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ABSTRACT
The Affine ADD (AADD) is an extension of the Algebraic De-
cision Diagram (ADD) that compactly representscontext-specific,
additive and multiplicative structure in functions from a discrete
domain to a real-valued range. In this paper, we introduce a novel
algorithm for efficiently finding AADD approximations that we use
to develop the MADCAP algorithm for AADD-based structured
approximate dynamic programming (ADP) with factored MDPs.
MADCAP requires less time and space to achieve comparable or
better approximate solutions than the current state-of-the-art ADD-
based ADP algorithm of APRICODD and can provide approximate
solutions for problems with context-specific, additive and multi-
plicative structure on which APRICODD runs out of memory.

Categories and Subject Descriptors
I.2.8 [Problem Solving, Control Methods, and Search]: Dynamic
programming; Plan execution, formation, and generation

General Terms
Algorithms

Keywords
Planning, Markov Decision Processes, Approximate Dynamic Pro-
gramming

1. INTRODUCTION
Many single agent planning tasks in fully observed state spaces

with stochastic action outcomes can be formalized and solved within
the Markov Decision Process (MDP) framework. While traditional
approaches to solving MDPs focused on exact enumerated state
solutions to MDPs, this approach has proven impractical for large-
scale decision-theoretic planning tasks where the number of dis-
tinct states in a model can easily exceed the limits of primary and
secondary storage on modern computers. In recent years, there has
been a great deal of research aimed at exploiting structure in order
to compactly represent and efficiently solve MDPs [3].

One common way to exploit MDP structure is to describe it
using a propositionally factored model that exploits various inde-
pendences in the reward and transition functions [3]. While many
MDPs can be compactly specified in this way, this structure does

Cite as: Approximate Dynamic Programming with Affine ADDs, ,Proc.
of 9th Int. Conf. on Autonomous Agents and Multiagent Systems
(AAMAS 2010), van der Hoek, Kaminka, Lespérance, Luck and Sen
(eds.), May, 10–14, 2010, Toronto, Canada, pp. XXX-XXX.
Copyright c© 2010, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

not always translate to compactness in the solution. Thus, exploita-
tion of structure must often be used in conjunction with approxi-
mate solution methods that guarantee the resulting representation
remains manageably-sized.

One class of approximate solution methods for propositionally
factored MDPs is provided by the linear-value approximation frame-
work [6]. In this setting, an MDP value function is approximated
as a linear combination of basis functions. While this approach is
computationally efficient and appealing, it must be provided with
an appropriate basis function set. To this end, methods have been
proposed for generating basis functions for varying classes of prob-
lems; see [8] for an excellent review of recent approaches along
with a proposal of new techniques. For certain methods of basis
function generation discussed in [8], there do exist guarantees of er-
ror improvement when adding new basis functions; however, there
are no corresponding guarantees on the efficiency of the result-
ing factored MDP computation for these same approaches. On the
other hand, there are two approaches that deal directly with basis
function generation and efficiency in a factored MDP setting [10,
9], but they do not providea priori guarantees on the error obtained
using these basis functions.

An alternate solution method for factored MDPs is provided by
approximate structured dynamic programming (DP), e.g., using al-
gebraic decision diagrams (ADDs) [1] in a structured value itera-
tion algorithm such as SPUDD [7], which can be extended with
ADD approximation techniques as in APRICODD [13]. ADDs
permit the exploitation ofcontext-specific independence (CSI)[4]
and redundant structure in the solution of factored MDPs. In the
APRICODD approach, steps in the dynamic programming solution
to MDPs are interleaved with approximation steps that reduce the
representational complexity of the ADD representation in exchange
for bounded approximation error in the solution. This approach of-
fers two advantages: (1) The structure of the approximated value
function is automatically derived, and (2) the error of the approxi-
mate solution can bea priori bounded.

The main drawback to APRICODD vs. linear-value approxima-
tion techniques is that ADDs only exploit CSI whereas linear-value
approximations can exploit both CSI and additive structure. How-
ever, the Affine ADD (AADD) has been used to extend the SPUDD
algorithm to exploit CSI, additive,andmultiplicative structure [12].
To this end, the major contribution of this paper is MADCAP1:
an approximate dynamic programming algorithm based on a novel
technique we introduce for compactly approximating AADDs. We
empirically show that MADCAP yields faster running times, better
compression and lower error rates than state-of-the-art ADD-based
APRICODD, and can approximately solve some difficult problems
on which APRICODD runs out of memory.

1“MADCAP” contains “MDP”, “ADP”, and “AD”=A 2D2=AADD.
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2. DECISION DIAGRAMS
We begin by introducing ADDs and AADDs that are used in the

structured approximate MDP solution algorithms in this paper.

2.1 Algebraic Decision Diagrams (ADDs)
Algebraic decision diagrams (ADDs) [1] provide a compact way

to represent and perform operations on functions from a factored
boolean domain to a real-valued range (i.e.,{0, 1}n → R). They
rely on two main principles to do this:

1. ADDs represent a functionBn → R as a directed acyclic
graph (DAG) – essentially a decision tree with reconvergent
branches and real-valued terminal nodes.

2. ADDs enforce a strict variable ordering on the decisions from
the root to the terminal node, enabling a minimal, canoni-
cal diagram to be produced for a given function. Thus, two
identical functions will always have identical ADD represen-
tations under the same variable ordering.

ADDs often provide an efficient representation of functions with
context-specific independence [4] and redundant structure. For ex-
ample, the function

P3
i=1 xi (xi ∈ {0, 1}) represented in Fig-

ure 1(a) as an ADD exploits the redundant structure of sub-diagrams
in a DAG to avoid an exponential tree representation.

Defining areducedADD to be the minimally-sized ordered de-
cision diagram representation of a function under a given variable
ordering, Bryant [5] provides a proof that this is a unique canoni-
cal representation and provides aReduce algorithm for finding this
canonical representation for binary decision diagrams (BDDs) that
can be easily generalized to ADDs.

Unary operations such asmin, andmax, and marginalization
over variables as well as binary operations such as addition, sub-
straction, multiplication, division,min, andmax can be performed
efficiently on ADDs [1].

One additional benefit of the use of ADDs is that they can be
efficiently pruned to reduce their size in exchange for some ap-
proximation error. For compression of an ADDF within ǫ error,
the operationApproxADD(F, ǫ) (Algorithm 1) can be performed
by collecting all leaves of the ADD and determining which can
be merged to form new values without approximating more than
ǫ. The old values are then replaced with these new values creat-
ing a new (minimally reduced) ADD. An illustrative example of
ApproxADD(F, ǫ) for ADDs is provided in Figure 2.

2.2 Affine ADDs (AADDs)
To address the limitations of ADDs, we review the affine ex-

tension to the ADD (AADD) that is capable of canonically and

Algorithm 1: ApproxADD(DD,ǫ)

begin
leavesold=collectLeavesADD (DD);
{leavesold → leavesnew}

=mergeLeaves (leavesold , ǫ);
return createNewDD

(DD, {leavesold → leavesnew});

end

compactly representing context-specific, additive,and multiplica-
tive structure in functions from{0, 1}n → R [12]. An example
of an AADD representing the function

P3
i=1 xi (xi ∈ {0, 1}) is

provided in Figure 1(b) where we see that it compactly exploits
additive structure in comparison to its ADD counterpart in (a).

In the following, we draw on the presentation and results from [12].
We formally define AADDs with the following BNF:

G ::= c + bF

F ::= 0 | if(F var, ch + bhFh
| {z }

true (high)

, cl + blFl
| {z }

false (low)

)

Here,ch andcl are real (or floating-point) constants in the closed
interval [0, 1], bh andbl are real constants in the half-open interval
(0, 1], F var is a boolean variable associated withF , andFl andFh

are non-terminals of typeF . We also impose the constraints:

1. The variableF var does not appear inFh or Fl.

2. min(ch, cl) = 0

3. max(ch + bh, cl + bl) = 1

4. If Fh = 0 thenbh = 0 andch > 0. Similarly for Fl.

5. In the grammar forG, we require that ifF = 0 thenb = 0,
otherwiseb > 0.

Expressions in theF grammar will be called normalized AADDs;
expressions in theG grammar will be called generalized AADDs.2

Let V al(·, ρ) be the value of AADD· under variable value as-
signmentρ. This valuation can be defined recursively as follows
where examples of affine transforms in the expression below are
shown on the branches of Figure 1(b):

V al(G, ρ) = c + b · V al(F, ρ)

V al(F, ρ) =

8

<

:

F = 0 : 0
F 6= 0 ∧ ρ(F var) = true : ch + bh · V al(Fh, ρ)
F 6= 0 ∧ ρ(F var) = false : cl + bl · V al(Fl, ρ)

Let G be the example AADD provided in Figure 1(b). Then we
evaluate the case whereρ = (x1 = 1, x2 = 1, x3 = 1) by the
following recursively evaluated expression:

V al(F, ρ) = 0 + 3(0.333 + 0.667(0.5 + 0.5(1 + 0))) ≈ 3

Under a given variable ordering, generalized AADDs are canon-
ical, i.e., two identical functions will always have identical AADD
representations. Like ADDs, there is an AADDReduce algorithm
that will produce this minimal canonical representation [12].

The unary operations ofmin, max, and marginalization and bi-
nary operations of addition, substraction, multiplication, division,
2Since normalized AADDs in grammarF are restricted to the
range[0, 1], we need the top-level positive affine transform of gen-
eralized AADDs in grammarG to allow for the representation of
functions with arbitrary range.
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Algorithm 2: MarkRange(〈c, b, F 〉, range, ǫ)

input : 〈c, b, F 〉 : Offset, multiplier, and node id
begin

// Check for terminal node
if F = 0 or (F visitedand FMaxRange > range) then

return ;

// Initializes error budget for current node
F ǫ := ǫ;
// Update max range for current node
FMaxRange := max(FMaxRange , range);

// Recurse on both branches ofF with updated range
MarkRange(〈F.cl, F.bl, F.Fl〉, range · bl);
MarkRange(〈F.ch, F.bh, F.Fh〉, range · bh);

end

min, and max can all be performed efficiently on AADDs while
exploiting CSI, additive, and multiplicative structure in these op-
erations. In the case of binary operations for AADDs, one can ob-
tain an exponential reduction in time and space complexity over the
same operations applied to ADDs and they will never perform more
than a constant times worse than ADDs in time and space [12].

3. APPROXIMATION WITH AADDS
We now turn to one of the major contributions of the paper — a

method for efficiently finding compact approximations of AADDs
within anǫ error budget.

Whereas it was fairly simple to approximate ADDs withǫ error
as shown in Figure 2, it is less straightforward for AADDs. The
problem is that the only leaf value is0 and that all of the value
structure is stored internally in the edge-based affine transforms.

To see how we might approximate an AADD, it is best to view an
example. If we jump ahead and examine Figure 4, we note that the
“noisy” AADD on the left is simply the function

P3
i=1 2ixi with

pairwise noise factors
P4

i=1

P4
j=i 0.01xixj added in. On the right

hand side, we see the compressed version of this AADD represent-
ing a compact approximation of

P3
i=1 2ixi without the additional

pairwise noise terms that lead to branching in the AADD, since this
structure can be merged or pruned within anǫ = 0.1 error budget.

How do we obtain this compressed AADD on the right hand side
of Figure 4? It turns out that there are two basic operations that will
allow us to recover it. However, we must first executeMarkRange
(Algorithm 2) on the AADD we wish to compress in order to deter-
mine the maximum contribution of any nodeF to the overall value
(we store this value inFMaxRange , which should be initialized to
zero before running the algorithm). Incidentally,MarkRange also

merge?
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Fvar
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2,h 2,l

< c < c
  

< c , b

< c   , b   > < c   , b   >
1 221
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Figure 3: Two AADD nodes F1 and F2 (where F var
1 = F var

2 )
with the notation used in the merging procedure. Here, we
want to ask whether these two nodes can be merged while in-
curring less than ǫ error impact on the function?

sets theF ǫ property of each nodeF , which indicates how much of
theǫ error is left to use in potentially approximating nodeF . Once
we’ve done this, we can perform the following two operations lead-
ing to aApproxAADD(〈c, b, F 〉, ǫ) operation for AADDs that we
will formally define shortly.

Merge Nodes:The first approximation procedure we might want
to do is illustrated in Figure 3. Here we have two nodesF1 andF2

and we need to determine whether to merge them.
To see why we would want to do this, note that in Figure 4

there are many nodes that have the same variable tests, same chil-
dren, and nearly identical affine transforms on their low and high
branches. If they do not have the same children, we note that if
their grandchildren were first merged, they might then have the
same children. These nodes and affine transforms would be identi-
cal except for an asymmetrical noise term

P4
i=1

P4
j=i 0.01xixj .

However, we note that we can remove this noise in many cases by
merging these nearly identical nodes while controlling the amount
of error induced by this approximation.

To potentially merge nodes with identical high and low children,
we must calculate the maximum error incurred in the function when
the affine transform for the low branch ofF1 is used for the low
branch ofF2 and likewise when the affine transform for the high
branch ofF1 is used for the high branch ofF2:

error := max(FMaxRange
1 , FMaxRange

2 ) (1)

· max(|F1.cl − F2.cl| + |F1.bl − F2.bl|,

|F1.ch − F2.ch| + |F1.bh − F2.bh|)

If error < ǫ then we can perform a node merge where we simply
replaceF1 with F2 and update our error budget forF2 asF ǫ

2 :=
F ǫ

2 − error . Clearly, the maximum merge error is just the error of
the affine transform approximation multiplied by theMaxRange

of this node since all nodes are normalized[0, 1]. A slightly more
complex procedure could replace both nodes with an averaged ver-
sion, but this has subtle implications for AADD normalization that
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Figure 5: An AADD node F1 with the notation used in the
pruning procedure. Here, we want to ask whetherF1 can be
completely pruned while incurring less thanǫ error impact on
the function?

complicate the algorithm and affect its efficiency.

Prune Nodes: The second approximation procedure we might
want to do is to remove a node entirely and replace it with its child
in the case that it has the same child on its low and high branches
as shown forF1 in Figure 5.

To see why we would want to do this operation, note that in Fig-
ure 4, the variablex4 has little impact (quantitatively,0.04 or less)
on the overall value of the AADD; with an allowable error budget
ǫ = 0.1, it can be removed entirely. This removalcannotbe done
by merging nodes, it requires pruning nodes. The error analysis for
such pruning determines the error incurred if the decision forF1 is
removed:

error := FMaxRange(|F1.ch − F1.cl| + |F1.bh − F1.bl|)/2

If error < ǫ, we assigncr := c + b · F1.cl+F1.ch

2
, br := b ·

F1.bh+F1.bl

2
, replaceF1 with F2 and reduce our error budget for

F2 by F ǫ
2 := F ǫ

2 − error . Again, since all nodes are normalized
[0, 1], we only lose the error induced by deviation of the two affine
transforms from their average multiplied by theMaxRange for the
node being pruned.

However, it turns out that in a greedy approximation procedure,
pruning nodes can often use up most of the error budget early on
in the approximation, thereby preventing the merging of nodes in
later operations that could potentially save more space with less er-
ror cost. As a consequence, while we see the potential value of node
pruning in Figure 5, we note that it has led to poor performance in
practice so we opt not to use it here. Nonetheless, we mention it
here simply because it may be useful in future work if its aggres-

sive error consumption could somehow be controlled better (e.g.,
placing a lower error budget on prune operations).

Algorithm: We now formally define the algorithm that performs
AADD compression.

ApproxAADD (Algorithm 3) merges the nodes of the AADD by
starting at the bottom level nodes and making its way up to the
root nodes. By doing this, we ensure that as many child nodes
are merged as possible so that merging can be performed on their
parent nodes. The procedure takes any unvisited node and finds all
the nodes than can be merged taking into account the merge error.
After that it replaces all references to merged nodes withF1 and
updates theF ǫ

1 to reflect its decreased error budget.

4. MDPS AND DYNAMIC PROGRAMMING
Having defined ADDs, AADDs and efficient approximation meth-

ods for each, we now proceed to our originally stated goal: efficient
approximate structured dynamic programming algorithms for fac-
tored MDPs. In this section and the next, we explain how ADD
and AADD compression operations can be used to approximate
structured representations of the value function to yield approxi-
mate structured dynamic programming.

4.1 Factored Representation
In the factored version of a Markov Decision Processs (MDP) [11],

states will be represented by vectors~x of lengthn, where for sim-
plicity we assume the state variablesx1, . . . , xn have domain{0, 1};
hence the total number of states isN = 2n. We also assume a
set of actionsA = {a1, . . . , an}. An MDP is defined by: (1)
a state transition modelP (~x′|~x, a) which specifies the probabil-
ity of the next state~x′ given the current state~x and actiona; (2)
a reward functionR(~x, a) which specifies the immediate reward
obtained by taking actiona in state~x; and (3) a discount factor
γ, 0 ≤ γ < 1. A policy π specifies the actionπ(~x) to take in each
state~x. Our goal is to find a policy that maximizes the value func-
tion, defined using the infinite horizon, discounted reward criterion:
V π(~x) = Eπ[

P∞
t=0 γt · rt|~x], wherert is the reward obtained at

time t (starting in state~x).
Many MDPs often have a natural structure that can be exploited

in the form of a factored MDP [3]. For example, the transition func-
tion can be factored as a dynamic Bayes net (DBN)P (x′

i|~xi, a)
where each next state variablex′

i is only dependent upon the action



Algorithm 3: ApproxAADD(AADD =(〈c, b, F 〉, ǫ)

begin
MarkRange(AADD,b,ǫ);
foreachvariable level from bottom to top in AADDdo

foreachnodeF1 in a level do
if F visited

1 then
continue;

F ǫ
1 = min(F ǫ

1,l, F
ǫ
1,h) ;

foreachnodeF2 in a leveldo
if F visited

2 then
continue;

F visited
2 = true;

F ǫ
2 = min(F ǫ

2,l, F
ǫ
2,h);

if F1,l = F2,l and F1,h = F2,h then
F mergeErr

2 = compute using
Eq (1) withF1, F2;

err = min(F ǫ
1 , F ǫ

2 ) − F mergeErr
2 ;

if err > 0 then
insertF2 in mergeList ;

if size (mergeList)> 0 then
foreachnodeF2 in mergeList do

FMaxRange
1 =

max(FMaxRange
1 , FMaxRange

2 );
F ǫ

1 =min(F ǫ
1 , F ǫ

2 );
replace references toF2 with F1;
F visited

2 =true;

end

a and its direct parents~xi in the DBN. Then the transition model
can be compactly specified asP (~x′|~x, a) =

Qn

i=1 P (x′
i|~xi, a).

The reward may be factored additively asR(~x, a) =
Pm

i=1 Ri(~x, a).

4.2 Dynamic Programming (DP)
Value iteration[2] is a simple dynamic programming algorithm

for constructing optimal policies. We first define abackupoperator
Ba for actiona as follows:

(BaV )(~x) = γ
X

~x′

n
Y

i=1

P (x′
i|~xi, a)V (~x′) (2)

If π∗ denotes the optimal policy andV ∗ its value function, then
V ∗(~x) = maxa∈A

˘

Pm

r=1 Ri(~xr, a) + (BaV ∗)(~x)
¯

.
Value iteration proceeds by constructing a series oft-stage-to-go

value functionsV t. SettingV 0 to arbitrary values, we define

V t+1(~x) = max
a∈A

˘

Pm

r=1Ri(~xr, a) + (BaV t)(~x)
¯

(3)

The sequence of value functionsV t produced by value iteration
converges linearly to the optimal value functionV ∗.

To further structure the value iteration algorithm in a factored
MDP, we can represent the reward constituentsRi(~x, a), transition
conditional probability tables (CPTs) and value functionV (~x) as

ADDs or AADDs. We callCPT
x′

i
a the decision diagram repre-

sentation forP (x′
i|~xi, a). Having done this, we note that all op-

erations in the value iteration equation (3) can be performed di-
rectly on these ADDs or AADDs. This idea was first introduced in
SPUDD [7] and later extended to AADDs [12].

5. APPROXIMATE DP
Approximate value iteration (AVI)is an approximate dynamic

programming variant of the value iteration algorithm with the addi-
tional step that after each Bellman backup, the value function may
be projected onto a more compact representation while inducing
some error in this projection step.

To use AVI in conjunction with ADDs or AADDs, we simply use
the ApproxADD(V, ǫ) or ApproxAADD(V, ǫ) operations to ap-
proximate the structured value functionV represented as an ADD
or AADD with up to ǫ error on each step if the size ofV grows
too large. If the MDP is discounted withγ < 1, we can bound the
total induced error as ǫ

1−γ
due to geometric discounting of future

value and therefore error. AVI with ADDs was first introduced in
APRICODD [13] and we contribute the extension to AADDs by
using the AADD approximation techniques that we introduced in
Section 3.

5.1 APRICODD and MADCAP Algorithms
We now formally define the algorithm that performs approxi-

mate value iteration with decision diagrams (APRICODD if using
ADDs, and MADCAP if using AADDs).

Solve (Algorithm 4) constructs a series oft-stage-to-go value
functionsV t

DD that are represented as (A)ADDs. First it creates
the (A)ADD representation of all DBN CPTs in the MDP and ini-
tialize the first value function to0. The loop is repeated until a
maximum number of iterations or until a Bellman errorBE =
max~x|V

t(~x) − V t−1(~x)| termination condition (BE < tol ) is
met. At each iteration theRegress algorithm is called andV t

DD

is updated with themax over allQt
DD for each actiona computed

by Regress(V t−1
DD , a). After this, BE is computed and tested

for termination. If the algorithm does not terminate, then we ap-
proximate the (A)ADD up toδ · Vmax via theApproxADD or
ApproxAADD procedure calls. By making the approximation er-
ror sensitive toVmax we prevent over-aggressive value approxi-
mation in the initial stages of AVI when values are relatively small
as suggested in APRICODD [13]. Ifδ = 0 and ADDs are used,
this algorithm reduces to SPUDD [7].

Regress (Algorithm 5) computesQt
DD, i.e, it regressesV t−1

DD

through actiona that provides the valuesQt
DD that could be ob-

tained if executinga and acting so as to obtainV t−1
DD thereafter.

During regression we “prime” the variables by converting eachXi

to X ′
i (since theV i

DD is now part of the “next” state) and the CPTs
for actiona are multiplied in and summed out.3 Finally, the future
value is discounted and the reward (A)ADD is added in to complete
the regression.

5.2 Reducing Numerical Error in MADCAP
One observed difficulty with AADDs is that the constant mul-

tiplication, subtraction, and division required to maintain normal-
ized nodes and caches may lead to substantial accumulations of
numerical precision errors [12]. In this section, we contribute new
techniques to improve the numerical stability of of AADD compu-
tations used in MADCAP.

The first improvement over previous MDP algorithms based on
AADDs is to adjust the variable ordering in the AADD. When solv-
ing an MDP using decision diagrams it is necessary to represent

3For ADDs, we assume there are no synchronic arcs among vari-
ablesX ′

i, X ′
j for i 6= j in the DBN. If sychronic arcs are present,

the algorithm can be modified to multiply in all relevant CPTs. For
AADDs we do this pre-multiplication by default as described be-
low.



Algorithm 4: Solve(MDP, tol , maxIter , δ)

begin

Create (A)ADD CPTsCPT
x′

i
a for MDP;

V 0
DD = 0;

Vmax = max(RDD);
t = 0;
while i < maxIter do

t = t + 1;
V t

DD = −∞;
foreacha ∈ A do

Qt
DD=Regress(V t−1

DD , a, δ · Vmax);
V t

DD=max(V t
DD ,Qt

DD);

Diff DD = V t
DD ⊖ V t−1

DD ;
BE = max(max(Diff DD),−min(Diff DD));
if BE < tol then

break;

V t
DD = Approx(A)ADD (V t

DD , δ · Vmax );
Vmax = max(RDD) + γVmax ;

return V t
DD ;

end

Algorithm 5: Regress(VDD , a, ǫ)

begin
QDD = convertToPrimes(VDD);
for all X ′

i in QDD do

QDD = QDD ⊗ CPT
x′

i
a ;

QDD =
P

x′

i
∈X′

i
QDD ;

return RDD ⊕ (γ ⊗ QDD) ;

end

functions containing both the current state variables,~x, and the next
state variables,~x′. We found that interleaving the current and next
state variables was the most effective ordering;x1, x

′
1, x2, x

′
2, . . ..

Choosing the ordering of the state variables themselves is also im-
portant, but problem dependent.

The second optimization builds on the original SPUDD work [7]
that notes computation time can be accelerated if the transition
function conditional probability tables (CPTs) are premultiplied
CPTs (since they will have to be multiplied together at some point).
However, when transition effects are exogenous and independent
(i.e., not correlated with the agent’s action or each other), ADDs
can not exploit the factored multiplicative structure in the joint
transition model, thus leading to a representational blowup that
makes premultiplying CPTs impractical in these cases. Because
the AADD can compactly represent multiplicative structure, this
same blowup is not incurred for premultiplying CPTs represented
as AADDs and thus the premultiplication optimization can be prac-
tically used in all factored MDPs on which we have experimented.

The third optimization introduced is to implement the simulta-
neous marginalization of multiple variables. We define a recur-
sive function,M(M, c + bF ), which takes a set of variables to
marginalize,M, and a de-normalized diagram to work with,c +
bF , and returns a de-normalized diagram containing the result. If
F is a constant node then we can returnc + bF with no change.

Otherwise, let

F = if(F var, ch + bhFh, cl + blFl).

Then we can recurse on the two children ofF ;

c′h + b′hF ′
h = M(M, ch + bhFh), and

c′l + b′lF
′
l = M(M, cl + blFl).

If F var ∈ M then we merge the result of the recursive calls using
a modified summation operator,⊙;

cr + brFr = ⊙(c′h + b′hF ′
h, c′l + b′lF

′
l ),

and otherwise we recombine them usingF var;

cr + brFr = normalize(if(F var, c′h + b′hF ′
h, c′l + b′lF

′
l )).

Finally, we combine that result with our original de-normalisation
data and returnc + b(cr + brFr) = (c + bcr) + (bbr)Fr.

If a variable inM doesn’t appear in a branch of the tree, this al-
gorithm will not apply our modified summation,⊙, to that branch.
Hence the algorithm only works if the marginalization function,⊙,
is idempotent, i.e.⊙(F, F ) = F . As summation is not idempo-
tent, we use average within the recursive calls and then multiply by
2|M| at the end.

Internally this function was designed to work with normalized
diagrams as much as possible – the de-normalization data at one
level, the constantsc andb, have no effect on any of the recursive
calls and are simply recombined with the result at the end of the
function. This substantially reduces the effect of rounding errors at
one level on other levels of the diagram.

6. EMPIRICAL RESULTS
In this section we report on a variety of experiments applying

APRICODD and MADCAP to two very difficult factored MDPs,
SYSADMIN and TRAFFIC, both displaying a variety ofcontext-
specific, additive, andmultiplicative structure. Specifically, both
problems involve additive structure in their reward functions and
SYSADMIN also contains additive structure in its DBN CPTs. Ad-
ditionally, both problems have independent exogenous effects that
act on each of their state variables leading to context-specific inde-
pendence in their DBN CPTs and multiplicative structure in their
joint transition functions. These three types of structure are hard
for ADDs and thus APRICODD to jointly exploit, but more natural
to exploit with AADDs and thus hopefully problems where MAD-
CAP excels.

To evaluate the efficacy of AADDs and our AADD approxi-
mation approach in the MADCAP algorithm, we compare to the
state-of-the-art ADD-based approximate dynamic programming al-
gorithm of APRICODD introduced with MADCAP in Section 5.

6.1 Evaluation Domains

SYSADMIN Factored MDP: In the SYSADMIN problem [6], we
haven computersc1, . . . , cn connected via a directed graph topol-
ogy (c.f. Fig. 6). Let variablexi denote whether computerci is up
and running (1) or not (0). LetConn(cj , ci) denote a connection
from cj to ci. We haven actions: reboot(c1), . . . , reboot(cn).
The CPTs in the transition DBN have the following form:

P (x′
i = 1|~xi, a) =

8

<

:

a = reboot(ci) : 1
a 6= reboot(ci) : (0.05 + 0.9xi)

·
|{xj |j 6=i∧xj=1∧Conn(cj ,ci)}|+1

|{xj |j 6=i∧Conn(cj ,ci)}|+1

If a computer is not rebooted then its probability of running in the
next time step depends on its current status and the proportion of
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Figure 6: Diagrams of the three example SYSADMIN connec-
tion topologies that we will focus on in this paper.

computers with incoming connections that are also currently run-
ning. The reward is the sum of computers that are running at any
time step:R(~x, a) =

Pn

i=1 xi. We use discount factorγ = 0.9
An optimal policy in this problem will reboot the computer that has
the most impact on the expected future discounted reward given the
network configuration.

TRAFFIC Factored MDP: This problem represents traffic intersec-
tion control. While this is not meant to be an accurate large-scale
traffic model over long stretches of road, it should still approxi-
mately model near-saturation traffic flow conditions at intersections
where speeds are limited by queueing and traffic turn delays.

A diagram of the model is shown in Figure 7. The traffic state is
given by~x = (x1, . . . , xn) where~x ∈ {O, U}n indicates for each
traffic cellxi (1 ≤ i ≤ n) if it is occupiedO or unoccupiedU .

Our basic traffic model forintermediate road cellsis that a car
will move forward into the next cell as long as it is unoccupied,
otherwise it stops in its current cell and waits.

For eachintersection road cellxj (i.e., leading into an intersec-
tion), we define a state variabletj ∈ {turn, no-turn} indicating
whether a car inxi will intend to turn into oncoming traffic or not.
The state variabletj is drawn randomly with probabilitypt = 0.5
that a car will turn when a new car arrives. When determining the
update forxj , we note that it can always go straight or turn left on
a green, but whether it can cross the opposing lane to make a right
turn depends on the opposing traffic light state and the opposing
traffic cell statesto andxo (two opposing right-turning cars may
safely turn though and this is allowed by conditioning onto).

We refer to a boundary traffic cellxk as afeeder road cellsince
new cars are introduced at these points. We assume that when the
cell is not occupied, new cars arrive on a time step with probability
pa = 0.2.

Finally, we have state variables~c encoding the current state of
the light cycle. In Figure 7, we have~c = (c1, c2, c3, c4), where
one may interpret each binaryci as indicating whether the intended
light is green (or not). We allow all light configurations where ex-
actly oneci is green or two opposingci are green. The action set
is simply to remain in the same light configuration state~c or to
advance to the next light configuration in a predefined sequence:
A = {advance, no-change}.

The above dynamics can be compactly represented in the transi-
tion DBN of a factored MDP. The reward is the sum of road cells
that areunoccupiedat any time step:R(~x, a) =

Pn

i=1 I[xi = U ].
We use discount factorγ = 0.9. An optimal policy in this domain
will adjust the lights based on traffic flow in all directions to min-
imize the number of occupied cells (i.e., congestion) in the traffic
network.

6.2 Experiments
We first begin with a variety of results for SYSADMIN problems.

In Figure 8, we show the time and space required to obtain an ap-
proximate solution with no more than 5% error as the number of
computers in the problem is increased. Here we note that MAD-
CAP consistently outperforms APRICODD in both time and space
requirements. In Figure 9, we show the amount of space that both

Figure 7: Diagram showing a 4-way single-lane intersection in-
cluding variables used in our state description. Note that we
do not model road cells that exit the intersection as we assume
that cars freely exit the boundaries of the model once they have
passed through the intersection.

algorithms require to achieve various true errors4 as the approxi-
mation error is varied between 0% and 30%. Here we see that the
AADD-based MADCAP is able to consistently achieve lower er-
rors in its solution using less space than APRICODD.

Next we move onto some large TRAFFIC problems. Here we
note that the largest problem has224 states and the joint transition
function specifies approximately248 transition probabilities — al-
most all non-zero. In Figure 10, we note that while MADCAP out-
performs APRICODD on the smaller of the two problems, APRI-
CODD cannot even approximately solve the larger problem with
an a priori bound of 10% error without exceeding memory lim-
its (EML). While MADCAP also cannotexactlysolve this problem
without exceeding memory limits, we note that it can find an ap-
proximate solution with no more than 10% error, indicating that
MADCAP is capable of approximately solving problems within
fixed error bounds that APRICODD cannot.

7. CONCLUDING REMARKS
We contributed MADCAP: an approximate dynamic program-

ming algorithm for factored MDPs based on a novel technique we
introduced for efficiently and compactly approximating AADDs.
In addition, we provided various enhancements for improving the
numerical stability of MADCAP. We showed that the MADCAP al-
gorithm yields faster running times, better compression and lower
error rates than state-of-the-art ADD-based APRICODD on prob-
lems with context-specific, additive and multiplicative structure,
and can approximately solve problems within fixed error bounds
on which APRICODD runs out of memory.
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