:O
P(JU; =0|zi—1, i, Ti+1) =1 1.0 z;,=UAzi_1 =0
0.0 z; = otherwise

Feeder road cell. A feeder road cell simply serves as an input to the traffic netw
with cars arriving at each unoccupied feeder cell with pbilidg p,,:

(f———
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1.0 zx=0Ax1 =0
p.  Otherwise

P(z}, = Olxy) = {

It is difficult in traffic models to obtain an accurate estimaf arrival probabilities,
over all hours of the day, so using our DCN, we allow the afpvabability to fluctuate
over time and thus modef*™ < p, < p™a* for 0 < pin < pmax < 1 (to be defined
for specific problem instances).

Intersection road cell. The intersection road cells are the most complex cells toahod
in a traffic network as traffic behavior depends on the ligatestthe occupancy of all
cells with green access to the intersection, and the statierioihg traffic. Here we
attempt to implement a basic model of traffic behavior takirig account all of these

contingencies:

o
5

00 z;=UAx;_1=U

1.0 J,‘j:U/\J?j_le

0.0 z; =0 At; =no-turn

00 z;=0At;=tunAz,=U

P(x; = O|zj,tj,20,t5,0) = 0.0 z; =0 At; =turn Az, = O A ~green(c, o)
1.0 z; =0At; =turn Az, = O A green(é, o)A

t, = no-turn
0.0 z; =0At; =turnAz, = O A green(¢, o)A
t, = turn

Here we assume there are user-defined helper fungjiers(c, j) that extract the part
of the state” indicating whether the intersection cglhas a green light (or not). We
also assume that whetyreen(c, o) holds, thenc; = z; (thereby making a simplifying
assumption of no turns on red).

TRAFFIC Reward Model. Because our goal is to reduce traffic congestion in the in-
tersection, our objective is to minimize the count of ocedpioad cells around an in-
tersection. Thus, an appropriate reward to maximize woelthb count ofinoccupied

33



cell$:

R(Z) = ZH[}Q = U]

Here, we get +1 reward for every cell that is unoccupied.

TRAFFIC Problem Instances. In this article we solve instances oRRFFIC domain
with two opposing lanes. In these particular instances, etette turn probability
minimum aspi™® = 0 and maximum ag"®* = 1 and furthermore constrain the
turn probabilitiegp; andp, of the two different lanes to be highly correlated using the
constraintjp; — p2| < 0.1. Additionally, the probabilitiep; andp, of a car arriving

at either of the feeder cells for each lane use the probahititindsp™* = 0.4 and
p®* = (.6 and are constrained By; — p4| < 0.1.

8.2. Evaluation

In this section, we empirically evaluate four algorithri$at Value Iterationfrom
(10) and our three contributions from the previous sect@rsblving factored MDP-
IPs: (i) SPUDD-IPthat offers an exact solution; (IBPRICODD-IPand (iii) Objective-
IP that offer bounded approximate solutions.

As an additional point of comparison, we note that recents/bave seen the emer-
gence of very fast approximate factored MDP solvers basedppmoximate Linear
Programming(ALP) [5]. Recently, such techniques have been extended toréatto
MDP-IPs [9]. Thus, wealso compare the approximate solutioA®RICODD-IPand
Objective-IPbased on approximate value iteration with Approximate Multilinear
Programming(AMP) algorithm from [9]. AMP performs linear-value function approx-
imation using a fixed set of basis functions and a compactt@ns encoding for
multilinear optimization problems that exploits struetum the DCN.

For all algorithms, we setazlter = 50 for SYSADMIN and mazlter = 75 for
the other domains with = 0.9. In the next subsections we present our main results.

8.2.1. Flat Value lteration vs. SPUDD-IP

In Figure 15 we compare the running time of the two exact 8wiuimethods:
SPUDD-IP and Flat Value Iteration which compuité(%). 7 Solutions not complet-
ing in five hours are markeBid Not Finish (DNF) We note that SPUDD-IP did not
outperform Flat Value Iteration on theySADMIN domains because the exact value
function has little structure as an ADD. However, botRAFFIC and FACTORY had
highly structured value functions arngh to two orders magnitude time improvement
demonstrated by SPUDD-IP, largely due to the ability of tA®Ps to aggregate com-
mon nonlinear objectives, thus saving a substantial nurabealls to the nonlinear
solver and therefore time.

6We usel[-] as an indicator function taking the vallavhen its argument is true atidotherwise.
"We note that to do this comparison, we need to slightly extdath\&lue Iteration algorithm from (10)
to allow for multilinear expressions in the transition prbliy table.
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Figure 15: Time performance comparison f&tAlFFIC, SYSADMIN and FACTORY problems using SPUDD-
IP and Flat Value Iteration. The name includes the number édbtass in each problem, so the corresponding
number of states ig#vaeriables,

8.2.2. APRICODD-IP vs. Objective-IP

In order to see the scalability of our approximate solutjioms-igure 16 we com-
pare the running time for APRICODD-IP and Objective-IP v& humber of state vari-
ables using = 0.1 for FACTORY, TRAFFIC, and the three configurations o¥ SAD-
MIN. We note that Objective-IP runs faster than APRICODD-IRlirdomains when
running with a fixed bound on maximum error per iteration. (fie= 0.1).

In order to evaluate the policy returned by our AVI solutiows compute for each
fixed value of$ (¢ is the maximum error per iteration w.ri,,,...), the True Approxi-
mation Error (TAE) given by:

mazz|V*(Z) = Vapproz (7)) (19)

whereV,,,ro: (Z) is the value returned by APRICODD-IP or Objective-IP ant( %)
is the optimal value computed by SPUDD-IP.

In the following plots we rarSolvefor a range ofé. In Figures 17 and 18 we
present a detailed comparison of the time, size (number dés@n the ADD of the
last iteration), and number of nonlinear solver calls reggiiby APRICODD-IP and
Objective-IP plotted vs. the TAE fdraffic-10, respectively. We note little relationship
between the space required by the ADD value representatiomi{er of nodes) and
the running times of the two algorithms (space actuallygases slightly for Objective-
IP while running time decreases, see Figure 18). But whatriiirgy about these
plots is that the running time of each algorithm is direcityrelated with the number
of nonlinear solver calls made by the algorithm (taking ug@0ms in some cases),
reflecting our intuitions that the time complexity of solgiMDP-IPs is governed by
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Figure 16: Time performance of APRICODD-IP and ObjectivedPTRAFFIC, SYSADMIN and FACTORY
problems for§ = 0.1.

the computational overhead of nonlinear optimization.

Figure 19 shows the advantage of Objective-IP pruning teas uhe upper and
lower values to approximate the leaves in PADDs. For all fgnois, as the number of
nodes reduced to a constant grows, we see that the True Apyation Error increases,
but also the number of calls to the multilinear solver desesaThese figures also show
cases where the Objective-IP approach to PADD reductionreagith great success,
since the original PADD sizes for the exact cases are veggJdout can be reduced by
orders of magnitude in exchange for a reasonable amounipobzmation error.

In Figures 20, 21, 22, 23 and 24 we show a comparison of the Appeoximation
Error (TAE) vs. running times for three problems and threfedént sizes of each
problem (varying)). The results here echo one conclusion: Objective-IP stersily
takes less time than APRICODD-IP to achieve the same appsiian error andip
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Figure 17: Time, nonlinear solver calls and ADD size of APRODIP prun-
ing for the traffic problem with 10 variables. Results are tgld for § €
{0.0,0.025,0.05,0.075,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9, 1.0}.
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Figure 18: Time, nonlinear solver calls and ADD size of ObjestP prun-
ing for the traffic problem with 10 variables. Results are ttgld for § €

{0.0,0.025, 0.05,0.075,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9, 1.0}.

to one order of magnitude less tinttean APRICODD-IP. This time reduction can be
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explained by the decreased number of calls to the multitinelver.

8.2.3. Approximate Value lteration vs. Approximate Mimé&hr Programming

In Figures 20, 21, 22, 23 and 24 we compare the two approxisaition methods,
APRICODD-IP and Objective-1P, with our implementation ppaoximate multilinear
programming (AMP) [9] for MDP-IPs. We usedimplebasis functions (one for each
variable in the problem description) apdirwisebasis functions (one for each pair of
variables that have a common child variable in the DCN).

When it does finish within a limit of ten hours, AMP takes onlyesvfseconds to
produce an approximate solution for each problem (excephf FACTORY domain
for which it did not return a solution). Comparing the aldloms in terms of their
true approximation error, we observe that: (a) in thes&DMIN problem (Figures
22, 23, 24), AMP withpair basis functions outperforms APRICODD-IP and obtains
a solution 2-X larger than the error of Objective-IP, but in significantigs time; (b)
for the TRAFFIC problem (Figure 21), AMP with theimplebasis solution obtains a
solution with 2-3x more error than Objective-IP, still in significantly lessi&; and (c)
in the case of the &£ TORY problem (Figure 20), AMP only can solve one instance,
while Objective-IP can solve the rest within the time limittwmuch lower error. These
results lead us to conclude that Objective-IP consistagitlgs an error at least 23
lower than AMP and sometimes runs as fast as the AMP solutibite in other cases
running slower.
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8.2.4. Results Summary

Over all problems, given the unpredictable performance BfPA(which has no
error guarantees and often does not finish within the timé&)liamd the consistently
worse performance of APRICODD-IP compared to ObjectiveciBjective-IP stands
out as the more reliable option: it offers guaranteed erooinds and empirically it of-
fers consistently lower error rates (the lowest of any athyor) with overall reasonable
running times (if not the fastest).

9. Related Work

The Bounded-parameter Markov Decision Process (BM[2)] is a special case
of an MDP-IP, where the probabilities and rewards are spgecifiy constant inter-
vals. Exploiting the specific structure available in a BMDi#eg by the intervals, the
algorithm in [22] can directly derive the solution withoetyuiring expensive optimiza-
tion techniques. Recent solutions to BMDPs include exterssof real-time dynamic
programming (RTDP) [23] and LAO* [24, 25] that search for thest policy under
the worst model. Thé&/larkov Decision Process with Set-valued Transitions (MDP-
STs)[26] is another subclass of MDP-IPs where probability distions are given
over finite sets of states. Since BMDP and MDPST are specsdscaf MDP-IPs,
we can represent both by “flat” MDP-IPs. Then the algorithrefnéd in this paper
clearly apply to both BMDPs and MDPSTs, howettegir solutions do not generalize
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to the factored MDP-IPsve examined in this paper, which allownaultilinear prob-
ability representation resulting from the use of a DCN. Rennore, MDP-IPs allow
for general linear constraints between probabilities,clvrare prohibited in interval
bounded probability settings like BMDPs. This use of gehl@raar constraints is par-
ticularly useful when we do not know the probabilities, batyorelative constraints
between them (e.g., two probabilities in the AFFic problem are unknown but highly
correlated).

Previous work on “flat” MDP-IPs [6, 7, 27] focused on credakdgepresented as
polytopes) proposed algorithms based on dynamic programrbiut they only solved
very small problems. It is important to notice that our faetb MDP-IP model is
more expressive than the simple “flat” MDP-IPs referred tdhiose papers; as we
saw in Section 4, the joint DCN transition probabilities acfored MDP-IPs may be
nonlinear, while for flat MDP-IPs, the transition probatyilior any next state, given a
previous state and action, can only be trivially linear (et parametep;).

As we have discussed in Section 8, it is interesting to nadé ifhwe allow only
interval bounds on the parameters in the CPTs of the DCN ofabred MDP-IP
then the result is still a more expressive model than a “flaDMIP or BMDP, i.e., the
transition expression for any next state given a previcaig $tnd action can be a multi-
linear expression gf. Consequently, to defirfdat Value Iterationfor the comparative
analysis from the previous section, we note that we alreadyled to slightly extend
previous work to allow for multilinear expressions in thartsition probability tables
required to match the expressivity of factored MDP-IPs.
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A final piece of work that is related with MDP-IPs igwo-player zero-sum alter-
nating Markov Gamég28] (a.k.a, aStochastic Gamg9]). This is a subset of “flat”
MDP-IPsif intermediate state variables are introduced to repreggurent actions
and the parameters specify the distribution over opponrsitres is allowed to vary in
the full interval[0, 1]. However, it might be computationally wasteful to use a “fat
factored MDP-IP algorithm to solve a Stochastic Game sirmménémization over a fi-
nite set of opponent actions would likely be computationelieaper than a (nonlinear)
optimization over the probability parameters requiredimDP-IP solution. Hence, it
seems more computationally advantageous to use spedialigerithms for the solu-
tion of finite action Stochastic Games to exploit the spestfiacture found there than
to attempt to use any of the more general-purpose MDP-IRitigus presented here.

Finally, probability trees were also used to represent ensets of probabilities as-
sociated to intervals to obtain posterior intervals of jadaibity [30]. Probability trees
can compactly represenbntext-specific independen¢@Sl), but as we saw in Sec-
tion 5, our parameterized ADDs are DAGs that not only exp&#tl but also shared
function structure. Additionally, we used PADDs to reprasgeneral probability ex-
pressions (multilinear for the case of factored MDP-IPs},jast probability intervals.

10. Concluding Remarks

Motivated by the real-world need to solve MDPs with uncerttain the transition
model, we made a number of novel contributions to the liteeatn this article. In
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Figure 23: True Approximation Error vs. time required for ARRIDD-IP, Objective-IP and MPA with
simple basis and pairwise basis functions feiSBDMIN problem with bidirectional-ring topology.

Section 4, we introduced the factored MDP-IP model basedyra®ic Credal Net-
works (DCNSs). In Section 5, we contributed the novel paramztd ADD (PADD)
data structure containing leaves with parameterized eges; we showed how to
efficiently obtain a minimal canonical representation oA®P; and we showed how
to efficiently perform a variety of unary and binary opera@n PADDs. In Section 6,
we contributed the exact factored MDP-IP solution algont&8PUDD-IP and showed
how to efficiently make use of the PADD in all steps of this faetd MDP-IP value
iteration algorithm. The resulting SPUDD-IP algorithm Igied up to two orders of
magnitude speedup over existing value iteration techsiforeMDP-IPs.

To futher enhance the SPUDD-IP algorithm, in Section 7, wetrdouted two
novel approximate value iteration extensions: APRICOPDahd Objective-IP. While
APRICODD-IP is the obvious extension based on previous wbdkd not specifically
target the main source of time complexity for solving MDR-H- calls to the non-
linear solver during MDP-IP value iteration. Based on thiservation, we developed
an alternate and novel approximation method that direqilyr@ximated the objec-
tive of multilinear solver calls, proving the theoreticarectness of this innovative
bounded error approximation approach and substantiadlyaiag the number of non-
linear solver calls and thus running time of approximatei@ateration. In Section 8,
we performed comparisons of the above algorithms to a pusiyi@xisting “flat” value
iteration algorithm as well as a state-of-the-art appra@tarmultilinear programming
(AMP) solver for MDP-IPs.

Altogether these novel contributions — and particularlgitlculmination in the
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Figure 24: True Approximation Error vs. time required for ARRIDD-IP, Objective-IP and MPA with
simple basis and pairwise basis functions feisBDMIN problem with independent bidirectional topology.

Objective-IP algorithm — enable the (bounded approximsa&)tion of factored MDP-
IPs that carscale orders of magnitudeeyond existing flat value iteration approaches to
MDP-IPs and yieldubstantially lower errorshan other existing approximate MDP-IP
solvers like approximate multilinear programming (AMPatihave nca priori error
guarantees and depend on appropriate basis function geneakgorithms.

For future work, we note that PADDs represent the tip of tlebérg in the use of
advanced decision diagram techniques for solving facttdBdP-1Ps. Following the
success of the Affine extension of ADDs for solving factoreDR4& [31] with additive
and multiplicative structure, it would be interesting tdaemnd this technique to PADDs
to exploit the same structure in MDP-IPs. Such advancesdviogally reduce the
running time of solutions for factored MDP-IP problems likeAFFIC that contains
significant additive structure in their reward definitiordanight be amenable to even
further exploitation of factored MDP-IP problem structure

Finally, we note that the exploration of objectives otheartimaximin optimality
for factored MDP-IPs would also be interesting. Althouga thaximin criteria works
fine in a domain with many imprecise parameters (like in the/ADMIN domain we
have used in our experiments), we observe that for a problgmlarge imprecision
in terms of very loose constraints (e@.1 > p;; > 0.9), the maximin criterion may
be too adversarial — it may reflect a worst-case that would be exthgmnlikely in
practice. Hence, future work might also examine other nagtod handling transition
uncertainty, such as a Bayesian approach [32], and detenvtiether factored MDP-
IPs and PADDs could enhance solution approaches for thteseate criteria.

43



Acknowledgements

This work was performed while the first author was visitingCWIA. NICTA is
funded by the Australian Government as represented by thmameent of Broad-
band, Communications and the Digital Economy and the Ali@tr&esearch Council
through the ICT Centre of Excellence program. This work Has been supported by
the Brazilian agencies FAPESP (under grant 2008/03995ibCAPES.

References

[1] M. L. Puterman, Markov Decision Processes, Wiley Sene®robability and
Mathematical Statistics, John Wiley and Sons, New York4199

[2] C. Boutilier, S. Hanks, T. Dean, Decision-theoreticriflang: Structural Assump-
tions and Computational Leverage, JAIR 11 (1999) 1-94.

[3] J. Hoey, R. St-Aubin, A. Hu, C. Boutilier, SPUDD: StochiasPlanning using
Decision Diagrams, in: Fifteenth Conference on UnceryaimtArtificial Intelli-
gence, Morgan Kaufmann, 1999, pp. 279-288.

[4] R. St-Aubin, J. Hoey, C. Boutilier, APRICODD: ApproxirtePolicy Construc-
tion using Decision Diagrams, in: Proceedings NIPS, MITsBr@000, pp. 1089—
1095.

[5] C. Guestrin, D. Koller, R. Parr, S. Venkataraman, Effiti€olution Algorithms
for Factored MDPs, JAIR 19 (2003) 399-468.

[6] J. K. Satia, R. E. Lave Jr., Markovian Decision Processgigs Uncertain Transi-
tion Probabilities, Operations Research 21 (1970) 728-740

[7] C. C. White Ill, H. K. EI-Deib, Markov Decision Processeglvimprecise Tran-
sition Probabilities, Operations Research 42 (4) (1994)-739.

[8] T. Dean, K. Kanazawa, A Model for Reasoning about Pezaist and Causation,
Comput. Intell. 5 (3) (1990) 142—-150.

[9] K. V. Delgado, L. N. de Barros, F. G. Cozman, R. ShirotapRsenting and
Solving Factored Markov Decision Processes with ImpreBig#babilities, in:
6th ISIPTA, Durham, United Kingdom, 2009.

[10] D. P. Bertsekas, J. N. Tsitsiklis, An analysis of statiashortest path problems,
Math. Oper. Res. 16 (3) (1991) 580-595.

[11] F. G. Cozman, Credal Networks, Atrtificial Intelligent20 (2000) 199-233.

[12] P. Walley, Statistical Reasoning with Imprecise Piilies, Chapman and Hall,
London, 1991.

[13] A. Nilim, L. ElI Ghaoui, Robust Control of Markov Decigio Processes
with Uncertain Transition Matrices, Oper. Res. 53 (5) (20090-798.
doi:http://dx.doi.org/10.1287/opre.1050.0216.

44



[14] R. Shirota, F. G. Cozman, F. W. Trevizan, C. P. de Camipa¥, de Barros, Mul-
tilinear and Integer Programming for Markov Decision Pgs&s with Imprecise
Probabilities, in: 5th ISIPTA, Prague,Czech Republic,2qip. 395-404.

[15] F. G. Cozman, Graphical Models for Imprecise Prob#bsi International Jour-
nal of Approximate Reasoning 39(2-3) (2005) 167-184.

[16] C. Boutilier, N. Friedman, M. Goldszmidt, D. Koller, Gtext-specific Indepen-
dence in Bayesian Networks, in: Proc. 12th UAI, 1996, pp-1P3.

[17] R. I. Bahar, E. A. Frohm, C. M. Gaona, G. D. Hachtel, E. Ma&. Pardo,
F. Somenzi, Algebraic Decision Diagrams and their Applara, in: Proceed-
ings of ICCAD, IEEE Computer Society Press, Los Alamitos,, C/SA, 1993,
pp. 188-191.

[18] R. E. Bryant, Symbolic Boolean manipulation with orééminary-decision dia-
grams, ACM Computing Surveys 24 (3) (1992) 293-318.

[19] R. E. Bryant, Graph-based Algorithms for Boolean FiorcManipulation, IEEE
Transactions on Computers 35 (8) (1986) 677—691.

[20] N. L. Zhang, D. Poole, A Simple Approach to Bayesian NatwComputations,
in: Proc. of the Tenth Canadian Conference on Artificial lligence, 1994, pp.
171-178.

[21] C. F. Daganzo, The Cell Transmission Model: A DynamigRsentation of
Highway Traffic Consistent with the Hydrodynamic Theoryaiisportation Re-
search, Part B 28 (4) (1994) 269-287.

[22] R. Givan, S. Leach, T. Dean, Bounded-parameter Markeeiglon Processes,
Artificial Intelligence 122 (2000) 71-109(39).

[23] O. Buffet, D. Aberdeen, Robust Planning with LRTDP, froc. of the 1JCAI,
2005, pp. 1214-1219.

[24] S. Cui, J. Sun, M. Yin, S. Lu, Solving Uncertain Markov on Problems: An
Interval-Based Method, in: ICNC (2), 2006, pp. 948—-957.

[25] M. Yin, J. Wang, W. Gu, Solving Planning Under UncertginQuantitative and
Qualitative Approach, in: IFSA (2), 2007, pp. 612—620.

[26] F. W. Trevizan, F. G. Cozman, L. N. de Barros, PlannindamRisk and Knight-
ian Uncertainty., in: IJCAI, 2007, pp. 2023-2028.

[27] J. A. Bagnell, A. Y. Ng, J. G. Schneider, Solving Uncartdarkov Decision
Processes, Tech. rep., Carnegie Mellon University (2001).

[28] M. L. Littman, Markov Games as a Framework for Multi-AgeReinforcement
Learning, in: In Proceedings of the Eleventh InternaticBahference on Ma-
chine Learning, Morgan Kaufmann, 1994, pp. 157-163.

45



[29] L. S. Shapley, Stochastic Games, Proceedings of themiNdtAcademy of Sci-
ences 39 (1953) 327-332.

[30] A. Cano, S. Moral, Using probability trees to computergiaals with imprecise
probabilities, Int. J. Approx. Reasoning 29 (1) (2002) 1-46

[31] S. Sanner, D. McAllester, Affine Algebraic Decision Biams (AADDs) and
their Application to Structured Probabilistic Inferenae, IJCAI 2005, 2005, pp.
1384-1390.

[32] M. O. Duff, Optimal learning: Computational procedsiréor Bayes-adaptive

Markov decision processes, Ph.D. thesis, University of ddasachusetts,
Amherst (January 2002).

46



