
Symbolic Dynamic Programming for Continuous State and Action MDPs

Zahra Zamani
ANU & NICTA

Canberra, Australia
zahra.zamani@anu.edu.au

Scott Sanner
NICTA & ANU

Canberra, Australia
ssanner@nicta.com.au

Cheng Fang
Department of Aeronautics and

Astronautics, MIT, USA
cfang@mit.edu

Abstract
Many real-world decision-theoretic planning problems
are naturally modeled using both continuous state and
action (CSA) spaces, yet little work has provided ex-
act solutions for the case of continuous actions. In
this work, we propose a symbolic dynamic program-
ming (SDP) solution to obtain the optimal closed-form
value function and policy for CSA-MDPs with mul-
tivariate continuous state and actions, discrete noise,
piecewise linear dynamics, and piecewise linear (or re-
stricted piecewise quadratic) reward. Our key contribu-
tion over previous SDP work is to show how the contin-
uous action maximization step in the dynamic program-
ming backup can be evaluated optimally and symboli-
cally — a task which amounts to symbolic constrained
optimization subject to unknown state parameters; we
further integrate this technique to work with an efficient
and compact data structure for SDP — the extended
algebraic decision diagram (XADD). We demonstrate
empirical results on a didactic nonlinear planning exam-
ple and two domains from operations research to show
the first automated exact solution to these problems.

Introduction
Many real-world stochastic planning problems involving re-
sources, time, or spatial configurations naturally use contin-
uous variables in both their state and action representation.
For example, in a MARS ROVER problem (Bresina et al.
2002), a rover must navigate within a continuous spatial en-
vironment and carry out assigned scientific discovery tasks;
in INVENTORY CONTROL problems (Mahootchi 2009) for
continuous resources such as petroleum products, a business
must decide what quantity of each item to order subject to
uncertain demand, (joint) capacity constraints, and reorder-
ing costs; and in RESERVOIR MANAGEMENT problems (La-
mond and Boukhtouta 2002), a utility must manage contin-
uous reservoir water levels in continuous time to avoid un-
derflow while maximizing electricity generation revenue.

Previous work on exact solutions to multivariate contin-
uous state and action settings has been quite limited. There
are well-known exact solutions in the control theory liter-
ature for the case of linear-quadratic Gaussian (LQG) con-
trol (Athans 1971), i.e., minimizing a quadratic cost function

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

subject to linear dynamics with Gaussian noise in a partially
observed setting. However, the transition dynamics and re-
ward (or cost) for such problems cannot be piecewise — a
crucial limitation preventing the application of such solu-
tions to many planning and operations research problems.

In this paper, we provide an exact symbolic dynamic
programming (SDP) solution to a useful subset of contin-
uous state and action Markov decision processes (CSA-
MDPs) with multivariate continuous state and actions, dis-
crete noise, piecewise linear dynamics, and piecewise linear
(or restricted piecewise quadratic) reward. To be concrete
about the form of CSA-MDPs we can solve with our SDP
approach, let us formalize a simple MARS ROVER problem:1

Example (MARS ROVER). A Mars Rover state consists of
its continuous position x along a given route. In a given
time step, the rover may move a continuous distance y ∈
[−10, 10]. The rover receives its greatest reward for taking
a picture at x = 0, which quadratically decreases to zero
at the boundaries of the range x ∈ [−2, 2]. The rover will
automatically take a picture when it starts a time step within
the range x ∈ [−2, 2] and it only receives this reward once.

Using boolean variable b ∈ {0, 1} to indicate if the picture
has already been taken (b = 1), x′ and b′ to denote post-
action state, and R to denote reward, we express the MARS
ROVER CSA-MDP using piecewise dynamics and reward:

P (b′=1|x, b) =
{
b ∨ (x ≥ −2 ∧ x ≤ 2) : 1.0
¬b ∧ (x < −2 ∨ x > 2) : 0.0

(1)

P (x′|x, y) = δ

(
x′ −

{
y ≥ −10 ∧ y ≤ 10 : x+ y

y < −10 ∨ y > 10 : x

)
(2)

R(x, b) =
{
¬b ∧ x ≥ −2 ∧ x ≤ 2 : 4− x2

b ∨ x < −2 ∨ x > 2 : 0
(3)

Then there are two natural questions that we want to ask:
(a) What is the optimal form of value that can be obtained

from any state over a fixed time horizon?
(b) What is the corresponding closed-form optimal policy?

1For purposes of concise exposition and explanation of the op-
timal value function and policy, this CSA-MDP example uses con-
tinuous univariate state and action and deterministic transitions; the
empirical results will later discuss a range of CSA-MDPs with mul-
tivariate continuous state and action and stochastic transitions.

−30 −20 −10 0 10 20 30

0

2

4

V
0 (x

)

x

−30 −20 −10 0 10 20 30

0

2

4

V
1 (x

)

x

−30 −20 −10 0 10 20 30

0

2

4

V
2 (x

)

x

Figure 1: Optimal sum of rewards (value) V t(x) for b = 0 (false)
for time horizons (i.e., decision stages remaining) t = 0, t = 1, and
t = 2 on the MARS ROVER problem. For x ∈ [−2, 2], the rover
automatically takes a picture and receives a reward quadratic in x.
We initialized V 0(x, b) = R(x, b); for V 1(x), the rover achieves
non-zero value up to x = ±12 and for V 2(x), up to x = ±22.

To get a sense of the form of the optimal solution to prob-
lems such as MARS ROVER, we present the 0-, 1-, and 2-step
time horizon solutions for this problem in Figure 1; further,
in symbolic form, we display both the 1-step time horizon
value function (the 2-step is too large to display) and cor-
responding optimal policy in Figure 2. Here, the piecewise
nature of the transition and reward function leads to piece-
wise structure in the value function and policy. Yet despite
the intuitive and simple nature of this result, we are unaware
of prior methods that can produce such exact solutions.

To this end, we extend the previous SDP framework
of (Sanner, Delgado, and de Barros 2011) to the case of con-
tinuous actions to obtain the optimal closed-form value func-
tion and policy for the class of CSA-MDPs described previ-
ously (as well as the useful deterministic subset). As the fun-
damental technical contribution of the paper, we show how
the continuous action maximization step in the dynamic pro-
gramming backup can be evaluated optimally and symboli-
cally — a task which amounts to symbolic constrained opti-
mization subject to unknown state parameters; we further in-
tegrate this technique to work with an efficient and compact
data structure for SDP — the extended algebraic decision
diagram (XADD). In addition to the solution of the nonlin-
ear MARS ROVER planning example above, we demonstrate
empirical results on RESERVOIR MANAGEMENT and IN-
VENTORY CONTROL domains from operations research to
show the first automated exact solution to these problems.

Continuous State and Action MDPs
In our CSA-MDPs, states are represented by vectors of vari-
ables (~b, ~x) = (b1, . . . , bn, x1, . . . , xm). We assume that

x >= -2

x >= -84 - x * x (y = 0)

b

x <= 2

0 (y = 0)

x <= 12

x <= 10

4 (y = -x)-96 + 20 * x - x * x (y = -10) -96 + -20 * x - x * x (y = 10)

x <= -12

x >= -10

x <= 8

Figure 2: Optimal value function V 1(x) for the MARS ROVER
problem represented as an extended algebraic decision diagram
(XADD). Here the solid lines represent the true branch for the de-
cision and the dashed lines the false branch. To evaluate V 1(x) for
any state x, one simply traverses the diagram in a decision-tree like
fashion until a leaf is reached where the non-parenthetical expres-
sion provides the optimal value and the parenthetical expression
provides the optimal policy (y = π∗,1(x)) to achieve value V 1(x).

each bi ∈ {0, 1} (1 ≤ i ≤ n) is boolean and each xj ∈ R
(1 ≤ j ≤ m) is continuous. We also assume a finite set
of p actions A = {a1(~y1), . . . , ap(~yp)}, where ~yk ∈ R|~yk|

(1 ≤ k ≤ p) denote continuous parameters for action ak.
A CSA-MDP model requires the following: (i) a joint

state transition model P (~b′, ~x′| · · · , a, ~y), which specifies
the probability of the next state (~b′, ~x′) conditioned on a
subset of the previous and next state and action a(~y); (ii)
a reward function R(~b, ~x, a, ~y), which specifies the immedi-
ate reward obtained by taking action a(~y) in state (~b, ~x); and
(iii) a discount factor γ, 0 ≤ γ ≤ 1. A policy π specifies the
action a(~y) = π(~b, ~x) to take in each state (~b, ~x). Our goal
is to find an optimal sequence of finite horizon-dependent
policies Π∗ = (π∗,1, . . . , π∗,H) that maximizes the expected
sum of discounted rewards over a horizon h ∈ H;H ≥ 0:

V Π∗
(~x) = EΠ∗

[
H∑

h=0

γh · rh
∣∣∣~b0, ~x0

]
. (4)

Here rh is the reward obtained at horizon h following Π∗

where we assume starting state (~b0, ~x0) at h = 0.
CSA-MDPs as defined above are naturally fac-

tored (Boutilier, Dean, and Hanks 1999) in terms of
state variables (~b, ~x, ~y); as such, transition structure can be
exploited in the form of a dynamic Bayes net (DBN) (Dean
and Kanazawa 1989) where the conditional probabilities
P (b′i| · · ·) and P (x′j | · · ·) for each next state variable can
condition on the action, current and next state. We assume
there are no synchronic arcs (variables that condition on
each other in the same time slice) within the binary ~b or
continuous variables ~x, but we allow synchronic arcs from

~b to ~x.2 Hence we can factorize the joint transition model as

P (~b′, ~x′|~b, ~x, a, ~y) =

nY
i=1

P (b′i|~b, ~x, a, ~y)
mY

j=1

P (x′j |~b,~b′, ~x, a, ~y).

We call the conditional probabilities P (b′i|~b, ~x, a, ~y) for
binary variables bi (1 ≤ i ≤ n) conditional probability func-
tions (CPFs) — not tabular enumerations — because in gen-
eral these functions can condition on both discrete and con-
tinuous state as in (1). For the continuous variables xj (1 ≤
j ≤ m), we represent the CPFs P (x′j |~b, ~b′, ~x, a, ~y) with
piecewise linear equations (PLEs) satisfying three prop-
erties: (i) PLEs can only condition on the action, current
state, and previous state variables, (ii) PLEs are determinis-
tic meaning that to be represented by probabilities they must
be encoded using Dirac δ[·] functions (example forthcom-
ing), and (iii) PLEs are piecewise linear, where the piece-
wise conditions may be arbitrary logical combinations of ~b,
~b′ and linear inequalities over ~x. An example PLE has been
provided in (2) where the use of the δ[·] function ensures that
this is a conditional probability function that integrates to 1
over x′; In more intuitive terms, one can see that this δ[·] is
a simple way to encode the PLE transition x′ = {. . . in the
form of P (x′j |~b, ~b′, ~x, a, ~y).

While it will be clear that our restrictions do not permit
general stochastic transition noise (e.g., Gaussian noise as in
LQG control), they do permit discrete noise in the sense that
P (x′j |~b, ~b′, ~x, a, ~y) may condition on ~b′, which are stochasti-
cally sampled according to their CPFs. We note that this rep-
resentation effectively allows modeling of continuous vari-
able transitions as a mixture of δ functions, which has been
used frequently in previous exact continuous state MDP so-
lutions (Feng et al. 2004; Meuleau et al. 2009).

We allow the reward function R(~b, ~x, a, ~y) to be either (i)
a general piecewise linear function (boolean or linear condi-
tions and linear values) such as

R(~b, ~x, a, ~y) =
{
b ∧ x1 ≤ x2 + 1 : 1− x1 + 2x2

¬b ∨ x1 > x2 + 1 : 3x1 + 2x2
(5)

or (ii) a piecewise quadratic function of univariate state and
a linear function of univariate action parameters as demon-
strated in MARS ROVER (3). These transition and reward
constraints will ensure that all derived functions in the solu-
tion of these CSA-MDPs adhere to the reward constraints.

Solution Methods
Now we provide a continuous state generalization of value
iteration (Bellman 1957), which is a dynamic program-
ming algorithm for constructing optimal policies. It pro-
ceeds by constructing a series of h-stage-to-go value func-
tions V h(~b, ~x). Initializing V 0(~b, ~x) = 0) we define the
quality Qh

a(~b, ~x, ~y) of taking action a(~y) in state (~b, ~x) and

2Synchronic arcs between variables within ~b or within ~x can
be accommodated if the forthcoming Algorithm 2 (Regress) is
modified to multiply and marginalize-out multiple next-state vari-
ables in one elimination step according to the DBN structure.

acting so as to obtain V h−1(~b, ~x) thereafter as the following:

Qh
a(~b, ~x, ~y) =

"
R(~b, ~x, a, ~y) + γ· (6)

X
~b′

Z nY
i=1

P (b′i|~b, ~x, a, ~y)
mY

j=1

P (x′j |~b,~b′, ~x, a, ~y)

!
V h−1(~b′, ~x′)d~x′

#

Given Qh
a(~b, ~x) for each a ∈ A, we can proceed to define

the h-stage-to-go value function as follows:

V h(~b, ~x) = max
a∈A

max
~y∈R|~y|

{
Qh

a(~b, ~x, ~y)
}

(7)

If the horizon H is finite, then the optimal value function
is obtained by computing V H(~b, ~x) and the optimal horizon-
dependent policy π∗,h at each stage h can be easily deter-
mined via π∗,h(~b, ~x) = arg maxa arg max~y Q

h
a(~b, ~x, ~y). If

the horizon H = ∞ and the optimal policy has finitely
bounded value, then value iteration can terminate at horizon
h if V h = V h−1; then V∞ = V h and π∗,∞ = π∗,h.

From this mathematical definition, we next show how to
compute (6) and (7) for the previously defined CSA-MDPs.

Symbolic Dynamic Programming (SDP)
In this section, we extend the symbolic dynamic program-
ming (SDP) work of (Sanner, Delgado, and de Barros 2011)
to the case of continuously parameterized actions for CSA-
MDPs. We present the general SDP framework for value it-
eration in Algorithm 1 (VI) and a regression subroutine in
Algorithm 2 (Regress) where we have omitted parameters
~b and ~x from V and Q to avoid notational clutter. The differ-
ence between this SDP algorithm and that in (Sanner, Del-
gado, and de Barros 2011) comes in the continuous action
parameter maximization in line 7 of VI. But first we recap
SDP, which uses the case representation and operations.

Case Representation and Operators
From here out, we assume that all symbolic functions can be
represented in case form (Boutilier, Reiter, and Price 2001):

f =

φ1 : f1
...

...
φk : fk

(8)

Here the φi are logical formulae defined over the state (~b, ~x)
that can include arbitrary logical (∧,∨,¬) combinations of
(i) boolean variables and (ii) linear inequalities (≥, >,≤, <)
over continuous variables. Each φi will be disjoint from the
other φj (j 6= i); however the φi may not exhaustively cover
the state space, hence f may only be a partial function and
may be undefined for some variable assignments. The fi

may be either linear or quadratic in the continuous param-
eters according to the same restrictions as for R(~b, ~x, a, ~y).
We require f to be continuous (including no discontinuities
at partition boundaries); operations preserve this property.

Unary operations such as scalar multiplication c · f (for
some constant c ∈ R) or negation −f on case statements f

Algorithm 1: VI(CSA-MDP, H) −→ (V h, π∗,h)

begin1

V 0 := 0, h := 02
while h < H do3

h := h+ 14
foreach a(~y) ∈ A do5

Qh
a(~y) :=Regress(V h−1, a, ~y)6

Qh
a := max~y Q

h
a(~y) // Continuous max7

V h := casemaxaQ
h
a // casemax all Qa8

π∗,h := arg max(a,~y) Q
h
a(~y)9

if V h = V h−1 then10
break // Terminate if early convergence11

12

return (V h, π∗,h)13

end14

Algorithm 2: Regress(V, a, ~y) −→ Q

begin1
Q = Prime(V) // All bi → b′i and all xi → x′i2
// Continuous regression marginal integration3
for all x′j in Q do4

Q :=
∫
Q⊗ P (x′j |~b,~b′, ~x, a, ~y) dx′

j5

// Discrete regression marginal summation6
for all b′i in Q do7

Q :=
[
Q⊗ P (b′i|~b, ~x, a, ~y)

]
|b′i=18

⊕
[
Q⊗ P (b′i|~b, ~x, a, ~y)

]
|b′i=09

return R(~b, ~x, a, ~y)⊕ (γ ⊗Q)10

end11

are simply applied to each fi (1 ≤ i ≤ k). Intuitively, to
perform a binary operation on two case statements, we sim-
ply take the cross-product of the logical partitions of each
case statement and perform the corresponding operation on
the resulting paired partitions. Letting each φi and ψj de-
note generic first-order formulae, we can perform the “cross-
sum” ⊕ of two (unnamed) cases in the following manner:

(
φ1 : f1
φ2 : f2

⊕

(
ψ1 : g1
ψ2 : g2

=

8>>><>>>:
φ1 ∧ ψ1 : f1 + g1
φ1 ∧ ψ2 : f1 + g2
φ2 ∧ ψ1 : f2 + g1
φ2 ∧ ψ2 : f2 + g2

Likewise, we perform 	 and ⊗ by, respectively, subtract-
ing or multiplying partition values (as opposed to adding
them) to obtain the result. Some partitions resulting from
case operators may be inconsistent (infeasible) and removed.

Next we define symbolic case maximization:

casemax

 (
φ1 : f1
φ2 : f2

,

(
ψ1 : g1
ψ2 : g2

!
=

8>>>>>><>>>>>>:

φ1 ∧ ψ1 ∧ f1 > g1 : f1
φ1 ∧ ψ1 ∧ f1 ≤ g1 : g1
φ1 ∧ ψ2 ∧ f1 > g2 : f1
φ1 ∧ ψ2 ∧ f1 ≤ g2 : g2
...

...

If all fi and gi are linear, the casemax result is clearly
still linear. If the fi or gi are quadratic according to the pre-
vious reward restriction, it will shortly become obvious that
the expressions fi > gi or fi ≤ gi will be at most uni-
variate quadratic and any such constraint can be linearized
into a combination of at most two linear inequalities (unless
tautologous or inconsistent) by completing the square (e.g.,
−x2+20x−96 > 0 ≡ [x−10]2 ≤ 4 ≡ [x > 8]∧[x ≤ 12]).
Hence according to the earlier restrictions, the result of this
casemax operator will be representable in the case format
previously described (i.e., linear inequalities in decisions).

There are two operations in Regress that we have not
defined yet. The first operation of boolean restriction re-
quired in lines 8–9 is obvious and an example is omitted: in
this operation f |b=v , anywhere a boolean variable b occurs
in f , we assign it the value v ∈ {0, 1}. The second opera-
tion of continuous integration

∫
Q(x′j) ⊗ P (x′j | · · ·)dx′j is

required in line 5; as previously defined, P (x′j | · · ·) will al-
ways be of the form δ[x′j − h(~z)] where h(~z) is a case state-
ment and ~z does not contain x′j . Rules of integration then
tell us that

∫
f(x′j) ⊗ δ[x′j − h(~z)]dx′j = f(x′j){x′j/h(~z)}

where the latter operation indicates that any occurrence of
x′j in f(x′j) is symbolically substituted with the case state-
ment h(~z). The full specification of this operation was a key
contribution of (Sanner, Delgado, and de Barros 2011) so
we refer the reader to that paper for further technical details.
The important insight is that this

∫
operation yields a result

that is a case statement in the form previously outlined.

Maximization of Continuous Action Parameters
The only operation in VI and Regress that has not yet
been defined is the continuous action maximization in line
7 of VI that forms the key novel contribution of this paper.
Reintroducing suppressed state variables and renaming Qh

a

to f , we write this operation as g(~b, ~x) := max~y f(~b, ~x, ~y)
— crucially we note that the maximizing ~y is a function
g(~b, ~x), hence requiring symbolic constrained optimization.

From here out we assume that all case partition condi-
tions φi of f consist of conjunctions of non-negated linear
inequalities and possibly negated boolean variables — con-
ditions easy to enforce since negation inverts inequalities,
e.g., ¬[x < 2] ≡ [x ≥ 2] and disjunctions can be split
across multiple non-disjunctive, disjoint case partitions.

Exploiting the commutativity of max, we can first rewrite
any multivariate max~y as a sequence of univariate max op-
erations maxy1 · · ·maxy|~y| ; hence it suffices to provide just
the univariate maxy solution: g(~b, ~x) := maxy f(~b, ~x, y).

We can rewrite f(~b, ~x, y) via the following equalities:

max
y

f(~b, ~x, y) = max
y

casemaxi φi(~b, ~x, y)fi(~b, ~x, y)

= casemaxi maxy φi(~b, ~x, y)fi(~b, ~x, y) (9)

The first equality is a consequence of the mutual dis-
jointness of the partitions in f . Then because maxy and
casemaxi are commutative and may be reordered, we can
compute maxy for each case partition individually. Thus to

complete this section we need only show how to symboli-
cally compute a single partition maxy φi(~b, ~x, y)fi(~b, ~x, y).

To make the partition maximization procedure concrete,
we use an example that arises in the MARS ROVER prob-
lem. This partition i (resulting from applying SDP) has con-
ditions φi(x, b, y) ≡ ¬b∧(x ≥ 2)∧(y ≤ 10)∧(y ≥ −10)∧
(y ≤ 2−x)∧(y ≥ −2−x) and value fi(x, y) = 4−(x+y)2.

In φi, we observe that each conjoined constraint serves
one of three purposes: (i) upper bound on y: it can be written
as y < · · · or y ≤ · · · (i.e., y ≤ 10, y ≤ 2 − x), (ii) lower
bound on y: it can be written as y > · · · or y ≥ · · · (i.e., d ≥
−10, d ≥ x − 2)3 or (iii) independent of y: the constraints
do not contain y and can be safely factored outside of the
maxy (i.e., Ind = ¬b∧(x ≥ 2)). Because there are multiple
symbolic upper and lower bounds on y, in general we will
need to apply the casemax (casemin) operator to determine
the highest lower bound LB (lowest upper bound UB):

LB = casemax(−10,−2− x) =

(
x ≤ 8 : −2− x

x > 8 : −10

UB = casemin(10, 2− x) =

(
x > −8 : 2− x

x ≤ −8 : 10

We know that maxy φi(~b, ~x, y)fi(~b, ~x, y) for a continuous
function fi (here at most quadratic) must occur at the critical
points of the function — either the upper or lower bounds
(UB and LB) of y, or the Root (i.e., zero) of ∂

∂yfi w.r.t.
y (because fi is at most quadratic, there exists at most one
Root). Each of UB , LB , and Root is a symbolic function of
~b and ~x; here we show the computation of Root :

∂

∂y
fi = −2y − 2d = 0 =⇒ Root = y = −x

Given the potential maxima points of y = UB , y = LB ,
and y = Root of ∂

∂yfi(~b, ~x, y) w.r.t. constraints φi(~b, ~x, y)
— which are all symbolic functions — we must symboli-
cally evaluate which yields the maximizing value Max for
this case partition:

Max =

(
∃Root: casemax(fi{y/Root}, fi{y/UB}, fi{y/LB})
else: casemax(fi{y/UB}, fi{y/LB})

Here casemax(f, g, h) = casemax(f, casemax(g, h)).
The substitution operator {y/f} replaces y with case state-
ment f , defined in (Sanner, Delgado, and de Barros 2011).

For our running example, space precludes showing the fi-
nal Max , so we show the pre-casemax operands instead:

Max = casemax
“
fi{y/Root} = 4− (x+−x)2 = 4 ,

fi{y/LB} =

(
x ≤ 8 : 4− (x+ [−2− x])2 = 0

x > 8 : 4− (x+ [−10])2 = −x2 + 20x− 96
,

fi{y/UB} =

(
x > −8 : 4− (x+ [2− x])2 = 0

x ≤ −8 : 4− (x+ [10])2 = −x2 − 20x− 96

”
3For purposes of evaluating a case function f at an upper or

lower bound, it does not matter whether a bound is inclusive (≤ or
≥) or exclusive (< or >) since f is required to be continuous and
hence evaluating at the limit of the inclusive bound will match the
evaluation for the exclusive bound.

Substituted values are subject to conditions in the cases be-
ing substituted and shown above in [·]. When the casemax is
evaluated, the resulting case conditions will have quadratic
constraints like −x2 + 20x − 96 > 0, which must be lin-
earized as previously discussed and shown for this example.

At this point, we have almost completed the computa-
tion of the maxy φi(~b, ~x, y)fi(~b, ~x, y) except for one issue:
the incorporation of the Ind constraints (factored out pre-
viously) and additional constraints that arise from the sym-
bolic nature of the UB , LB , and Root . Specifically for the
latter, we need to ensure that indeed LB ≤ Root ≤ UB (or
if no root exists, then LB ≤ UB) by building a set of con-
straints Cons that ensure these conditions hold; to do this, it
suffices to ensure that for each possible expression e used to
construct LB that e ≤ Root and similarly for the Root and
UB . For the running MARS ROVER example:

Cons=[−2− x ≤−x] ∧ [−10 ≤−x]| {z }
LB≤Root

∧ [−x ≤2− x] ∧ [−x ≤10]| {z }
Root≤UB

Here, two constraints are tautologies and may be removed.
Now we express the final result as a single case partition:

max
y

φi(~b, ~x, y)fi(~b, ~x, y) = {Cons ∧ Ind : Max

Returning to (9), we find that we have now specified the in-
ner operation (shown in the �). Hence, to complete the max-
imization for an entire case statement f , we need only ap-
ply the above procedure to each case partition of f and then
casemax all of these results. Revisiting the MARS ROVER
example V 1 in Figure 2, we can observe many of the deci-
sion inequalities and value expressions from the above ex-
ample. To obtain the policy in Figure 2, we need only anno-
tate leaf values with any UB , LB , and Root substitutions.

Extended ADDs (XADDs) (Sanner, Delgado, and de
Barros 2011) extension of ADDs (Bahar et al. 1993) pro-
vides a compact data structure to support case statements
and operations. Using XADDs in SDP as a continuous ver-
sion of the ADD-based SPUDD (Hoey et al. 1999) algorithm
for discrete MDPs, we maintain compact forms of Q and V ,
e.g., as shown in V 2 for MARS ROVER in Figure 2. XADDs
also permit the use of linear constraint feasibility checkers
from LP solvers to prune unreachable paths in the XADD.

The only operation that has not been previously defined
for XADDs is maxy , but this is easy: treating each XADD
path from root to leaf node as a single case partition with
conjunctive constraints, maxy is performed at each leaf sub-
ject to these constraints and all path maxy’s are then accu-
mulated via the casemax operation to obtain the final result.

Empirical Results
We evaluated SDP using XADDs on the didactic nonlinear
MARS ROVER example and two problems from Operations
Research (OR) — INVENTORY CONTROL and RESERVOIR
MANAGEMENT— described below.4 Space precludes show-

4While space limitations prevent a self-contained descrip-
tion of all domains, we note that all Java source code and
a human/machine readable file format for all domains needed
to reproduce the results in this paper can be found online at
http://code.google.com/p/xadd-inference.

0
2500

5000

0
25005000

0

10

20

l
1l

2

P
ol

ic
y:

 e
 (

no
−

dr
ai

n)

0
2500

50002500
5000

0

10

20

30

l
1

l
2

V
2

0
2500

50002500
5000

0

20

40

60

l
1

l
2

V
9

Figure 3: RESERVOIR MANAGEMENT: (left) Policy no-drain(e) = π2,∗(l1, l2) showing on the z-axis the elapsed time e that should be
executed for no-drain conditioned on the state; (middle) V 2(l1, l2); (right) V 9(l1, l2).

1 2 3 4 5 6

50

100

150

Si
ze

 o
f

V
h (

N
od

es
)

Horizon (h)

1 Item, DD
1 Item, SD
2 Item,DD
2 Item, SD
3 Item, DD
1 Item, DD,no pruning

1 2 3 4 5 6
10

2000

110000

Horizon (h)

T
im

e
(m

s)

Figure 4: INVENTORY CONTROL: space and elapsed time (be-
tween current and previous horizon) vs. horizon.

ing more results for MARS ROVER than in Figures 1 and 2;
we note that SDP efficiently solves it for arbitrary horizons.

INVENTORY CONTROL: Inventory control problems
(how much of an item to reorder subject to capacity con-
straints, demand, and optimization criteria) date back to the
1950’s with Scarf’s seminal optimal solution to the single-
item capacitated inventory control (SCIC) problem (Arrow,
Karlin, and Scarf 1958). Multi-item joint capacitated inven-
tory (MJCIC) control (upper limits on total storage of all
items) has proved to be an NP-hard problem and as a con-
sequence, most solutions resort to some form of approxima-
tion (Bitran and Yanasse 1982; Wu, Shi, and Duffie 2010);
indeed, we are unaware of any work which claims to find an
exact closed-form non-myopic optimal policy for all (con-
tinuous) inventory states for MJCIC under linear reordering
costs and linear holding costs; these problems can be easily
modeled as CSA-MDPs and solved optimally with SDP.

We analyze deterministic- and stochastic-demand (resp.
DD and SD) variants of the SCIC and MJCIC; for each
number of items n ∈ {1, 2, 3} the state (inventory levels) is
~x ∈ [0,∞]n and the action (reorder amounts) is ~y ∈ [0,∞]n.
There is a high demand variable d ∈ {true, false} that tog-
gles with probability 0.3. Orders are made at one month in-
tervals and we solve for a horizon up to h = 6 months. In a
2-item problem, the transition function for state x1 is

x′1 =

8>>><>>>:
d ∧ (x1 + a1 + x2 − 150 ≤ 200) : x1 + a1 − 150

d ∧ (x1 + a1 + x2 − 150 ≥ 200) : x1 − 150

¬d ∧ (x1 + a1 + x2 − 50 ≤ 200) : x1 + a1 − 50

¬d ∧ (x1 + a1 + x2 − 50 ≥ 200) : x1 − 50

The reward is the sum R1 + R2 where Ri specifies the
income for demand of inventory item xi minus a constant
reordering cost i per unit ordered:

Ri =

8>>><>>>:
d ∧ (xi ≥ 150) : 150− cost i ∗ ai

d ∧ ¬(xi ≥ 150) : xi − cost i ∗ ai

¬d ∧ (xi ≥ 50) : 50− cost i ∗ ai

¬d ∧ ¬(xi ≥ 50) : x1 − cost i ∗ ai

Figure 4 shows a time and space analysis. Here, we see that
linear feasbility checking/pruning in the XADD is crucial –
we cannot solve beyond h = 2 without it for 1 item! While
solving for larger numbers of items and SD (rather than DD)
both increase time and space, the solutions quickly reach
quiescence indicating structural convergence.

RESERVOIR MANAGEMENT: Reservoir management is
also well-studied in OR (Mahootchi 2009; Yeh 1985). The
key continuous decision is how much elapsed time e to drain
(or not drain) each reservoir to maximize electricity rev-
enue over the decision-stage horizon while avoiding reser-
voir overflow and underflow. Cast as a CSA-MDP, we be-
lieve SDP provides the first approach capable of deriving an
exact closed-form non-myopic optimal policy for all levels.

We examine a 2-reservoir problem with levels (l1, l2) ∈
[0,∞]2 with reward penalties for overflow and underflow
and a reward gain linear in the elapsed time e for electricity
generated in periods when the drain(e) action drains water
from l2 to l1 (the other action is no-drain(e)); we assume
deterministic rainfall replenishment. The reward is

R =

8><>:
(l1 ≤ 4500) ∧ (l2 ≤ 4500) ∧ (l1 ≥ 50) : e

(l1 ≤ 4500) ∧ (l2 ≤ 4500) ∧ ¬(l1 ≥ 50) : −100 + e

else : 0

The transition function for levels of the drain action are
l′1 = (450 ∗ e+ l1 − 1000 ∗ e+ 500 ∗ e)
l′2 = (450 ∗ e+ l2 − 500 ∗ e)
t′ = (t+ e),

while for no-drain action, the 500 ∗ e term is dropped.
In Figure 3, we show a plot of the optimal closed-form

policy at h = 2: the solution interleaves drain(e) and no-
drain(e) where even horizons are the latter; here we see that
we avoid draining for the longest elapsed time e when l2 is
low (wait for rain to replenish) and l1 is high (draining water
into it could overflow it). V 2(l1, l2) and V 9(l1, l2) show the
progression of convergence from horizon h = 2 to h = 9 —
low levels of l1 and l2 allow the system to generate electric-
ity for the longest total elapsed time over 9 decision stages.

Related Work and Concluding Remarks
This work is an extension of SDP (Sanner, Delgado, and de
Barros 2011) that handled continuous state and discrete ac-
tions, which itself built on the continuous state, discrete ac-
tion work of (Boyan and Littman 2001; Feng et al. 2004;
Li and Littman 2005). In control theory, linear-quadratic
Gaussian (LQG) control (Athans 1971) using linear dynam-
ics with continuous actions, Gaussian noise, and quadratic
reward is most closely related. However, these exact so-
lutions do not extend to discrete and continuous systems
with piecewise dynamics or reward as shown in (1), (2),
and (3). Combining this work with initial state focused
techniques (Meuleau et al. 2009) and focused approxima-
tions that exploit optimal value structure (St-Aubin, Hoey,
and Boutilier 2000) or further afield (Remi Munos 2002;
Kveton, Hauskrecht, and Guestrin 2006; Marecki, Koenig,
and Tambe 2007) are promising directions for future work.

We have presented an SDP solution for continuous state
and action MDPs with the key contribution of symbolic con-
strained optimization to solve the continuous action max-
imization problem. We believe this is the first work to pro-
pose optimal closed-form solutions to MDPs with multivari-
ate continuous state and actions, discrete noise, piecewise
linear dynamics, and piecewise linear (or restricted piece-
wise quadratic) reward; further, we believe our experimental
results are the first exact solutions to these problems to pro-
vide a closed-form optimal policy for all (continuous) states.

Acknowledgements
NICTA is funded by the Australian Government as repre-
sented by the Department of Broadband, Communications
and the Digital Economy and the Australian Research Coun-
cil through the ICT Centre of Excellence program.

References
Arrow, K.; Karlin, S.; and Scarf, H. 1958. Studies in the
mathematical theory of inventory and production. Stanford
University Press.
Athans, M. 1971. The role and use of the stochastic linear-
quadratic-gaussian problem in control system design. IEEE
Transaction on Automatic Control 16(6):529–552.
Bahar, R. I.; Frohm, E.; Gaona, C.; Hachtel, G.; Macii, E.;
Pardo, A.; and Somenzi, F. 1993. Algebraic Decision Dia-
grams and their applications. In IEEE /ACM International
Conference on CAD.
Bellman, R. E. 1957. Dynamic Programming. Princeton,
NJ: Princeton University Press.
Bitran, G. R., and Yanasse, H. 1982. Computational com-
plexity of the capacitated lot size problem. Management
Science 28(10):1271–81.
Boutilier, C.; Dean, T.; and Hanks, S. 1999. Decision-
theoretic planning: Structural assumptions and computa-
tional leverage. JAIR 11:1–94.
Boutilier, C.; Reiter, R.; and Price, B. 2001. Symbolic
dynamic programming for first-order MDPs. In IJCAI-01,
690–697.

Boyan, J., and Littman, M. 2001. Exact solutions to time-
dependent MDPs. In Advances in Neural Information Pro-
cessing Systems NIPS-00, 1026–1032.
Bresina, J. L.; Dearden, R.; Meuleau, N.; Ramkrishnan, S.;
Smith, D. E.; and Washington, R. 2002. Planning under
continuous time and resource uncertainty:a challenge for ai.
In Uncertainty in Artificial Intelligence (UAI-02).
Dean, T., and Kanazawa, K. 1989. A model for reasoning
about persistence and causation. Computational Intelligence
5(3):142–150.
Feng, Z.; Dearden, R.; Meuleau, N.; and Washington, R.
2004. Dynamic programming for structured continuous
markov decision problems. In Uncertainty in Artificial In-
telligence (UAI-04), 154–161.
Hoey, J.; St-Aubin, R.; Hu, A.; and Boutilier, C. 1999.
SPUDD: Stochastic planning using decision diagrams. In
UAI-99, 279–288.
Kveton, B.; Hauskrecht, M.; and Guestrin, C. 2006. Solving
factored mdps with hybrid state and action variables. Jour-
nal Artificial Intelligence Research (JAIR) 27:153–201.
Lamond, B., and Boukhtouta, A. 2002. Water reservoir ap-
plications of markov decision processes. In International
Series in Operations Research and Management Science,
Springer.
Li, L., and Littman, M. L. 2005. Lazy approximation for
solving continuous finite-horizon mdps. In National Con-
ference on Artificial Intelligence AAAI-05, 1175–1180.
Mahootchi, M. 2009. Storage System Management Using
Reinforcement Learning Techniques and Nonlinear Models.
Ph.D. Dissertation, University of Waterloo,Canada.
Marecki, J.; Koenig, S.; and Tambe, M. 2007. A fast ana-
lytical algorithm for solving markov decision processes with
real-valued resources. In International Conference on Un-
certainty in Artificial Intelligence IJCAI, 2536–2541.
Meuleau, N.; Benazera, E.; Brafman, R. I.; Hansen, E. A.;
and Mausam. 2009. A heuristic search approach to planning
with continuous resources in stochastic domains. Journal
Artificial Intelligence Research (JAIR) 34:27–59.
Remi Munos, A. M. 2002. Variable resolution discretization
in optimal control. Machine Learning 49, 2–3:291–323.
Sanner, S.; Delgado, K. V.; and de Barros, L. N. 2011.
Symbolic dynamic programming for discrete and continu-
ous state mdps. In Proceedings of the 27th Conference on
Uncertainty in AI (UAI-2011).
St-Aubin, R.; Hoey, J.; and Boutilier, C. 2000. APRICODD:
Approximate policy construction using decision diagrams.
In NIPS-2000, 1089–1095.
Wu, T.; Shi, L.; and Duffie, N. A. 2010. An hnp-mp ap-
proach for the capacitated multi-item lot sizing problem with
setup times. IEEE T. Automation Science and Engineering
7(3):500–511.
Yeh, W. G. 1985. Reservoir management and operations
models: A state-of-the-art review. Water Resources research
21,12:17971818.

