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Abstract

Probabilistic reasoning in the real-world often requires
inference in continuous variable graphical models, yet
there are few methods for exact, closed-form inference
when joint distributions are non-Gaussian. To address
this inferential deficit, we introduce SVE – a symbolic
extension of the well-known variable elimination al-
gorithm to perform exact inference in an expressive
class of mixed discrete and continuous variable graphi-
cal models whose conditional probability functions can
be well-approximated as oblique piecewise polynomi-
als with bounded support. Using this representation, we
show that we can compute all of the SVE operations ex-
actly and in closed-form, which crucially includes defi-
nite integration w.r.t. multivariate piecewise polynomial
functions. To aid in the efficient computation and com-
pact representation of this solution, we use an extended
algebraic decision diagram (XADD) data structure that
supports all SVE operations. We provide illustrative re-
sults for SVE on probabilistic inference queries inspired
by robotics localization and tracking applications that
mix various continuous distributions; this represents the
first time a general closed-form exact solution has been
proposed for this expressive class of discrete/continuous
graphical models.

Introduction
Real-world probabilistic reasoning is rife with uncertainty
over continuous random variables with complex (often non-
linear) relationships, e.g., estimating the position and pose
of entities from measurements in robotics, or radar track-
ing applications with asymmetric stochastic dynamics and
complex mixtures of noise processes. While closed-form ex-
act solutions exist for inference in some continuous variable
graphical models, such solutions are largely limited to rela-
tively well-behaved cases such as joint Gaussian models. On
the other hand, the more complex inference tasks of track-
ing with real-world sensors involves underlying distributions
that are beyond the reach of current closed-form exact solu-
tions. Take, for example, the robot sensor model in Figure 1
motivated by (Thrun et al. 2000). Here d ∈ R is a vari-
able representing the distance of a mobile robot to a wall
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Figure 1: The robot localization graphical model and all condi-
tional probabilities.

and xi are the observed measurements of distance (e.g., us-
ing a laser range finder). The prior distribution P (d) is uni-
form U(d; 0, 10) while the observation model P (xi|d) is a
mixture of three distributions: (red) is a truncated Gaussian
representing noisy measurements xi of the actual distance d
within the sensor range of [0, 10]; (green) is a uniform noise
model U(d; 0, 10) representing random anomalies leading
to any measurement; and (blue) is a triangular distribution
peaking at the maximum measurement distance (e.g., caused
by spurious deflections of laser light or the transparency of
glass).

While our focus in this paper is on exact inference in
general discrete and continuous variable graphical models
and not purely on this robotics localization task, this ex-
ample clearly motivates the real-world need for reasoning
with complex distributions over continuous variables. How-
ever, in contrast to previous work that has typically resorted
to (sequential) Monte Carlo methods (Thrun et al. 2000;
Doucet, De Freitas, and Gordon 2001) to perform inference
in this model (and dynamic extensions) via sampling, our
point of departure in this work is to seek exact, closed-
form solutions to general probabilistic inference tasks in
these graphical models, e.g., arbitrary conditional probabil-
ity queries or conditional expectation computations.

To achieve this task, we focus on an expressive class of
mixed discrete and continuous variable Bayesian networks
whose conditional probability functions can be expressed
as oblique piecewise polynomials with bounded support
(where oblique piece boundaries are represented by con-
junctions of linear inequalities). In practice, this represen-
tation is sufficient to represent or arbitrarily approximate
a wide range of common distributions such as the follow-
ing: uniform (piecewise constant), triangular (piecewise lin-
ear), truncated normal distributions1 (piecewise quadratic or

1In practice, measurements have natural ranges that make trun-



quartic), as well as all mixtures of such distributions as ex-
emplified in P (xi|d) above (since a sum of piecewise poly-
nomials is still piecewise polynomial). While polynomials
directly support the integrals we will need to compute vari-
able elimination (Zhang and Poole 1996) in closed-form,
computing the definite integrals of polynomials w.r.t. arbi-
trary linear piece boundaries turns out to be a much more
difficult task achieved through novel symbolic methods that
underlie the key contribution of symbolic variable elimina-
tion (SVE) that we make in this paper.

In the following sections, we present our graphical model
framework using a case representation of probability dis-
tributions followed by a description of our SVE proce-
dure. After this, we introduce the extended algebraic deci-
sion diagram (XADD) — a practical data structure for effi-
ciently and compactly manipulating the case representation
— and apply XADD-based SVE to robotics localization and
a tracking tasks demonstrating exact closed-form inference
for these problems.

Discrete and Continuous Graphical Models
Factor Graph Representation
A discrete and continuous graphical model compactly rep-
resents a joint probability distribution p(b,x) over an as-
signment (b,x) = (b1, . . . , bn, x1, . . . , xm) to respective
random variables (B,X) = (B1, . . . , Bn, X1, . . . , Xm).2
Each bi (1 ≤ i ≤ n) is boolean s.t. bi ∈ {0, 1} and each
xj (1 ≤ j ≤ m) is continuous s.t. xj ∈ R.

As a general representation of both directed and undi-
rected graphical models, we use a factor graph (Kschis-
chang, Frey, and Loeliger 2001) representing a joint prob-
ability p(b,x) as a product of a finite set of factors F , i.e.,

p(b,x) =
1

Z

Y
f∈F

Ψf (bf ,xf ). (1)

Here, bf and xf denote the subset of variables that par-
ticipate in factor f and Ψf (bf ,xf ) is a non-negative, real-
valued potential function that can be viewed as gauging the
local compatibility of assignments bf and xf . The func-
tions Ψf may not necessarily represent probabilities and
hence a normalization constant Z is often required to ensure∑

b

∫
x

p(b,x)dx = 1.
We will specify all of our algorithms on graphical models

in terms of general factor graphs, but we note that Bayesian
networks represent an important modeling formalism that
we will use to specify our examples in this paper. For the
Bayesian network directed graph in the introductory exam-
ple, the joint distribution for n variables is represented as
the product of all variables conditioned on their parent vari-
ables in the graph and can be easily converted to factor graph
form, i.e.,

cated variants of distributions appropriate, e.g., a range finder that
exhibits Gaussian distributed measurement errors but only returns
measurements in the range [0, 10] may be well-suited to a truncated
Normal distribution observation model.

2Notational comments: we sometimes abuse notation and treat
vectors of random variables or assignments as a set, e.g., (b,x) =
{b1, . . . , bn, x1, . . . , xm}. Also we often do not distinguish be-
tween a random variable (upper case) and its realization (lower
case), e.g., p(x1) := p(X1 = x1).

p(d, x1, . . . , xk) = p(d)

kY
i=1

p(xi|d)

= ψd(d)

kY
i=1

Ψxi(xi, d) (2)

where quite simply, Ψd(d) := p(d) and Ψxi(xi, d) :=
p(xi|d). Here, Z = 1 and is hence omitted since joint distri-
butions represented by Bayesian networks marginalize to 1
by definition.

Variable Elimination Inference
Given a joint probability distribution p(b,x) defined by a
factor graph, our objective in this paper will be to perform
two types of exact, closed-form inference:

(Conditional) Probability Queries: for query variables
q and disjoint (possibly empty) evidence variables e drawn
from a subset of (b,x), we wish to infer the exact
form of p(q|e) as a function of q and e. This can be
achieved by the following computation, where for nota-
tional convenience we assume variables are renamed s.t.
{b ∪ x} \ {q ∪ e} = (b1, . . . , bs, x1, . . . , xt) and q =
(bs+1, . . . , bs′ , xt+1, . . . , xt′):
p(q|e) = (3)

=

P
b1
· · ·
P

bs

R
· · ·
R

Rt

Q
f∈F Ψf (bf ,xf ) dx1 . . . dxtP

b1
· · ·
P

bs′

R
· · ·
R

Rt′
Q

f∈F Ψf (bf ,xf ) dx1 . . . dxt′

The 1
Z from (1) would appear in both the numerator and

denominator and hence cancels.
(Conditional) Expectation Queries: for a continuous

query random variable Q and disjoint evidence assignment
e drawn from a subset of (b,x), we wish to infer the ex-
act value of E[Q|e].3 This can be achieved by the following
computation, where p(q|e) can be pre-computed according
to (3):

E[Q|e] =

Z ∞

q=−∞
[q · p(q|e)] dq (4)

Variable elimination (VE) (Zhang and Poole 1996) is a
simple and efficient algorithm given in Algorithm 1 that ex-
ploits the distributive law to efficiently compute each elimi-
nation step (i.e., any

∑
bi

or
∫

xj
in (3) and (4)) by first factor-

izing out all factors independent of the elimination variable;
this prevents unnecessary multiplication of factors, hence
minimizing the size and complexity of each elimination op-
eration. If the factor representation is closed and computable
under the VE operations of multiplication and marginaliza-
tion then VE can compute any (conditional) probability or
expectation query in (3) and (4). Closed-form, exact solu-
tions for VE are well-known for the discrete and joint Gaus-
sian cases; next we extend VE to expressive piecewise poly-
nomial discrete/continuous graphical models.

Symbolic Variable Elimination in
Discrete/Continuous Graphical Models

As discussed previously, piecewise polynomial functions
provide an expressive framework for representing dis-

3We do not discuss the expectation of {0, 1} boolean random
variables B since E[B|e] = P (B = 1|e), which can already be
computed in (3).



crete/continuous variable graphical models when all distri-
butions have bounded support. In this section, we introduce
a case notation and operations for piecewise polynomials,
define factor graphs in terms of these case statements, and
show that all VE operations, including definite integration
w.r.t. multivariate oblique piecewise polynomials, can be
computed in exact, closed-form using a purely symbolic rep-
resentation, hence the algorithm Symbolic VE (SVE).

Case Representation and Operators
For this section, we will assume all functions are represented
in case form as follows:

f =


φ1 f1

...
...

φk fk

(5)

Here, the fi may be polynomials of x with non-negative ex-
ponents. The φi are logical formulae defined over (b,x) that
can consist of arbitrary conjunctions of (a) (negated) boolean
variables in v and (b) inequalities (≥, >,≤, <), where the
left and right operands must be linear functions (required to
represent oblique piecewise boundaries). We assume that the
set of conditions {φ1, . . . , φk} disjointly and exhaustively
partition (b,x) such that f is well-defined for all (b,x). It
is easy to verify that such a representation can represent the
uniform and triangular distributions and arbitrarily approx-
imate the truncated normal distribution required to specify
p(xi|d) discussed in the introduction.

Unary operations such as scalar multiplication c · f (for
some constant c ∈ R) or negation −f on case statements
f are straightforward; the unary operation is simply applied
to each fi (1 ≤ i ≤ k). Intuitively, to perform a binary
operation on two case statements, we simply take the cross-
product of the logical partitions of each case statement and

Algorithm 1: VE(F, order )
input : F, order : a set of factors F , and a

variable order for elimination
output: a set of factors after eliminating each

v ∈ order
begin1

// eliminate each v in the given order2
foreach v ∈ order do3

// multiply ⊗ all factors containing v4
// into fv , put other factors in F\v5
fv ← 1; F\v ← ∅6
foreach f ∈ F do7

if (f contains v)8
then fv ← fv ⊗ f9
else F\v ← F\v ∪ {f}10

// eliminate var; insert result into factor11
// set F along with F\v12
if (var is boolean)13
then F ← F\v ∪ {

P
v∈{0,1} fv}14

else F ← F\v ∪ {
R∞

v=−∞ fv dv}15
return F16

end17

perform the corresponding operation on the resulting paired
partitions. Thus, we perform the “cross-sum” ⊕ of two (un-
named) cases as follows:(

φ1 : f1
φ2 : f2

⊕

(
ψ1 : g1
ψ2 : g2

=

8>>><>>>:
φ1 ∧ ψ1 : f1 + g1
φ1 ∧ ψ2 : f1 + g2
φ2 ∧ ψ1 : f2 + g1
φ2 ∧ ψ2 : f2 + g2

Likewise, we perform 	 and ⊗ by, respectively, subtract-
ing or multiplying partition values (rather than adding them)
to obtain the result. Some partitions resulting from the ap-
plication of the ⊕, 	, and ⊗ operators may be inconsistent
(infeasible); if we can detect this (e.g., via a linear constraint
solver), we may simply discard such partitions as they are ir-
relevant to the function value.

For variable elimination, we’ll need to compute definite
integrals — a fairly non-trivial operation that is discussed in
its own section. But first we discuss maximization (needed
for working with integral bounds) and restriction (needed to
compute marginals for boolean variables).

Symbolic maximization is fairly straightforward to define
if we note that the conditional nature of the case statements
allows us to directly encode maximization:

max

 (
φ1 : f1
φ2 : f2

,

(
ψ1 : g1
ψ2 : g2

!
=

8>>>>>>>>>>><>>>>>>>>>>>:

φ1 ∧ ψ1 ∧ f1 > g1 : f1
φ1 ∧ ψ1 ∧ f1 ≤ g1 : g1
φ1 ∧ ψ2 ∧ f1 > g2 : f1
φ1 ∧ ψ2 ∧ f1 ≤ g2 : g2
φ2 ∧ ψ1 ∧ f2 > g1 : f2
φ2 ∧ ψ1 ∧ f2 ≤ g1 : g1
φ2 ∧ ψ2 ∧ f2 > g2 : f2
φ2 ∧ ψ2 ∧ f2 ≤ g2 : g2

The key observation here is that case statements are closed
under the max operation (similarly for min). While it may
appear that this representation will lead to an unreasonable
blowup in size, we note the XADD that we introduce later
will be able to exploit the internal decision structure of this
maximization to represent it much more compactly.

The two operations required for marginalization over
boolean variables b are ⊕ and restriction of variable b in
factor f to the value x ∈ 0, 1, written as f |b = x. For x = 1
(x = 0), f |b = x simply requires instantiating all variables
b in f with x. For example, let

f =


φ1 ∧ b : f1

φ2 ∧ ¬b : f2

φ3 : f3

then the two possible restrictions of b yield the following
results (where inconsistent case partitions have been re-
moved):

f |b=1 =
{

φ1 : f1

φ3 : f3
f |b=0 =

{
φ2 : f2

φ3 : f3
.

Definite Integration of the Case Representation
One of the major technical contributions of this paper is the
symbolic computation of the definite integration required to
eliminate continuous variables in SVE. If we are computing∫∞

x1=−∞ f dx1 for f in (5), we can rewrite it in the following
equivalent form



Z ∞

x1=−∞

X
i

I[φi] · fi dx1 =
X

i

Z ∞

x1=−∞
I[φi] · fi dx1 (6)

where I[·] is an indicator function taking value 1 when its
argument is true, 0 when it is false. Hence we can compute
the integrals separately for each case partition (producing a
case statement) and then

∑
the results using ⊕.

To continue with the integral for a single case partition,
we introduce a concrete example. Let f1 := x2

1 − x1x2 and
φ1 := [x1 > −1]∧[x1 > x2−1]∧[x1 ≤ x2]∧[x1 ≤ x3+1]∧
[x2 > 0]. In computing

∫∞
x1=−∞ I[φ1] ·f1 dx1, the first thing

we note is that the linear constraints involving x1 in I[φ1]
can be used to restrict the integration range for x1. From
these constraints, we can see that the integrand can only be
non-zero for max(x2−1,−1) < x1 ≤ min(x2, x3+1). Us-
ing the max operation defined previously, we can write ex-
plicit functions in piecewise polynomial case form for these
respective lower and upper bounds LB and UB :

LB :=

(
x2 − 1 > −1 : x2 − 1

x2 − 1 ≤ −1 : −1
UB :=

(
x2 < x3 + 1 : x2

x2 ≥ x3 + 1 : x3 + 1

Now we can rewrite the integral as4

I[x2 > 0]
∫ UB

x1=LB

(x2
1 − x1x2) dx1. (7)

Note here that I[x2 > 0] is independent of x1 and hence
can factor outside the integral. With all indicator functions
moved into the LB or UB or factored out, we can now com-
pute the integral:

I[x2 > 0]

"
1

3
x3

1 −
1

2
x2

1x2

˛̨̨̨x1=UB

x1=LB

#
. (8)

The question now is simply how to do this evaluation? Here
we note that every expression (variables, constants, indicator
functions, etc.) can be written as a simple case statement or
as operations on case statements, even the upper and lower
bounds as shown previously. So the evaluation is simply

I[x2 > 0]⊗
»„

1

3
UB ⊗UB ⊗UB 	 1

2
UB ⊗UB ⊗ (x2)

«
	
„

1

3
LB ⊗ LB ⊗ LB 	 1

2
LB ⊗ LB ⊗ (x2)

«–
. (9)

Hence the result of the definite integration over a case par-
tition of a piecewise polynomial function with linear con-
straints is simply a case statement in the same form — this
is somewhat remarkable given that all of the bound com-
putations were symbolic. Furthermore, one might fear that
high-order operations like UB ⊗ UB ⊗ UB could lead to
a case partition explosion, but we note this example simply
has the effect of cubing the expressions in each partition of
UB since all case partitions are mutually disjoint.

However, we are not yet done, there is one final step that
we must include for correctness. Because our bounds are

4The careful reader will note that because the lower bounds
were defined in terms of > rather than ≤, we technically have an
improper integral and need to take a limit. However, in taking the
limit, we note that all integrands are continuous polynomials of or-
der 0 or greater, so the limit exists and yields the same answer as
substituting the limit value. Hence for polynomials, we need not be
concerned about whether bounds are inclusive or not.

symbolic, it may be the case for some assignment to (b,x)
that LB ≥ UB . In this case the integral should be zero since
the constaints on x1 could not be jointly satisfied. To enforce
this symbolically, we simply need to ⊗ (9) by case state-
ments representing the following inequalities for all pairs of
upper and lower bounds:

I[x2 > x2−1]⊗I[x2 > −1]⊗I[x3+1 > x2−1]⊗I[x3+1 > −1]
(10)

Of course, here I[x2 + 1 > x2 − 1] could be removed as a
tautology, but the other constraints must remain.

This provides the solution for a single case partition and
from (6), we just need to ⊕ the case statements resulting
from each definite

∫
evaluation to obtain the final result, still

in oblique piecewise polynomial case form.

Piecewise Polynomial Factor Graphs and Symbolic
Variable Elimination (SVE)
We define a factor graph from (1) with factors represented by
our case formalism as piecewise polynomial factor graphs
(PPFGs). With the preceding machinery, generalizing VE
to Symbolic VE (SVE) for PPFGs is straightforward. We
need only replace all sums and products in VE with the case
versions ⊕ and ⊗. Then the only operations left to specify
in the VE Algorithm 1 are the computations for the variable
eliminations. For PPFGs, there are two cases:

Discrete Variable Elimination (line 14 of VE):∑
v∈{0,1}

fv := fv|v=0 ⊕ fv|v=1.

Continuous Variable Elimination (line 15 of VE):∫ ∞

v=−∞
fv dv := (see definite integration)

Since definite integration and all other required SVE op-
erations preserve the case property, all SVE operations can
be computed on a PPFG in closed-form.5

This completes the definition of SVE. If the exact model
could be represented as a PPFG, then SVE provides exact
closed-form inference. Otherwise one can approximate most
discrete and continuous graphical models to arbitrary preci-
sion using PPFGs — once this is done, SVE will provide
exact inference in this approximated model.

Extended ADDs (XADDs) for Case Statements
In practice, it can be prohibitively expensive to maintain a
case statement representation of a value function with ex-
plicit partitions. Motivated by algebraic decision diagrams
(ADDs) (Bahar et al. 1993), which maintain compact repre-
sentations for finite discrete functions, we use an extended

5While the max(·, ·) and min(·, ·) case operations (defined pre-
viously and required for lower and upper bound computation in
definite integration) can theoretically introduce new nonlinear con-
straints fi ≥ gj , we note that these max and min operations are
only ever applied to linear bound expressions (derived from linear
case constraints) during definite integration and hence only ever in-
troduce new linear constraints. This is a crucial observation that en-
sures definite integration can always be applied in SVE for PPFGs.



b

2*x + z <= 10 2*x + z <= 10

y - x >= -2x + z

y - x <= 3

0

y >= -6

0.1

y <= 4

y*y

Figure 2: An XADD example.

ADD (XADD) formalism introduced in (Sanner, Delgado,
and de Barros 2011) and demonstrated in Figure 2.

The XADD is like an algebraic decision diagram
(ADD) (Bahar et al. 1993) except that (a) the decision nodes
can have arbitrary inequalities (one per node) and (b) the leaf
nodes can represent arbitrary functions. The decision nodes
still have a fixed order from root to leaf and the standard
ADD operations to build a canonical ADD (REDUCE) and
to perform a binary operation on two ADDs (APPLY) still
apply with minor modifications in the case of XADDs.

Of particular importance is that the XADD is a directed
acyclic graph (DAG), and hence is often much more com-
pact than a tree representation, e.g., as demonstrated in Fig-
ure 2. Furthermore, one can use the feasibility checker of
an LP solver to incrementally prune unreachable branches
in the XADD DAG — an operation crucial for maintaining
XADD compactness and minimality (Sanner, Delgado, and
de Barros 2011). We remark that not only are XADDs com-
pact on account of their reconvergent DAG structure (each
path from root to leaf would be a separate case partition), but
that all unary and binary operations on XADDs can directly
exploit this compact DAG structure for efficiency.

All XADD operations except for definite integration have
been defined previously; we note that unlike ADDs, some
XADD operations like max(·, ·) and min(·, ·) can intro-
duce out-of-order decisions which can be easily detected
and repaired as discussed in (Sanner, Delgado, and de Bar-
ros 2011). Extending the definite integration operation to
XADDs is straightforward: treating each XADD path from
root to leaf node as a single case partition with conjunctive
constraints,

∫∞
v=−∞ is performed at each leaf and the result

accumulated via the ⊕ operation to compute (6).

Computational Complexity
For a graphical model inference algorithm like SVE, it is a
natural question to wonder if space and computation time
can be bounded in terms of the tree-width of the underly-
ing graph, as for purely discrete models. The short answer is
no. While a factor over many variables may be represented
compactly as a piecewise expression (unlike, e.g., a tabu-
lar enumeration in the discrete case), one can generally only
upper bound the number of pieces needed in a case expres-

sion (and hence computation time and space) as an expo-
nential function of the number of primitive binary opera-
tions (⊕,⊗,max,min) used by SVE — assuming the PPFG
has some factor with at least two non-zero case partitions.
Since one definite integral during SVE can easily require
10’s or 100’s of primitive case operations, one can see that
either SVE will be intractable or that these worst-case upper
bounds are extremely loose when using data structures like
the XADD. Fortunately, the latter proves to be the case as
shown next in the empirical results.

Empirical Results
In this section we present proof-of-concept experiments for
the robot localization graphical model provided in the intro-
duction and a basic discrete/continuous tracking task in Fig-
ure 4. Our objectives in this section are to show that the pre-
viously defined exact inference methods can work with rea-
sonably sized graphical models having multiple continuous
and discrete variables with complex piecewise polynomial
distributions and that SVE can exactly compute the highly
complex, multi-modal queries in an exact functional form
— a milestone in exact closed-form inference for graphical
models with such complex combinations of distributions.

Localization: For the robot localization task, we plot the
posterior over the distance d ∈ D given various observa-
tions in Figure 3. What is noteworthy here is the interest-
ing multi-modal nature of these plots. Recalling the discus-
sion in the introduction, the range finder was modeled with
various error modes; because of these models, the poste-
rior plots demonstrate the different combinatorial possibil-
ities that each measurement was accurate or noise with the
various peaks in the distribution weighted according to these
probabilities. Despite the multi-modal nature of these distri-
butions, the conditional expectation of D can be computed
exactly and is shown below each posterior.

We note that in a Bayesian risk setting, where these pos-
terior beliefs may be multiplied by some position-based risk
function (e.g., one that increases with proximity to stair-
wells), it is important to have this true multi-modal poste-
rior rather than an inaccurate unimodal approximation. And
while sampling may work well for fixed expected risk cal-
culations, if the evidence is changing or one wants to per-
form sensitivity analysis of risk subject to differing evidence
(i.e., conditioning on unassigned evidence), one must collect
samples for each specific evidence case under consideration.

Tracking: The tracking graphical model and (condi-
tional) distributions are shown in Figure 4 and works as fol-
lows: an object has hidden state xi ∈ R defining it’s x posi-
tion that is sampled for time steps i = 1 . . . t. On every time
step a noisy observation oi ∈ R is received regarding the
position of the object. Also at every time step, a variable bi

indicates whether the sensor is broken (1) or not (0). A sen-
sor fails with probability 0.2 and stays broken once it breaks.
If the sensor is not broken, the observation model for oi is
a symmetrical triangular distribution centered on the under-
lying state xi; if it is broken the observation model is an
asymmetric triangular distribution with a peak at the true xi

state, but biased to underestimate. The initial position x1 is
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Figure 3: Queries for robot localization. The diagrams show p(d|e) vs. d for the given evidence e shown below each diagram along with the
exactly computed expectation E[D|e] for this distribution.

P(o |x ,b =1) =

b

xt

to

tb

x1
x2

1b

1o
2o

P(x ) =1

bi

xi

oi

xi

oi

xi+1

xi

...

...

...

i i i

0 10
0 10

100

1

i+1 i

P(b =1) = 0.2

P(b     =1 |b ) = 0
1

P

1.0
0.2P(x     |x ) =i+1 i

0 10

x1

P(o |x ,b =0) =

i i i

2

Figure 4: The tracking graphical model and all conditional probabilities.

−10 −5 0 5 10 15 20
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

P
(o

1|b
1=

0/
1)

o
1

 

 

b
1
=0

b
1
=1

−20

0

20
−10 −5 0 5 10 15 20

0

0.05

0.1

0.15

0.2

0.25
 

x
5

 

o
1

P
(x

5|o
1)

o
1

x 5

P(x
5
|o

1
)

 

 

−5 0 5 10

−2

0

2

4

6

8

10

12

0

0.05

0.1

0.15

0.2

(a) (b) (c)

Figure 5: Plots of query and evidence variables for three queries in tracking: (a) p(o1|b1 = 0) (blue dash) and p(o1|b1 = 1) (red solid). (b)
p(x5|o1) as a 3D plot, and (c) p(x5|o1) as a contour plot.

uniformly distributed between 0 and 10 and each subsequent
xi+1 is sampled from a truncated Gaussian centered on xi.

In Figure 5, we show results for three queries in the track-
ing model. Result (a) demonstrates an asymmetric posterior
while results (b) and (c) demonstrate the complex multi-
modal posterior distribution over x3 conditioned on unin-
stantiated continuous evidence o1 and the ability of the SVE
inference algorithm to compute this in an exact closed-form.
All of these queries completed in under 1 minute demon-
strating that despite the complex symbolic manipulations in-

volved and multidimensional/multimodal inference results,
the SVE method can effectively compute closed-form exact
inference for this non-Gaussian tracking task.

The important point to observe here in both Figures 3 and
5 is that using SVE we are able to derive various multi-
modal and highly irregular posterior distributions in an exact
functional form. And due to our symbolic form, we are able
to derive this distribution as a function of uninstantiated ev-
idence as in Figures 5(b,c) — inference that is not easily
done (if at all) via standard sampling or numerical integra-



tion techniques. Such symbolic forms are useful when we
want to analyze arbitrary variable dependencies in complex
systems with sophisticated distributions that can be specified
(or arbitrarily approximated) as PPFGs.

Related Work
Almost all prior work on continuous variable graphical mod-
els — with the exception of Kalman filtering (Welch and
Bishop 1995) and other jointly Gaussian models (Weiss
and Freeman 1999) — has focused on approximate or
non-closed-form, exact inference. Such methods for non-
Gaussian continuous graphical model inference include

• Discretization: arbitrary accuracy but subject to the curse
of dimensionality,

• Numerical Integration: arbitrary accuracy but subject to
the curse of dimensionality, also only applies to instan-
tiated continuous evidence — rather than uninstantiated
evidence as shown for the SVE query in Figures 5(b,c),

• (MCMC) Sampling: exemplified in the expressive BUGS
language and inference (Lunn et al. 2000), aymptotically
unbiased but only applies to instantiated evidence and
known to be slow to converge when probabilities are
nearly deterministic (note that SVE is unaffected by this),

• Projected Message Passing such as variational infer-
ence (Jordan et al. 1999) and expectation propaga-
tion (Minka 2001) that can produce a functional form for
a query result, but with an a priori assumed projective dis-
tribution (often Gaussian) that may not be appropriate in
practice, cf. Figures 5(b,c), and

• Mixtures of Truncated Exponentials (MTEs): an approach
introduced in (Moral, Rumı́, and Salmerón 2001) not un-
like that taken here and further developed extensively in
the approximate case – even with trees (Moral, Rumı́, and
Salmerón 2003; Rumı́ and Salmerón 2005; Cobb, Shenoy,
and Rumı́ 2006), but only for non-oblique pieces (hyper-
rectangular piece boundaries) that may require arbitrary
space to accurately approximate functions that can be ex-
actly represented with oblique pieces as in Figures 5(b,c).

In short, it seems that little progress has been made in
closed-form exact inference of results in a functional form
for expressive non-Gaussian joint distributions and uninstan-
tiated continuous evidence — as done for the oblique piece-
wise polynomial distributions in this paper.

Concluding Remarks
SVE and its PPFG formalism using oblique piecewise
polynomials represents a novel and expressive class of
non-Gaussian factors for which integration is closed-form,
thus enabling exact symbolic inference for any probability
queries and expectations in this model. Most realistic distri-
butions have bounded support and can be arbitrarily approx-
imated by piecewise polynomials, hence this work opens up
the possibility of exact solutions (or arbitrary approxima-
tions thereof) in discrete/continuous graphical models for
which previous exact solutions were not available. As such,
we believe that SVE provides a significant step forward and

a new alternative for the difficult task of exact closed-form
inference in discrete and continuous graphical models.
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