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Abstract
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2008

We consider the general framework of first-order decislmtetic planning in structured re-
lational environments. Most traditional solution appioesto these planning problems ground
the relational specification w.r.t. a specific domain instdion and apply a solution approach
directly to the resulting ground Markov decision proces®@®). Unfortunately, the space and
time complexity of these solution algorithms scale lingarith the domain size in the best case
and exponentially in the worst case. An alternate approagindunding a relational planning
problem is to lift it to a first-order MDP (FOMDP) specificatio This FOMDP can then be
solved directly, resulting in a domain-independent solutivhose space and time complexity
either do not scale with domain size or can scale sublin@atlye domain size. However, such
generality does not come without its own set of challengestha first purpose of this the-
sis is to explore exact and approximate solution technidmepractically solving FOMDPSs.
The second purpose of this thesis is to extend the FOMDP fggamn to succinctly cap-
ture factored actions and additive rewards while extenthegexact and approximate solution
techniques to directly exploit this structure. In additi@re provide a proof of correctness of
the first-order symbolic dynamic programming approachtwts well-studied ground MDP

counterpart.
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Chapter 1

Introduction

Decision-theoretic planning is the task of determining ptinoal sequence of actions (or more
generally, an action policy) that optimizes some rewartkgon given state information and a
stochastic action model of the environment. It generalctassical deterministic planning by
allowing for the uncertain specification of action outcoraad a utility-based specification of
reward that permits one to view plan quality in a fully deaisitheoretic paradigm rather than
a more limited goal-oriented or cost-to-goal paradigm.
Planning with decision-theoretic notions is ubiquitousotighout the fields of artificial

intelligence, operations research, control theory, amheics:

e Robots must optimize their actions in the face of uncertaamg must tradeoff the dan-
gers of approaching obstacles with the need to accompleshtdsks.

e Factories must maximize production in their daily schedulactivities in consideration
of process delays and potential equipment failures.

¢ Financial analysts must make long-term investment detssiath different levels of risk
and uncertainty in order to maximize profit.

e Planning in logistics applications requires the minimaatof resource usage and the
maximization of goods delivered while taking into accourg tincertainties inherent in

various courses of action.

And these are just a few applications. Simply by definitioegidion-theoretic planning
is among the most critical components of agent-orientedAt if it is generalized to han-
dle partial observability, multiple agents, and sampledleta@ynamics (i.e., reinforcement
learning), this task subsumes almost any decision or coptodlem in Al. While we won'’t
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Brussels

Rome

Figure 1.1: An example 8XWORLD problem. Trucks may drive along solid lines and planes
may fly along dashed lines. The goal in this instance is to yebaes in paris (indicated by
the star).

consider the most general frameworks for decision-theopanning in this thesis, we will

consider the general framework of first-order decisioretbgc planning in structured rela-
tional environments. This framework subsumes many plappioblems for which the state is
fully observable, the transition dynamics have a known abdlily distribution, and the state
and action representation is discrete and relational inreat

1.1 Motivating Examples

To motivate the decision-theoretic planning framework smgrovide a sense of what types
of problems we aim to solve, we provide two examples of proisiehat demonstrate rich
structural regularities that we will exploit in the solutiapproaches introduced in the thesis.
And while the simple specification of these problems may seemsuggest commensurate
simplicity in the solutions, we note that good solutionstfuese problems are often non-trivial
to specify and that the solution methods in this thesis oftetperform expert hand-coded
policies and other competing algorithms as we will dematstempirically.
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1.1.1 Logistics Planning

The first problem we introduce is a standard logistics pmldemmonly referred to asd@x-
WORLD [Veloso, 1992 Throughout all variants, the goal is to deliver boxes tartdestina-
tion city by loading and unloading them from trucks and polggplanes that can move between
cities via respective topologies of roads and air routeshérbasic setup, only one action can
be executed at each time step, each action being to load @adial box or to drive a truck or
fly a plane to a destination. Each action typically has a peeiied success probability that
can depend on various state properties and can have anadesgamst. A single reward is typ-
ically given for states where all boxes are delivered tortheper destination. Discounting of
future rewards can be used to encourage optimal soluti@stieve this reward state while
minimizing the total number of actions or the cost of acticetuired to achieve it. We provide
a pictorial representation of one domain instance of thidlem in Figure 1.1.

While the BoxXWoORLD problem specification may appear straightforward, its egatui-
tion can become very complex as the number of boxes, trutkseg, and cities grow. Thus, it
is an ideal problem for exploring algorithms that can expieliational and first-order structure
to avoid scaling directly with the combinatorial aspectshaf domain size.

1.1.2 System Administration

The second problem we introduce is motivated by an abstygcthetical system adminstrator
problem and is commonly referred to ags®ADMIN [Guestrinet al, 2004. In it, there are
n computersey, ..., ¢, connected via a directed graph topology. In each state, gutan
can be up and running (or not) and on every time step, a commag be rebooted, thus
causing it to be running in the subsequent state. If a commutet explicitly rebooted then
its probability of running in the next time step is conditawhon its current status and the
proportion of computers with incoming connections thatase currently running. The reward
is the count of computers that are running at any time stepr@andrdst time steps into the
future are typically discounted exponentiallytirAn optimal policy in this problem will reboot
the computer that has the most impact on the expected fusgeuwhted reward over an infinite
time horizon. An example for four computers is given in Fegarl.2.

SYSADMIN poses an interesting problem for decision-theoretic ptapapplications as it
exhibits characteristic structure common to many planpnadplems. Additive rewards or util-
ities are perhaps one of the most commonly studied rewaudtstes in decision-theory. And
the exogenous effects iY'SADMIN that permit each computer to reboot or crash on each time
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< >

Figure 1.2: An example SSADMIN problem with the network topology shown as a directed
graph. One computer is up and running and three are not &tetidoy the red circle with
slash). A good action to take in this state would be to rebgot

step are representative of a class of realistic world-nsoithalt do not require a strong frame as-
sumption — the notion that the only state properties aftebiean action directly result from
the action itself. Thus, we focus onvySADMIN as one of the main examples in this thesis
because it is simple enough to warrant the complete expositf our solution methods, yet
representative of a much more general class of structudademms. And despite its deceptive
simplicity, we note that the optimal policy may vary widelgcarding to small changes in the
network topology, making it very difficult to manually deteine optimal policies.

1.2 Exploitation of Structure in Decision-theoretic Planning

Given the various types of structure that we observe @x®B/ORLD and SYSADMIN, our
aim in this thesis is to exploit this structure for efficiennydecision-theoretic planning. The
groundwork for this thesis work follows in a line of extensikesearch over the years aimed
at exploiting structure in order to compactly represent affidiently solve decision-theoretic
planning problems in the Markov decision process (MDP) frauork [Boutilier et al,, 1999.
While traditional approaches to solving MDPs typically usedenumerated state and action
model [Puterman, 1994 this approach has proved impractical for large-scale Ahping
tasks where the number of distinct states in a model caryeagiked the limits of primary and
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secondary storage on modern computers.

Fortunately, by switching to a factored state model, manyRd@an be compactly de-
scribed by exploiting various independences in the rewaditansition functions. For exam-
ple, in the SSADMIN problem, the state can be naturally represented with oraouariable
per computer indicating whether the computer is up and ngunithen the distribution over the
next state of each computer is dependent on only the statbles of computers with direct
incoming connections. Furthermore, while the reward ws SDMIN is dependent upon all
state variables, it can be expressed compactly in an aéddiwnat in terms of a sum of indi-
cator functions for each state variable. And not only cas ithdependence be exploited in the
problem representation, it can often be exploited in exadtegpproximate solution methods as
well. Such techniques have permitted the practical saluidVIDPs that would not have been
possible using an enumerated state and action njbidaly et al,, 1999; St-Aubiret al., 2000;
Guestriret al,, 2004. And as we will show in this thesis, there is an opportunitgxploit even
more structure in the factored MDP model than could be etgaldoy previous algorithms.

However, factored representations are only one type oftstrei that can be exploited in the
representation of MDPs. Many MDPs can be described abistra¢cerms of classes of domain
objects (e.g., the BXWORLD logistics problem refers to object classes suctBas, City,
Truck, andPlane) and relations between those domain objects that may clomegéime (e.qg.,
BozIn(Box : b, City : c), TruckIn(Truck : t, City : ¢), BoxtOnTruck(Boz : b, Truck : t),
BoxOnPlane(Boz : t, Plane : p), PlaneIn(Plane : p, City : c)).* Often, relational objectives
abstract over objects using quantification as in “get somektto Paris” or “get all boxes to
their destination”. And relational action templates sushaading or unloading a box from a
truck or plane are likely to apply generically to domain atgeand thus can be specified inde-
pendently of any ground domain instantiation. This domadependent specification allows
very compact MDP specifications when compared to a correéspgrgrounded propositional
representation. For instance, ten each of boxes, trucksep| and cities leads to a combined
500 state variables corresponding to all ground atoms dditioge five binary relations.

Unfortunately, while relational specifications permitweompact descriptions of a variety
of MDPs, this efficiency has not traditionally translatedthe corresponding solution meth-
ods. Most traditional solution approaches to relationa&igien-theoretic planning problems
ground the relational specification w.r.t. a specific domagtantiation and then apply a so-

1Throughout the thesis all predicates (including unary jsads denoting domain object classes) are capi-
talized and all variables and constants are lowercased. 3&/¢he notatiorC’ : v to denote that variable is
restricted to domain object claés
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lution approach directly to the resulting ground Markov idien process (MDP)Puterman,
1994. Unfortunately, the resulting solution is domain-specifiwl the space and time com-
plexity of these grounded solution algorithms scale liyeaiith the domain size in the best
case and exponentially in the worst case.

An alternate approach to grounding is to lift the relatigulahning problem to a first-order
MDP (FOMDP) specificatiobBoutilier et al,, 2001. This FOMDP can then be solved directly,
resulting in a domain-independent solution whose spacéiredcomplexity do not scale with
domain size. This approach is particularly attractive gitieat the FOMDP framework can
be used to model many planning problems stated in PPDlunes and Littman, 2004
Furthermore, we can extend the set of FOMDP problems thabeasuccinctly specified to
include factored FOMDPs with exogenous actions and addréwards that both scale with
the domain size.

Unfortunately, the expressivity and power that can be ghfn@m converting a decision-
theoretic planning problem to a FOMDP and obtaining a dorAraependent solution does
not come without its drawbacks. The introduction of firsti@rlogical languages to describe
FOMDPs introduces the need for logical simplification aneotiem proving. Unfortunately,
both of these tasks are difficult by themselves and theyduoite significant complications
that have been carefully worked around in the solution aggites covered in this thesis. For
example, while the use of alternating existential and usafequantifiers may complicate the
tasks of simplification and theorem proving, the solutiorthnds used in this thesis exploit
the fact that many practical problems do not make substarsigaof this expressivity. As such,
the high degree of regularity and structure inherent in nfe@WIDPs permits the application
of solution methods that were not possible in purely grouppreaches. Thus, along with
the structural expressivity gains of the FOMDP represeartatomes the ability to efficiently
exploit the structure laid bare by such expressivity in picac To this end, this thesis contin-
ues the long-standing trends of exploiting structure ingien-theoretic planning tasks in the
MDP framework by succinctly representing and (approxinyateptimally solving relational
decision-theoretic planning problems represented as FR31D

2PPDDL is one of the the most popular probabilistic plannipgcification languages and incorporates ele-
ments of popular deterministic planning languages suchT&IFS[Fikes and Nilsson, 1974and PDDL[Mc-
Dermottet al, 1999.
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1.3 Major Contributions

Following are some of the major contributions of the thesis:

1. Affine Algebraic Decision Diagrams: The algebraic decision diagram (AD[Bahar
et al, 1993 is a data structure for representing functions frBh — R and can be
very compact when the underlying function demonstratesextispecific independence
(CSI) [Boutilier et al, 1994. Furthermore, unary and binary operations on functions
from B” — R can often be computed efficiently by direct operations onréspective
ADD representations. As such, ADDs provide an attractiterahtive to the tabular
representation of functions fro®” — R commonly used to represent factored MDPs
and thus can be used in the solution of factored MDPs. Theda-B&ked solutions can
be more efficient than direct manipulation of direct tabuégaresentations if the factored
MDP demonstrates CSI in the problem specification, the swiutr both. However,
many MDPs exhibit additive and multiplicative structurevesll as CSI. Prior to this
thesis work, no data structure could generally simultasloexploit all three types of
structure.

To remedy this deficiency, we specify a novel extension toAB® data structure —
the affine ADD (AADD) — for simultaneously exploiting addi&, multiplicative and
context-specific independence in factored MDP repredentand solution methods. We
prove that the AADD never performs more than a constant faebose in time and space
than an ADD and can lead to an exponential-to-linear redngti time and space over
the ADD. We present a variety of empirical results suggedimat AADDs are often as
good as or better than ADDs or tabular representations iadhgion of factored MDPs.

2. First-order Decision Diagrams: We specify a first-order extension of both the ADD
and AADD data structures that can be used to replace the epsesentation and op-
erations used for FOMDPs. In doing this, we present a firdeioextension of CSI
that can be exploited in the solution of FOMDPs. FOADDs andBRDDS permit the
compact representation of FOMDP value functions and pesiaeind help maintain sim-
plified representations that reduce the theorem provindduon the solution algorithm.
The use of these first-order decision diagrams combinedtedttmiques for simplifying
first-order formulae permit the fully automated solutiorbatic FOMDPs.

3. Additive Decomposition of Universal Rewards: Universally quantified rewards are
known to make FOMDPs extremely difficult to soll@retton and Thiebaux, 2004As
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a heuristic alternative to the direct solution of a FOMDPhwihiversal reward, we show
how to additively decompose universal reward specificationa manner that leads to
efficient FOMDP solutions and reasonable performance chenstics on a variety of

test problems.

4. Linear-value Approximation for FOMDPs: We show how to generalize linear-value
approximation techniques for factored MDRBuestrinet al., 2002; Schuurmans and
Patrascu, 20(1to the case of FOMDPSs, along with generalized loss-bounde@ap-
proximation. We also define a linear program (LP) with fireder constraints and con-
tribute an efficient constraint generation algorithm thagileits the constraint structure
to efficiently solve the LP.

5. Representation and Solution of Factored FOMDPsWe contribute the factored FOMDP
extension to model FOMDPs with factored actions and addlitwards that scale with
the domain size. We also contribute some extensions to syendhymamic program-
ming and linear-value approximation techniques to effityesolve factored FOMDPs
in special cases. While the linear-value approximationréigms that we introduce are
specific to a domain-instantiation, we demonstrate an el@awmipere a solution equiva-
lent to those obtained by ground methods can be obtainethendnd space that scales
sub-linearly in the domain size — a result that is imposstblebtain with grounded
solution techniques.

6. Correctness of Symbolic Dynamic Programming:We provide a formal proof of cor-
rectness of symbolic dynamic programming (SDP) for FOMDIRe key to this proof is
showing that when an SDP solution to FOMDPs is grounded w&.dbmain closure as-
sumption, the result is equivalent to the solution obtaimg@rst grounding the FOMDP
and then applying standard ground MDP solution techniques.

This is a different proof approach from the original given[Boutilier et al., 2001.
There the emphasis was on proving the correctness of the &oRtlam at a purely
logical level (including the case of infinite models). In quoof, we focus on making a
domain closure assumption (and thus implicitly, a finite el@ssumption) and proving
correspondence between the first-order and well-knownmgt®&IDP solutions.
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1.4 Distinction from Related Work

We note there has been a great deal of recent work in reldtiomas of decision-theoretic
planning[Holldobler and Skvortsova, 2004; Karabaev and Skvortso®a52Kerstinget al.,
2004; Wanget al, 2007; Wang and Khardon, 2007; Fenal,, 2003; Gretton and Thiebaux,
2004; Guestriret al., 2003. We will discuss these alternate approaches at the appteoint
in future chapters, but for now we simply note that all raflaterk demonstrates one or both
of the following limitations in comparison to this thesis kkand its foundation§Boutilier et
al., 2001:

1. No other exact solution algorithm applies to FOMDPs \ibthuniversal and existential
guantifiers.

2. Other approximate solution approaches rely on domatamege sampling and must scale
at least linearly with the size of these sampled domainit&s. As a consequence, these
algorithms cannot scale to arbitrarily large sampled donsaes and can only provide
error bounds (if any) that grow proportionally to the domsiire.

As such, this thesis work proposes the only exact and appaigisolution approaches that can
handle FOMDPs with both existential and universal quamsifiehile scaling independently of
the domain size for the case of FOMDPs or potentially sublilyein the domain size for
factored FOMDPs. Furthermore the approximate solutiohrteies that we propose permit
the computation of error bounds that applyiformly to all domain sizes

1.5 Outline

The thesis proceeds as follows. In Chapter 2, we review thie B3P model and motivate
the importance and generality of the MDP as a model for datitieoretic planning. We also
present a variety of standard and approximate solutiomtgaks for MDPs.

In Chapter 3, we introduce background material on factoredPslelevant to the thesis.
This includes demonstrating how the structure of a factdA&P representation can be ex-
ploited to avoid full state enumeration and how a variety xda and approximate solution
algorithms can exploit this structure for purposes of saecomputational efficiency. Next,
we introduce the first contribution of this thesis, the Affillgebraic Decision DiagrarfSan-
ner and McAllester, 2045 which permits the simultaneous exploitation of contepessfic,
additive and multiplicative independence in factored MDPs
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In Chapter 4 we begin by introducing the first-order MDP (FOMDB&malism and the
symbolic dynamic programming solution approach as orityirdefined in[Boutilier et al,
2001]. We then introduce a simple procedure for generalizing tbpgsitionally-based ADDs
and AADDs to first-order (FO) versions that we respectivegate as FOADDs and FOAADDs.
We then show how these first-order decision diagrams candmkinglace of case statements
to exploit structure in the basic FOMDP solution algorithemsl provide simple empirical
results for this approach. Faced with the difficulty of sntyproblems with universally speci-
fied rewards, we conclude the chapter by proposing an addiBzomposition solution to this
problem.

Perhaps the greatest difficulty with the value iteratiorhtegue proposed in Chapter 4 is
that the value function representations tend to involveeaxély complex formulae that can-
not be easily simplified. The inability to simplify often l@®to a combinatorial explosion
in the size of the value function or policy. This typicallyohibits the exact solution of rel-
atively simple FOMDPs so in Chapter 5 we seek alternate appesabased on linear-value
approximation. In this paradigm, we reduce the task of sgha FOMDP to that of obtain-
ing good weights for a set of basis functions that approx@s&te optimal value function. In
this chapter, we describe the basic generalization of tteg®iques from the factored case
to the first-order case and also provide a much-needed tpehifor automatic basis function
generation based on the work of Gretton and Thieda0g4.

In Chapter 6, we extend the symbolic dynamic programming éwaonk for first-order
MDPs (FOMDPs) to handle sum/product aggregators and fadtactions required to rep-
resent factored FOMDPs. To motivate the need for each okteggensions, we begin by
describing various scenarios where each new constructjisresl along with the formal se-
mantics of these constructs. Once we have specified the siesjyame proceed to generalize
symbolic dynamic programming (SDP) to handle FOMDPs wittsthadditional constructs.
Noting that a number of intractability issues arise with SRE then introduce appropriately
generalized approximate linear programming and appraeipalicy iteration algorithms for
efficient linear-value approximation in the presence of guoduct aggregators and factored
actions.

We conclude in Chapter 7 with a summary of the thesis and someesting directions for
future work.



Chapter 2
Markov Decision Processes

The Markov decision process (MDP) model was first introducethe field of operations
researciiBellman, 195F and significantly developed in subsequent yé¢eisvard, 1960. An
excellent recent text on MDPs is that of Puternh&894. The MDP has since been adopted
as a model for decision-theoretic planning with fully olsdrle state in the field of artificial
intelligence[Bertsekas, 1987; Bertsekas and Tsitsiklis, 1996; Bouttiexd., 1999.

In the MDP model we use in this thesis, an agent is allowed ltg @bserve the current
state and choose an action to execute from that state. Basthdtostate and action, Nature
then chooses a next state according to some fixed probabgitybution and the agent receives
a corresponding reward. This process repeats itself foedwmnizon of time steps, possibly
infinite. The goal of the agent is to choose its actions so asaximize the sum of expected
discounted future rewards in this model.

Given this high-level description of the MDP model, we nowg®ed to provide a more
detailed mathematical definition of an MDP followed by a dggion of various algorithmic
approaches for making optimal sequential decisions inrtiogel. Except where otherwise
noted, the following presentation derives from Puterfi994.

2.1 MDP Representation

Formally, a finite state and action MDP is specified by a tugleA, 7, R, h,v). We now
describe each of these components in turn, noting that ctipea each must be specified by a
domain expert or learned from data.

IWhile an agent may seek to maximize other objectives in a geMBP model, we focus on maximizing the
sum of expected discounted reward in this thesis.

11
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State spaceS

The world is modeled by a set of distinct stafesin the most general MDP modelS,can be
infinite or continuous, but throughout the thesis, we assamiscrete (possibly infinite) state
space.

Action spaceA

An agent in an MDP can effect changes to its state by execatitigns from the set. In
more general MDP modelsi can be infinite or continuous, but again, we assume a discrete
(possibly infinite) action space throughout the thesis.igh& are the only way that an agent
can interact with the state and thus the choice of actiorkitaeach state comprises the main
decision-theoretic task of the agent.

Transition function 7

In an MDP model, the effects of actions can be uncertain shahfor any actiom € A
executed, the world has a fixed probability distributionravansitions to any state i§. For
the purpose of this thesis, the transition functiowill be modeled as a probability distribution
7 (s,a,s") = P(s|a, s), which denotes the probability that the world makes a ttamsifrom
states € Stos’ € S given that actiora was executed in state We note that this representation
of the transition function satisfies the Markovian assuongiof an MDP, which require that
the distribution over states, ; attimet+1 is independent of any previous state; and action
a;_; for i > 1 given the state; and the action, taken at time.

While we typically think of the transition function as dependl only upon the agent’s
action and the state from which it was taken, there can alsexbgenous eventkat are not
directly influenced by the agent. For example, as discussede SrSADMIN problem in
Chapter 1, any computer not explicitly rebooted can indegetig fail according to some
probability distribution. In order to model such exogeneuents in this thesis, we will simply
fold these implicit probabilistic effects into the tramsit distribution for each action.

Reward function R

The preferences of the agent are encoded in a reward funetiuoh for the purpose of this
thesis will be restricted to a real-valued range, tha&is S x A — R. This form of reward
function is much more flexible than goal-oriented notionslassical planning; for example,
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one can easily model multiple objectives and decision+#teoreward tradeoffs using different
reward values for different states and actions. In a clakpianning model, one is typically
restricted to specifying a set of equally preferred godéstwith state-independent action costs.

Horizon h and discount factor v

In an MDP, the objective of the agent will be to maximize expdautility accumulated over
some time horizorh representing the number of decision steps until terminatMvhile we
cover the case for finité in this chapter, for all subsequent chapters of the thesesywil
assumeé = oo unless otherwise noted.

In the calculation of accumulated reward, we allow for thecdunting of rewards time
steps into the future by a discount factdrwherev € [0, 1]. Throughout this thesis, we will
assume that < 1 unless specifically noted. The use-ok 1 allows one to model the notion
that an immediate rewardis worth more than the equivalent reward delayed one or niroee t
steps in the future. Such a discounting assumption has lnogfc@omic justification as well
as an implicit modeling justification for a process that has-ay probability of terminating at
each step.

Practically,y < 1 is required to ensure that the total expected reward is bediimlthe
case of infinite horizon MDPs. However, if we can make the iegdion that the only non-zero
reward states in our MDP model are a set of goal states ang$kens transitions into a zero-
reward absorbing state after reaching a goal state, themmwasey = 1 in the infinite horizon
setting since the total future reward is guaranteed to bedeul

2.2 Policy Representation

The goal of an agent is to take the action in each state thatmmes the expected accumulated
discounted reward criterion over a specified time horizoA sequence of actions to be taken
can be specified a&ry,, 7,_1,...,m) where eachr; : S — A is a time-dependent action
policy that specifies an action to take from each statwith ¢-stages-to-go. An important
result following from the Markovian property of MDPs is thety policy conditioned on the
state or action history from previous decision stages carfresented by an equivalent policy
conditioned on only the current state. This follows from féet that the fully observed state at
any stage renders the previous history irrelevant.
An optimal policy(r;, 7 _,,...,7]) is a sequence of action policies to be taken that max-
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imize the agent’s total expected discounted reward ovaetwor.. Conveniently, for the case
of h = oo, there always exists an optimal stationary poliejoward, 1960. Thus, no loss
of expected discounted reward is incurred for infinite hmmisMDPs by restricting our policy
representation to a single polieydenoting the action to take from all states at all time stages

2.3 Optimal Solution Criteria

If the agent’s objective is to find the policy that maximizes expected sum of discounted
rewards over a specified time horizon, this objective carobadlly expressed as

Er

ZWt ‘ Tt|30] (2.1)
t=0

wherer! is a reward obtained at time is a discount factor as defined abowds a policy as
defined previously, ang}, is the initial starting state. Based on this reward criteriwe define
thevalue functiorfor a policyr as the following:

o0
} :7t ot
t=0

Intuitively, the value function for a policy is the expected sum of discounted rewards accu-

Va(s) = Ex

Sg = S] ) (2.2)

mulated while executing that policy when starting fromestat

A greedy policyr, w.r.t. a value functiorV is simply the action policy that takes an action
in each state that maximizes expected value w.if tiefined as follows:

v (s) = argmax { R(s,a) + Z P(s'|s,a)V (") (2.3)
aeA s’'eS

Thus, from any value function, we can derive a correspongiegdy policy that represents the

best action choice w.r.t. that value estimation.

An optimal policy7* in an infinite horizon MDP maximizes the value function fdrstiaites.
An optimal policyr* is the greedy policy w.r.t. an optimal value functibri and likewise the
optimal value function is the value under an optimal poliéy,(s) = V*(s). We note that’*
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satisfies the following fixed-point equality:

V*(s) = max {R(s, a) + Z T(s,a,s") - V*(s’)} : (2.4)

s'eS
2.4 Exact Solution Techniques

In this section we will discuss exact solution techniquesharily for the case of infinite hori-
zon MDPs. Before we discuss these techniques though, welutdeoan alternative matrix
notation for MDPs that will simplify portions of the followmg presentation.

2.4.1 \ector and Matrix Notation

We sometimes write the MDP in vector and matrix form. For each A, we can represent
the rewardR(s, a) as a column vectoR, indexed by state € S. We can represent the value
function V (s) as a column vectov” indexed by stats. And we can represent the transition
function?'(s, a, s') for each actiorm € A as a transition matriX;, row-indexed by current state
s and column-indexed by next statee S. In this case, equation 2.4 can be restated as the
following:

V= max {R, +T,V*} (2.5)

In some cases, we will refer to the reward vector and theitrangnatrix with respect to a
policy = as R, andT}, respectively; here the reward value and transition pritibafor each
state corresponds to the action choice indicated.b9r we may refer to the reward vector and
transition matrices restricted to a specific actioa A as R, and7,, respectively. If needed,
7 itself can be represented as a vector of actiors.A indexed by state and we |&t denote
the set of all possible policy vectors.

2.4.2 Dynamic programming

We begin our discussion of dynamic programming by providing equations that form the
basis of the stochastic dynamic programming algorithmd tseolve MDPs.

We defineV? = R(s) and then inductively define thiestage-to-go value functiofor a
policy 7 as follows:

Vi(s) = R(s,m(s)) + 7 Z T(s,m(s),s) - VI(s) (2.6)

s'eS
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a) Forward-Search vis) vis) b) Dynamic Programming - Value lteration
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Figure 2.1: A diagram demonstrating a) forward evaluatibthe MDP value function and
b) dynamic programming regression evaluation of the MDRievdlnction. Both methods
return the same value fdr3(s), but the forward evaluation requires exponential time i th
search deptlV((|S| - |.A|)?) and only calculates the value for one initial state whergaschic
programming caches its results on each backup thus regwnty polynomial time in the
search deptld(|S| - | 4] - d) and solving for the value function averystate.

Based on this definition, Bellmanfwinciple of optimality[Bellman, 195Y establishes the
following relationship between the optimal value functianstaget and the optimal value
function at the previous stage- 1:

Vi*(s) = max {R(S, a) + 7 Z T(s,a,s’) - th’*(s’)} (2.7)

acA
s'eS

Value iteration

We start with an algorithm known as value iteration that ciseimplements Equation 2.7.
Here, we start with/°(s) = max, R(s,a) and perform the Bellman backup given in Equa-
tion 2.7 for each stat&!(s) using the value of/%(s). We repeat this process for each stage
t, producing the backed up value function fidf(s) from V#=!(s) until we have computed
the intended-stage-to-go value function. This algorithm is demonsttagraphically in Fig-
ure 2.1(b).

Often, the Bellman backup is rewritten in two steps to sepavat the backup of a value
function through a single action and the maximization o$ tvalue over all actions. In this
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case, we first compute thtestage-to-go Q-function for every action and state:

Q'(s,a) = R(s,a) + - Z T(s,a,s") - V7S (2.8)

s'eS

Then we maximize over each action to determine the valueeofdfjressed state:

Vi(s) = max {Q'(s,a)} (2.9)

a€A

This is clearly equivalent to equation 2.7 but is in a fornt the will refer to later since it
separates the algorithm into its two conceptual components
Putermar{1994 shows that terminating once the following condition is met

IVt = Vi < —6“2; ") (2.10)
guarantees-optimality, i.e.,max, |V*(s) — V*(s)| < e. Thus, the greedy policy derived from
V' iteration loses no more tharin value over the infinite horizon in comparison to the optima
policy.

We note that the value iteration approach requires timerohjal in the search depth
i.e.,O(|S|-|4] - d), and solves for the value functioneterystate. Putermaf1994 provides
a proof that value iteration converges at a linear rate ims$esf the number of iterations.

Policy iteration

At each step of the value iteration backup, we are impliggyforming a policy update, deter-
mining the best action to take from every state in order toimepe reward. Another approach
to dynamic programming is known as policy iteratigtoward, 1960 and is summarized in
the following algorithm:

1. Initialization: Pick an arbitrary initial decision policy, € IT and set = 0.
2. Policy Evaluation: Solve forV;., (see below).

3. Policy Improvement:Find a new policyr;; that is a greedy policy w.r.¥/,
(i.e.,miy1 € argmax_ . {R. + 77, Vx, } with ties resolved via a total precedence order

over actions).

4. Termination Check:If ;11 # m; then increment and go to step 2 else returt, ;.
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We note that the policy evaluation ofigedpolicy = reduces to the solution of a linear sys-
tem since the MDP reduces to a simple Markov chain. Thus, weake forV,, by computing
the right-hand side of the following equation:

Vﬂ' = Rﬂ'(I - W/Tw)il (211)

We note that a unique solution fof. always exists since the Markovian properties/pf
guarantee that— 7, is invertible. We note that solving fdr, directly using matrix inversion
takes timeO(|S|?). Alternately, we can solve fo¥, usingsuccessive approximatipmhich
initializesV? = R, and iteratively compute’ from V!~! using Equation 2.6 untif’! = V/!~!
(whereV, = V).

Once policy iteration has terminated, the final policy read is the optimal policyr*
and the value function corresponding to this policy is thémal value functionV*. Puter-
man[1994 provides conditions and a proof of a superlinear rate of emrance for policy
iteration.

So far, we have implicitly assumed that the above algoritherform synchronous updates,
that is, we are updating the value function in value iterafmr all states and that we are im-
proving the policy in policy iteration for all states. We diitthally note that there are a number
of asynchronous variants of value and policy iteration ttmahot update the value or improve
the policy at every state on all iterations, yet still retsiimilar convergence properties. These
algorithm variants are discussed by Puterd#94 and Bertsekas and Tsitsiklj$994d and
are extremely useful for proving convergence propertiehefreinforcement learnindarto
and Sutton, 1998and real-time seardBartoet al, 1993 approaches to solving MDPs. How-
ever, we do not discuss asynchronous methods further asathayot directly relevant to the
methods we employ throughout the rest of the thesis.

Modified policy iteration

A comparison of the two previous algorithms reveals thay thecupy two extremes in terms
of policy updates: value iteration performs an implicitipglupdate in order to compute every
intermediate value function whereas policy iteration perfs an update only after solving
directly for V.

If we interpolate between these two approaches, we arriga atgorithm known as mod-
ified policy iteration[Puterman and Shin, 19F8n this algorithm, we simply iterate between
policy evaluation and policy improvement phases until caliqy is e-optimal using the same
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terminating criteria as value iteration. The algorithmesysimilar to policy iteration with the
exception of the policy evaluation phase replaced by ancqupate version:

1. Initialization: Pick an arbitrary initial decision policy vectay € II and set = 0.

2. Approximate Policy EvaluationSolve forV/;, using some number of steps of successive
approximation.

3. Policy Improvement:Find a new policyr;.; that is the greedy policy w.r.i,.
4. Termination Check:If 7;,; # m; then increment and go to step 2 else retum, ;.

Algorithm convergence requires only that the policy appration phase does not increase the
error of the value estimate from the previous iteration, i.e

V5= Ve < IV =Vl (2.12)

Such a property holds, for example, by initializing the ea&stimate with/;, and then per-
forming one or more steps of successive approximation utheégoolicy; ;.

A proof of superlinear convergence rate for modified polteyation under certain condi-
tions is given by Putermali1994. Puterman also notes that modified policy iteration often
empirically requires less computation time than both value policy iteration.

2.4.3 Forward-search

If we reexamine Equation 2.7, we note that we could compugerdturrence in a forward-
search manner by starting at an initial state and unfold@grécurrence to horizoh and
then computing the expectation and maximization as wemdtuthe initial state. A graphical
representation of the unfolding of this computation is show Figure 2.1(a). We note that
determining the valu&”(s) for a singlestate using this method requires time exponential in
the search depth, that is,O((|S| - | A|)").

Since we are performing forward search to a fix@griori search depth, we can de-
termine the minimum horizoh to search if we want am bound on the maximum error
of our value function, given knowledge of our discount factoand our maximum reward

Ripar = max, , R(s,a):

h > log, (E(}lz—_w> —1 (2.13)
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2.4.4 Real-time dynamic programming

The real-time dynamic programming (RTDP) framewbBarto et al,, 1993 is a hybrid ap-
proach that combines real-time forward search with dyngmogramming. This approach
uses limited depth, forward-search backups to update tbe fianction of the set of states vis-
ited during on-line trials, assuming that initial statesevgenerated according to some fixed
distribution. The policy used for the trials is the optimalipy for the current value function.
Since backed-up and cached values from one step are useldn\steps, this approach mixes
the forward-search and dynamic programming paradigms ptavably convergent and has
the advantage that it only derives the value function fordeeof states reachable from the
initial state distribution. This can often be more efficitmn synchronous dynamic program-
ming approaches when the set of reachable states is smatlarethto the total number of
states.

2.4.5 Linear programming

An MDP can also be solved by formulating it as the optimizatd a linear program (LP).
The fact that such a solution exists follows from the notioat the optimal policy and value
function must satisfy the following inequalities for alagts as implied by Equation 2.4:

V*(s) > max (R(s, a)+v> P, a)v*(s')> VseS (2.14)

acA
s'eS
This equality in turn implies the following conditions:

V*(s) > R(s,a) + 72 P(s'|s,a)V*(s'); Vae A;s €S (2.15)
s'€S
While this latter set of inequalities only enforces one sifithe optimal value function fixed-
point equality given in Equation 2.4, it turns out that finglithe minimalV* under anz,
metric that satisfies these constraints suffices to enfbecether side of the inequality. Thus,
the optimal value function can be computed by the followinignal specification of a linear
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program[Puterman, 1994

Variables: V
Minimize: ||V,

Subjectto: 0 > R, ++1,V -V, Vae A (2.16)

Putermar[1994 provides a proof that this formulation is guaranteed to poedan optimal
value function for an MDP. Puterman also notes that solviregdual LP formulation is often
more efficient than solving the primal LP formulation. Howewve do not present the dual
formulation here as we work directly with the primal formiiten and its variants throughout
the thesis.

2.5 Approximate Solution Techniques

As the number of states and actions in an MDP grows, it ofterofpes necessary to ex-
plore approximate solutions in the face of intractabilifye@act solutions. While approxi-
mation in MDPs can take many forms, it is frequently carried loy considering restricted
representations of the value function. Some methods fargesg the value function repre-
sentation will become relevant once we introduce strudtdescriptions of our MDP models
and solution algorithms. However, a very general and po@garoximate solution technique
for MDPs is that of linear-value function approximatié8chweitzer and Seidmann, 1985;
Tsitsiklis and Van Roy, 1996; Koller and Parr, 1999a; Kolled &arr, 1999b; Schuurmans and
Patrascu, 2001; Guestrat al., 2004, which we discuss at length in this section.

2.5.1 Linear-value Function Representation

Representing value functions as a linear combination okldasictions has many convenient
computational properties, many of which will become evidesmwe incorporate factored and
relational structure in our MDP model. However, perhaps aindne most important aspects
for the work we present here is that linear-value functigoresentations lead to MDP solu-
tion formulations using optimization w.r.t. linear objeets and linear constraints — that is,
the well-studied case of linear program (LP) optimizati®ince many robust off-the-shelf
LP solvers are available, this makes such approachesta#trdar practical implementation

purposes.
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If we haven states in our MDP, the exact value function can be specifiedvastor inR".
This vector can be approximated by a value functigrthat is a linear combination df fixed
basis function vectors denotéds) as follows:

Vis(s) = Z w; - bi(s) (2.17)
=1
The linear subspace spanned by the basis set might not entthedactual value function, but
one can use projection methods to minimize some error medsiween the actual value
function and the linear combination of basis functions.

The basis functions themselves can be specified by domaertexponstructed or learned
in an automated fashion (e.§Poupartet al, 2002a; Mahadevan, 2005 We will consider
more structured forms of automated basis function constru@s we introduce structured
MDP representations in subsequent chapters.

On a final note, we mention that there are a variety of otheeggfunction approximation
such as nonlinear functions or neural nlertsekas and Tsitsiklis, 19P6ut it is generally
difficult to provide useful convergence properties for sapiproximation architectures so we
do not discuss them further in this thesis.

2.5.2 Error Bounds on Approximate Value Functions

Once a set of basis functions has been specified, the proliléndimg an approximate value
function reduces to the problem of finding a good set of waigimt closely approximates the
optimal value function. One way of measuring theosterioriquality of an approximated
value functionV; is by evaluating the Bellman errgt (i.e., the Lo, norm of the Bellman
residual) of the value function under the MDP dynamics:

= max
5 seS

V3(s) — max (R(S, a) + Z P(s'|s,a) ~u~,(s’)> | (2.18)

acA
s'eS

Of course we note that when the Bellman error is zero, thistemjuaatisfies the fixed-point
equation for the optimal value function given in EquatioA 2nd thus3? = 0 indicates that

Vi = V™,
Let 7 be the greedy policy w.r.t. the value function approximatig;. Onces is known for

Vi, it is then easy to bound the max-norify() error of V; w.r.t. the optimal value function



CHAPTER 2. MARKOV DECISION PROCESSES 23

using the following inequalityWilliams and Baird, 199}

2

V= Vil < 222 (2.19)
et

Thus, in all of the following approximation techniques, wi# Wvave some way of determining

a maximum bound on the loss of our approximation.

2.5.3 Approximate Dynamic Programming

Approximate dynamic programming techniques are simplgmrsions of the previous dynamic
programming algorithms with additional approximationpste While these approximation
steps do not guarantee convergenceagosteriorianalysis of the Bellman error of a value
function can show that the value function estimate has agedawithin some error bound.

Approximate Value Iteration

Approximate value iteration (AVis precisely the value iteration algorithm previously pre-
sented with the additional step that after each Bellman hgcthe value function may be
projected onto a more compact representation. Since weawnsihg on linear-value function
approximation in this section, we will cover the case of poting the one-step Bellman backup
onto a linear-value function representation.

In AVI using linear-value approximation, we begin by initing the weightsw of our
initial linear-value function representatiéff in some way — perhaps witii® = 0 or with «°
set so thal/? = max, R, (if our linear-value function representation permits Yhishen we
perform the standard Bellman backup given in Equation 2. btainV’t. Since the dynamics
of our MDP do not guarantee that our linear-value functiqereésentation spans the space of
V1, it will be necessary to projedf! onto the space o\f/u%, which we discuss in a moment.
This process can proceed indefinitely in AVI, obtainivi§ from 1751 and projectingl’* to
obtain f/% until some predefined stopping criterion such as a maximuont bn iterations or
Bellman error bound has been met.

Perhaps the most obvious choice for projectifigto obtainf/ué in AVI is the following
wherew™* represents the weights for the optimal projection and the error norm_,, being
minimized in the projection:

(2.20)

W = argmin HVt - Vi
w n
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Tsitsiklis and Van Roy1996 show that minimizing the Euclidean-distana&) error can di-
verge — even Wheﬂfflg spans the space of the optimal value function. Likewise,SBiume
Koller, and Par{2001 discuss similar issues with the divergence of AVI for theecakthe
max-norm £_.) error minimizing projection. However, these divergenssues can be miti-
gated in practice if additional basis functions are inti@tlito minimize the projection error.

Approximate Policy Iteration

Approximate policy iteration (APWith linear-value function approximation is another vatia
of dynamic programming that uses a different projectiop.sténe benefit of API is that under
anL,, projection step, its error can be shown to be bounded fotemiitions, thus avoiding the
divergence issues of A{lGuestrinet al., 2001.

The API algorithm follows the policy iteration algorithmagwided previously, except that
the value determination step is now approximate rather thact. After starting with an
initial arbitrary policym, policy iteration iterates between the following two stegsere the
projection is in terms of th&€,, norm:

W' = arg min HRM + Tmf/u; — Vs (2.21)
Tir1 = arg max {R7r + ’yTW\ZEi} (2.22)

mell

Koller and Par{19994 provide an API algorithm based on minimizing a weigh&dnorm
in the projection step. In subsequent work, Guestrin, Kalied Par{2001] presented the
following LP intended to directly minimize thé,, norm in the projection step:

Variables:w
Minimize:

Subjectto;3 > R, + Ty, Vis — Vi (2.23)

One nice advantage of directly minimizing the, norm in the projection step is that when API
converges (i.es; = m;_; or equivalently’ = 1), the objective3 for the final LP solution
of Equation 2.23 is the Bellman error of the approximateded&lunction. Thus a bound on the
error of the approximated value function is immediatelyilade by pluggings directly into
Equation 2.19Guestrinet al,, 2001.
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2.5.4 Approximate Linear Programming

Approximate linear programming (ALR$ simply an extension of the linear programming
solution of MDPs to the case where the value function is apprated. In a linear-value func-
tion representation, the objective and constraints willifbear in the weights being optimized
and thus the linear programming framework can still be ussmhsequently, we arrive at the
following variant of the LP in Equation 2.16 that simply takieto account the linear-value
function representation:

Variables:
Minimize: ||Vl

Subject to: 0 > R, + T, Vs — Vi, Ya € A (2.24)

2.6 Application to Al Planning Problems

We focus on MDPs as a model for decision-theoretic plannimgeshey generalize many of the
planning paradigms found in the literature. First we reveame of these planning paradigms
and then proceed to a discussion of two general classes offvidiffems, one oriented towards
a decision-theoretic extension of classical task-or@ptanning and the other oriented towards
a non-terminating process model with a long-tern reward@péation objective, but no clear
definition of a single task or goal.

2.6.1 Common Al Planning Paradigms

As mentioned previously, classical planning can be viewed a@estricted case of decision-
theoretic planning in MDPs where all actions are deterrti;yéand the reward is goal-oriented,
that is, there is only one non-zero reward value that is §ipdcior a set of absorbing goal
states. Typically the initial state is known, thus makinge@ivability a moot issue — with a
known initial state and deterministic actions, the statéhefworld afterany action sequence
will be known with certainty.

In classical planning the objective is simply to find a seaqeaeof actions that will lead to a
goal state from the initial state. There may be an emphaateglon finding shorter plans, or
more generally there may be costs associated with actiahtharuse of an objective criterion
that minimizes cost-to-goal. Nonetheless, all of theséawés can be modeled in the MDP
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framework. However, this does not mean that standard MD&ieal algorithms are partic-
ularly well-suited for classical planning; while standandact MDP solution algorithms will
provide an optimal policy in the case of classical plannthgs optimal policy is provided for
all states. However due to the known initial state and detesmraf action effects, solutions
to classical planning can be specified via straight-lineusages of actions that may touch
on only a very small subset of the total state space. Thuduthpolicy provided by exact
MDP solution algorithms will be inefficient compared to deténistic planners in the classi-
cal planning paradigm that can exploit knowledge of theahgtate and action constraints to
avoid searching through all states. WEI®99 provides an excellent overview of many recent
advances in classical deterministic Al planning alongé¢Hezes.

A related topic is that of optimal deterministic planninghish uses a similar framework
as classical Al planning (i.e., known initial state and d®iiaistic action effects), but relaxes
the goal-oriented notions to a much richer set of preferemser goals and resource con-
straints (see e.g[Haddawy and Hanks, 1998; Williamson and Hanks, 1994; Brafarah
Chernyavsky, 2009 and even temporally extended preferences (see [®ignvenuet al,
2006; Baieret al., 2007 for some recent work and a discussion of related approachtbssi
area). The task here is to find an optimal plan that takes ctount the preferences and con-
straints. Since these approaches use a rich notion of prefes and assumptions, there does
not necessarily exist a direct correspondence to the salard MDP framework discussed
in this chapter. Nonetheless, notions of reward in the MBP&work defined here can capture
some aspects of optimal deterministic planning.

A number of planning problems in Al involve partial obserlidgyp and thus cannot be
solved in the MDP framework presented here. Two notablelpnod are variants of confor-
mant planning. In conformant plannih@imatti and Roveri, 1992he initial state is restricted,
but strictly unknown and actions have non-deterministfea$ with no (or in some variants,
partial) observability. Probabilistic conformant plangiis similar except that strict uncertainty
in the initial state and action effects are replaced withvkmprobability distributiongKushm-
erick et al, 1995. Nonetheless, the partial observability assumptions nfamant planning
and many other partially observable problems prevent them fbeing modeled or solved
within the MDP framework presented here.
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2.6.2 Task- vs. Process-oriented Planning

Most classical Al planning problems exhibit the charasteriof being goal-oriented, even
when there are multiple goals and relative preferences e goals. The 8XWORLD
problem from Chapter 1 is a good example of a such a task-edemtoblem: there are a
number of boxes that need to be delivered to their destimar@ once this is achieved, the
problem terminates. While many task-oriented decisiotitc planning problems can be
modeled as MDPs with some form of absorbing goal state, shisly one possible class of
problems.

There are many problems that are continuous processesuivahdearly defined notion
of goal or termination, but rather a continuously accuningpateward over an infinite horizon.
The SrsADMIN problem from Chapter 1 is an exemplar of this class of probldrealling
the SrsADMIN description, the objective was to maximize the count of cot@gs running
per time step under an infinite horizon discounted rewartgmon. However, given that any
computer can independently fail at any time step if not réddalue to exogenous events, the
task has no clear criterion for termination since no statepeasist indefinitely. Fortunately,
this ongoing process-oriented problem is well-modeledhasptimization and solution of an
infinite-horizon discounted reward MDP.

As mentioned in Boutilieet al. [1999, many real-world problems exhibit both task- and
process-oriented behavior. And the beauty of the MDP framnkeve that it can accommodate
both forms of MDP models and it can seamlessly combine thémeeded. Thus, we can
not only accurately model decision-theoretic planningbpgms based on the classical task-
oriented paradigm, but we can encapsulate these taskexutigmoblems in a more realistic
ongoing optimization process with random exogenous evditese types of combined task-
and process-oriented models more accurately reflect thegmns than an agent would likely
have to contend with while acting in a realistic world model.

2.7 Summary

We have motivated the decision-theoretic planning paradagpd cast the framework in an
MDP setting. And we have covered all of the groundwork forMi2P solution techiques that
we develop in this thesis. Among these solutions, therevemerhportant choices to consider.
The first choice is whether to use iterative dynamic programgnmethods or direct linear
program optimization techniques. The second choice islvengb use exact or approximate
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solution methods.

It is not entirely clear when to use dynamic programming athms vs. direct linear
program optimization techniques. While Puternia@94 cites Koehler{1976 in reporting
that dynamic programming based modified policy iteratiarthteques can outperform direct
linear programming techniques by as much as 10 times, TridkZin[1997 report exactly the
opposite case, perhaps owing to their use of the more rgcavdllable and highly optimized
ILOG CPLEX LP solver.

The second choice of exact vs. approximate is almost invigrigetermined by the size of
the state space. If the state space is relatively small thercan easily resort to exact methods.
However, if the state space is sufficiently large, approxérsmlution techniques are the only
viable option. But this last statement depends criticalljhow one measures the size of the
state space

Looking ahead to future chapters, we note that there is amijnsch computational ad-
vantage that can be gained by using the approximate soligabmiques in place of the exact
techniques covered in this chapter. That is, all exact apdoxpmate solution techniques men-
tioned here must represent the value function and policse(fiired) as vectors or functions
over an explicitly enumerated state space. As it turns betgtare many representations well
suited to decision-theoretic planning tasks that do notiiregexplicit state enumeration in
the problem representation or in the solution. As such, sgeand exploitation of structured
representations is complementary to the choice of exacapproximate solution method or
dynamic programming vs. direct linear program optimizatiol hat is, the exploitation of
structure can help all of these methods scale far beyond wipaissible with approaches that
rely on explicit state enumeration.

Thus, the modeling and exploitation of decision-theorptanning structure in the MDP
framework will be the core focus of the remainder of this thes



Chapter 3

Factored MDPs

In the MDP representation of the previous chapter we expdetbe reward, transition distribu-
tion, policy, and value function all in terms of an expligignumerated state space. However,
this is neither the most natural nor the most compact reptasen one can choose, nor can it
be easily exploited in solution methods.

Intuitively, we often think of states in terms of varioustst@roperties. That is, a state
representation can be factored into a number of propettigswe will call state variables
where each of these state variables can take assignmemtsafset of possible values. For
example, a state variable may be the location of an objecitandy take assignments from
a small set of locations (e.g., office, hallway, or cafeferif there are a number of objects,
we may choose to represent the location of each object witlifereht state variable. In
this case of multiple state variables, states can be caeside be a joint configuration of
all state variables. As we will show in the first half of thisagter, it is not only natural to
represent MDPs in this factored manner, but state varialgk®fing can also result in compact
representations that can be exploited by solution methwmdsdid explicit state enumeration.

In the second half of this chapter, we will review a number atmods for exploiting
factored MDP structure in extensions of solution algorighitom the previous chapter. We
will also introduce the first contribution of this thesis, isfnis a compact data structure termed
the affine algebraic decision diagram (AADD) that can corntlgand simultaneously exploit
multiple forms of independence in the representation ahdisa of factored MDPs.

29
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3.1 Factored MDP Representations

While the MDP solution techniques from the previous chapllereguire time at least poly-
nomial in |S| and|.A|, we note thaiS| can be very large. To see this, recall thes3D-
MIN problem from Chapter 1 where the state can be representedbiyary state variables
x1,...,T, Where each state variable € X; (with X; = {true, false}) represents whether
computeri is running or not. In this problem, the total number of stage®” (i.e., |S| =
{X) x Xy x --+ x X,}|). This is Bellman's well-known curse of dimensional[geliman,
1957 and it unfortunately implies that the enumerated statetismlumethods discussed in
the last chapter require time exponential in the numberaiéstariables:. Obviously, such
enumerated state solution approaches would be compudiyigorohibitive for as few as 50
computers.

Consequently, efficient representations and algorithmexdremely important for the solu-
tion of MDPs for realistic problems. This is especially tfoefields such as decision-theoretic
planning where 50 binary state variables would be consitlatenost an intermediate-sized
problem? In the following sections, we describe structured repregeams and algorithms
that mitigate the problems associated with enumerateel BtBIP representations and solution
algorithms, thus vastly increasing the size of MDPs thatlwapractically solved exactly or
approximately.

3.1.1 Factored Transition and Reward Dynamics

One of the major representational bottlenecks in MDPs sfemns representing the transition
matrices. For example, with a state iy SADMIN formed fromn = 3 binary variables,
the joint transition distribution would be of the forf(z', %, 25, x1, x2, x5, a) (With the 2/
variables representing the next-state variables ar@ A representing the three actions to
reboot each of the three computers). If this probabilityriiation was represented in an
enumerated manner, it would requité| = 3 matrices of row and column dimensi@# for

a total of2¢ entries per matrix. Clearly, it would become prohibitivelffidult to store these
matrices as more variables were added as the number of neatries scales exponentially

For reference, using one byte of storage per enumerateslistan MDP with 50 variables would require
one petabyte of storage, far beyond what could reasonaldtobed in primary or secondary storage on a modern
desktop computer.

2For example, in the 2006 ICAPS International Probabili®ianning Competition, the largest problems in
the BELEVATOR domain had well over 350 binary state variables if a binanyalde were instantiated for each
ground relational fluent. This amounts to 02ét° distinct states.



CHAPTER3. FACTORED MDPs 31

with the number of state variables

However, from an intuitive standpoint, most actions affediy a small subset of state vari-
ables, which can be exploited in a factored representatidheotransition distribution. A
dynamic Bayes net (DBNIDean and Kanazawa, 198€erves as an appropriate representation
in this case. Using a DBN, we can specify the effects of an aaian individual computer
conditioned on the relevant state variables. Let us asshat®tr three computers invSAD-

MIN are connected in a unidirectional ripghus having the network configuration and DBN
transition function representation in Figure 3.1(a). We tteen specify theonditional proba-
bility tables (CPTs)n the DBN where the next state of each computes conditioned on the
computer’s previous state, the computer;_; to which it has an upstream connection, and
the action (specifically whether, was rebooted by the actiorboot (i)):*

a = reboot (i) : 1
P(z} = true|Z;,a) = < a # reboot(i) A x; = true : 475 - (I[x;_1] + 1) (3.1)
a # reboot(i) N x; = false : .025 - ([[z;_1] + 1)

In words, this states that a computer is running in the neteswith probability 1 if it was
rebooted, or otherwise with a probability that is most intpdcoy the computer’s previous
state and somewhat less by the previous state of its upstreanection. The exact numerical
values chosen here are taken from thes&DMIN specification inGuestrin et al[2004.

We can use a factored representation in the spirit of infleeimgran{ Howard and Mathe-
son, 1984 representations to model the state variables that infludneceeward function. This
is also shown in Figure 3.1(a).

For this DBN, we can then write the full conditional joint tsaton distribution in the
following factored form:

P(xy, ol wh|xy, wo, w3,a) = P(x)|z1,23,0) + P(ahlry, xe,a) - P(ah|xe, x3,a)

We note that the full conditional joint distribution for angle action would také92 entries
to represent as a fully enumerated CPT while the factoreckseptation requires tables with
a total number o2 entries given the conditional independence assumptiosgshé&number

3Formally, in a unidirectional ring, each computerhas one incoming connection fram_; where subtrac-
tion is modulon.

“4The notatiorl[-] is an indicator function that takes the valleshen its argument evaluates to true and 0 when
it evaluates to false.
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a) DBN Representation b) Transition c) Reward as
of Transition Function CPT as ADD ADD
1' T+1 P(x2‘| a/x1/x2) R(x11x21x3)

SysAdmin
Network

j X,
4 .
a#reboot(2) A / ‘
X
/ o

Figure 3.1: a) A dynamic Bayes network and decision diagrgresenting a transition func-
tion and a reward function for ¥ADMIN with n = 3 and a unidirectional ring network
topology. b) An compact encoding of the transition funct@BRT for the DBN as an ADD.
Note thatz’, sums to one over all possible previous states. ¢) An ADD ssrtion of the
additive reward function for 8SADMIN. For all ADDs, the high (true) edge is solid, the low
(false) edge is dotted.

of computersn in this unidirectional network topology increases, theesi the full joint
representation will scale exponentiallyrirwhile the size of the DBN representation will scale
only quadratically im (requiringn CPTs each witl8n entries).

Throughout this exposition, we assume that the DBN reprasentof the transition func-
tion does not have synchronic arcs that specify dependdretesen post-action variables.
However, if needed, it is easy to modify our DBN notation torpirsuch arcs and the forth-
coming algorithms to take such arcs into account duringrémfee. Or alternately, one may
choose to modify the problem description to use joint vdesln place of variables connected
via synchronic arcs. This approach incurs a representdtidowup exponential in the number
of variables joined, but converts a DBN with synchronic accan equivalent (but larger) DBN
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without synchronic arcs.

We also note that there are alternative representatiometDBN transition representation
such as probabilistic generalizations of STRIPS operdiwsitilier et al, 19954. However,
Littman [1997 proved that this representation can be converted to a dgnBayes net rep-
resentation with only a polynomial blowup in size. This effeely demonstrates that both
formalisms are representationally equivalent.

In the general case, using DBN and influence diagram strigtorefficiently represent
transition and reward dependencies often saves a considemmount of space in these repre-
sentations. Defining thearentsof a next-state variable, in the DBN representation as the set
of current-state variables:; } appearing in a CPT with, we note that in the worst case, every
x} has all{zy, ..., z,} as parents, thus requiring a number of parameters expahanti. In
the best case, every state variab)das onlyz; as a parent, requiring a number of parameters
linear inn. However, even in the typical case, if the number of pareh#sg state variable is
bounded by some constant n, this require)(n - 2¢) parameters in the case of binary state
variables — still an exponential reduction over the worsecaVhile a factored transition and
reward representation can yield substantial savings ®MDP representation, we note that
this factoring cannot often be preserved in the value fonctiue to the correlation of action
effects over sufficiently extended periods of tibiBoutilier et al, 1995. Nevertheless, rep-
resenting large MDPs is a first step toward solving them aihdesguent techniques will take
advantage of this factored structure for efficient compomednd approximation.

3.1.2 Context-specific Independence and ADDs

Even if we can represent the joint transition probabilityaaBayes net with a conditional
probability table (CPT) for each next-state variable, we atti@n represent these tables more
efficiently than by enumerating all state configurationsha variables in that table. Quite
often, we find that certain values of variables in a CPT rerfueother values irrelevant. This
is known ascontext-specific independence (Cl&putilier et al., 1994.

For the example DBN in Figure 3.1(a), given that the value/poflepends om;,z, anda
in P(xb|z1, 29, a) but that in the context of # reboot(2), the value ofr, depends on no other
variables, we say that in the contexto# reboot(2), x4 is independent of all other variables
and thusP (z}|z1, x2, a # reboot(2)) = P(x4|a # reboot(2)). In order to represent this CSI
compactly, we can use a decision tree or an algebraic dadaisigram (ADD)[Baharet al.,,
1993, which is similar to a tree except that it is a canonitiaécted acyclic graph (DAGYith
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all variable decision tests following a strict order frone tioot to the leaves. An example ADD
for this probability distribution showing the above CSI isag in Figure 3.1(b). Effectively,
CSI performs automatic state aggregation in that all possitaite contexts under the condition
a # reboot(2) are effectively grouped together and assigned a commor vaia example
ADD for the reward is given in Figure 3.1(c), here there is rplieit CSI, but the reconver-
gent DAG structure of the ADD does allow sharing of commorsswleture that reduces what
would be a tabular representation exponentially sizedtiman ADD representation quadrati-
cally sized inn.

In addition to the representational efficiency of state aggtion in ADDs, we note that
computation with ADDs can also be very efficient. When we penfoperations on factors rep-
resented as ADDs, we can just replace these operationsheithADD-based version®Bahar
et al, 1999, allowing us to exploit CSI and shared substructure not antjé representation
of factored MDPs, but also in the computations requiredteirtsolution.

Since the ADD will be a crucial data structure for our subssqyresentation of factored
MDP solution algorithms, we provide a formal definition of BB and algorithms to construct
and manipulate them in the following subsections. The valhg discussion draws on the work
of Baharet al.[1993, which is itself a slight variant of the original work on ored binary
decision diagrams (BDDs)f Bryant[1984.

Canonical Reduced ADDs

An ADD is a decision diagram with a fixed variable ordering btlacision tests on paths from
the root to the leaves that is capable of representing fomsfromB™ — R. We define ADDs
with the following simple BNF grammar:

F:=C | if (F"") then F, else F (3.2)

Here,C' € R is a constant-valued terminal node. Each internal decisoole is represented as
if (Fv") then Fy, else F; and is associated with a single variabte- that indicates the high
branch leading to nodg;, should be taken whemr = true and the low branch leading g
should be taken whemr = false.

Let Val(F, p) be the value of ADDE under variable value assignmentThen the valua-



CHAPTER3. FACTORED MDPs 35

tion of an ADD can be defined recursively by the following etira

F=C: C
Val(F,p) = F # CAp(F*) =true: Val(Fy,p)
F#CANp(F") = false: Val(Fy,p)

Formally, we define aariable orderingas a total ordering over all variables such that for all
variable pairse;, z; (i # j) eitherx; > z; or z; > z,. We say that' satisfies a given variable
ordering if ' = C or F'is of the formif (F'“") then F), else F; where (1)FV*" does not
occur inFj, or F, (2) F**" is the earliest variable under the given ordering occunmg iand
(3) F; and F}, satisfy the variable ordering. We discuss choices for Wégiarder later in the
context of variable reordering.

Then we obtain the following lemma where we defime@ucedADD to be the minimally-
sized ordered decision diagram representation a fungtion . . . , x,,).

Lemma 3.1.1. Fix a variable ordering overzy, ..., z,. For any functionf(zi, ..., z,)
mappingB™ — R, there exists a unique reduced ADDover variable domairxy, ..., z,
satisfying the given variable ordering such that for @& B™ we havef(p) = Val(F, p).

Bryant[1984 provides a proof of this lemma for BDDs, which only have twdtidist ter-
minal values. The proof trivially generalizes to ADDs, whican have more than two distinct
terminal values. This lemma shows that there is a uniquergealcADD representation of all
functions fromB™ — R.

Given that there exists a unique reduced ADD for any functiom B" — R, we next
describe how this reduced ADD can be constructed from atrarpordered decision diagram.
All algorithms that we will define rely on the helper functiéfetNode in Algorithm 1, which
returns a canonical representation of a single internaisaecnode. UsingGetNode, the
Reduce procedure in Algorithm 2 takes any ordered decision diagrachreturns its reduced,
canonical ADD representation (necessarily removing adymédant structure in the process).
The control flow ofReduce is very simple in that it uses th@etNode procedure to recursively
build a reduced ADD from the bottom up (i.e., from the ternhieaf nodes all the way up to
the root node). An example application of tReduce algorithm is given in Figure 3.9.

Binary Operations on ADDs

Given functionsB™ — R represented as ADDs, we now want to apply operations to these
functions that work directly on the ADD representation. Amdhally, we would prefer that
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Algorithm 1: GetNode(v, Fy,, F})) — F,

input v, Fy,, Fy : Var and node ids for high/low branches
output . F, : Return values for offset,
multiplier, and canonical node id
begin
/I If branches redundant, return child
if (F; = F},) then
| returnfFy;

/I Make new node if not in cache
if ((v, Fj, F; — id is not in node cachdhen
id := currently unallocated id;
L insert(v, Fy, F;)) — id in cache;

/I Return the cached, canonical node
returnid ;

end

Algorithm 2: Reduce(F) — F,

input : F: Node id
output . F. : Canonical node id for reduced ADD
begin

/I Check for terminal node
if (F'is terminal node}hen
| return canonical terminal node for value Bf

/I Check reduce cache

if (F — F,.isnotinreduce cachdhen
/I Not in cache, so recurse

Fp, := Reduce(Fp);

F} := Reduce(F});

/I Retrieve canonical form
F,. := GetNode(F'*", Fp,, F);

/I Put in cache
insertF' — F,. in reduce cache;

/I Return canonical reduced node
returnf.;

end

these operations avoid enumerating all possible variaddgaments whenever possible.

To do this, we first define thé pply function that applies a binary operation to two operands
represented as ADDs and returns the result as an ADD. Wezgetdenote a binary operator
on ADDs with possible operations being addition, subsimactmultiplication, division, min,
and max denoted respectively @s o, ®, @, min(-, -), andmax(-, -). We also define binary
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Figure 3.2: An example application of theeduce algorithm. The input is the leftmost di-
agram. From left to right, the hollow arrow shows the nddeurrently being evaluated by
Reduce just after the recursiveReduce calls to the high brancl), and low branch?; but be-
fore GetNode(F"", F},, F;) is called and the canonical representationtofs returned (see
Algorithm 2). The next diagram in the sequence shows thdtrafter the previouskeduce
call. The rightmost diagram is the final canonical ADD repreation of the input.

!

S

Figure 3.3: Two ADD noded and F; and a binary operationp with the corresponding
notation used in the presentation of theply function.

comparison functiong, >, <, < that return an indicator function represented as an ADD that
takes the valué when the comparison is satisfied endtherwise.

The high-level control flow of thel pply routine in Algorithm 3 is straightforward: we first
check whether we can compute the result immediately byncallompute Result, otherwise
we check if we can reuse the result of a previously cachgely computation. If we can do
neither of these, we then choose a variable to branch on andsreely call thedpply routine
for each instantiation of the variable. We cover these steepth in the following sections
and note that Figure 3.4 provides an example of4lhgly operation.

Terminal computation The functionComputeResult given in Table 3.1, determines if the
result of a computation can be immediately computed withieatirsion. The first entry in
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Algorithm 3: Apply(Fy, Fz,0p) — F,

input : I, F5, 0op : ADD nodes and op
output . F,. . ADD result node to return
begin

/I Check if result can be immediately computed
if (ComputeResult(Fy, Fy,0p) — F, is not null )then
| returnfF;

/I Check if result already in apply cache
if ((F1,Fs,0p) — F, isnotin apply cachephen
/l Not terminal, so recurse
if (£7 is a non-terminal nodethen
if (F» is a non-terminal nodethen
if (F7%" comes beford’y*") then
‘ var = FP°,
else
| var = F3j°,

else
| var = Fy,

else
| wvar = Fj;

/I Set up nodes for recursion

if (£7 is non-terminalA var = F7%") then
‘ FPli= By, FPY = Fyp;

else
=

if (F% is non-terminalA var = Fy*") then
‘ Fp? = Fyy; FP? = Fop;

else
=

/I Recurse and get cached result
Fy = Apply(F'', F{*, op);
Fy, := Apply(F', F?, op);
F, := GetNode(var, Fy,, F});
[/l Put result in apply cache and return
| insert(Fy, Fy, op) — F, into apply cache;
returnF;.;

end

this table is required for proper termination of the alduntas it computes the result of an
operation applied to two terminal constant nodes. Howelierpther entries denote a number
of pruning optimizations that immediately return a nodehwiit recursion. For example, we
know thatF; @ 0 = F; andF; ® 1 = Fy. If a result cannot be immediately determined in
ComputeResult then we must continue recursing on the substructure of tieeaops until a
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ComputeResult(Fy, Fy,op) — F,

Operation and Conditions \ Return Value
Fyop Fy; Fiy =Ch; Fy =04 Ch op Cy
Fi®Fy; Fo=0 F

Fi®Fy; F1=0 Fy

FioFy Fo=0 Fy

Fi®Fy; Fo=1 Fy

F1 & FQ, F1 =1 F2

Fyo Fy; Fo=1 Fy

min(Fy, Fy); max(F) < min(Fy) | Fy

min(Fy, Fy); max(Fy) < min(Fy) | Fy

similarly for max

Fy < Fy; max(F)) < min(Fy) 1
Fy < Fy; max(Fy) < min(F))

similarly for <, >, >

other | null

Table 3.1: Input and output summaries @bmputeResult. If ComputeResult receives two
constant ADD nodes as input, the constant resulting fronditteet evaluation oany possible
binary operation is returned. In other cases where at leasinode is non-terminal, special
operand structure and specific operator properties soregtparmit the computation of the
result without further recursion. Some computations refyttee unarymin(F') andmax(F)
operators that are discussed directly following thely algorithm.

result can be computed.

Recursive computation If a call to Apply is unable to immediately compute a result or reuse
a previously cached computation, we must recursively caene result. For this we have two
cases (the third case where both operands are constanma&moies having been taken care
of in the previous section). These algorithms assume thetinatgiven in Figure 3.3 for the
structure of the operands.

e [ or F; is a constant terminal node, or 7" = Fy*": For simplicity of exposition,
we assume the operation is commutative and reorder therugsesa that is the con-
stant node or the operand whose variable colaes in the variable ordering so that we
know to branch onfye" first> Thus, we compute the operation applied separately to

SWe note that the first case prohibits the use of the non-comtivet> and® operations. However, a simple
solution would be to recursively descend on eithgror F; rather than assuming commutativity and swapping
operands to ensure descent Bn To accommodate general hon-commutative operations, we bsed this
alternate approach in our specification of thgply routine.
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F; andeachof Fy’s high and low branches. We then build an interifatlecision node
conditional onFy*" and get its canonical representation for the result:

Fh = Apply(Fla F2,h> Op)
E - Apply(Fla FZ,lu Op)
F, = GetNode(Fy*, Fy, [})

e F and F; are constant nodes andr*" = Fy*": Since the variables for each operand
match, we know the resuR. is simply anif statement branching afiy*" (= F;*") with
the true case being the operator applied to the high brarafhEsand F, and likewise
for the false case and the low branches:

Fy, = Apply(Fy, Fap, op)
Fy = Apply(Fy,, Fyy, 0p)
F, = GetNode(FY™, Fy, F)

(1) (D)

(o) (1) (2) (5) X2)
@ / ﬁ \ @
%\ @ 3) 8 - ::>
S : l
\i

N *) 1
al

®) 1 4) 0 () ®) 1 4 1 0

Figure 3.4: An example application of th&pply algorithm. The indiceg:) in the diagram
correspond to successive (recursive) calls toAhely algorithm: for the operands the indices
denote which node of each operand is passed as a parameher dalltto Apply (the op is
always®); for the result the indices indicate the node that is regdroy the call tadpply. For
example, the initial call todpply takes the arguments corresponding to the node marked (1)
x5 on the LHS of thep and the node (1); on the RHS of theb (as well as the operatiop
itself) and returns the node marked (1) on the RHS of the aguali

Other Operations Above we covered binary operations on ADDs, but we will alseahto
perform a variety of unary operations on ADDs such as detengithemin andmax value of
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Figure 3.5: An example application of the unamgstriction and marginizationoperations.
Each ADD has all of its internal nodes annotated ithin, max|, which can be recursively
computed from the children of each internal node.

an ADD and marginalization over variables. Here we coveresamary operations that can be
performed (efficiently) on ADDs:

e min and max computation: During the Reduce operation, it is easy to maintain the
minimum and maximum values for each internal decision n&ogloiting the fact that
an ADD is a DAG,min F' = min(F}, F},) and likewise formax. A simple example of
this annotation and its recursive relationship is shownigufe 3.5.

e Restriction: The restriction of a variable; in an ADD F' to eithertrue or false (i.e.
F|2,=true/faise) CaN be computed by replacing all decision nodes for vagiapWith the
branch corresponding to the variable restriction. Th&duce can be applied on the
resulting decision diagram to convert it to a canonical AD@o examples of restriction
are given in Figure 3.5.

e Sum out/marginalization: A variable z; can be summed (or marginalized) out of a
function F* simply by computing the sum of the restricted functions. (i), F' =
Fls,—r & F|,,—r). An example of this is given in Figure 3.5.

e Negation/reciprocation: Negation can be performed using the binaryply operation
on0 & F. Likewise, reciprocation (i.e%) can be computed using the binadpply
operationl @ F.

e Variable reordering: Rudell [1993 provides an ADD variable reordering algorithm
that casts a general variable reordering in terms of a seguehpairwise reorderings
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of neighboring variables. Then, the basic idea is that twialéesz, andz; can be
reordered locally (i.e., rotated) in the ADD DAG without tedgng the modification of
any internal nodes other than those involvingandz;. Furthermore, Rudell describes
how this can be done without requiring extra storage for pagkers from children to
parents ifGetNode's canonical node cache is allowed to be modified.

As an addendum to this final operation, we note that the MD®tisol algorithms based
on ADDs (and their extensions) that we introduce in this teapould dynamically reorder
variables in an attempt to maintain even more compact reptasons than possible with a
fixed variable ordering. However, we do not employ such dyinarariable ordering tech-
niques in this thesis as they prevent the reuse of cachedwatgns that underly one of the
major sources of efficiency of ADDs when used in MDP solutitgoathms. Furthermore,
searching for compact ADD representations requires seardhs computationally expensive.
Such results are reflected in experiments using ADDs to parf@lue iteration in factored
MDPs [St-Aubin et al, 200d, which demonstrate that dynamic variable reordering dags n
pay off and that a natural fixed variable ordering derivedftbe MDP description tends to be
compact and preserves structure. As a consequence of theseations, all of the algorithms
used in this thesis use a natural fixed variable orderingzel@rirom the order that variables
appear in an MDP problem description, unless otherwisednote

3.1.3 Additive Independence

Additive independence in reward structure is a common agsamin utility theory and related
fields[Keeney and Raiffa, 1976; Bacchus and Grove, 1986Figure 3.1(c), we note that we
could represent the additive reward structure 96ADMIN using an ADD whose size scales
guadratically in the number of computersBut if we can explicitly model additive rewards as
sums of (potentially non-linear) factors, then we triwallote that the 8SADMIN reward can
be expressed compactly in a form whose size scales lineanly i

n

R(Z,a) =Y Tz (3.3)
=1
Furthermore, if we permit the use of similar expressiongen€PTs that we specify for our
transition DBN, we can also exploit additive independencéhair representation. For ex-
ample, lettingConn(i, j) denote that there is an incoming network connection to caengu
from computer, we note that the CPTs for the transition function for amg&DMIN network
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topology can be specified in the following additive manner:

a = reboot(c;) : 1
P(x; = truelt, a) = > Ij#inz;AConn(j,i)]
o reboot(cr): (00509 ] et

Here we see that the success probability of a computer rgrsgales proportionally to the
number of it's incoming connections that are also runningd Ave also note that the previous
CPT we gave for the unidirectional ring in Figure 3.1(b) id puspecial case of this CPT where
computeri is connected only to computér- 1 (where addition is module).

In our subsequent discussion of solution methods for fadtddDPs, we note that some
recent approaches can exploit additive reward structuiéevathers cannot. In fact, it will
only be in the final part of this chapter when we introduce afikDDs (AADDs) that we
will be able to fully exploit CSI and additive independencebth the reward and transition
functions, not to mention multiplicative independencetd&mppens to naturally occur in many
value function$.

3.1.4 Structured Policy Representation

Just as the reward and transition function may be repres@mtefactored manner in proposi-
tional MDPs, so can the policy. To do this, we adapt the folhmrdefinition from Boutilieret
al. [19954:

Definition 3.1.2. A structured policy is any set of function-action pairs= {{¢,, a)} such that
¢, IS a structured representation of an indicator function gngl } partitions the state space.
This induces the explicit policy, () = a iff ¢,(Z) = 1.

To ensure that the policy partitions the state space, onéensare that it is exhaustive and
that all action indicator functions are pairwise disjoifit ensure that the policy exhausts the
entire state space, one can simply ensure that the sum afladbtor functions is the constant
1(i.e.)_,c4 %« = 1). To ensure that all action policies are pairwise disjoamte can ensure
®a - ¢» = 0 for all action pairs: € A, b € A such that # b.

There are a variety of structured methods for representied ¢, } indicator functions
ranging from decision listKoller and Parr, 1999ato treeqdBoutilier et al., 19951, to ADDs.
Throughout our presentation here, we will use ADDs. Thercpa@valuation is simply the task

SMultiplicative independence is just the multiplicativengealization of additive independence.
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of evaluating each ADD», under a given state assignmehip see ify, () = 1 (meaning do
actiona). This structured policy representation will play an imjaoit role in our description
of structured policy iteration.

3.1.5 Putting it all Together

Before we cover exact solution methods in the factored MDBésaork, let us quickly re-
capitulate the factored MDP representation. In a factor&PMstates will be represented by
vectorsz of lengthn, where for simplicity we assume all state variabigs. . . , z,, are binary-
valued! hence the total number of statesNs= 2". We also assume a finite set of actions
A ={ay,...,a,}. As usual, we assume a discount factor0 < v < 1 where appropriate
steps have been taken to ensure bounded reward in the case bf

To generalize the MDP model from the previous chapter, weipa propositionally fac-
tored MDP by the following:

1. Factored Transition Function: A DBN-factored state transition model which specifies
the probability of the next staté given the current staté and actiorn. The transition
function can be factored as a dynamic Bayes net (DBN) with CP{s|;, a) where
each next state variablé is only dependent upon the actianand its direct parents
Z; in the DBN. Then the transition model can be compactly specdeP (7"|¥,a) =

[y P(]Z5, a).

2. Factored Reward Function:An additive reward functiory ;_, R;(%;,a) overr reward
factorsR;(Z;, a) dependent on actiomand relevant stat&;, which specifies the imme-
diate reward obtained by taking actiann statezr.

The individual factors can be expressed as tabular repssrs, or as trees and ADDs that
exploit CSl, or even as additive expressions that exploitta@dndependence. Finally, when
needed, a structured policy = {(¢,, a)} uses indicator functions, to specify the states

where actioru should be taken.

"However, all of the methods here can be easily generalizednebinary variables through known transfor-
mations[Rossiet al., 1990; Stergiou and Walsh, 1999
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3.2 Exact Solution Methods

In our specification of our solution methods, it will be nadaglly useful to define dackup
operatorB® for actiona as follows®

=Y [Pz, o)V (@) (3.4)

—

T =1

This is essentially the factored representation of the ztion computation for action in
Equation 2.8 from Chapter 2 without adding in the reward. Weerbat the backu@B*|-]
operator can exploit both additive structure since it inaar operatoras well as efficient
factored computation due to the transition DBN structure.

If 7* denotes the optimal policy and* its value function, then we have the following
factored representation of the fixed-point Equation 2.mf@hapter 2:

V*( ?E%{ZR a) + B[V*(Z )]}. (3.5)
Having done this, we first present the basic factored vegiafthe relevant MDP equations
from the previous thesis chapter and proceed to show tha@réwous MDP solution methods
can be easily redefined in terms of these factored equati®hs allows us to exploit the
factored structure and any CSI therein during the applinatiche MDP solution algorithms.

3.2.1 Structured Value lteration
ADD-based Value lteration

The value iteration algorithm from Chapter 2 can be easilgrdéd to exploit factored MDP
structure in a structured value iteration setting. Initiag 1°(#) to some value, we generalize
Equation 2.7 from Chapter 2 to the factored form:

Vi (Z) = max {Z Ri(T;,a) + Ba[vt(f)]} (3.6)

acA

It will be extremely important to use a compact data striectuch as a tree or ADD to
exploit CSl in the representation of the value function instured value iteration. If we were

8Technically, this should be writte3* V') (Z), but we abuse notation for readability whiritself is structured
and for consistency with subsequent first-order MDP natatio
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to simply use a tabular representation, we would find thagpical MDPs, all variables in the

value function become correlated after some number of sikuhe graphical model under-
lying the DBN cannot be decomposed into disjoint componkBusitilier et al., 19954. Thus,

a tabular representation will typically need to represeralae function over all state variables
and in the absence of some method for compactly represevaing function structure, this

representation will require full state enumeration.

Fortunately, as described previously, ADDs are ideal f@i@king CSI and functions with
shared substructure, both of which may occur in the valuetioms of highly structured fac-
tored MDPs. As such, representing all factors in Equatiéru8ing ADDs and carrying out its
computation in terms of ADD operations as done in the SPUDRPrithm of Hoeyet al.[1999
has proved to be a promising method in comparison to the eratetestate value iteration ap-
proach of the previous chapter. While SPUDD may scale corbpat@enumerated state value
iteration in the worst case (e.g., when all states havendistialues), the authors demonstrate
that there is much potential for computational and spacmgawsing the SPUDD algorithm
to perform value iteration on many factored MDPs.

Decomposition-based Value Iteration

In a different vein of research, there are alternate (buimmimpatible) approaches to struc-
tured value iteration that exploit decomposable task siradin MDPs[Meuleauet al., 1998a;
Singh and Cohn, 1998If a problem domain consists of many independent subpsesahat
only interact via their dependence on globally shared nessuand/or constraints on joint ac-
tion choices, one can often factor these MDPs into taskesemted as independent subMDPs
with global resource and action constraints. We could th&etoss-product of all the subMDP
state spaces and solve the resulting joint MDP, but this evdidcard a lot of the structure in-
herent in the task decomposition of the initial problem efiiately we can focus on algorithms
that directly exploit the decomposed structure of the MDieddly.

An exact structured value iteration approach for a sub@&s4DPs with highly decom-
posable structure is provided by Singh and C6&imgh and Cohn, 1998 In this model, an
MDP must decompose into a set of subMDPs where each subMDRshasn independent
state space but an action set that is globally constrainkd.r@ward objective is to maximize
the sum of rewards for each subMDP. The solution approachdbeocate is a value itera-
tion method based on maintaining upper and lower boundsenralue function. The upper
bounds simply come from assuming that actions are uncamsttacross subMDPs (which
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can be achieved in the best case) and the lower bounds cometdiong the maximal re-
ward for an individual subMDP (which could be achieved inwwst case). These upper and
lower bounds allow various actions to be pruned from comaittn during value iteration and
with enough iterations will provably converge on an optisalution. This decomposed value
iteration algorithm is empirically found to be more efficighan value iteration in the joint
cross-product MDP.

3.2.2 Structured Policy Iteration

Structured policy iteration (SPI) in factored MDPs was fitsfined in Boutilieret al. [1995(
using trees as a method of state aggregation. Here we descsimilar version using ADDS.
Recalling the definition of modified policy iteration from tpeevious chapter, first we initialize
arandom policyry = {(¢., @) } and then we iterate between approximate policy evaluatidn a
policy improvement steps. For approximate policy evabrative can simply use the following
factored extension of the successive approximation ugddteSection 2.4.2):

VIR @) =) (@) - {Z R;(%j, a) + B[V, (7)] } : (3.7)
acA j=1
Here, the policy indicator function, ensures that the value for a state is only updated for
actiona if the policy indicates that actiom should be taken from that state. We note that this
entire computation can be carried out in terms of efficier@rapons on ADDs. Correctness
follows from the fact thatr; is a partitioning of the state space.

Then, givenV™ (), we need only produce a new poliay,; that is greedy w.r.t.V™.
In order to break ties for actions having equal value, we iregal total preference ordering
(perhaps random) over actions, that is, for all actie@sdb such that: # b, eithera >~ b or
b = a. Recalling the definition of the ADD>" and “>" comparison functions that produce
an ADD taking the valud in states where the LHS operand is greater than (or equahé¢o) t
RHS operand and otherwise, we can produce the ADD representation,dbr all « € A in
the following iterative fashion:

1. Initialize ¢, = 1 (the constant 1 ADD)

2. Foreachi € A, letQ(7,a) = >77_| R;j(Z},a) + B[Vr, ()]

SWe will implicitly assume throughout the text that all op@oas in the following equations such as —, x,
etc are performed on ADDs in terms of their corresponding djp@na®, ©, ®, etc
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3. For eachh € A s.t.b # a updateyp, as follows:

81

a

{am: o - (Q(F,a) > Q(7,D))
b ~a: ¢a : (Q(f> a) > Q(fa b))

Thus we have defined a structured version of policy iteratighile our algorithm presentation
here differs from the original presentatipBoutilier et al, 19954, it is consistent with the
overall structured approach to policy iteration. Furtherea we will build on this approach
when we extend policy iteration to exploit other types ofisture in future chapters.

3.2.3 Difficulty of Structured Linear Programming

We do not present a structured variant of the exact lineagrproming solution to factored
MDPs as this method requirespriori knowledge of the structure of the value function and
in this case we are talking about the exact value functiompichfly, we cannot determine the
structure of an optimal value function from the structure édctored MDP. Consequently, for
the exact case, we would have no choice but to use a fully eraietestate representation of
the value function, thus preventing the exploitation otdaed structure. However, as we will
see shortly, the approximate variant of linear programnisng fact quite useful for solving
factored MDPs and there is much opportunity to exploit feedicstructure in that case.

3.3 Approximate Solution Methods

While some factored MDPs do exhibit considerable structuiteir optimal value functions
or policies, sometimes these representations are stillaige for practical representation or
computation as the size of the problem scales. Thus, in ¢gigosm we focus on approximate
variants of previously described solution algorithms.

3.3.1 Approximate Value Iteration Methods
ADD-based Approximation

One additional benefit of the use of ADDs to specify factoreldP8 is that it allows one to
prune internal nodes in an ADD and replace these nodes watiminimum and maximum
value of the ADD rooted at that nod®earden and Boutilier, 1997 An example of this is
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V(X1 X2 ) K/@l X2 )
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/ Prunex, /
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Figure 3.6: An example of approximating an ADD represeatedif a value functio (z, x)
asV (z1,x2) by pruning out the decision node for variable and replacing leaf values with
their respective ranges.

shown in Figure 3.6. One can then perform value iteratiomtaaiing these upper and lower
bounds. Since the Bellman backup is a known contraction tpel@uterman, 1994 this
algorithm will still converge, albeit within some error baal of the optimal value function.
This is the idea behind the APRICOD[3t-Aubin et al, 200d algorithm that is essentially
the SPUDD value iteration algorithm with an extra step fopragimation by pruning the
value function ADD. We note that APRICODD represents a comeplesutomated approach
to approximate value iteration that autonomously deritesapproximated value function. It
should be noted that this contrasts sharply with the livadéwe approximation approach to
approximate value iteration discussed in Section 2.5.8rdli@s on the pre-specification of a
fixed set of basis functions.

Decomposition-based Approximation

In the vein of exploiting structure in decomposable MDPs aMauet al. [19983 describe
an approximate value iteration technique for solving weaklupled subMDPs having global
resource and action constraints. Their algorithm is reteto as Markov Task Decomposi-
tion (MTD) and is an approximately optimal approach to sodvthe joint MDP that divides
the solution into local and global optimization steps. MTB3tfidetermines the optimal value
function for each subMDP. Following this local optimizatj@ global optimization phase then
chooses a joint action at each time step that enforces thalglesource constraint while trad-
ing off local action choices for each task in order to maxenriize expected reward. Since an
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optimal sequential solution in this case would be equivalersolving the full joint MDP, a
heuristic resource allocator is used in this work.

While we don’t exploit the same approximate decompositieaglin the contributions
of this thesis, we do note that the general framework of additalue decomposition and
approximate solution methods within this framework seraesmotivation for our work in
future chapters.

3.3.2 Linear-value Approximation Solution Methods

We next introduce three efficient approximate solution rodhfor factored MDPs based on
linear-value approximatiobGuestrinet al, 2002; Schuurmans and Patrascu, 400These
methods are effectively factored extensions of the apprate policy iteration and approxi-
mate linear programming techniques from the previous @nafthe key to the efficiency of
these approaches over their enumerated state countesgialis to show how the structure of
the factored representation can be exploited by algoritunh as/ariable elimination{Zhang
and Poole, 199ahat scale exponentially in the induced tree-width of th@sentation rather
than exponentially in the total number of state variabldss Exploitation of structure will be
most apparent when solving the linear programs for erravmizing max-norm projections
that are at the heart of these techniques.

In a linear-value function representation, we repre$éas a linear combination df basis
functionsb, (%) where the; are typically dependent upon small subsets:of

k
V(@) =3 wibi(@) (38)

Our goal is to find weights that approximate the optimal vdiuestion as closely as possible.
In doing this, all of our solution methods will need to comgpttie backup of the value function
through an actiorn. To compute this, we recall that the backup operd6f:| previously
defined is a linear operator such that it distributes intora:su

B[V(¥)] = B[Y_ w;b;(#)] (3.9)

J=1

k
= w; By () (3.10)
j=1
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Thus, if the basis functions are defined over small sets edbkes, and the backup introduces
an additional small set of variables that causally affed basis function according to the
DBN representation of the transition distribution, this swith be over factors of small sets of

variables. This factored structure will be exploited in thethods we define in this section.

Next, we explore factored extensions of approximate patenation and linear program-
ming. However, we do not cover approximate value iteratfggraaches due to their possibility
of divergence as noted in the last chapter.

Approximate Policy Iteration

We can generalize policy iteration (API) to the factoreceinvalue approximation case by
calculating successive iterations of weiglatj@ that represent the best approximation of the
fixed point value function for policyr® at iterationi. The method we present here is a slight
variant of that given in Guestriat al. [20031° and is an approach that we will generalize in
the next chapter. To apply this approach, we need to intetheB™[-] operator which is just
the backup operator under a fixed policy:

BT V(@) =Y [P, @)V (&) (3.11)

T i=1

In the context of the following algorithm, we will discussi@™ -] can be efficiently computed
in structured cases.

We perform API by carrying out the following two steps on edehation:: (1) derive
the greedy policyr(+1 wgre(ZLl w](.i)bj(s)) using the approach outlined in Section 3.2.2

and (2) use the following LP to determine the weights fortheminimizing projection of the

100ther than the ordering of action comparisons in the greetigypderivation method of Section 3.2.2, this
presentations of API follows that of Guestrat al. [2004. For greedy policy derivation, they use a special
ordering of action comparisons that first compares all astto anoop action and then to each other, arguing that
this approach is advantageous for domains suchva®\SMIN .
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approximate value function for policy*:

vVariables:w{*" . wi

Minimize: g¢+Y (3.12)
k

> Ridn@) + 3l B @)

Z+1 —»
- E fL’

Subject to;50 V) >

We note that this LP is just the factored form of the LP defineddpproximate policy it-
eration in Equation 2.23 from the previous chapter where aee lexploited linearity of the
backup operator. Consequently, when the policy converges#iit? = =) or equivalently
w0 = @®), we can derive an error bound on the approximated valudgitmby plugging
the projection errop of the final LP solution directly into Equation 2.19 singés the Bellman
error of the approximated value function in this case.

However, we note that in the factored framewalk, "' [.] cannot easily be computed ac-
cording to Equation 3.11 since our structured poticy) takes the form of indicator functions.
However, we need only enforce that an LP constraint for alometis satisfied in the states
whereg’ ™! takes the value 1. To do this, we can ensure that the cortstoaiactiona is triv-
ially satisfied whenp, is 0. So we introduce the following policy factor as a summandun o
constraint:

O = (g —1) - o0 (3.13)

Clearly, ¢! will take the value) in states where should be taken according t6*! and the
value—oo otherwise.

To see how this allows us to perform the backup under a pditys rewrite the constraints
we have expressed above:

T k
BUD > g 1N Ry(@,a) + D (i B (@) — D [wl (:E’)]‘ . VZa€ A
=1 7j=1 7j=1
(3.14)
Effectively, the constraint for action will be trivially satisfied when the policy factcﬁsfjl
should not be applied and takes the valuec. Otherwise,&;+ ! takes the valu® in states
where the policy should be applied and then the remaindédreotdnstraint must be satisfied.

In a subsequent section, we discuss efficient methods faingahe above form of LP with
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a factorednax-)_ form of the constraints.

Approximate Linear Programming

In the extension of approximate linear programming (ALP¥aotored models, we simply
replace the enumerated state representation from theopseohapter in Equation 2.24 with the
factored representation introduced in this chapter fahowSchuurmans and Patrad@001]
where we have again exploited linearity of the backup operat

Variables:wy, . .., w

k
Minimize: » ~ " w;b;(Z) (3.15)

T

Subject to:0 > Z Ri(%;,a) +

k
i=1 j=

k
(w; By (D)) — > w;b;() ; Va, 7
1 j=1
We can exploit the factored nature of the basis functionsrmply the objective to the
following compact form where we assume each basis functipticitly depends on the subset
of state variables if¥;:

k k
ZZw]—b]—(fj) = ijyj (3.16)
z j=1 j=1
wherey’ = 2" 37 b;()).

Finally, we note that exploiting linearity of the backup oger again provides us with a
factoredmax-)  form of the ALP LP constraints from Equation 3.15 as it diditanty for the
final form of the API LP constraints in Equation 3.14. We dssan efficient solution to LPs

with suchmax-»_ factored constraints in the next section.

Constraint Generation

In the above LP, both forms for the constraints take on thegeform of a sum ofn factors
F;(Z) over (ideally) small sets of variables:

Not every factor must have a weight, but we note that each factor has at most one linear
weight owing to the structure of the original basis funci@nd the properties of the backup
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operators.

To view the constraints in a more concrete form, we note thraév¥ery possible instantia-
tion 2 of the state, we could simply instantiate the fadtpto its constant value; = F; (™)
under that state assignment and come up with a correspoligiag constraint:

02w1-01+...+wn-cm (318)

We could generate constraints falf possible state assignments and solve our LP in this
manner. However, we would obviously lose the benefits of aatored representation in that
we would have to specify a number of constraints that scadpsreentially in the number of
state variables.

However, if we rewrite the constraints from Equation 3.1%iafollowing equivalent form
where we enforce all constraints simultaneously with ongimiaation then we can see how
to exploit the factored constraint structure:

0 > max{w; - F1(Z) + ... +wy, - F,(Z)] (3.19)

T

This cost networ Dechter, 199pform of these constraints lends itself to very efficient eval
uation methods such as variable elimination. The questidrow to exploit this property in
our LP solution. Fortunately, as it turns out, there areadtlénvo approaches to exploiting this
structure.

The first solution, due to Guestrat al.[2007 is to directly simulate variable elimination in
the LP encoding of the constraints of Equation 3.19. Thiddda a total number of constraints
O(exp(TW)) where TW is the induced tree-width of the cost-network under thealde
elimination order that was used. This is an attractive nethecause the structure of the
factored MDP and the basis functions should lead'#’ << n when (a) the basis functions
range over small sets of variables with little or no overlap &) the backups of each basis
function have similar characteristics due to the propdrayg only small sets of variables affect
each other causally in the Bayes net. Thus, simulating Veriglbmination in the LP variable
encoding to produc® (exp(7'W)) constraints would be a much more efficient solution than
generating)(exp(n)) constraints as would be done in the enumerated state case.

However, a simpler approach and often an empirically fastethod in practice is the
technique of constraint generatiBBchuurmans and Patrascu, 2001; Trick and Zin, 1987

1This is despite the lack of similar guarantees on the maximumber of constraints generated.
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this case, we perform the following solution procedure wehee have specified some solution
tolerance:

1. Initialize LP with@’ = 0, i = 0, and empty constraint set.

2. For each constraint in the cost-network form of Equatidr® 3nstantiated with the cur-
rent solution?, find the maximally violated constraidt (if one exists) using variable
elimination.

3. If C’s constraint violation is larger thas) addC to LP constraint set, otherwise return
w* as solution.

4. Solve LP for new solutior*™*, goto step 2

Using these constraint generation techniques, one can flioietly apply either API or
ALP with linear-value approximation to factored MDPs. Haein comparing APl and ALP,
we note that in practice, one cannot always guarantee a atrspacture for the policies
generated during API. In addition, API requires one optatian of an LP on each iteration
until convergence or some stopping criterion is reachectohtrast, ALP does not require a
representation of the policy and tends to have a lower tiei#hvin its constraints. ALP also
solves the problem with one LP optimization. Consequently? Aends to be much faster than
API as noted by Schuurmans and Patrd€01], but they also note in their experiments that
API produced better policies.

Basis Function Generation

One additional difficulty with linear value function appimation is that of generating a good
set of basis functions. Certainly, a set of basis functioas ploorly approximate the optimal
value function can have an adverse impact on decision gudlibnsequently, one can take
a number of approaches to generating basis functions sufthdaisgy subtasks with additive
reward [Poupartet al, 20023, performing branch-and-bound search to find Bellman-error
minimizing basis function§Poupartet al, 20028, or analyzing the dual of the LP solution
to heuristically generate basis function candidd®supartet al, 20028. Unfortunately, at
this point in time, generating a good basis function setiisrsbre of an art than a science,
and there are no currently known methods that allow one &nedtpriori guarantees on the
decision quality for a given set of basis functions.
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3.4 Exploiting CSI, Additive, and Multiplicative Indepen-

dence

Previously we discussed how value iteration could be defingdrms of ADDs — this was
specifically exploited in the SPUDEHoey et al, 1999 algorithm. Unfortunately, SPUDD
only exploits CSI and shared substructure in value functiluesto its use of ADDs. Although
ADDs can exploit some structure in additive rewards as wasvehn Figure 3.1(c), ADDs
were not intended to directly exploit additive structure nan they compactly represent all
additive functions. What is needed is a decision diagramdadhatexploit CSI, additive, and
perhaps other forms of structure.

To address this need, we propose an affine extension to ADRd effine ADDs (AADDS)
capable of compactly representing context-specific, agdiand multiplicative structure. We
show that the AADD has worst-case time and space performaitice a multiplicative con-
stant of that of ADDs, but that it can be linear in the numbevrasfables in cases where ADDs
are exponential in the number of variables. We provide anieapcomparison of tabular,
ADD, and AADD representations used in standard Bayes net dDB Mference algorithms
and conclude that the AADD performs at least as well as theratto representations and may
yield an exponential performance improvement over bottAIBE and tabular representations
when additive or multiplicative structure can be exploited

3.4.1 Limitations of ADDs

As shown in Figure 3.7, ADDs often provide an efficient repragation of functions with
context-specific independence, such as functions whosetste is conjunctive (3.7a) or dis-
junctive (3.7b) in nature. Thus, as previously mentioneDDA& can offer exponential space
savings over a fully enumerated tabular representatiorweder, the compactness of ADDs
does not extend to the case of additive or multiplicativeepehdence, as demonstrated by the
exponentially large representations when this structsigrésent (3.7c¢). Unfortunately such
structure may occur in probabilistic and decision-theometasoning domains, potentially lead-
ing to exponential running times and space requirementsference on these problems.
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a) Conjunctive ADD
Structure

b) Disjunctive ADD c¢) Additive and Multiplicative
ADD Structure

\
\
\

Structure

Y?

Figure 3.7: Some example ADDs showing a) conjunctive stmec{f = if (x13 A x9 A
x3) then 1 else 0, b) disjunctive structuref( = if (x; V xo V x3) then 1 else 0), and c)
additive (f = 425 + 2z, + 2;) and multiplicative = ~4*s+2*2+21) structure (top and bottom
sets of terminal values, respectively). The high (true)eesdgsolid, the low (false) edge is

dotted.

3.4.2 Affine Algebraic Decision Diagrams (AADDS)

To address the limitations of ADDs, we introduce an affineesgion to the ADD (AADD)
that is capable of canonically and compactly representimgext-specific, additive, and mul-
tiplicative structure in functions frol™ — R. However, before we formally define AADDs
we begin with two examples of AADDs that compactly repressiditive and multiplicative

structure.

Figure 3.8 shows portions of the exponentially sized ADsrfiFigure 3.7c¢ represented
by AADDs of linear size. The evaluation of an AADD is esselhfithe same as ADDs: given
a variable assignment, one traverses the AADD from the mthé leaf following branches
at each node corresponding to the given variable assignriemtever, one will note that the

edges are labelled with two parametérsh) that denote an affine transform of the subnode

it points to. That is, if the subnode evaluatesstdhen the affine transform of that subnode
evaluates ta + b - v. This very simple modification to ADDs to specify affine tréorsns

on edges turns out to be quite powerful in that previouslyoemtially-sized ADDs can be
represented as linearly-sized ADDs as shown in these exsmpl
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a) Additive AADD Structure b) Multiplicative AADD Structure
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Figure 3.8: Portions of the ADDs from Figure 3.7(c) exprelsas generalized AADDs. The
edge weights are given ds,b). The curly braces on the right indicate the elements of the
AADD grammar that correspond to each portion of the AADD daang.

Recalling our definitions from Section 3.1.2 for ADDs, we faliy define AADDs with
the following BNF grammar wherg represents aormalized AADDhat we will subsequently
restrict to have maximum rang@ 1] andG represents generalized AADDvith rangefc, ¢+b):

G
F

c+ bF
0 | if (F"") then ¢y, + bpFy, else ¢ + b F)

F may be the constaritterminal node or an internal decision node representefl 88")
then ¢, + by F), else ¢ + by F;. Internal decision nodes have essentially the same sersanti
as they did for ADDs in the BNF grammar from Equation 3.2 exdbpt there is an affine
transforme;, + by, - F, on the high edge (evaluated whew- = true) and an affine transform
¢; + b - F;on the low edge (evaluated whear = false). Here,c;, andc; are real constants in
the closed intervalo, 1], b, andb, are real constants in the half-open inter@l1], F**" is a
boolean variable associated with andF; and F}, are of grammaf” (i.e., normalized AADDs
themselves). We also impose the following constraints forea canonicity of the AADD
representation:

1. The variablet’’" does not appear iRj, or F;.

2. min(cp,¢) =0
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3. max(¢cp + by, e+ b)) =1
4. If Fj, = 0thenb, = 0 andc;, > 0. Similarly for F;.
5. In the grammar fo€z, we require that i’ = 0 thenb = 0, otherwiseb > 0.

These constraints require thatis normalized to have range, 1] (when F' # 0). Since
normalized AADDs in grammaf’ are restricted to the rand8, 1], we need the top-level
positive affine transform of generalized AADDs in grammato allow for the representation
of functions with arbitrary range. One can verify that thesastraints hold for the AADDSs in
Figure 3.8 where all variable and terminal nodes are nomedlAADD nodes in the grammar
for F and the affine transform for the root node of the AADD is a galiezd node in the
grammar forG.

Let Val(F, p) be the value of AADDF' under variable value assignment This can be
defined recursively by the following equation:

F=0: 0
Val(F,p) =< F#O0Ap(F") =true: ¢+ by - Val(EFy, p)
F#0NAp(F") = false: ¢+ b -Val(Fy,p)

Lemma 3.4.1. For any normalized AADL¥' over a variable domair, ..., z, and for all
variable assignments to variables inF’s domain, we have thatal(F, p) is in the interval
0, 1], min, Val(F, p) = 0, and if F # 0 thenmax, Val(F, p) = 1.

Proof. For the base case 6f = 0, the lemma obviously holds. Now, fér + 0, we inductively
assume thaf; and F}, satisfy the lemma and are in the inter@l1]. Then forF’, we obtain
the rangdmin(c;, + min(Fy), ¢; + min(F})), max(c, + by, - max(Fy), ¢ + b, - max(£}))], which
simplifies to[min(cy, ¢;), max(c,+bp, ¢;+b;)] based on our inductive assumption. Our previous
constraints (2) and (3) then imply the rangefofs [0, 1], which proves the inductive casel]

Recalling our previous definition of variable ordering for BB, we say that’ satisfies a
given variable ordering if" = 0 or F'is of the formif (F") then ¢, + bnFy, else ¢ + b I
whereF"*" does not occur itf}, or F; andF**" is the earliest variable under the given ordering
occuring inF'. We say that a generalized AADD of forea- b F satisfies the order if’ satisfies
the order.

Lemma 3.4.2. Fix a variable ordering over, ..., z,. For any non-constant functiog(x,
..., T,) mappingB” — R, there exists a unique generalized AADDbver variable domain
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Algorithm 4: GetGNode(v, (cp, by, Fy), (¢, by, F1)) — {(¢r, by, F}.)

input v, (ch, b, Fh), {ci, by, Fy) @ Var, offset, mult, and node id for high/low branches
output : {¢r, by, F.) : Return values for offset,
multiplier, and canonical node id
begin
/I If branches redundant, return child
if (Cl =cp, Nbp=by, N F :Fh)then
| return{c;, b, F1);

/I Non-redundant so compute canonical form
Tmin = min(cy, cp);
Tmax = maX(CZ + bl7 cp + bh);

Trange ‘= Tmazx — Tmins
= (Cl - Tmin)/rrange;
Cp = (ch - rmin)/rr’ange;
b = bl/rrange;

bh = bh/Trange;

/I Make new node if not in cache
if ((v, (¢, bn, Fr), (c, b, F})) — id is not in node cachehen
id := currently unallocated id;
L insert(v, (cp, bn, Fr), {c;, by, F})) — id in cache;

/I Return the cached, canonical node
return <r771in,7 rrangm 2d> ;

end

x1,...,x, satisfying the given variable ordering such that for alle B" we haveg(p) =
Val(G,p).

Proof. See Section B.1 of Appendix B.

This second lemma shows that under a given variable ordegegeralized AADDs are
canonical, i.e., two identical functions will always hademtical AADD representations.

3.4.3 Algorithms

We now define AADD algorithms that are analogs of those preshpgiven for ADDs. As
such, familiarity with theGetNode, Reduce, and Apply algorithms from Section 3.1.2 will
greatly aid in understanding the extensions to these algosi for AADDSsS.

Similar to ADDs, we begin by defining a procedure for maintagna cache of unique
AADD nodes. All algorithms rely on the helper functi@retG Node given in Algorithm 4 that
takes an unnormalized AADD node of the foifn(v) then ¢, + by, Fy, else ¢;+ b, F, and returns
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Figure 3.9: An example application of theeduce algorithm. The input is the top, leftmost
diagram (all edge weights are assumed td(be)). The solid arrow shows the node currently
being evaluated byeduce while the next diagram shows the result after this evalnatihen
the solid arrow is on a branch rather than a node itself, iicatds that it is completing the
evaluation of that branch within thReduce call for the parent node. The bottom, leftmost
diagram is the final canonical AADD representation of theuinp

the unique cached, generalizéAADD node of the form(c, + b.F,). As for GetNode with
ADDs, such a procedure is needed to ensure that there isla simgue node representing any
given function!®

Then, given a potentially unnormalized representationroéitire AADD, we define an
AADD generalization of thekReduce algorithm that constructs a corresponding canonical gen-
eralized AADD, removing any redundant structure in the pesc Next, we define an AADD
generalization of thelpply algorithm to specify an efficient procedure for performingdny
operations on these AADDs. From these operations, we canlibid the remaining op-
erations such as unarygin andmax and marginalization that we will need for probabilistic
inference.

At an abstract level, one can view ti&tNode, Reduce, andApply algorithms for AADDs

2Thus the “G” in the procedure name f6letGNode.
BThroughout all of the algorithms we use the tuple represiemtéc, b, F'), while in the text we often use the
equivalent notatiorfc + bF') to make the node semantics more clear.
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Algorithm 5: Reduce({c,b, F')) — (¢, b,, F}.)

input i {c, b, F) : Offset, multiplier, and node id
output : {¢r, by, F.) : Return values for offset,
multiplier, and node id
begin
/I Check for terminal node
if (F=0) then
| return(c,0,0);

/I Check reduce cache

if (F — {(cr,bs, F}) is notin reduce cachehen
/I Not in cache, so recurse

(ch, bn, Fp) := Reduce(cp, b, F,);
(a1, by, F1) := Reduce(cy, by, F);

/I Retrieve canonical form
<C’I”7 b’l“; FT> = GCtGNOdC(FUaT, <Ch7 bhv Fh>7 <Cl7 bl7 -Fl>)u

/I Put in cache
insertF' — (c,, b, F}.) in reduce cache;

/I Return canonical reduced node
return{c+b- ¢, b b., F}.);

end

as essentially identical to those for ADDs except that threyeatended to propagate the affine
transform of the edge weights on recursion and to computaedhmalization of the resulting

node on return.

Reduce

The Reduce algorithm given in Algorithm 5 takes an arbitrary ordered BB, normalizes and
caches the internal nodes, and returns the correspondimegajezed AADD. This produces a
unique representation of the AADD that removes any redunskancture in the input repre-
sentation. One will note that theduce algorithm precisely follows the constructive proof in
Lemma 3.4.2. This is sufficient to prove correctness of terdthm. An example application
of the Reduce algorithm is given in Figure 3.9.

One nice property of théleduce algorithm is that one does not need to prespecify the
structure that the AADD should exploit. If the representediction contains context-specific,
additive, or multiplicative independence, tieduce algorithm will compactly represent this
structure uniquely and automatically w.r.t. the variabldesing as guaranteed by previous

lemmas.
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Figure 3.10: Two AADD nodeg$’ and F, and a binary operationp with the corresponding
notation used in the presentation of theply algorithm.

Apply

We let op denote a binary operator on AADDs with possible operatia@iadaddition, sub-
straction, multiplication, division, min, and max denotedpectively as, ©, ®, @, min(-, -),
andmax(-,-). We do not explicitly provide binary comparison functionrs >, <, < for
AADDs as we did for ADDs, but note that they could be easily mkdi analogously to the
other binary operations, if needed.

The Apply routine given in Algorithm 6 takes two generalized AADD ogeds and an
operation as given in Figure 3.10 and produces the resugemgralized AADD. The control
flow of the algorithm is straightforward: We first check whathwe can compute the result
immediately, otherwise we normalize the operands to a daabform and check if we can
reuse the result of a previously cached computation. If wedmneither of these, we then
choose a variable to branch on and recursively call4pgly routine for each instantiation of
the variable. We cover these steps in-depth in the followsigfions.

Terminal computation The functionCompute Result given in thetop half of Table 3.2,
determines if the result of a computation can be immediateliyputed without recursion.
The first entry in this table is required for proper termioatof the algorithm as it computes
the result of an operation applied to two termifialodes. However, the other entries denote
a number of pruning optimizations that immediately returnoale without recursion. For
example, given the operatioi3 + 4F;) @& (5 + 6F}), we can immediately return the result
(8 + 10F7) sincer; is shared by both operands.



ComputeResult({cy1, b1, F1), (¢, by, Fy),

op)

— <C7'7 bT? FT>

Operation and Conditions

\ Return Value

<Cl + b1F1> <0p> <62 + bQF2> Fl F2 =0

((c1 (op) c2) +0-0)

max({c; + b1 F1), (co + baFy)); 1 + b1 < ¢ (Co + baFy)
max((c; + b1 F1), (ca + baFs)); ca+by <y (1 + b FY)
<Cl + b1F1> &b <CQ + bgFQ>; F1 = F2 <(Cl —+ CQ) -+ (bl + bQ)F1>

max(<01 +b1F1>, <02+b2F1>); Fy = FQ;
(c1 > oAby > bo) V(ca > i ANby > by)

C1 Z CQ/\bl Z b2 .
Co Z Cl/\bg Z bl .

<01 +b1F1>
<Cg+b2F1>

Note: for allmax operations above, return opposite foin

(c1 + b1 Fy) (op) (ca+ boFy); Fo»=0,0p € {®,0}

{(e1 {op) c2) + b1 1Y)

(c1 +b1F1) {op) (co + baFy);

F,=0,c0>0,0p € {®,0}

((e1 {op) c2) +

(b1 (op) c2) F1)

Note: above two operations can be modified to hardle- 0 whenop € {®, ®}

other

\ null

GetNormCacheKey({c1, b1, F1), (ca, ba, F»), 0p

) — (¢, b1)(ch, b)) and ModifyResult({cy, by, Fr)) —

(. bl F

T Ir)

Operation and Conditions

\ Normalized Cache Key and Computation

| Result Modification

<Cl—|—b1F1> <62+b2FQ> F1 7é0 <Cr+b F> <0+1F1>@ <0+<bg/b1)F2> <(Cl+02+b107«)+b1b F>
<Cl + b1F1> <CQ + b2F2> F1 7é 0 <CT + b F) <0 -+ ]_F1> < (bg/bl)F2> <(Cl — Cy + blcr) + blb F >
<01 + b1F1> <CQ + bQF2> F1 7& 0 <C + b F) <(Cl/b1) + F1> <(Cg/b2> + F2> <b bQCT + blbgbrFr>
(c1+b1F1) @ (ca+ baf); FL #0 | (¢ + b Fr) = ((c1/b1) + F1) @ ((c2/b2) + F3) ((b1/bs)cr + (b1/b2)b, Fy)
max({c; + b1 1), (s + b2 %)) (e; + b, ) = max((0+ LFy), {((cs — 1) /by + (b2/b1)F2)) | ((c1 + bicy) + bib, Fy)

Fy # 0, Note: same fomin

any (op) not matching above: (¢, + b.F.) = (c1 + b1 F1) {op) {co + boFY) (¢, + b.F})

(c1 + 01 F1) (op) {ca + by Fy)

Table 3.2: Input and output summaries of thempute Result, GetNormCacheKey, and ModifyResult routines.
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Algorlthm 6: Apply((cl,bl, F1>, <Cg,bz, FQ),Op) — <CT, br,Fr>

input 1 {c1,b1, F1), {ca, ba, F5), 0p : Nodes and op
output : {¢r, by, F.) : Generalized node to return
begin

/I Check if result can be immediately computed
if (ComputeResult({cy,b1, F1),{c2,ba, F3),0p) — (¢, by, F}) is not null )then
| return{c,,b,, F,);

/I Get normalized key and check apply cache
({c1,0h), (ch, b)) :=
GetNormCacheKey({(c1,b1, F1), {ca, ba, Fa), 0p);
if (((c],b],F1), {(ch, b, F5),0p) — (¢, b, F,.)is notin apply cachethen
/I Not terminal, so recurse
if (F is a non-terminal nodethen
if (F3 is a non-terminal nodethen
if (F7%" comes beford’y*") then
‘ var := FPo;
else
| var = F3°,

else
| wvar:= Fyo,

else
| wvar = Fy,

/I Propagate affine transform to branches
if (£ is non-terminalA var = F7*") then
FPli=Frg; FPl = Fig;

= R ey = Y e
byl =y by b =0 by
else

L Y, = Fiy ey, = chy by, =0
if (F» is non-terminalA var = Fy*") then
FP2i=Fyy; FP? = Fop;
2 i=ch+ by oy 2=+ by cap;
bY2 = b by Y2 =B, by
else
L Fl’ﬁ = Fy; c;’fh = ch; b;’fh = bly;

/I Recurse and get cached result

(cr,bu, Fy) = Apply((cp, byt FPY), ()2, b2, FP2), op);
<Ch7 bh>Fh> = Apply(<czla bzl7 F}1L}1>7 <C;}L2, bz2,F;;2>7 Op)y
(¢r, b, Fy) := GetGNode(var, (cp, by, Fr), (¢, by, F));

/I Put result in apply cache and return
insert(c}, b}, Fy, ch, by, Fa, 0p) — (c,, b, F,.) into apply cache;

return ModifyResult({c;, by, F));

end
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Recursive computation If a call to Apply is unable to immediately compute a result or reuse
a previously cached computation, we must recursively caene result. For this we have two
cases (the third case where both operand$ &gaminal nodes having been taken care of in the
previous section):

e [ or Fyis a0 terminal node, or F"*" # Fy*": We assume the operation is commu-
tative and reorder the operands so thais the0 node or the operand whose variable
comeslater in the variable ordering so that we know to branch et first.!* Then
we propagate the affine transform to each®® branches and compute the operation
applied separately té; andeachof Fy’s high and low branches. We then build &n
statement conditional oAy*" and normalize it to obtain the generalized AADD node
(¢, by, F,.) for the result:

(ch, b, Fr) = Apply({c1, b1, F1), (c2 + baCa 1y b2b2 s FQ,h>> op)
<Cl7 bl7 E> = Apply(<cla bla F1>7 <02 + b262,17 b2b2,l7 F2,l>7 Op)
<CT‘7 brv Fr> = GetGNOd@(FQUaT, <Cha bha Fh>7 <Ch bla E>)

e [ and F, are non-terminal nodes andF*" = Fy*": Since the variables for each
operand match, we know the resudi., b, F,.) is simply a generalizedf statement
branching onF*" (= Fy*") with the true case being the operator applied to the high
branches of}, and F, and likewise for the false case and the low branches:

(Chy b, F1) = Apply({c1 + bicin, bibip, Fip),
(ca + bacop, babapy, Fop), 0p)
(ct, bi, F1) = Apply({c1 + bicy, bib1y, F1y)
(ca + bacay, babay, Fay), op)
(Cr, by, Yy = GetGNode(FY", {cn, b, Fr), {c, by, F1))

Canonical caching If the AADD Apply algorithm were to compute and cache the results
of applying an operation directly to the operands, the dligior would provably have the same

14As for ADDs, we note that the first case prohibits the use ofrtbe-commutatives and @ operations.
However, a simple solution would be to recursively descenelitherF; or F; rather than assuming commutativity
and swapping operands to ensure descerit;ofo accommodate general non-commutative operations, we ha
used this alternate approach in our specification of4pgely routine given in Algorithm 6.
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time complexity as the ADDIpply algorithm. Yet, if we were to comput@®@+1F,) & (0+2F)
and cache the result, + b, F}.), we could computéb + 2F7) & (4 + 4F5) without recursion

as follows:
(a) (b+2F) @ (4+4F) = 942-((0+ F1) ® (0+ 2F,))
(b) = 9+2-{c, +b.F)
(c) = (94 2¢,) + 2b.F,)

The key observation here is that we can (a) rewrite the segparhtion in a normalized form
where we subtract off the constants and divide by the firdficant, (b) substitute in the result
of a previously cached computation, and then (c) modify #sult to reverse the previous
normalization.

This suggests a canonical caching scheme that normalizescale entries to increase the
chance of a cache hit. The actual result can then be easilpueeh from the cached result
by reversing the normalization as demonstrated in the ebarjhis ensures optimal reuse of
the Apply operations cache and can lead to an exponential reductiemmng time over the
non-canonical caching version.

We introduce two additional functions to perform this cachi GetNormCacheKey to
compute the canonical cache key, alfddifyResult to reverse the normalization in order to
compute the actual result. These algorithms are summarizéé bottom halfof Table 3.2.

Other Operations

We summarize some of the remaining operations that can barperd (efficiently) on AADDs:

e min and max computation: The min and max of a generalized AADD note+ bF)
are respectively andc + b due to[0, 1] normalization ofF".

e Restriction: The restriction of a variable; in a function to eitheitrue or false (i.e.
F|z,=r/r) can be computed similarly to ADDs by replacing all decisnmules for vari-
able x; with the branch corresponding to the variable restrictiod propagating the
affine transform to the direct subnodes. Thesiuce can be applied on the resulting
decision diagram to convert it to a canonical AADD.

e Sum out/marginalization: A variablez; can be summed (or marginalized) out of a func-
tion £ simply by computing the sum of the restricted functions. (F&,,_r & F’

wi:F)
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exactly as done for ADDs.

e Negation/reciprocation: While it may seem that negation of a generalized AADD node
(c+ bF) would be as simple &s-c+ —bF'), we note that this violates our normalization
scheme which requirels > 0. Consequently, negation must be performed explicitly

with the Apply operation a® & (c + bF'). Likewise, reciprocation (i.e ) must be

'(b+1bF>
performed explicitly with thedpply operation ag © (c + bF).

e Variable reordering: Rudell's[1993 ADD variable reordering algorithm previously
summarized for ADDs can be applied to AADDs without loss dicedncy. The only
modification needed is to recompute the normalized affirestoams for pairwise ro-
tations of neighboring nodes involving variablesand z;, but this is simply a local
application of theReduce algorithm.

Cache Implementation

If one were to use a naive cache implementation that reliegxatt floating-point values
for hashing and equality testing, one would find that manyesoahichshouldbe the same
under exact computation often turn out to have offsets otiphigrs differing by+1e-15; these
numerical precision errors result from repeated multgilans and divisions during theduce
and Apply operations. This can result in an exponential explosionoaless if not controlled.
Consequently, it is better to use a hashing scheme that @estduality within some range
of numerical precision errar. While it is difficult to guarantee such an exact property for a
efficienthashing scheme, we next outline an approximate approatiéiaave found to work
both efficiently and nearly optimally in practice.

The node cache used ®etGNode and the operation result cache usedlisply both use
cache keys containing four floating-point values (i.e. dffigets and multipliers for two AADD
nodes). If we consider this 4-tuple of floating-point valtede a point in Euclidean space,
then we can measure the distance between two 4-tdples,, us, us) and(vy, vo, v3,v4) as
the £, (Euclidean) distance between these points. In an appreeicaehing scheme that takes
numerical precision error into account, we might consider 4-tuples corresponding to hash
keys to be equivalent if theif, distance from each other is smaller than

\/(u1 — U1)2 + (Ug — 1)2)2 + (Ug — U3)2 + <U4 — U4>2 <€ (320)

Ideally, when probing the cache to see if a key exists withi adistance ok, we would
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Figure 3.11: A geometric representation of the hashingraehee use. All points withia of
(u1,us) (the shaded circle) lie within the ring having outer and mraaius+/u;2 + us? + €.
Thus, a hashing scheme which hashes all points within tlgetoithesamebucket guarantees
that all points withire of (u;, us) also hash to the same bucket. Note that buckets are disatetiz
according to the distance from the origin (i.e., the van{agjat for comparison).

prefer to avoid a pairwise comparison of our probe key to@dles currently in the cache. For-
tunately, we can use theantage poinfYianilos, 1993 method for efficiently finding nearest
neighbors in a metric space. The basic idea of these methdhiatiwe can exploit the triangle
inequality to obtain the following necessary conditionpiied by the previous error between
two 4-tuples:

\/(Ul — U1)2 + (UQ — ’02)2 + (U3 — U3)2 + (U4 - U4>2 S €

- |\/U12+U22+U32+U42—\/U12+’022+’032+U42| <e€

A geometric representation providing intuitions for theseessary conditions is given for
two dimensions in Figure 3.11. The benefit of these necessmgitions is that their compu-
tation only requires the relative distances of each 4-ttppkbe origin (thus, we can view the
origin as the vantage point for comparison). While this onilyeg us a necessary condition
in our search for 4-tuples within som®, distance of the probe, it gives us a simple test that
allows us to prune out the majority of 4-tuples that we neetbtusider in a typical case.

Based on these necessary conditions for Equation 3.20, weseathe following approx-
imate hashing scheme that will determine other 4-tuplelenhiash table that are candidates
for being within e distance of a probev,, vs, v3,v4): Compute thel, distanced between
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(v1,v9,v3,v4) @and the origin. To compute the hash key {or, v2, v3, v4), €xtract only the bits
of the floating-point representation @fepresenting a fractional portion greater tlhiand use
this for an integer representation of the hash key (we aee®fely discretizing the distances
into buckets of widthe). For equality testing in the hash table, test that the uanetric
between a tupléu,, us, us, uy) and the probewv,, v9, vs, v4) is less thar.

While this hashing scheme does not guarantee that all 4guydeinge distance from
the origin (0, 0,0, 0) hash to the same bucket (some 4-tuples withaould fall over bucket
boundaries), we found that with bucket width= 1e-9 and numerical precision error generally
less thanle-13, there was only a small chance of two nodes withidistance hashing to
different buckets. For the empirical results we describis, hashing scheme was sufficient to
prevent any uncontrollable cases of numerical precisicor.er

An alternate (and exact) hashing scheme would be to expliciteck the neighboring
bucket for matching 4-tuples when the probe comes withiiha bucket boundardy.

3.4.4 Theoretical Results

Here we present two fundamental results for AADDs. The firgbtem bounds the worst-case
space and time performance of tReduce and Apply operations for AADDs in terms of the
corresponding operations on ADDs:

Theorem 3.4.3.For all functionsF; : B — RandF, : B — R (n > 0 andm > 0),
the time and space performanceRdduce(F,) and Apply(F:, F3, op ) for AADDs (operands
and results represented as canonical AADDS) is within a iligative constant oReduce(F})
and Apply(Fy, F», op ) for ADDs (operands and results represented as canonical $)DiD
the worst case assuming any fixed variable ordering.

Proof. See Section B.1 of Appendix B.

While the above results bound the space and time of the AADDabipas on arbitrary
functions relative to the ADD operations for the same fumwdi it is interesting to note that
the worst case space and time bounds for Ap@ly operation giversolelyin terms of the
corresponding size of the input operands is very differenA&DDs vs. AADDs.

The size of the result of the ADBIpply operation is known to be bounded quadratically
in the size of the largest input operand. Bry&h®8d shows this simply by observing that
the size of the ADD can be bounded in the number of possibtendisd pply calls given two

5Thanks to Roni Khardon for suggesting this modification.
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operands (any non-distinct calls will already have beemed); which is at most all possible
pairs of nodes when taking one node each from the first anchdegperands. The number
of these node pairs is obviously quadratic in the size of éingelst input operand. Since each
(recursive)Apply call can contribute a maximum of one node to the ADD resultiogh the
Apply operation, the space bound 4pply follows.

On the other hand, we note that the size of the result of the BADply operation can
only be bounded exponentially in the combined size of theaps. To understand this,
note that unlike ADDs, AADDs do allow reconvergent edges nvtieese edges are labelled
with different affine transforms of the same child node. Fxareple, this can be observed
in the linearly structured AADDs of Figure 3.8. Letbe the number of nodes in a linearly
structured AADD; then amMpply call with one of these AADDs as operands may need to
traverse all possible distinct paths from root node to teahnode, which is:xp(n) due to
the reconvergent structure. Following the same reasorsngrathe ADD, this exponential
number ofApply calls can lead to a result of thépply operation that has a number of nodes
exponential in the combined size of the operands (in thetvearse).

Nonetheless, it is important to reiterate the result of Terp3.4.3 that the time and space
complexity of operations on functions represented as AABDsever more than a constant
times worse than the operations applied to the same fursctepresented as ADDs.

The second theorem shows that in special cases, the AADDielthan exponential-to-
linear reduction in the time and space complexity over thdDAD

Theorem 3.4.4.There exist functiong; and £, and an operatofop such that the running
time and space performance apply(F, F», op) for AADDs can be linear in the number of
variables when the corresponding ADD operations are exptiglen the number of variables.

Proof. See Section B.1 of Appendix B.

Empirically, we note that while the use of AADDs in place of BB has always led to
smaller space requirements and faster operations for aliofest cases, the rather extreme
best case of a reduction from exponential to linear complexoted in Theorem 3.4.4 has
rarely been observed in practice. And perhaps more disappgly, functions that may appear
to have additive and multiplicative structure that can bgl@ted extensively by AADDs turn
out to benefit little from the use of AADDs in place of ADDs. Fexample, the AADD
representation of the functiofd ", 2'x;)? requires precisely 1/4 of the space of the ADD
(for n > 2) even though the additive and multiplicative structureeirgéimt in this function
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ostensibly suggest that the AADD might achieve a substéntisore compact representation
than the ADD. Nonetheless, a 75% reduction in space obtdipacing the AADD in place
of the ADD for this example still justifies the use of the AADDthis case.

3.4.5 Empirical Results

First we explore the running time and space requirementsid®\and AADDs for simple
operations such as summation, multiplication, and maxation. Then we explore a number
of paradigms for structured probabilistic inference anchpare the performance of standard
algorithms implemented using ADDs and tabular represiemsto those using AADDs.

Basic Operations

Figure 3.12 demonstrates the relative time and space peafare of tables, ADDs, and AADDs
for @, ®, andmax, each for one example function. These verify the exponkotimear space
and time reductions proved in Theorem 3.4.4. The functiceslun these examples are simply
generalizations of the additive and multplicative funotiaiven in Figures 3.7c and 3.8 that
could be represented in exponential space with ADDs andiisgace with AADDs.

Bayes Nets

Since dynamic Bayes nets are used in factored MDPs, it isnrdtive to evaluate AADDs on
a variety of Bayes net structures. For Bayes nets, we simplya&eathe variable elimination
algorithm[Zhang and Poole, 1996nder the greedy tree-width minimizimgin-fill [Kjaerulff,
1990 variable ordering with the conditional probability tabl@PTs)P; and corresponding
operations replaced with those for tables, ADDs, and AADDs:

Z H Py (z1|Parents(zy)) - - - Pj(z;| Parents(x;))

z;¢Query P1...P;

Table 3.3 shows the total number of table entries/nodedreztjto represent the original net-
work and the total running time of 100 random queries (eaclsisting of one query vari-
able and one evidence variable) for a number of publiclylalbs Bayes net§ and anoisy-
or [Pearl, 1986 model P(z1|zs,...,2z,) = 1 — [[i_, P(z1|z;) where P(z1]z;) = .1 with

n = 15.

18See theBayes net repositonhttp://www.cs.huji.ac.il/labs/compbio/Repository
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Bayes Net Table ADD AADD

# Table Entries Running Time| # ADD Nodes| Running Time| # AADD Nodes| Running Time
Alarm 1,192 297s 689 242s 405 1.26s
Barley 470,294 EML* 139,856 EML* 60,809 207 m
Carpo 636 0.58 s 955 0.57s 360 0.49s
Hailfinder 9045 26.4s 4511 9.6s 2538 2.7s
Insurance 2104 278 s 1596 116s 775 37s
Noisy-Or-15 65566 275s 125356 50.2s 1066 0.7s

SAddN d3H40L10WH ‘g d3LdVHD

Table 3.3: Number of table entries/nodes in the originavoeét and variable elimination running times using tabudddD, and AADD
representations for inference in various Bayes n&bIL denotes that a query exceeded the 1Gb memory limit.
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Figure 3.13: MDP value iteration running times (top) and bemof entries/nodes (bottom) in the final value functiomgsiabular,
ADD, and AADD representations for various network confidimas in the SSADMIN problem.
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Note that the intermediate probability tables were toodargone instance for the tables
or ADDs, but not the AADDs, indicating that the AADD was abteexploit additive or mul-
tiplicative structure in these cases. Also, the AADD appéaryield an exponential to linear
reduction on theNoisy-Or-15problem by exploiting the multiplicative structure inheten
these special CPTs. While other algorithms have been expligsigned to exploit noisy-or
network structure for efficient inferengeleckerman, 1990the AADD automatically exploits
this structure in standard variable eliminination withewplicit modification.

Markov Decision Processes

For MDPs, we simply evaluate the value iteration algorittsimg a tabular representation and
its extension for decision diagrams as previously disalfsethe SPUDD algorithm in exact
structured value iteration. We apply these variants ofevétkration to factored MDPs from the
SysADMIN domain introduced in Chapter 1 and formalized as a factore®MCBection 3.1.1
of this chapter. Here we simply substitute tables, ADDs, AA®Ds for the reward function,
value function, and DBN transition model dynamics in thedaetl MDP value iteration update
of Equation 3.6.

Figure 3.13 shows the relative performance of value itenaintil convergence withif.01

of the optimal value for networks in a star, bidirectionaldandependent ring configuration.
While the reward and transition dynamics in thes®\DMIN problem have considerable ad-
ditive structure, we note that the exponential size of theD®A(as for all representations)
indicates that little additive structure survives in #eactvalue function. Nonetheless, the
AADD-based algorithm still manages to take considerabi@aathge of the additive structure
during computations and thus performs comparably or expiaaily better than ADDs and
tables for exact value iteration.

Having provided a structured value iteration algorithm fexctored MDPs, it is a natural
guestion as to whether we can extend the approximate vaiatidan ideas to AADDs in the
spirit of the APRICODD algorithm previously discussed. Wedareliminarily explored this
and found that it is much more computationally difficult taupe AADDs in a manner that
does not induce unacceptably large approximations. Thieéause the already compact and
distributed nature of the AADD means that every edge typidgaipacts more states than in
the ADD. Nonetheless, this is an interesting area for futesearch.
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3.4.6 Related Work

There has been much related work in the formal verificatitardiure that has attempted to
tackle additive and multiplicative structure in represgion of functions fromB™ — B™.
These include *BMDgBryant and Chen, 1995K*BMDs [R. Drechslert al, 1997, EVB-
DDs & FEVBDDs [Tafertshofer and Pedram, 199HDDs & *PHDDs [Chen and Bryant,
1997.Y

However, without covering each data structure in detail,nwee there are a few major
differences between this related work and AADDs:

e These data structures all originated in the verificationmmamity, which means that their
terminals are restricted to be vectors of boolean varialoesnore generally, integers.
When these diagrams can exploit both additive and multipheastructure, normaliza-
tion of nodes in these data structures requires prime faetwns of edge weights so
there is no direct correspondence between this normalizatnd AADD normalization
(obviously, the prime factorization of a valueliis ill-defined).

e One could attempt to perform probabilistic inference witkeger terminals, thus re-
quiring a rational or direct floating-point representatainvalues inR. Unfortunately
rational representations of terminals require large artsoahspace to achieve compa-
rable precision to floating-point representations. And nvhagional representations are
restricted to the same space as floating-point represemsatiheir computation error is
much greater than that of a floating-point representatioesg reasons are, in fact, the
motivation behind floating-point representations). Pholistic inference applications
require manipulating very small values and small numepgroximation errors tend
to multiply uncontrollably during marginalization, reqguig very precise numerical rep-
resentations and accurate computations. This can onlyasmmably achieved with a
floating-point representation.

e *PHDDs are the only decision diagrams that are intended tectly represent float-
ing point numbers and perform standard operations on thece $hey were created for
verification of floating-point arithmetic. However the cavés that computation with
*PHDDs is equivalent to performing all floating-point opgoas in software. In con-
trast, AADDs using direct machine floating-point repreaéionhs and highly accelerated
hardware implementations. So, even if *PHDDs could matcib®A in representational

17See[Drechsler and Sieling, 200for an excellent general overview of most of these decisiagrdms.
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efficiency (the correspondence if true, is not at all obviang is an open question), their
software-based floating-point computation would slow thewn by orders of magni-
tude in comparison to AADDs.

3.5 Summary and Conclusions

We began this chapter by presenting a factored represemtz#tMDPs that did not require full
state enumeration. We then proceeded to describe a largeoboeicent work that has sought
to exploit various forms of factored structure in MDP sabuatialgorithms to likewise avoid
explicit state enumeration in those solutions. This worlgess from the use of data structures
like ADDs to compactly represent context specific indepewcdean a variety of factored infer-
ence algorithms to the use of linear-value function appnation methods to exploit additive
structure (and potentially CSI if using appropriate struesufor the factor representation) in
linear-value approximation solutions to MDPs.

Having done this, we noted that no solution could simultaisgoexploit CSI and additive
independence in both the reward and transition structufaadbred MDPs. To remedy this,
we introduced the AADD as a novel data structure that coulglipgged into structured value
iteration algorithms to exploit CSI, additive independerexed multiplicative independence
in exact MDP solutions. We have proved that its worst-case tnd space performance are
within a multiplicative constant of that of ADDs, but can lrxeglar in the number of variables
in cases where ADDs are exponential in the number of vasabknd we have provided
an empirical comparison of tabular, ADD, and AADD represéinhs used in Bayes net and
MDP inference algorithms, concluding that AADDs performeatst as well as the other two
representations, and can yield an exponential time andespagrovement over both when
additive or multiplicative structure can be exploited. Hwer, these results are based on a very
limited analysis and a more comprehensive investigatioreeded in the future to determine
in what situations AADDs should be used.

In practice, we note that all of these factored MDP algorghean be quite efficient in
comparison to their enumerated state versions. Nonethdlesre are a number of negative
results suggesting that factored MDP representationsautdred solution algorithms are not
a silver bullet for the curse of dimensionality in decisibreoretic planning problems. As the-
oretical evidence, Littman et d1199¢ note that finding an optimal plan using tree-structured
CPTs is EXP-©MPLETE, and finding an approximately optimal plan usibgunded-size
tree-structured CPTs is PSPACESGPLETE. While these results do not directly apply to
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other CPT structures, they are nonetheless discouraging.

However, factored MDP structure is just one type of struethat we can exploit in MDPs.
The other type of structure is far more ubiquitous for mosth& planning community in
Al — that is relational structure. Dating back to the earlysl@f planning when STRIPS
representations were introducféikes and Nilsson, 1971 planning problem specifications
were inherently relational. And to this day, the predominglanning problem description
languages such as A0Pednault, 1989 PDDL [McDermottet al., 1999 and its probabilistic
variant PPDDL]Younes and Littman, 20Q4re still relational. Yet if we cast these problems
in a factored MDP framework to solve them, we have to groundelational representation to
propositional variables. But we don’t necessarily thinkha problem in these ground terms.
Clearly there has to be more structure that we can exploiiaioaal planning problems than
just factored structure; we tackle this in the next chapter.



Chapter 4

First-order MDPs

In the last chapter we covered methods for compactly engagliopositionally factored rep-
resentations of MDPs along with solution algorithms aimeeefffeciently exploiting this struc-
ture. We originally motivated this propositionally factor structure with the observation that
in many decision-theoretic planning problems, we can fati® state representation into inde-
pendent variables. However, there is much more structpiealin decision-theoretic planning
problems that we can exploit in the representation of MDRkva® need look no farther than
the STRIPYFikes and Nilsson, 1971ADL [Pednault, 1989 and PDDL family[McDermott
etal, 1998; Fox and Long, 2001; Younes and Littman, 2aff4lanning description languages
to see that all of these languages leverage relationaltsteufor compact representations.

Given that relational representations seem natural fonphey problems, it makes sense to
attempt to exploit this relational structure at a first-ordeel without resorting to grounding
methods. This is precisely the idea behind the first-ordeP\iiiddel and its symbolic dynamic
programming solutiohBoutilier et al, 2001 that we motivate and review in the first part of
this chapter.

The second half of this chapter introduces a simple proeefturgeneralizing the proposi-
tional ADDs and AADDs to first-order (FO) versions that wepestively denote as FOADDs
and FOAADDs, or collectively as FO(A)ADDs. We show how thésst-order decision dia-
grams can be used to exploit structure FOMDP solution dlgos in much the same manner
that ADDs and AADDs could exploit structure in MDPs. We cart# with a simple set of
empirical results that demonstrate that FOADDs combingll wifew logical simplification
rules prove sufficient to provide an automated solution ®8HBROMDPS.

Also in the second half of this chapter, we introduce an additecomposition approach for
approximately solving FOMDPs with universal reward speaiibns. These approaches are

80
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motivated in part by previous decomposition methods andlerthe application of FOMDP
solution techniques to a reward specification that othervaaders standard solution approaches
intractable.

4.1 Motivation

Before we introduce FOMDPs and their solution, we begin bpuhicing the basic notions of
relational planning problem specifications and motivagertbed for exploiting this structure at
a lifted first-order level rather than at a ground proposdidevel.

4.1.1 Relational Planning Specifications

We can view many decision-theoretic planning problems asisting of classes of domain
objects and the changing relations that hold between thiojgets at different points in time.
For example, recalling the ®&WOoRLD problem from Chapter 1 and depicted graphically in
Figure 1.1, we have four classes of domain objeBtst, City, Truck, andPlane. And for the
relations that hold between them, we hae:n(Bozx : b, City : ¢), TruckIn(Truck : t, City :
¢), BoxOnTruck(Box : b, Truck : t), BoxtOnPlane(Boz : t, Plane : p), PlaneIn(Plane :
p, City : ¢)).t In this framework, generic action templates such as loadmgnloading a box
from a truck or plane or driving trucks and flying planes bedweities are likely to apply
generically to domain objects and thus the planning proldambe specified independently of
any ground domain instantiation.

One recent language for representing relational prolsibifplanning problems is PPDDL.
At its core, PPDDL is a probabilistic extension of a subsePDBDL conforming to the deter-
ministic ADL planning language; ADL, in turn, introducediversal and conditional effects
into the STRIPS representation. PPDDL allows for a range af-gaented and general re-
ward structure in the spirit of both task and process-oe@planning discussed in the previous
chapter.

To see the compactness of a relational representation,avipra (P)PDDE representa-

For convenience, we restate our notational conventioma f2hapter 1: throughout the thesis all predicates
(including unary predicates denoting domain object clsisaee capitalized and all variables and constants are
lowercased. We use the notati6h: v to denote that variable is restricted to domain object class

2General PPDDL specifications can be more compact for sontdgms than the PPDDL subset we refer
to in this thesis. For example, universal and conditiongdat$ and probabilities can be arbitrarily nested, thus
allowing for exponentially more compact representatidisrobabilistic action effects than can be achieved with
probabilities only at the top-level of aspects as we show [iRintanen, 2008
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e Domain Object Types Boz, Truck, City

¢ Relational (S)tate Descriptors (with parameter sorts)
BoxIn(Bozx, City), TruckIn(Truck, City), BoxOn(Boz, Truck)

o (R)eward: if [3Box : b.BoxIn(b, paris)] then 10 else 0

e (A)ctions (with parameter sorts) and (7 )ransition Function:

load(Box : b, Truck : t):
x Aspect 1 (probability 0.9):
- when [City : c. BoxIn(b,c) A\ TruckIn(t,c)] then [BoxOn(b,t)]
- VCity : c. when [BoxIn(b,c) A TruckIn(t,c)] then [-BoxIn(b, c)]}
unload(Box : b, Truck : t):
x Aspect 1 (probability 0.9):
- Y City : c. when [BoxOn(b,t) A TruckIn(t,c)] then [BoxIn(b, c)]
- when [3City : c. BoxOn(b,t) A TruckIn(t,c)] then [-BoxOn(b,t)]
drive( Truck : t, City : c):
x Aspect 1 (probability 1.0)
- when [3City : c1. TruckIn(t, c1)] then [TruckIn(t, c)]
- YCity : 1. when [TruckIn(t, c1)] then [= TruckIn(t, c1)]

n00p

* No effects.

Figure 4.1: A PPDDL-style representation of a simple vdr@nthe BoxWORLD problem.
The deterministic PDDL subset would exclude the probaiil@spects assuming that all ef-
fects occur with probability 1.0.

tion of the BOXWORLD problem in Figure 4.1 where for simplicity, we omit tféune class of
objects and associated actions and relations and shoa&twitOn Truck(Box : b, Truck : t)
relation toBozOn(Box : b, Truck : t).

While the meaning of the PPDDL representation in Figure 4ititended to be relatively
straightforward, there are a few important dimensions efgpecification that should be ex-
plained. First, we assume that actions can execute in &issta we do not encode explicit
preconditions. When an action executes, it may have a number of differentéspacapsulat-
ing a joint set of effects, where each aspect is realizedo@adeently according to the specified
probability. For example, thenload action realizes its first aspect only 90% of the time it is

SWhile this assumption is not necessary, it does not have dagtefn the optimal policy in a domain that
already has aoop action. It also simplifies (1) the amount of notation in ouegentation, (2) the translation
from PPDDL to the stochastic situation calculus and (3) tfle®fs of correctness for FOMDPs.
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executed whereas thiive action deterministically realizes its first aspect on eaateation.

Aspects themselves consist of conjunctions of effectshiitatividual effect can be univer-
sal and conditional. Universal effects allow the inclustdniversal quantifiers that permit the
effect to apply to an arbitrary number of objects not exgliaiamed in the action’s parameter
list. If a universal effect applies only to the objects egply named in the action’s parameter
list, then we refer to it as bbcal universal effect. Universal effects are usually combinéith w
conditional effects denoted by thé:.en/then clause pair that specify that thiken effects oc-
cur in the post-action state if thehen conditions hold for the pre-action stétd=or example,
when theload (b, t) action is executed, the first aspect is realized with 90% advidity. When
this set is realized, then for any cityhat satisfieBozIn (b, c) A TruckIn(t, c) in the pre-action
state,BozOn(b,t) A =BozIn(b, c) will be asserted in the post-action state since both aspects
have equivalenthen conditions. When this aspect is not realized on 10% ofithé (b, t)
executions, no state changes occur and it is equivalentto@aaction.

One can easily see that this relationally specified domadependent specification al-
lows very compact MDP specifications when compared to a spomding ground factored
MDP representation. For example, consider instantiatiegRPDDL problem in Figure 4.1
to the ground factored MDP representation in Figure 4.2 wivee assume a problem in-
stance with a domain instantiation of three boxes, thraesgiand two trucks. While this
is a trivially small domain instantiation, we note that igetfored MDP representation requires
21 propositional atoms corresponding to over one millicstidct states and 18 distinct ac-
tions that can be executed in each state. And the rewardhwlses existential quantifi-
cation in the relational PPDDL specification must be growuhtteobtain its corresponding
factored MDP representation. Clearly, farobjects, the grounded factor for the formula
JBox : b. BoxIn(b, paris) will contain | Box| state variables, but if the reward were changed to
VCity : ¢3Box : b. BozxIn(b, ¢), the ground reward representation would cont&ior | - | City|
state variables — thus implying a combinatorial growth i@ ttumber of nested quantifiers.

In general, the number of ground atoms for a factored MDPesgtation will scale lin-
early in the number of relations, exponentially in the aotgach relation (assuming more than
one domain object), and superlinearly in the number of darobjects that fill each relation
slot (assuming the maximum arity is greater than one). Tatssdet us assume for simplicity
that all object class instantations havenstances. Then a single unary relation would be rep-

4We note that each individual effect is only allowed to memtime positive or negative relation in tiken
portion of the clause. A conjunction d¢fien effects can be easily specified as multiple effects with #meesvhen
condition. Disjunctive (i.e., non-deterministic) effe@tre prohibited in PPDDL.



CHAPTER4. HRST-ORDERMDPS 84

e Domain Object Instantiation:
— Box = {box1, boxa, boxs}, Truck = {trucky, trucks}, City = {paris, berlin, rome}
e (S)tate-variable Atoms (i.e., binary state variables)

— Bozxin:
{BoxzIn(box1, paris), BoxIn(boxa, paris), BoxIn(bozxs, paris),
BozIn(box1, berlin), BoxIn(boxs, berlin), BoxIn(boxs, berlin),
BozxIn(boxy, rome), BoxIn(boxa, rome), BoxIn(boxs, rome)}

— Truckln:
{TruckIn(trucky, paris), TruckIn(trucky, berlin), TruckIn(trucky, rome),
TruckIn(trucke, paris), TruckIn(trucks, berlin), TruckIn(trucks, rome)}

— BozOn:
{BozOn(box1, truck, ), BoxOn(boxa, trucky), BorOn(boxs, trucky),
BoxOn(boxy, trucks), BoxOn(boxa, trucks), BorOn(boxs, trucks)}

e (A)ctions:

— load:
{load(boz1, trucky), load(boxa, trucky), load(boxs, trucky)
load(boxy, trucks), load(bozxs, trucks)}, load(boxs, trucks)}

— unload:
{unload(box1, trucky), unload(boxs, truck, ), unload(boxs, trucky),
unload(boxy, trucks), unload(bozxs, trucks)}, unload(boxs, trucks) }

— drive:
{drive(trucky, paris), drive(trucky, berlin), drive(trucky, rome)
drive(trucks, paris), drive(trucks, berlin), drive(trucks, rome)

e (7)ransition Function:
Follows directly from ground instantion of PPDDL actions in Figure 4.1.

e (R)eward:
if [BoxIn(boxy, paris) V BoxIn(boxa, paris) V BoxIn(boxs, paris)] then 10 else 0

Figure 4.2: One possible ground MDP instantiation of tleexB/ORLD FOMDP.

resented by: ground atoms, a binary relation by atoms, and an-ary relation byk" atoms.
Similarly, the size of the grounding of any quantified foreawill scale exponentially in the
number of nested quantifiers, linearly in the number of i@tet being quantified, and expo-
nentially in the size of the domain object classes being tfiech Assumingk instances for
all object classes angnested (non-vacuous) quantifiers over formulae containirggations,
the resulting unsimplified grounded representation woeddi ltork? ground atoms. Thus, the
number of state variables and the number (if not the sizeefdctors in the factored MDP
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representation will scale polynomially in the domain sizéhan order determined by the max-
imum arity of relations and the maximum number of nested tfiers in any formula — at
least linearly in the best case.

Nonetheless, if we have adequate space to permit the grayotia relational MDP w.r.t. a
domain instantiation to obtain a factored MRRdwe have the time to find an (approximately)
optimal solution to this factored MDP, then grounding giussone approach to representing
and solving relational MDPs for specific domain instances.

4.1.2 Grounded vs. Lifted Solutions

In contrast to the grounded approach to representing satMDPs as factored MDPs, it is
important to point out that no matter how many domain objdtgse may be in an actual prob-
lem instance, the size of the PPDDL relational planning f@mbspecification in Figure 4.1
remains constant. Consequently, this invites the follovguagstion: if we can avoid a domain-
instance dependent blowup in the representation of asetMDP such as in PPDDL, can
we avoid a domain-instance dependent blowup in its solutof

Although we have yet to discuss the specifics of the firsttoxi2P representation, in Fig-
ure 4.3 we provide an optimal domain-instance independduoévunction and its correspond-
ing policy for the relational PPDDL specification of theoBWORLD problem in Figure 4.1
(using discount factoy = 0.9).

The key features to note here are the state and action aimtrac the value and policy
representation that are afforded by the first-order spatific and solution of the problem.
That is, this solution does not refer to any specific set of @ionobjects, say justity =
{paris, berlin, rome}, but rather it provides a solution fatl possible domain object instanti-
ations And while the BoxWoORLD problem could not be represented as a grounded factored
MDP for sufficiently large domain instantiations, much leses/ed, a domain-independent so-
lution to this particular problem is quite simple and applie domain instances of any size due
to the power of state and action abstraction afforded by tadnder logic representation.

Thus, an alternative idea to solving a FOMDP at the grounel levand an idea that is cen-
tral to this chapter and the rest of thesis — is to convert fABPL relational specification to
a lifted first-order MDP representation and solve this finster MDP directly at the first-order
level using purely symbolic methods. This approach obtaisslution that applies universally

51f the domain trivially has one unary relation, then the nemaf ground atoms would simply be the number
of domain objects filling that relation.
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e if (3b.BoxIn(b, paris))
then donoop (value = 100.00)

e else if(3b*, t*. TruckIn(t*, paris) A BoxOn(b*,t*))
then dounload (b*,t*) (value = 89.0)

o elseif(3b, ¢, t*. BoxOn(b,t*) A TruckIn(t,c))
then dodrive(t*, paris) (value = 80.0)

e else if(3b*, ¢, t*. BoxIn(b*, c) A TruckIn(t*,c))
then doload (b*, t*) (value = 72.0)

e else if(3b, cf, t*, co. BoxIn(b, ci) A TruckIn(t*, ca))
then dodrive(t*, c}) (value = 64.7)

e else donoop (value = 0.0)

Figure 4.3: A decision-list representation of the expedisdounted reward value for an ex-
haustive partitioning of the state space in thexBVoRLD problem. The optimal action to
take is also shown for each start partition where the optlmradings of the action variables
(denoted by a *) correspond to any binding satisfying th@eble names in the state formula.

to all possible domain instantiations without scaling inamer related to any specific domain
instantiation. As we will see, the power of this lifted stylesolution is that it exploits the
existence of domain objects, relations over these objantsthe ability to express objectives
and action effects using quantification directly witholgading to grounding.

4.2 Situation Calculus Background

Before we present the first-order MDP (FOMDP) formalism, westiovide the foundations
for the situation calculus that provides the logical fourmtafor FOMDPs. We assume a basic
knowledge of sorted first-order logic and refer the readdeier[2001 and Brachman and
Levesqud2004 for an overview of first-order logic concepts relevant torteterial presented
here.

We do make two additional notes w.r.t. our presentation:

¢ Previously we have specified the sorts of variables expliédr examplev City : ¢ ¢(c).
This notation can be easily converted to standard unsortgebfider logic for use with
many popular theorem provers, for exampl€jty : c ¢(c) can be rewritten agCity(c)
— ¢(c) and likewise3 City : c¢(c) can be rewritten asCity(c) A ¢(c). We omit
explicit sort specifications on quantifiers when they canrferred from context, for
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example, from the sort specification of relation slots ortxéasitivity of equality tests.

e Throughout this background review, we note that the sibmatialculus ideterministic
and thus we will be temporarily assuming a deterministicespntation conforming to
the PDDL subset of the PPDDL specification foo®BNVORLD in Figure 4.1. As noted
previously, this is equivalent to assuming that all of thiecerceffects in Figure 4.1 occur
with probability 1.0.

We begin by describing the necessary background mateoial fine situation calculus and
Reiter’s default solution to the frame probl¢Reiter, 2001 required to understand FOMDPs.
This includes a discussion of the basic ingredients of theason calculus formulation: ac-
tions, situations, and fluents along with relevant axiomg.{@inique names for actions and
domain-specific axioms). Next we introduce effect axiomd axplain how these can be de-
rived from a PDDL specification. Then we show how effect axgoran be compiled into
successor-state axioms that underly the default solutidhe frame problem of the situation
calculus. We conclude by introducing the regression opetatgr that will prove crucial to
our symbolic dynamic programming solution to first-order R¥D

4.2.1 Basic Ingredients

The situation calculus is a first-order language for axigmag dynamic worlddMcCarthy,
1963. It's basic language elements consist of actions, sitnatimd fluents:

e Actions Actions are first-order terms consisting of an action fiorcsymbol and argu-
ments. For example, an action for loading oan truckt in the running BB XWORLD
example would be represented by d (b, t).

e Situations A situation is a first order term denoting a specific statee ifitial situation
is usually denoted as, and subsequent situations resulting from action execsitéoa
obtained from thelo(a, s) function that represents the situation resulting from tke- e
cution of actiona in states. For example, the situation resulting from loading Boon
truck ¢ in the initial situations, and then driving truck to city c is given by the term
do(drive(t, c), do(load(b,t), sg)).

e Fluents A fluent is a relation whose truth value varies from situatio situation. A
fluent is simply a relation whose last argument is a situatom. For example, let us
imagine that we are given an initial statgsuch that the fluenBozOn (b, t, s¢) is false,
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but the fluentsTruckin(t, c, sg) and BozIn(b, c, s¢) are true. Then under the seman-
tics of a deterministic version of thiead(b,t) action (which we formally define in a
moment),BozOn(b, t, do(load(b,t), s¢)) will hold true. We do not consider functional
fluents in this exposition, but they could be easily addetiéddanguage without adverse
computational side effeciReiter, 2001

4.2.2 From PDDL to a First-order Domain Theory

Now that we've defined the basics of the situation calculus,nged to describe how one
may go about axiomatizing a domain theory. In order to do senwst first consider how
to describe the effects and non-effects of actions. We cgmb®y describing positive and
negative effect axioms that characterize how fluents chaageresult of actiorfs.

¢ Positive Effect AxiomsFollowing is a set of the positive effect axioms stating ethi
actions can explicitly make each fluent true:

[Jc.a = load(b,t) A BoxIn(b, c,s) A\ TruckIn(t,c,s)] D BozOn(b,t, do(a,s))
[Ft. a = unload(b,t) A BoxOn(b,t,s) A TruckIn(t,c,s)| D BoxIn(b,c, do(a,s))
[Fe1.a = drive(t, c) A TruckIn(t, ey, s)] D TruckIn(t, c, do(a, s))

¢ Negative Effect Axiomd~ollowing is a set of the negative effect axioms statingalhi
actions can explicitly make each fluent false:

[Fc. a = unload(b,t) A BoxOn(b,t,s) A TruckIn(t,c, s)] D =BoxOn(b,t, do(a, s))]
[Ft.a = load(b,t) A BoxIn(b,c,s) A TruckIn(t,c, s)] D =BoxIn(b,c, do(a, s))]
[Fe.a = drive(t, c) A TruckIn(t,cy, s)] D = TruckIn(t, ci, do(a, s))

In general, positive and negative effect axioms can be fpddyy considering all of the
ways in which each action can affect each fluent. Fortunatiegse axioms are easy to de-
rive directly from the PDDL representation given in Figuréd.4In fact, one can verify that
these effect axioms are simply syntactic rewrites of the BBffects where we have made the
following transformations:

SAll relations that can change between states in PPDDL hage bmvritten as fluents with an extra situation
term. In addition, we assume all axioms are implicitly ungadly quantified.
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1. The action name from the PDDL effect is placed in an equaltthe LHS of theD.

2. All universal quantifiers for universal effects are dregpas all unquantified variables
are assumed to be universally quantified in the effect axioms

3. Thewhen conditions of the PDDL effect are conjoined on the LHS of thavith all
fluents specified in terms of the situatien

4. Thethen portion of the effect (which should be a single literal) iaggd on the RHS of
the D and is parameterized by the post-action situatiofu, s). Whether the literal is
negated or non-negated respectively determines whetbaesulting axiom should be
negative or positive.

5. Any free variables appearing only on the LHS of theand not appearing free in the
action term are explicitly existentially quantified in thel8.

This takes care of specifyinghat changeshowever we have not provided any axioms for
specifyingwhat does not changee., the so-calledframe Axioms Obviously, if we want to
prove anything useful in our theory, we have to specify Fréxiems. Otherwise, we would
never be able to infer the properties of a successor or pesdecstate for an action as simple
as anoop. However, specifying exactly what does not changegompacimanner has been an
extremely difficult problem to solve for the situation cdles— this is, of course, the infamous
Frame Problem

Without covering the various proposals for solutions to Fn@me Problemwe jump di-
rectly to Reiter'dReiter, 199] default solution. In this solution, one must specify all itigs
and negative effects for a fluent, which conveniently, weetjagt done in our translation from
PDDL to the positive and negative effect axioms.

We use the following normal form for positive effect axioms:

v (Z,a,s) D F(Z,do(a, s)) (4.1)
And we use the following normal form for negative effect arnm
Vp(T,a,5) D =F(Z, do(a, 5)) (4.2)

We note here that the potential difference between are qusypresentation of positive and
negative effect axioms and this normal form is there is dyamte positive effect axiom for
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each positive fluent ammhenegative effect axiom for each negative fluent. This juspleas to
be the case in our example, but if it were otherwise, we cosddtlie simple logical equivalence

to rewrite any set of effect axioms derived from the PDDL silo§ PPDDL into this normal
form.

Finally, we need to add in unique name axioms for actionsgpatify for distinct action
namesA and B:

A(T) # B(Y) (4.4)

and also that identical actions have identical arguments:

A(Ilw'ka):A(yl)-"vyk)Dxlzyl/\---/\xk:yk (45)

From this normal form, unique names axioms, and additioxplla@ation closure axioms
that state that these are the only effects that hold in ouldwoodel, Reiter showed that we can
build successor state axioms (SS&&t compactly encode both the effect and frame axioms
for a fluent. The format of the successor state axiom for a fliEs as follows:

F(Z,do(a,s)) = ®p(Z,a,s)
E’)/;(f,a,,S)\/F(f,S)/\_")/E(f,CL,S) (46)

For our running BXWORLD example, we obtain the following SSAs:

BozOn(b,t, do(a, s)) = P pozon (b, t,a, s)
= [dec.a = load(b,t) A BoxIn(b, c,s) N TruckIn(t,c, s)]
V BoxOn(b,t,s) A —[3ec.a = unload(b,t) A BozOn(b,t,s) A TruckIn(t,c, s)]
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BoxIn(b, c,do(a, s)) = Ppoemn (b, ¢, a, s)
= [3t.a = unload(b,t) N\ BoxOn(b,t,s) N\ TruckIn(t,c,s)]
V BozIn(b,c,s) A= [3t.a = load(b,t) A BoxIn(b,c,s) A TruckIn(t,c,s)]

TruckIn(t,c, do(a, s)) = @ puckm(t, ¢, a, s)
=[Jey. a = drive(t, ¢) A TruckIn(t, ¢y, s)]
V TruckIn(t,c,s) A = [3er. a = drive(t, ¢) A TruckIn(t, ci, s)]

While the notation might seem a bit cumbersome, the meanitigeadixioms is quite intuitive.
For example, the successor state axiomHorOn(b, t, -) states that a bokis on a truck after
an actioniff the action loaded bok on truckt or box b was already on truck to begin with
and the action did not unload it.

4.2.3 Regression

An important tool in the development of first-order MDPs Wil the ability to take a first-order
state description) and backproject it through a deterministic action to seetwhbaditions
must have held prior to executing the actiornyifholds after executing the action. This is
precisely the definition ofegression Fortunately, the SSAs lend themselves to a very natural
definition of regression; specifically, if we want to regresBuentF(¥, do(a, s)) through an
actiona, we need only replace the fluent with its equivalent presaciormula® (7, a, s). In
general, we can inductively define a regression opertatgr(-) for all first-order formulae as
follows [Reiter, 200]:

o Regr(F(Z,do(a,s))) = ®r(Z, a,s)

Regr(—) = —Regr(y)

Regr(i1 A 1bg) = Regr(iq) A Regr(i)s)

Regr((3z)y) = (z) Regr(1))
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Using the unigue names assumption for actions and thesessgn rules, we can now
perform regression on any first-order logic formula. Formegke, if we know the formula

3b. BozIn(b, paris, do(unload(b*,t*), s))

holds then we can use the regression operator to determiaemist have held in the pre-
action situatiors. Following is a step-by-step derivation using the abovesul

Regr(3b. BoxIn(b, paris, do(unload(b*,t*),s)))
=3b. Regr(BoxzIn(b, paris, do(unload(b*,t*),s)))
=3b. ® ourn (b, paris, unload(b*,t*), s)
=3b. [3t. unload (b*,t*) = unload(b,t) A BoxOn(b,t,s) N TruckIn(t, paris, s)]
V BoxIn(b, paris, s)
A = [3t. unload (b*,t*) = load(b,t) A BoxIn(b, paris,s) A TruckIn(t, paris, s)]

At this point, we can use the unique names axioms for actmesplify and we can addition-
ally exploit rules for distributing quantifiers and renagpivariables w.r.t. equality to obtain the
following equivalent representation:

=[3b,t.b=0b" ANt =1t" A BoxOn(b,t,s) N\ TruckIn(t, paris, s)]
v 3b. BozIn(b, paris, s)

=[(3b.b=0") A (Ft.t =t") A BoxOn(b*,t*,s) A TruckIn(t*, paris, s)]
v 3b. BozIn(b, paris, s)

We now make the assumption that all object domains are ngiyemuhich is an assumption
we will make throughout the thesisThus we can obtain the following fully simplified form
of the regression:

Regr(3b. BoxIn(b, paris, do(unload(b*,t*),s)))
= [BozOn(b*,t*,s) A TruckIn(t*, paris, s)] V 3b. BoxIn(b, paris, s) 4.7)

’Specifically, we need a background theory for every objeagsillass that stateslo. Class(o) in order to
use the simplificatiofi3 Class : 0. 0 = 0*) — T.
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And this final result is very intuitive. Effectively it stegehat if there exists a bakin paris
after unloading some bax from some truck*, then either the truck’ was inparis, or a box
was inparis to begin with.

4.3 FOMDP Representation

A first-order MDP (FOMDP)[Boutilier et al., 2001 can be thought of as a universal MDP
that abstractly defines the state, action, transition, ewdrd tuple(S, A, T, R) for all possible
domain instantiations (i.e., an infinite number of ground RH). In this section we formalize
the building blocks of FOMDPs. We begin by introducing theeaotation and operations
and discuss the representation of the reward and valueidungs case statements. Then we
describe how stochastic actions are represented by bgitdirour previous situation calculus
formalization. Once all of these components are defined, Weéawve everything needed to
generalize the dynamic programming solution from the gdozase in previous chapters to the
lifted case of symbolic dynamic programming for FOMDPs.

4.3.1 Case Representation of Rewards, Values, and Probabilities

We introduce two useful variants ofcase notatioralong with its logical definition to allow
first-order specifications of the rewards, probabilities] galues required for FOMDPs:

o1l

(t = C(l8€[¢1,t1;“' 7¢natnD = t =

On tn

(\/{@- Nt = ti}> (4.8)

i<n

Here thep, arestate formulaavhere fluents in these formulae do not contain the tésfnand
thet, are terms. Often th& will be numerical constants and tiiewill partition state space.
We emphasize that the case notation for a logical formulae(lér in the syntactic form
t = case[py,t1;- -+ ; o, t,] OFin the tabular form above) is simply a meta-logical natatised
as a compact representation of the logical formula itselthe meta-logical notation of cases,

8In contrast to states, situations reflect the entire histbrction occurrences. However, the specification of
our FOMDP dynamics is Markovian and allows recovery of spaitgerties from situation terms.



CHAPTER4. HRST-ORDERMDPS 94

all formulaeg;, termst; and parameters of the case statement such as the situatron refer

to symbols of the underlying logical language. At a metddablevel, a case statement may
be viewed as a pseudo-function (not necessarily assigrimgiact value to all elements of its
domain) and thus cases may be compared with inequalitiesnamipulated with arithmetic
operations to produce other case statements (all at a wgital level). In this sense, we often
omit thet = prefix from the case syntax and manipulatge[-] or its tabular representation
as if it were a function; we note that without the= prefix, a case statement is not a logical
formula, but rather a protological statement.

We usecase;[:] = cases[-] to mean two things. When we sa¥(s) = rCase(s), it is
a metalogical notation foR(s) = “some specific case statement” (sometimé&se(s) is
used, sometimes a tabular representation, and sometimegheit logical formula is used).
The same follows for value functiori§(s) = vCase(s), Q-functionsQ(s, a) = qCase(s, a),
transition functionsP(-, -, s) = pCase(-, -, s), basis function$;(s) = bCase;(s), and policies
that we will define later. At many other points in the text, wél wse case;[-] = cases|]
in sequences of equational rewrites. The formal definitibsuzh equality rewrites ig =
case1[-] =t = casey|-| (for a new variable).

In the forthcoming text, we will define first-order decisitireoretic regressioROD TR|:|
and backup operatorB“[-] as algorithmic/mathematical operations on case statenbat
produce a new case statement. These operations can beetegdras applying to real functions
(like value functions) to produce new functions, or thegit@l/protological representations.
We abuse notation and occasionally use both represergation

To provide an example of the first usage of equality discusdEve, we represent our
BoxWoRLD FOMDP reward functior?(s) from our PPDDL representation in Figure 4.1 as
the following rCase(s) statement that reflects the immediate reward obtainedtiatsin s:°

3b. BoxIn(b, paris,s) : 10

(4.9)
—3b. BoxIn(b, paris,s) : 0

rCase(s) =

Throughout the textR(s) will be used to represent a generic FOMDP reward case stateme
and rCase(s) will refer to the specific reward. Thus, fordWORLD, we write R(s) =
rCase(s) and wherevelR(s) occurs, we can syntactically substitute the specific tatndae
statement on the RHS of Equation 4.9 above.

9For simplicity of presentation, we will assume the rewardas action dependent, but such dependences can
be introduced without difficulty, if needed.
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Here we see that the first-order formulae in the case statetnede all possible ground
states into two regions of constant-value: when there £x@dbox in Paris, a reward df)
is achieved, otherwise a reward @fs achieved. Likewise the value functidn(s) that we
derive through symbolic dynamic programming can be reprtesian exactly the same manner.
Indeed,VV°(s) = R(s) in the first-order version of value iteration.

The case representation can also be used to define praleablite will see an instance of
such a usage when we define the transition function for sstichactions. Before we do this,
however, let us first discuss the operations that can benpegfbon case statements.

4.3.2 Case Operations

In this section we introduce various unary, binary, n-argragions that can applied to case
statements. We begin by introducing a formal logical daéinithat can be used in proofs and
then proceed to give a graphical example that intuitivelypdestrates the case operation being
applied.

We begin by formally introducing the following binary, ¢, and& operators on case
statement§Boutilier et al,, 2001:

caselpi, t; 11 < n| & caselp;,v; 1 j < m| = case[p; N Y;,ti vy i <mn,j <mj (4.10)
case[pi, t; 11 < n] @ case[p;,v; 1 § < m] = caselp; N, ti+v; 1 <mn,j<m] (4.11)

caselpi, t; 11 < n| S caselp;,v; 1 j < m| = case[p; N, t; —v; i <n,j <m|] (4.12)

Intuitively, to perform an operation on case statementsswmly perform the corresponding
operation on the intersection of all case partitions of therands. Letting each, and ),
denote generic first-order formulae, we can perform thes®igum”® of case statements in
the following manner:

o1 Nyt 11
¢1 1 10 - (| _ P11 N i 12
¢g 1 20 ot 2 P Ny 2 21
Do N\ g 22

Likewise, we can perform, ®, andmax operations by, respectively, subtracting, multiplying,
or taking the max of partition values (as opposed to addieg)to obtain the result. Some
partitions resulting from the application of the ©, and® operators may be inconsistent; we
simply discard such partitions (since they can obviouslyeneorrespond to any world state).
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We use the&p and () operators to respectively denote summations and prodéictsiiple
case operands.

We define a few additional operations on case statementrghis the binaryJ operation
for which we provide a formal definition:

case[pi, ti 11 < n]U case[th;, vy 1 j < m| = case[pr, t1; 5 Pnytn; V1,015 5 Vi, U
(4.13)

In this operation we simply union together the partitionsireach of the case statements.
Following is an example:

o1 110
o1 1 10 U il _ Po : 20
¢2 = 20 Py 12 Py 1
Yol 2

Next we define two unary operations. The. case() operation simply existentially quan-
tifies thecase(Z) statement. Sinceuse () is defined logically with a disjunction, we can push
the existential quantifier through to each individual casifon:

¢1(f) . tl
37| - o[ = 38 \{a@) At =t}
6u(T) :

= \/{37 (@) At =1}

i<n

37 9251 (f) Tt
= o (4.14)
AZ. o (T) Tty

The second unary operation is a unary maximization that wetée“casemax” since it
produces a case statement as opposed to a single numetlieal e result of casemax is
a case statement where the maximal possible value of itsargsenent is assigned to each
region of state space in the resulting case statement. Asguhat the case partitions are pre-
sorted such that > ¢,,, and all partitions of equal value have been disjunctivelyged we
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can formally define this operation as follows:

casemaxcase[py, ty;- -+ 3 n, tn] = case[p; A /\ ¢, v; 11 < nj (4.15)
Jj<i

Following is a more intuitive graphical exposition of thereacasemax operation:

Ut U Lt
Wy &ty Wy A =1y )
casemax——— = _
wn:tn 1/],1/\_'?/}1/\_'@[}2/\"'/\ﬁ’;/1n_1:tn

One can easily verify that if assuming sorting of partitiom®rder of highest (top) to lowest
(bottom) value then the highest value is assigned to eadfigarby rendering lower value
partitions disjoint from their higher-value antecedents.

It is important to point out that all of the case operators aueely symbolic in that the
t; case partition values are not necessarily restricted tstaoh numerical values, but can
be arbitrary symbolic (possibly state-dependent) telBmitilier et al, 2001. However, the
casemax operator (as defined here) implicitly requires apaoison function. Consequently,
we will assume for the rest of this chapter that the case satenumeric rather than symbolic
in order to use the casemax operator. However, we will rédexassumption to accommodate
general symbolic value representations in Chapter 6.

4.3.3 Stochastic Actions and Transition Probabilities

To state the FOMDP transition function for an action, statica'agent” actions are decom-
posed into acollectionof deterministic actions, each corresponding to a possibteome of
the stochastic action. We then use a case statement toyspelifitribution according to which
“Nature” may choose a deterministic action from this set méwer the stochastic action is
executed. As a consequence we need only formulate SSAs th&ndeterministidNature’s
choicedBacchuset al,, 1995; Poole, 1997; Boutilieat al,, 2000; Reiter, 2001 thus obviating
the need for a special treatment of stochastic actions insSSA

Letting A(Z) be a stochastic action with Nature’s choice deterministtoasn, (7), - - - ,
ng(Z), we represent the distribution ovey(%) given A(z) by P(n;(Z), A(Z), s). Continuing
with the translation of our simple PPDDL example, we noté thaload(b,t) action has one
set of effects that occurs with probability 0.9. We use themeinistic actionloadS (b,t) to
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denote the successful occurrence of this aspect, and weeldeterministic actiofvadF (b, t)
denote the failure of these effects to execute. In order tthido we must redefine our SSAs
from the previous PDDL case, where néwd (b, t) will be a stochastic action executed by the
agent withloadS (b, t) andloadF (b, t) being possible deterministic outcomes of selecting this
action. In fact, we will do similarly for the other two actisnsingunloadsS (b, t)/unloadF (b, t)

as the two deterministic outcomes tatload (b, t), anddriveS (t, c)/ driveF (t, c) as the two de-
terministic outcomes fodrive(t, ¢). For completeness and correctness, we redefine our SSAs
for BOXWORLD in terms of these new deterministic actions for thex8VorLD FOMDP:

BoxOn(b,t,do(a, s)) = P pozon(b, t,a, s)
= [de.a = loadS(b,t) A BoxIn(b,c,s) A TruckIn(t,c, s)]
V BozOn(b,t,s) A = [3c.a = unloadS(b,t) N BoxOn(b,t,s) A TruckIn(t,c, s)]

BozxIn(b, ¢, do(a, s)) = P powm (b, ¢, a, s)
= [3t.a = unloadS(b,t) A BozOn(b,t,s) A TruckIn(t,c,s)]
V BozIn(b,c,s) A= [3t.a = loadS (b, t) A BoxIn(b,c,s) A TruckIn(t,c, s)]

TT'U,Ck[’fL(t, C, dO(a, 3)) = (pTruckIn (tv ¢ a, S)
= [Jey.a = driveS(t, c) A TruckIn(t, cy, s)]
V TruckIn(t,c,s) A = [3er.a = driveS(t,c) A TruckIn(t, cy, s)]

Here, we have simply replaced our previous deterministioacames from the PDDL ver-
sion with the deterministisuccessersions of Nature’s choice actions that we will use in our
FOMDP1°

We can now specify a distribution over Nature’s choice detiristic outcome for each
stochastic action where we denote a specific instanégof(z), A(Z), s) with the case state-

10since we intend the failure versions of the actions to reprethe “no effects” case, they obviously do not
play any role in the SSAs. The frame assumption implicit im 85As will ensure that what was not explicitly
changed will remain the same.
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mentpCase(n; (%), A(Z), s):

(b,t),s) = (4.16)

(b,1),5) (4.17)

pCase(unloadS(b,t), unload(b,t),s) = (4.18)

pCase(unloadF (b,t), unload(b,t), s) = (4.19)
(b,1), 5) (4.20)
(b;1),s)

=[T:00 (4.21)

Since the above axiomatization does not fully illustrate power of the FOMDP representa-
tion in that the probabilities are not state dependent, Wweeds for a moment to demonstrate
a slightly more interesting variant. Suppose that the ssgoé driving a truck to a city de-
pends on whether the truck contains a owith volatile material denoted by the predicate
Volatile(b). Then we can specify a distribution over Nature’s choiceisinistic outcome for
this stochastic action:

3b. BoxOn(b,t, s) A Volatile(b) — :0.9

pCase( driveS(t,c), drive(t,c),s ) =
—=(3b.BoxOn(b,t,s) A\ Volatile(b)) : 1.0

3b. BoxOn(b,t,s) A Volatile(b) 0.1
—(3b.BozOn(b,t, s) A Volatile(b)) : 0.0

pCase( driveF (t,c), drive(t,c),s ) =

Here we see the transition probability éfive(t, ¢) can be easily conditioned on state proper-
ties and action parameters.

It is important to note that the probabilities over all detaristic Nature’s choices for a
stochastic action sum to one:

k

P P(n;(z). A), s) =

j=1
In addition, eachP(n;(Z), A(Z), s) should be a disjoint partitioning of state space such that
no two case partitions ambiguously assign multiple prdiieds to the same state. These
two properties are crucial to having a well-defined prohgbdistribution over all possible

deterministic action outcomes for every possible state.

For this last example, the second property can be verifiaty sl we verify that the first
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property holds as follows:

pCase( driveS(t,c), drive(t,c), s ) & pCase( driveF (t,c), drive(t,c), s )

| 3b.BozOn(b,t,s) A Volatile(b) ~ :0.9 o 3b. BoxOn(b,t,s) A Volatile(b) 0.1
—(3b.BozOn(b,t,s) A Volatile(b)) : 1.0 —(3b.BozOn(b,t,s) A Volatile(b)) : 0.0

=[T:1].

4.4 Symbolic Dynamic Programming (SDP)

Symbolic dynamic programming (SDPBoutilier et al, 2001 is a dynamic programming
solution to FOMDPs that produces a logical case descrigifatme optimal value function.
This is achieved through the symbolic operations of firskeordecision-theoretic regression
and maximization that perform the traditional dynamic pemgming Bellman backup at an
abstract level without explicit enumeration of either thegte or action spaces of the FOMDP.
Among many possible applications, the use of of SDP leadstijrto a domain-independent
value iteration solution to FOMDPs.

Although we will assume a constant numerical represemati@alues in order to explicitly
perform the casemax during SDP in this chapter (see thequewiscussion), an appropriate
generalization of casemax allows the definitions coverae ke apply to general symbolic
value representations, hence the original use of “symbilithe name of the SDP algorithm.
We will demonstrate SDP applied to some symbolic value extes in Chapter 6.

4.4.1 First-order Decision-theoretic Regression

Suppose we are given a value functibiis). The first-order decision-theoretic regression
(FODTR)[Boutilier et al,, 2001 of this value function through an actiof(z) yields a case
statement containing the logical description of states\eahdes that would give rise t&'(s)
after doing actionA(z). This is analogous to classical goal regression, the kdgrdiice
being that actiom () is stochastic. In MDP terms, the result of FODTR is a casestant
representing a Q-function.

We define thdirst-order decision theoretic regression (FODT&perator in the following
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mannert!
FODTR[V (s), A(Z)] =R(s)®

g @{P(”j(f% A(T), s) @ Regr(V (do(n;(7), s)))} (4.22)

This is a meta-logical notation whefé@)DTR takes as argumentis(s) representing the case
statement for a value function with situation variabland a parameterized stochastic action
term A(Z) with free variablest. Because the meta-logical notation 6fs) refers to vari-
able s in the underlying logical language, we can make a logicakstuttion of terms such
as do(n;(), s) for s (standardizing apart usage of the variablbefore substitution) to ob-
tain V' (do(n;(%), s)) where we apply this same substitution directly to the (ptogpcal case
representation of (s). The result of applying"ODTR is a case statement. All subsequently
defined operations on case statements in this thesis wikbeed analogously.

As opposed to the deterministic regression operator fardider formulae, FODTR takes
into account a decision-theoretic expectation over theesasgon of Nature’s choice determin-
istic actions w.r.t. the utilities of the possible postiactformulae as specified by(s). From
here out, we will denote an instance of the value functigr) by the case statemen€ase(s).
And as defined previously, we also assume that instancestofd&achoice action probabilities
P(n;(Z), A(Z), s) and reward functiof(s) are denoted respectively pyase(n; (), A(Z), s)
andrCase(s).

As an example, let us compute the FODTR#6luse(s) = rCase(s) through the stochastic
actionA(z) = unload(b*,t*) whererCase(s) is the BoxXWORLD reward as previously defined
in Equation 4.9. SinceCase(s) is logically defined, we can push thi&gr operator into the
individual vCase(s) partitions as follows:

FODTR[vCase(s), unload(b*,t*)] = rCase(s) &
k

EB {pCase(nj(f), unload (b*,t*), s)

=1

fy

®

Regr(—3b.BozIn(b, paris, do(n;(Z),s))) : 0

Regr(3b.BoxIn(b, paris, do(n; (), s))) : 10 H

Now, since the stochastic actioh(¥) = unload(b*,t*), we know that Nature’s determin-

1if the reward were action dependent here, then we would gingplaceR(s) with R(s, A()).
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istic action choices,;(z) range overnloadsS (b*,t*) andunloadF (b*,t*). We now substitute
the pCase definitions for the deterministic actions:loadS (b*,t*) and unloadF (b*,t*) from
Egs. 4.18 and 4.19, respectively.

FODTR[vCase(s), unload(b*,t*)] = rCase(s) &

o Regr(3b.BoxzIn(b, paris, do(unloadS (b*,t*),s))) 10
— Regr(—3b. BozIn(b, paris, do(unloadS (b*,t*),s))) : 0

Y

o o Regr(3b. BozIn(b, paris, do(unloadF (b*,t*)))) : 10
Regr(—3b. BozIn(b, paris, do(unloadF (b*,t*)))) : 0

We note that we have already computeelr(3b. BoxIn (b, paris, do(unloadS(b*,t*)))) from
Equation 4.7 where the deterministieload (b*, t*) from the PDDL case has been renamed to
unloadS (b*,t*). And by the properties oRegr, we know thatRegr(—¢) = —Regr(¢) so we
can easily negate Equation 4.7 to obt&yr(—3b. BozIn(b, paris, do(unloadS (b*,t*)))). Itis
important to note that just ag’use(s) partitioned the state space, tRegr operator preserves
this partitioning inRegr(rCase(-)). This result follows directly from the properties &kgr
and can be easily verified for the two partition case ahd—¢. We note that

Regr(o(Z, do(unloadF (b*,t%)))) = ¢(&, s)

since unloadF (b*,t*) has no effects and this is equivalent towevp action. Making these
substitutions, explicitly multiplying in the action prdtiities andy = 0.9, and explicitly

writing out rCase(s), we obtain the following where for readability, we usé to denote the
conjunction of the negation @l partitions above the given partition in the case statement:

FODTR[vCase(s), unload (b, t")]

[Je. BozOn(b*,t*,s) A TruckIn(t*, paris, s)]

= | v3b. BozIn(b, paris, s) 1 8.1
- 0
o 3b. BoxIn(b, paris, s) : 0.9 o 3b.BoxIn(b, paris, s) : 10
- 0 - : 0
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Finally, explicitly carrying out theb's and simplifying yields the final result:

FODTR[vCase(s), unload(b*,t")] = (4.23)
3b. BozIn(b, paris, s) :19.0

= | =“A[Je. BoxOn(b*,t*, s) A TruckIn(t*, paris,s)] : 8.1 (4.24)
_‘“ : O

This result is intuitive, it states that if a box was alreadyaris then we get reward 19 (10
for the current reward and 9 for the discounted 1-step rewadtherwise, if a box is not in
paris in the current state, but bax was on truckt* in paris and the action was specifically
unload (b*,t*), then we get an expected future reward of 8.1 taking into @ucthe success
probability of unloading the box and the discount factomahy, if no box is inparis in the
current state and we do not unload a box then we get O rewaald tot

It is important to note that the case statement resulting fFO@DTR contains free variables
for the action parameterg in A(%). In this case, the actiod(¥) = unload(b*,t*) so the
parameters werk and+* and we note that these do, in fact, occur in the final result.

This case statement represents the value of taking a sp&oificastic actiomnload (b*, t*)
and acting so as to obtain the value given-yise(s) thereafter. However, what we really need
for symbolic dynamic programming is a logical descriptidrad-function'? that tells us the
possible values that can be achieveddnoy action instantiation ob* andt*. This leads us to
the following definitionQ (A, s) of a first-order Q-function that makes use of the previously
defineddz unary case operator:

Q'(A,s) = 37. FODTR[V'"*(s), A(T)] (4.25)

We denote a specific instance®f( 4, s) by the case statemen€ase’ (s, A). We can think of
qCase'(s, A) as a logical description of the Q-function for actidiiz) indicating the values
that could be achieved bgny instantiation ofA(Z). And by using the first-order case rep-
resentation of states as well as action quantification \@althoperation, FODTR effectively
achievedothaction and state abstraction.

Letting vCase’(s) = rCase(s), we can continue our running example to obtain the follow-

1?Recall Equation 2.8 from Chapter 2 for the enumerated station of the Q-function.
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ing Q-function description for actiomnload where we have removed vacuous quantifiers:

qCase*(unload, s) = 3b*,t*. FODTR[vCase’(s), unload (b*, t*)]

3b. BozIn(b, paris, s) :19.0
= | Jb*, t*. [ A de. BozOn(b*,t*, s) A TruckIn(t*, paris, s)] : 8.1
- .0

This gives us a very intuitive result that states if the bos akeady inparis then we get a
discounted reward of 19. Otherwise, if a box is nopimis in the current state, but theexists
some box on a truck iparis, then we could unload it to get an expected discounted reward
of 8.1. Finally, if there is no box on a truck to unloadpmris and there is no box already in
paris then we get 0 expected discounted reward. It is instructveotnpare this description
to the prior description of FODTR without existential actiguantification — the difference is
subtle, but important for action abstraction.

Technically,qCase’ (unload, s) would not be an exhaustive partitioning of the state space
in that the0 value partition from Equation 4.25 is not the same one inophiere from the
—*“ because the partition formulae above it have been quantifiemvever, throughout this
thesis, we can exploit our assumption that all FOMDPs hawed action to assume that
the minimum value for any state is Thus we will always show the fin&l partition as—*
(thus forcing the partitioning to be exhaustive by fillingany state space not covered by other
partitions with a 0 value) even when this does not directlio from the logical operation
being applied.

We additionally remark thagCase'(unload, s) may no longer have mutually exclusive
partitions due to the existential quantification: the folaeupairA(x) and—A(x)) are mutually
exclusive, but the formulae pattr, y. A(x,y) and3z, y.—A(z,y) are not mutually exclusive.
The resulting ambiguity of value assignments occurringragkistential quantification will be
resolved by assigning every state its maximal value as ssszlinext.

4.4.2 Symbolic Maximization

At this point, we can decision-theoretically regress tHa&dunction through ainglestochas-
tic action to obtain a representation of its Q-function, tautomplete the dynamic program-
ming step in the spirit of Equation 2.9 from Chapter 2, we neekhow the maximum value
that can be achieved anyaction. For example, in the@&WoRLD FOMDP, our possible ac-
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tion choices arenload (b, t), load(b, t), anddrive(t, c) and our Q-function computations using
Equation 4.25 give ugCase' (unload, s), qCase’(load, s), andqCase' (drive, s). In general,
we will assume that we have stochastic action§A, (%), ..., A,.(¥,,)} and a corresponding
set of Q-functiond ¢Case’(Ay, s), . . ., ¢Case’(A,,, s)} derived from a common value function

vCase' ™ (s).

One way to obtain a case description of the value functiGnse’ (s) would simply be to
apply the casel operator to merge all partitions of the Q-functions, iglase’ (s, A)U. ..U
qCase' (s, A,,). While this does, in fact, give us a description of the valugefion vCase’(s),
the caveat is that the state spaces of each Q-function pvetth each other and thus the
union of case partitions from each Q-function typicallyigss multiple values to overlapping
regions of state space. What we really want instead is torasisghighestpossible value to
each portion of state space. Fortunately, this is quite @@sythe casemax operator. Thus we
get the following equation for the symbolic maximization@ffunctions:

Vi(s) = casemax[Q' (A1, s)U...UQ" (A, s)] (4.26)

Recalling the way in which the casemax operation is computath Equation 4.15, every
resulting instanceCase’(s) of the value functior/!(s) will have the following case statement
format where value case partitign corresponds to valug; andv; > v;:

1/’1 .U
o N\ =y : Vg

vCase'(s) =

wn/\_‘wl/\_‘wQ/\"'/\_'wnfl:vn

This approach effectively gives us a decision-list repnéstéon of our value functiof — to
determine the value for a state, we can simply traversesh&dim highest to lowest value and
take the value for the first case partition that is satisfidtk Gasemax operation guarantees that
this value function will be a disjoint partitioning of theas¢ space and our previous assumption
that all actions are executable in all states ensures tisatdlue function exhaustively assigns
a value to all possible states (assumirigse’ ™' was exhaustive).

13Recall the optimal value function representation from Fégd.3.
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4.4.3 First-order Value Iteration

One should note that the SDP equations given here are exhaetlifted versions of the clas-
sical dynamic programming solution to MDPs given previguslEquations 2.8 and 2.9 from
Chapter 2. Since those equations were used in part to defini@ iteration algorithm, we
can use the lifted versions to defindirat-order value iteratioralgorithm where: is our error
tolerance:

1. Initialize VO(s) = R(s), t = 1.
2. Compute thé’*(s) from V*~!(s) using Egs. 4.25 and 4.26.

3. If the following is not true
Vi) e Vi (s)]le < L2, 4.27)

then go to step 2, otherwise terminate.

For example, applying first-order value iteration to thetégs-to-go value function (i.e.,
vCase’(s) = rCase(s), given previously) yields the following simplified 1- andsage-to-go
value functions in the BXWORLD domain:

3b. BoxIn(b, paris, s) :19.0
vCasel(s) = | —“A3b,t. TruckIn(t, paris, s) A BoxOn(b,t,s) : 8.1
- : 0.0
3b.BoxIn(b, paris, s) :26.1

=“A 3b,t. TruckIn(t, paris, s) A BoxOn(b,t,s) : 15.4
—“A3b, e, t.BoxOn(b,t,s) A\ TruckIn(t,c,s) : 7.3
- : 0.0

vCase?(s) =

After sufficient iterations of first-order value iteratiotie ¢-stage-to-go value function con-
verges, giving the optimal value function (and correspoggiolicy) from Fig. 4.3.

Having presented the value iteration algorithm, we may nashwo prove some properties
of it. Boutilier et al. [2001] provide a proof that SDP and thus every step of value itaratio
produces a correct logical description of the value fumctidowever, they do not provide an
explicit correspondence between FOMDPs formalized wighdisterministic situation calculus
and MDPs as formalized in Chapter 2 with explicit stochastioas. While the correspon-
dence is not difficult to show, it is nonetheless useful to enis explicit. Thus, we provide a
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direct correspondence between FOMDPs and MDPs in AppendiXLAand provide an alter-
nate proof of correctness of first-order value iteratioreldasn this correspondence:

Theorem 4.4.1.Given a correspondence between a FOMDP and a ground MDP dddain
from the FOMDP forany domain instantiation, the value functiarCase’(s) computed by
first-order value iteration corresponds to the value fuaotl’*(s) computed by enumerated
state value iteration.

Proof. Follows directly from Theorem A.7.1. Refer to Appendix A fasraplete definitions
and a proof of Theorem A.7.1.

From this theorem, we get the following corollary:

Corollary 4.4.2. Terminating according to the criteria given in Step 3 of fiostler value
iteration guarantees thatCase’(s) is ane-optimal value function foanydomain instantation.

Proof. The proof of this corollary follows directly from the corgsndence given in Theo-

rem 4.4.1. That is, we know from Putermff94 that this property holds for all ground

MDPs, and this theorem tells us there is a direct correspueleetween a FOMDP and all pos-
sible ground MDP instantiations of that FOMDP. Therefore¢brollary trivially follows. [

4.4.4 Policy Representation

Given a value function, it is important to be able to derivastforder greedy policy represen-
tation from it, just as we did in the ground case in Chapter 2thadactored case in Chapter 3.
This policy can then be used to directly determine actionapialy when acting in a ground
instantiation of the FOMDP, or it can be used to define firsieoversions of (approximate)
policy iteration.

Fortunately, given a value functidri(s), it is easy to derive a greedy policy from it. As-
suming we haven parameterized action§A, (%), ..., A,,(Z)}, we can formally derive the
policy 7 (s)[-] using thef-] to denote the value representatidrom which the policy is derived
as follows (taking into account a few modifications to theecaperators that we discuss in a
moment):

7(s)[V(s)] = casemak U 3Z. FODTR[V (s), Ai(Z)]) (4.28)

We denote a specific instance ofs) by a modified case statement representatitlase(s)
that we describe here. For bookkeeping purposes, we retiuteeach partitiono,t) in
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3% FODTR[V (s), A;(¥)] maintain a mapping to the actiof; that generated it, which we
denote ag¢,t) — A;. Then, given a particular world state we can evaluate Case(s) to
determine which maximal policy partitiofp, t) — A, is satisfied by and thus, which action
A; should be applied. If we retrieve the bindings of the exisédly quantified action variables
7 in that satisfying policy partition, we can easily determihe parameterization of action
A; that should apply according to the policy.

To make this concrete, we derive a simple greedy policy felBaxWoRLD FOMDP as-
suming the value functiol’ (s) = rCase(s) and that we only havevo actionsunload (b*, t*)
andnoop. Noting that we have already computedD TR[rCase(s), unload (b*,t*)] in EQua-
tion 4.24 and that'ODTR[rCase(s), noop] will just be rCase(s) with 10 replaced byi9, we
easily obtain the following policy*

7 Case[rCase(s)]
= casemag{3b*, t*. FODTR[rCase(s), unload(b*,t*)]}
U{FODTR[rCase(s), noop]})

3b. BozIn(b, paris, do(a, s)) :19.0 — noop
=| =“A [T, t*, c. BoxOn(b*, t*, s) A TruckIn(t*, paris,s)] : 8.1 — unload(b*,t*)
- 0 — noop

We note that the there are technically an infinite number tbas that can be applied since
there are an infinite number of ground instantiationsuefoad (b*, t*) for arbitrary domain
instantiations. Thus, this policy representation manégesmpactlyrepresent the selection of
an optimal action amongst an infinite set.

For a more interesting policy, we refer the reader back toofitenal value function and
policy for BOXWORLD given in Figure 4.3.

4.5 Comments on Policy Iteration and Linear Programming

We do not provide first-order policy iteration or linear pragnming algorithms for FOMDPs,
although it is possible to define a first-order modified poiteyation algorithm as we discuss
shortly. As a non-trivial consequence of the extension offdo first-order MDPs, the num-

1This is in fact the optimal policy for BXWORLD usingvCase(s) = rCase(s), but one has to grind through
all the FODTR applications foload (b, t) and drive(t, ¢) and simplifications to show this. Here, we restrict the
action space to demonstrate a more obvious result.
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ber of distinct values in thexactvalue function can be infinite. This is problematic because
our current piecewise-constant case representation ebibe function can only make a finite
number of value distinctions given finite space. Since rggmgng an infinitely sized value
function would be impossible in the current case represientshis precludes two computa-
tions under our current representation: (1) the exact comtipn of the value for a first-order
policy in a FOMDP using a linear system in the spirit of EqoatR.11 from Chapter 2; and
(2) the exact linear programming solution of a FOMDP in theitspf Equation 2.24 from
Chapter 2.

In the case of first-order policy iteration, it is possiblel&dine a first-order modified policy
iteration algorithm by generalizing successive approxiomamethods for value determination
under a policy to the first-order case. This is straightfadias we need only replace the sym-
bolic maximization over all actions in SDP with the actualippbeing executed analogously
to that done for successive approximation in the factored\Bse (c.f., Equation 3.6 of Chap-
ter 3). We present a method for computing SDP under polidyicéens in the next chapter
that could be used in a modified policy iteration algorithrhisTwould effectively be the first-
order generalization of the structure policy iteration I{SEgorithm from Chapter 3. For the
restricted case of a first-order logic with only existengjahntifiers, Wangt al.[2007 provide
a modified policy iteration algorithm with special data stures to handle this restricted logic.

Generalizing the exact linear programming approach ismaore difficult in that it requires
the exact value function structure beforehand and there hrwious workaround for this in
the exact case. Since the value function can be infinite irp@aewise-linear case represen-
tation, this precludes the possibility of exact linear pesgming as a general solution to all
FOMDPs using our current representation. On the other hbwe, have some clue as to what
an approximate value function structure may look like thenoan relax our requirements to
an approximate solution and leverage first-order genatédizs of the approximate linear pro-
gramming approaches that we used in Chapters 2 and 3. We @skpt just such an approach
in the next chapter.

4.6 Representation and Solution with First-order (A)ADDs

Just as we previously exploited CSI in the factored propwsdi representation of MDPs, we
can easily generalize this technique to exploit CSI in thes gapresentation of first-order
MDPs. In the first-order framework, we can define methods feaking down first-order case
partition formula into their propositional components anelte dirst-order ADD (FOADD)or
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first-order AADD (FOAADDYepresentation of the case statement. Then we can apptlasthn
ADD or AADD operations to perform the, &, ando case operations. We can also define
extensions of the casemal;, and Regr operators capable of exploiting FO(A)ADD structure.
After discussing each of these topics in turn, we end withsaudision of the practical use of
FO(A)ADDs, a small example of a FOADD application to SDP andiscussion of related
approaches.

4.6.1 Constructing FO(A)ADDs from a Case Representation

The first aspect of FO(A)ADDs concerns how to construct themoraatically from a log-
ical case representation. The key to our approach to FOABsait their decision tests are
propositional in nature so we need some method of findinggwitipnal structure in first-order
formulae. We can do this by distributing quantifiers as deepb case formulae as possible us-
ing the following rewrite rule templates whesendicates variables other than those explicitly
quantified:

° [Fr,y.¢] — [By, x4

o Vo,y.9] — [Vy,z¢]

o [Jz. A(z,0)V B(x,0)] — [(Fz. A(z,0)) V (Fz. B(x,0))]
o [Vz. A(xz,0) A B(x,0)] — [(Vz.A(z,0)) A (Vz. B(x,0))]
o [Jz. A(x,0) A B(y,o)] — [(Fz. A(x,0)) A (B(y,))]

o [Vz. A(x,0)V B(y,o)] — [(Vz. A(x,0)) V (B(y,))]

One can see an example application of these rewrite rulesgurd-4.4(a,b) where the
formula
dx.[A(z) V Vy.A(x) A B(x) A —A(y) (4.29)

has been rewritten to the equivalent form
[Fx. A(x)] V ([Fz.A(z) A B(x)] A [Vy.—A(y)]) (4.30)

where quantifiers have been distributed into the nestedularstructure as far as possible.
Once we have pushed quantifiers as far down as possible, wemaoivto extract the
propositional structure of the formula by considering msipfonal connectives over quantified
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(a) Given case statement:

dz.[A(z) VVy.A(z) A B(x) AN —A(y)] |1
-7 0]

case =

(b) Push down quantifiers, expose propositional structure:
[Fz.A(z)] V [Fx.A(x) A B(z) AVy.—A(y)]

Var |Var = FOL Formula
a [=[3z.A(z)] case = m

b |= Oz A(z) A B@)] - 0
(c) Convert to first-order (A)ADD:
2, a
case = &b’ First-order CSl! = /""-,
3 10

Figure 4.4. An example conversion from a case statementdom@act FOADD representation
demonstrating first-order CSI.

formula as follows:

32 A(z) |V ( [Fz.A(z) A B(2)]| A Vy.—%l(y)) (4.31)

Each of these boxes represents formula that we cannot fudd@mpose into propositional
components. Consequently, we rename each of these boxepnefhbsitions. To do this,
we maintain a table of mappings from propositional variahlgo first-order formulae):

{p — ¥}. When we want to convert a formutato a propositional variable, we examine
each formula-to-proposition mapping in our table ¢l v, we returnp as the proposition,
otherwise if¢p = —), we return—p as the proposition. If no proposition in the table matches
then we create a new propositignand add the mapping — ¢ to our table and return.
Having built the table shown in Figure 4.4(b), we can prodeetbnvert the above formula to
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its propositional version:
aV (bA —a) (4.32)

At this point, we can build an ADD or AADD from a case statemehbse formulae are
purely propositional. What makes this (A)ADD first-orderhe tadditional proposition to first-
order formula mapping that gives each proposition a firdeodefinition. While the traditional
(A)ADD can exploit CSl, we note there is now an additional fahCSI that we can exploit in
FO(A)ADDs —first-order CSI This first-order CSI follows from the structured and potaihyi
overlapping nature of the propositional variables. Fotanese, in our example;a O —b so as
we traverse the FO(A)ADD representation of this case foaeé can force the decision node
for b in the context of:. This is shown in Figure 4.4(c).

We note that there are a range of options for detecting fid#oCSI ranging over the
following:

1. Do not perform any first-order CSI detection at all.

2. Maintain information about all pairwise implications time propositional mapping ta-
ble and detect just this pairwise first-order CSI during thpliaption of FO(A)ADD
operations.

3. Perform full simplification for all decision nodes in thentext of the conjunction of all
decisions made for parent nodes during all operations oR@{&)ADD.

Obviously option (1) requires no additional computatiornhat expense of FO(A)ADDs with
potentially dead paths whereas option (3) requires sutistaomputation in return for full
simplication of the decision diagram. We note that if valeateordering is permitted in the
FO(A)ADD then one must resort to option (1) since the prusintay not be sound for other
reorderings. On the other hand, when we know that variabléshat be reordered in the
FO(A)ADD, we find option (2) to be a reasonable tradeoff betwveomputation and simplifi-
cation.

It is straightforward to extend the ADD and AADD algorithnosdo consistency checking
in the presence of parent decisions when performing thelatdri{A)ADD Apply and Reduce
operations. In doing this, it is important to note that althb there may be multiple paths to
reach a node in the FO(A)ADD, each distinct path to a node gially exclusive and thus
other parents need not be considered when pruning alongdtiat It is simply crucial that
pruning along one path does not accidentally prune alonthanpath, but this can be avoided
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in the following manner: a parent node should check its amilde for implied branches and if
one is found, the parent node’s pointer should be changeddoto the child’s implied branch.
In this way, the child itself is not changed and any otherdipbinting into the child are not
erroneously modified.

We note that replacing case statements with FO(A)ADDs imépeesentation and solution
of FOMDPs has the potential to exploit a great deal of stmactinat naturally occurs in these
representations. First, the disjunctive nature of pasigiffects in theRegr of FOMDP formu-
lae introduces a number of disjunctions during the appboatf algorithms such as SDP. Sec-
ond, the existential quantification of the action varialihethese formulae introduce existential
guantifiers that can be distributed through the disjunstiotroduced byRegr. Consequently
every SDP step introduces structure that can be directlipi@g by the previously described
methods for exposing propositional structure of first-ofdemulae. Consequently, our ap-
proach to representing FO(A)ADDs is well-suited to FOMDBsag will soon demonstrate
with a small example.

4.6.2 Operations on FO(A)ADDs

Recalling the case of propositionally factored MDPs from G&aB, once we had represented
factors as (A)ADDs, we could directly apply the standardabynoperations of addition, mul-
tiplication, and subtraction directly to these data sties. The same basic idea holds for
FO(A)ADDs. Once we convert the case representation to ttiesestructures, we can apply
the ®, @, andS case operations directly to FO(A)ADDs by making using of éimalagous
(A)ADD operations. Note that we do not need to consult thepsdion to first-order formula
mapping table to compute these operations; in general, Wyeneed to do this in three cases:

1. We consult this table when constructing a FO(A)ADD.

2. We consult this table when converting a FO(A)ADD back toaaecrepresentation or
evaluating a ground state.

3. If we are exploiting first-order CSlI, then we may consuls tlaible during the (A)ADD
Reduce and Apply procedures.

SDP algorithms for FOMDPs also require special unary operasuch asiegr, casemax,
andd¥ that we define now. First, we discuss each FO(A)ADD unaryatpest ageneral level
as their use in practice has certain limitations that weudisenomentarily:
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e Regr: We can apply thekegr operator directly to each decision node in a FO(A)ADD.
This property is obvious since an (A)ADD can be represenses gropositional expres-
sion over propositional variables (with additional affin@nisforms in the AADD case).
Exploiting the previously defined properties of tRegr operator, we can simply push
the Regr into these individual propositional nodes. To regress g@@sdional formu-
lae p at a node, we simply applftegr directly to the first-order formula represented
by the node (looking up — ¢ in our variable mapping table), and replace it with a
new variable; whereq — Regr(¢). We do not attempt to further decompaget this
point. We note that this new formula has free variables (heite is nothing prohibiting
this in FO(A)ADDSs). However, the one problem that can ocsuthat the replacement
of decision node variables with other variables may intoadoonflicts with the global
FO(A)ADD ordering. In this case, decision nodes can be ity rotated to correct
the (A)ADD variable ordering (selRudell, 1993 for ADDs and theOther Operations
discussion in Section 3.4.2 of Chapter 3 for AADDS).

e J¥: Thed¥ unary case operation can also be applied directly to FO(A)ADOn this case
we assume that the variables being quantified are presehteast one decision node
of the FO(A)ADD (otherwise the quantifiers are vacuous andlmaremoved). Since
an ADD decision nodéf (a) then ¢, else ¢;*° can be written as the logical expression
(a A o) V (ma A ¢;)*®, we note that when the decision testloes not contain the free
variables being quantified then we can perform the followewyrite:

37 [(a A ¢n) V (—ma A ¢1)]
= [(a A3Z. 6p) V (ma A 3T ¢y))]

This allows us to recursively push the existential quamsfiwn through each FO(A)ADD
decision node until we encounter a decision node do&iscontain the variables being
guantified. At this point, we cannot push the quantifiers dampfurther. Consequently,
the key to an efficienfiz. operation is to (1) rotate all of the decision nodes with free
variables to the bottom of the FO(A)ADD, (2) push the quaeti§fidown to that level,
(3) explicitly convert the FO(A)ADD structure from that kehdown to a logical or arith-
metic representation of the formula, (4) perform the exiséé quantification, (5) rebuild

5Recall our (A)ADD notation from Chapter 3 where we us¢o denote the high/true branch of a decision
node, and to denote the low/false branch of a decision node.
18A similar property holds for AADDs except that it is an arithtic expression.
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a FO(A)ADD from that logical representation and insert itpllace of the old quanti-

fied structure, and (6) rotate nodes to maintain variablerand. We make two impor-

tant notes: (a) because nodes are being reordered in thigamby we cannot perform
pruning, and (b) since nodes may overlap due to existentahtfication we perform a

casemax (discussed next) simultaneously with this ofmer&dirender overlapping nodes
disjoint. Overall, this is a non-trivial algorithm to impteent and we discuss it further
in a moment. An example of this along with the casemax opediszussed next is

provided in Figure 4.5.

casemax: Because this can be an expensive operation, it @stanpto apply casemax
opportunistically directly where it is needed. That is, tmy operation that can trans-
form an exhaustive and disjoint case partitioning into dmegt does not satisfy these
properties is thelx operator. As a consequence, our approach is to apply thenease
jointly with the 3% operator, when needed. Since theé requires breaking the quanti-
fied part of a FO(A)ADD down into its case representation, &g easily apply both
casemax andz to this representation. A concrete example which illussdhis is given
in Figure 4.5 and an explanation follows.

Here we provide a step-by-step explanation of the jointiappbn of the casemax ant¥’

operators to a specific FOADD instance in Figure 4.5:

(a) First, we show the case statement represented as a FOARelihe casemax ant¥

(b)

(©)

operators are applied. We have already rotated nodes weighviriables to the leaves
where we assume the sub-diagrams on the high branchearadb do not contain the
free variables’.

Assuming thatase(z) is a disjoint partitioning of state space, we can push thernas
anddz operators down until a node is reached where a decisionblaniaferencing a
guantified variable is encountered.

We convert the sub-diagram below the casefmato a case statement and explicitly
perform the casemaix operations (not shown). We convert this result back to a FOAD
and insert the FOADD in place of the original sub-diagramlevimserting any new
variables into our propositional mapping table.
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Var | Var - FOL Var |Var = FOL
a 1 a é1
b b P2
¢ e |3T.0¢3(T) A pa(7)
d f 37 ¢3(7)
N
r I

casemax JX case(X)

(@) ()

Figure 4.5: Here we demonstrate the joint application ofdl&emax andz operators to an
examplecase statement represented as a FOADD. See the text for details.

4.6.3 Practical Considerations

We did not give explicit algorithms for the FO(A)ADD operatis and the reasoning for this is
that they are not only quite complex to implement in pragctice their computational overhead
does not give them significant advantages over the caseseayation. The reason for this is
that the internal node rotations required to maintain cantynof the FO(A)ADDs are quite
expensive.

However, this is not to say that FO(A)ADDs have not been ugafthe application of
SDP, we simply need to modify the way in which they are used&sD, the FO(A)ADDs are
best for performing efficient binary operations and formsilaplification through the break-
down of propositional structure and the elimination of ned@ancy that occurs during their
construction. In doing these simplifications, the FO(A)A®IEmove a lot of burden from the
theorem prover, which must otherwise detect inconsistentty highly redundant representa-
tions. Thus, in our SDP algorithms, we use FO(A)ADDs for theppses that they are useful
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and efficient for — binary operations and logical simplifioat— and we convert back to the
case representation to perform most of the unary operati@iscan be expensive due to the
need for internal node rotations. As we will see, this apgihdaas led to a successful SDP
algorithm that we discuss next.

4.6.4 Symbolic Dynamic Programming with FO(A)ADDs

The use of FO(A)ADDs in the somewhat hybrid manner discugsediously has led to an
automated SDP algorithm. In this approach, we use FO(A)ARDserform the binary op-
erations of FODTR and convert to the case representatioerform regression, existential
quantification and symbolic maximization. As mentionedvpesly, the primary benefit of
using FO(A)ADDs in this manner is in their ability to complgatepresent and simplify the
first-order case representation while permitting the effitcomputation of binary operations
during FODTR. In addition to FO(A)ADDs, we do perform some itiddal simplification of
equality, relying on the non-empty assumption for objeahdmms, the quantifier rewrite rules
described previously, and the following two additional regvrules:

o [Fx.z=yAA(x,0)] — A(y,o)
o Vr.o #yV A(z,0)] — Aly,o)

The first rule is fairly straightforward while the secondetbllows simply from the negation of
the first rule with renaming. We provide the following examppplication of these previously
described rewrite and simplification rules to demonstraggr tpower in simplifying formulae
with equality:

Jo, 2. [x = y A A(z,0) A B(y, 2)]

= o[z =y A Az, 0) A (32. By, 2))]
= (Fr.z =y AA(z,0) A (32 B(y, 2))
= A(y,o) A (32. B(y, 2))

Together using FOADDs and equality simplification, we hawanaged to provide an auto-
mated first-order value iteration solution to our running@®VoRLD FOMDP example. The
FOADDs for the reward, optimal value function and policy gireen in Figure 4.6. For the
variable ordering, we simply maintained the order of foraauas they were added to the vari-
able mapping table in the FOADD during the SDP algorithm. \&ledithe Vampire theorem
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- BoxWorld FOADD reward representation:

rCase(s) = [ b, c. BoxIn(b, Paris, s) ]
“"i
10 O

- BoxWorld FOADD optimal value function and policy:

vCase(s) = [ 3b. BoxIn(b, Paris, s) |
(TCase(s)) /%
100+ noop [ b, t. TruckIn(t, Paris, s) A\ BoxOn(b,t, s) ]

7~

*
89 : unload (b, t) [ 3b, ¢, t. BoxOn(b,t,s) A\ TruckIn(t,c,s) ]

/%

80 : drive(t, Paris) [ 3b, ¢, t. BoxIn(b,c, s) A TruckIn(t,c,s) ]

e

: load (b, 1) [ Elb,cl,t ca.BoxIn(b,c1) N TruckIn(t, cz)]

72 : drive(t, c) 0: noop

Figure 4.6: An example FOADD representation of the rewa8lax WoRLD and the FOADD
representation of the optimal value function and policytfas domain.

prover[Riazanov and Voronkov, 2002s the theorem proving component for detecting equiv-
alence and inconsistency. The total running time for thigtgm was 15.7s on a 2Ghz Pentium
with 2Gb of RAM. Unsurprisingly, the final FOADD for this pradrh gives exactly the decision
list structure that we would expect for theodRWORLD problem.

We have also used our FOADD approach to solve other variduite BoXWORLD prob-
lem including the version given in Boutiliet al.[200] with an extra fluent forRain(s) and
action probabilities conditioned on this fluent. We alsoduaeBoxWoORLD reward of the

following structure:

3b. BoxIn(b, paris, s) A TypeA(D) 10
R(s) =| —=“ A 3b.BoxIn(b, paris, s) A ~TypeA(b) : 5 (4.33)
- o0
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Here in addition to theRain(s) fluent, we have also added a non-fluent predidage:=A(b) to
distinguish types of boxes and varying rewards for each tfgmx. The FOADDs for these
solutions are too large to display, but we note that afterigefmumber of steps of value iter-
ation, the value function FOADD stopped growing indicatthgt all relevant state partitions
had been identified. Value iteration continued with thissgaed FOADD until all values at the
leaves converged. The maximum solution times for these mamgplex problems was 489s
on a 2Ghz Pentium with 2Gb of RAM. The use of FOAADDs led to dligklower runtimes
due to the fact that these test problems did not have anyiagldit multiplicative structure to
exploit.

Our experience indicates that there seem to be two gendteliaifor problem domains
to demonstrate a finitely sized optimal value function: (i bnly non-zero rewards must be
existentially quantified and (2) the FOMDP dynamics mustintbduce transitive structure
that cannot be finitely bounded by domain axioms. This lagtirement is somewhat vague, so
let us provide an example. In thedBWORLD problem covered in this chapter, we implicitly
assume that all cities are accessible from each other vidrtheaction. If instead we had some
underlying road topology indicated b§onn(City : ¢, City : o) that restricted thelrive
actionand we did not know this topology in terms of prior knowledge sfied as domain
axioms, then the SDP algorithm would likely need to genergpeesentations for all possible
topologies, thus likely leading to an infinite value functicAnother case of an infinite value
function comes when (1) is violated as we discuss in the remtian which concerns rewards
with universal quantifiers. While both of these problems ielaie limitations of the current
SDP algorithm, it is possible that with modifications to tHeFSalgorithm and the case (or
FOADD) representation, these difficulties could be overeom

Unfortunately, the FOADD solution approach with the cutr8®P algorithm has failed
to scale to more complex problems used in the planning comyn(articularly problems
from the ICAPS International Planning Competitions) sinayttypically use more complex
rewards, including those with universal quantifiers. Whemablems with existentially quan-
tified rewards may exhibit a finite-size optimal value fuontithis is rarely the case with uni-
versal rewards. Thus we are in need of additional solutiohrtigjues to handle this problem
as we discuss in the next section.
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4.7 Decomposing Universal Rewards

In first-order domains, we are often faced withiversal reward expressiorteat assign some
positive value to the world states satisfying a formula & ¢eneral forn¥y ¢(y, s), and O
otherwise. For instance, in ourdXWoORLD problem, we may define a reward as havaig
boxesb at their assigned destination cityiven by Dst (b, c):

Vb, ¢. Dst(b, ¢) — BoxIn(b, ¢, s) : 1
R(s) = “c st(b, c) oxIn( cs)-o (4.34)

One difficulty with such rewards is that our case statemertgige a piecewise-constant rep-
resentation of the value function. However, the value fiamctor problems with universal
rewards typically depends (often in a linear or exponentayf) on thenumberof domain ob-
jects of interest. For instance, in our example, value aate stepends on the number of boxes
not at their proper destination (since this can impact th@mm number of steps it will take
to obtain the reward). So for examplet-atage-to-go value function in this case would have
the following characteristic structure (where we use Eshgln place of first-order logic for
readability):

Vb, c. Dst(b, ¢c) — BozIn(b,c,s): 1
One box not at destination Dy

Vi(s) = = | Two boxes not at destination 2

t — 1 boxes not at destination ~i~!

Obviously, since there aredistinct values in an optimal-stage-to-go value function, the
piecewise-constant case representation requires a nmmiafu case partitions to represent
this value function. And when we combine these counting dying with other interacting
processes in the FOMDP, we often see an uncontrollable catdrial blowup in the number
of case partitions of value functions for FOMDPs with ungadly defined rewards. As noted
by Gretton and Thiebaup2004, effectively handling universally quantified rewards isaf
the most pressing issues in the practical solution of FOMDPs

To address this problem we adopt a decompositional approaativated in part by tech-

niques for additive rewards in MDRBoutilier et al,, 1997; Singh and Cohn, 1998; Meuleau
et al, 1998b; Pouparet al, 20024. We divide our solution into off-line and on-line compo-
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nents where the on-line component requires a finite domaimagtion in order to execute the
policy.

4.7.1 Offline Generic Goal Solution

Intuitively, given a goal-oriented reward that assignsitpasreward ifVy G(y, s) is satisfied,
and zero otherwise, we can decompose it into a set of grouald §6(y1), ..., G(y,,)} for all
possibley; in a ground domain of interest. If we reach a state where allignl goals are true,
then we have satisfiedy G(y, ).

Of course, our methods solve FOMDPs without knowledge oflexific domain, so the
set of ground goals that will be faced at run-time is unkno@®a.in the offline solution of the
MDP we assume a genericground goalG(y*) for a “generic” object vectof*. Assuming
that our universal reward takes an implicative form as itsdoeour example, the conditions in
the antecedent indicate the goal objects of interest anklehé of the implication indicates the
specific goalG(y, s). In our running BOXWORLD example the condition®st (b, ¢) indicate
that we will have goals for all pairéh, ¢) where Dst(b, ¢) holds and the goal that must be
achieved for these object pairsBezin(b, ¢, s).

It is easy to construct a generic instance of a reward funetituseq;+)(s) given a single
goal. In our BoxXWoRLD example we would introduce the distinguished constanendc*
to denote our goal objects of inter&sth*, c*):

BozxIn(b*,c¢*,s) 1
rCasec(y ) (5) = (4.35)
—BoxIn(b*,c¢*,s) : 0

Given this simple reward, it is then easy to solve the rasgliOMDP using first-order value
iteration or the approximate FOMDP solution algorithmst tva will introduce in the next
chapters. This produces a value functigiuse(z+)(s) and policy that assumes thgt is the
only object vector of interest satisfying relevant sortstoaints and goal preconditions in the
domain. In our running BXWORLD example, the optimaiCaseq - +)(s) would look very
similar to Figure 4.3 with some differences owing to the faet our reward is defined in terms
of constant$* andc* rather than existentially quantified variableandc.

We next derive Q-function instances for each actipfir) from the value functionCasec ) (s)
for the simplified “generic” domain:

qCaseq (A, s) = 3. FODTR[vCaseg(g+)(s), Ai(T)] (4.36)
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Given a ground state, the optimal action for this generic goal can be determineéinaling
the ground action instantiatiof; (¢) for this s with maximal Q-value.

4.7.2 Online Policy Evaluation

With the offline solution (i.e., Q-function for each actiasf)a generic goal FOMDP in hand,
we address the online problem of action selection for a fipesddmain instantiation given
at run-time. We assume a set of ground gdé@l$y; ), . .., G(y,)} corresponding to a specific
finite domain given at run-time. If we assume that (typed) diomobjects are treated uniformly
in the uninstantiated FOMDP, as is the case in many logiatncsplanning problems, then we
obtain the Q-function for any go&l(y;) by replacing all ground termg' in qCase g+ (A;, s)
with the respective termg; to obtaingCase ;) (Ai, s).

Returning to our running example, from the value functi6fusec ;- .+)(s) we would ob-
tain a Q-functiongCaseq(;+ (A;, s) for each actiond;. If at run-time, we are given the three
goalsDst(by, paris), Dst(by, berlin), and Dst(bs, rome), then we would substitute these goals
into our Q-functions to obtain three goal-specific Q-fuacs for each actioni;:

{qcaseG(b1,pa7‘is) (A“ S)? qcaseG(bg,berlin) (A“ 8)7 qcaseG(bg,mme) (Alv S)} (437)

Action selection requires finding an action that maximizasi® w.r.t. the original universal
reward. Following[Boutilier et al, 1997; Meuleatet al,, 19981, we do this by treating the
sum of the Q-valuesf any action in the subgoal MDPs as a measure of its Q-valttesijoint
(original) MDP. Specifically, we assume that each goal dbates uniformly and additively to
the reward, so the Q-function for an entire set of groundsip@lv1), ..., G(y,)} determined
by our domain instantiation is just’;_, %quseg(yqj)(Ai, s). Action selection (at run-time)
in any ground state is realized by choosing the action witkimam additive Q-value. Nat-
urally, we do not want to explicitly create the joint Q-fuimet, but instead use an efficient
scoring technique that evaluates potentially useful astioy iterating through the individual
Q-functions as described in Algorithm 7.

While this additive and uniform decomposition may not be appate for all domains
with goal-oriented universal rewards, we have found it tdigdly effective for domains such
as BoxWoORLD as we demonstrate empirically in the next chapter. And wthile approach
can only currently handle rewards with universal quansfiehis reflects the form of many
planning problems. Nonetheless, there are potential sites of this technique for more
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Algorithm 7: EvalPolicy({qCaseqz)(Ai, 8)},{G(41), - -, G(Yn) }, 8) — Ai(C)

input : (1) For each action templaté; (%), . . ., A,,,(7), a set of Q-functiongCase 5 (A;, s) for
a specific ground instantiatioff of a goalG.
(2) A set ofn unsatisfied goal$G(v1), - . . , G(yr) } to achieve.
(3) A ground state to find the best action for.
output  : The optimal ground actior;(¢) to execute w.r.t. to the given state and additive decomposi-
tion of unsatisfied goalsd; (¢) = argmax; > 37, qCaseq ) (Ai(E), s)

begin

/I In hash tableh, entries map ground actions to corresponding valdér) — v.
Initialize empty hash tablg;

/' Now, compute additive values for all matching ground @i
foreach (action A;) do

foreach (goal G(y;)) do

Replace all occurrences 9f in gCase g+ (Ai, s) with yj;

foreach (case partition(3z ¢(Z), t) € gCaseq ) (Ai, s)) do
foreach (ground bindingz = ¢ satisfying3x ¢(&)) do
if (A;(¢) — v is already inh for somev) then
‘ Updateh to containA; (¢) — (v + £);
else
| Updaten to containA;(¢) — £;

/I Assuméh tracks its maximal entryA;(¢) — v.
Return the maximaM, (¢) from h;

end

complex universal rewards, the general open question bengto assign credit among the
constituents of such a reward.

4.8 Related Work

A variety of exact algorithms have been introduced to sol@Pd with relational (RMDP)
and first-order (FOMDP) structufé. Symbolic dynamic programming (SDFBoutilier et
al., 2001 is the original first-order value iteration algorithm folgag FOMDPs introduced
here. First-order value iteration (FOVIAJHolldobler and Skvortsova, 2004; Karabaev and
Skvortsova, 200band therelational Bellman algorithm (ReBe[Kerstinget al, 2004 are
value iteration algorithms for solving RMDP§irst-order decision diagrams (FODDgjave
been introduced to compactly represent case statements @edmit efficient application of

"We use the termelational MDP to refer to models that allow implicit existential quantion, andfirst-
order MDPfor those with explicit existential and universal quantifion.
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symbolic dynamic programming operations to solve RMDPs alae iterationfWanget al,,
2007 and policy iteratiodWang and Khardon, 200Ave elaborate on the differences between
FOADDs and FODDs in a moment. All of these algorithms haveeséonm of guarantee on
convergence to the{)optimal value function or policy. However, aside from tBBP algo-
rithm discussed at length in this chapter, all of these othethods are restricted to RMDPs
and thus do not permit the explicit specification of univlysguantified formulae in their rep-
resentation. As for approximate and heuristic FOMDP solugtilgorithms, we discuss these
approaches at the end of the next chapter in the context obwarapproximate FOMDP
solution algorithms.

Since FODDs are very similar in spirit to the FO(A)DDs we defirin this chapter, we
enumerate some of the major differences between these twalisms:

1. FODDs disallow explicit universal quantification in rea and to some extent in their
SSA representation when variables in both the precondimahthe post-action fluent do
not occur as action parameters. This prohibits ADL extersad STRIPS planning such
as non-local universal effects.

2. FODDs rely on a range of simplification rules to maintaimeact representations.
However, rather than having a well-defined simplificatiogogithm, simplification in
FODDs is somewhat open-ended and heuristic.

3. Rather than perform explictz. and casemax operations, FODDs assume an implicit
semantics where the maximal value is assumed for all inataris of the free variables.
This can lead to very compact representations during véuation, but this semantics
requires more complex computation during policy evaluatmd may interfere with
extensions of FODDs to handle universally quantified foasul

Consequently, FODDs represent an interesting alternatitresidesign space of data structures
for the compact representation of case statements. Ndasthé¢éhe major limitation w.r.t. the
work we present in this thesis is that the expressivenes®bi-based FOMDPs is limited to
probabilistic extensions of STRIPS and minor variants. llge¢he best approach would be to
combine the advantages of FO(A)ADDs with those of FODDssTéia non-trivial problem,
however, and is not addressed in the current researcttlitera

In concluding the discussion of related work, we summarizeadting that the SDP algo-
rithms covered in this chapter are tbely methods capable of exactly solving FOMDPs with
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both explicit existential and universal quantifiers in thepecification. Thus, SDP and the ex-
tensions that we will define in future chapters are the onliIB® solution algorithms that can
generally handle the important planning construct of raal universal effects from PPDDL
(c.f., the PPDDL/ADL discussion at the beginning of this jofem).

4.9 Summary

In concluding this section on FOMDPs, we note that this fraor& offers many attractive
properties from an MDP perspective. First, it allows one tawdon relational probabilistic
planning problem specifications like PPDDL to specify FOM@yhamics directly. Further-
more, FOMDP solution algorithms such as first-order valamtion are completely domain-
independent and do not require explicit state and actiomenation. Therefore these tech-
niques can solve for very concise representations of optiatae functions and policies when
they exist, even when the underlying domain may be infinseted as in BXWORLD.

On the other hand, the expressivity of FOMDPs comes with adi@wbacks. First, theo-
rem proving and and a range of first-order logic simplificateethods are required to maintain
compact case representations. While techniques such as B&Abd FOAADDs substan-
tially reduce the simplification and theorem proving burtdgrexploiting propositional struc-
ture common to many FOMDPs, these approaches merely deaydhitable fact that current
simplification and theorem proving technologies can onblesso far. Second, although our
case, FOADD, and FOAADD representations are attempts apaotly representing structure
common to many FOMDPs, even these structures are inadefgugieoblems with difficult
reward structure such as universal rewards. In this caseadiédhsuffice with an approximate
decomposition-based solution technique, albeit an ademecwith no general performance
guarantees. But the need for approximation in order to olitagtable solutions is a general
lesson that we should take to heart. Ideally though, we waldd desire to have some form
of error bounds on approximate solutions, something ptessitih APRICODD-style exten-
sions[St-Aubinet al,, 2004 of SDP that have not been explored to date.

In general, even though we can now exploit structure thatwegpossible with ground
MDPs or factored MDPs, the fact that we are now domain-inddeetly representing and
solving FOMDPs adds a new dimension of complexity that iseasily overcome in exact
solution approaches. Given that approximate solutionaaagres such as linear-value approx-
imation[Guestrinet al,, 2002; Schuurmans and Patrascu, 2001; de Farias and Van 608}, 2
have allowed MDP solution algorithms to scale far beyondithis of exact algorithms while
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offering reasonable loss-bounds on performance, thisesigghat we might be able to achieve
similar results by generalizing linear-value solutiorhieiques to FOMDPs, which we do next.



Chapter 5
Linear-value Approximation for FOMDPs

Perhaps the greatest difficulty with the previously desatibxact and approximate value it-
eration solutions for FOMDPs is that the size of the valuecfiam case representation can
grow according to a high-order polynominal on each iterétand thus exponentially in terms
of the number of iterations. Similar growth properties caow for the first-order formulae
representing the state partitions of the value functioncedthese formulae become too large
to detect equivalence or inconsistency, all hope of obtgim compact representation of the
value function is lost as the number of partitions in the capeesentation grow unboundedly
with no practical means for simplification or pruning. Urtforately, current research has not
identified an alternate representation nor a set of logiogblffication rules that can maintain
relatively compact case statements across a variety ofippigproblems.

Thus, faced with the difficulty of exact and approximate eaiieration-based MDP so-
lution methods, we seek alternate approaches based om-Viale@ approximation. In this
paradigm, we reduce the task of solving a FOMDP to that ofiointg good weights for a
set of basis functions that approximates the optimal valoetfon. We have already defined
such techniques for ground (factored) MDPs and in this @rapur goal is to generalize these
frameworks to the first-order case. This is a non-triviaktas it requires the generalization
of linear programs to the case with first-order constraint @fficient extensions of solution
methods such as constraint generation and variable eliilmma cost networks to exploit the
first-order structure of these constraints.

In the process of developing a completely automated limalre approximation solution
approach to FOMDPs and in an effort to answer the questiorfevbdo basis functions come

INote that in the worst case, just a single case operation iedch g quadratic blowup in the number of case
partitions in terms of the maximum number of case partitiorits operands.

127
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from?”, we adapt techniques proposed by Gretton and Thiel2004 for the automatic gen-
eration of basis functions. With appropropriate domairoms defining legal states, these
techniques give us a practical automated approach to dediseoretic planning in PPDDL-
derived representations; we demonstrate the efficacy eéttezhniques on probabilistic plan-
ning problems from the ICAPS 2004 and ICAPS 2006 Internatiétrababilistic Planning
CompetitiondLittman and Younes, 2004b; Gerevigtial.,, 2004.

Parts of the work described in this chapter appearé8amner and Boutilier, 2005; Sanner
and Boutilier, 200&

5.1 Linear-value Approximation with Basis Functions

Linear-value approximation solutions to FOMDPs are ativador a number of reasons:

e Given that much of the computation in linear-value appration solutions reduces to
linear program optimization, this reduces the algorithreigie space to the setup and
solution of linear programs.

e Since the size of linear-value approximations is fixed, tlze sf the linear-value ap-
proximation can be used to moderate the complexity of thaltieg solution algorithm.
This leads to a flexible solution approach that trades off@pmation accuracy and
computation.

e For algorithms like approximate policy iteration, we cartadb error bounds on the re-
sulting value approximation if the algorithm convergesistproviding us with a domain-
independent bound on approximate solution quality.

e Linear-value approximation solutions do not require laggimplification, just weight
projections that make use of a theorem prover. This is a hdgangage over exact
techniques that require simplification in order to maingtompact representation.

e Linear-value approximation solutions have yielded reabtempirical performance for
ground and factored MDPs, which is an encouraging indioathat these results may
extend to FOMDPs.

Motivated by the potential advantages of linear-value apipnation, we now proceed to gen-
eralize our representation from the propositional casbdditst-order case.
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5.1.1 First-order Linear-value Representation

We represent a value function as a weighted sumfokt-order basis functionslenoted; (s),
each ideally containing amall number of formulae that provide a first-order abstraction of
state space:

V(s) = @ w; - by(s) (5.1)

Throughout this chapter, we will assume that each indivibaais functior;(s) is represented
by a case statement that is an exhaustive and disjointipamity of state space. This property
will be useful when we define the backup operators next.

Using this linear-value function representation, we caaroachieve a reasonable approx-
imation of the exact value function by exploiting the additstructure inherent in many real-
world problems. For example, as argued in previous chapteaay planning problems have
additive reward functions or multiple goals to be achieusath of which lend themselves to
approximation via linearly additive basis functions. Welexact solution methods where value
functions can grow exponentially in size during the solufpwocess and must be logically sim-
plified, here we maintain the value function in a compact fthat requires no simplification,
just discovery of good weights.

As an example, we may wish to approximate the value functanofir BOXWORLD
FOMDP from the last chapter as follows where we refer to djgetistances ob;(s) as
bCase;(s):

3b. BoxIn(b, paris, s) : 1
bCases(s) = ozIn(b, paris, s)
- : 0
(5.2)
3b, t. BoxOn(b,t,s) : 1
bCases(s) = — ozOn (bt 5) . (5.3)
(5.4)
3b, t. TruckIn(t, paris, s) A BoxOn(b,t,s) : 1
bCases(s) = — .
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and a specific instance df(s) asvCase(s):
vCase(s) =wy - bCasey(s) ® wy - bCases(s) G ws - bCases(s) (5.5)

Here we note that each basis function is relatively smallrapdesents a portion of state space
to which we would expect to assign some positive value in otdepproximate the 8x-
WORLD value function.

5.1.2 Backup Operators

Just as we defined an action backup operator for MDP valudifunscas a useful notation in
Chapter 3, we can do the same for FOMDP case representatignsos we are given a value
function in the forml/(s). Backing up this value function through an actié(i¥) yields a case
statement containing the logical description of stateswhald give rise toV/(s) after doing
action A(¥), as well as the values thus obtained.

However, due to the free variables in actid (), there are in fact two types of backups that
we can perform. The first34(®[.], regresses a value function through an action and produces
a case statement wiflee variabledfor the action parameters. The secoBd,-|, existentially
quantifies over the free variabl@sn B4@[.]. Thus, the application aB4[] results in a case
description of the regressed value function indicatingwilees that could be achieved agy
instantiation ofA(Z) in the pre-action state.

The definition of B[] is almost the same as tfiest-order decision theoretic regression
(FODTR)operator from Equation 4.22 in Chapter 4, except that we daeexplicitly add in
the reward. Slightly modifying our definitions from Sectiér8.3, we letw, (%), ..., n,(Z) be
the set of Nature’s deterministic action outcomes for sastib actionA(z).2 Then we define
BA@] as follows:

BAD[V (s)]

= [@{P(nj(f)> A(T), s) @ Regr(V (do(n;(7),5)))}] (5.6)

Defining BA@].] in this way makes it a linear operator with properties simitathe linear
operators we defined for factored MDPs in Chapter 3, Equatid@. 3Thus, if we apply this

2In general, the set of Nature’s choice actionsz), . . ., n,(¥) are associated with a stochastic actid{x)
and A(Z) will always be clear from context.
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operator to our linear-value function representation, @eethat it distributes to each first-order
basis function:

BADV (s)] = BA@

. =1
= wi- B [bi(s)] (5.7)
Having defined34(®[.], we now use it to defing4[.]:3
BAV(s)] = 37. {B*@[V(s)]} (5.8)

Unfortunately, if we applyB“[-] to our linear-value function representation in the follogi
manner

BAV(s)] = BY

k
= 37. { B wi- B [bi(s)]} (5.9)

we see tha34[-] is not necessarily a linear operator. The difficulty in trise is that the ex-
istential quantification of3[-] jointly constrains the backup of all basis functions thattam
the existentially quantified variable as a free variable.

However, all is not lost. To show how these problems can beyatéd, we begin with a
few definitions.

Definition 5.1.1. We say that a deterministic Nature’s choice actigir) affects a fluent” if
there is a positive or negative effect axiom that contairsn () in the body of the axiom and
Fin the head (c.f., Section 4.2.2). We say that a stochasticrad (z) affects a fluent’ if at
least one of Nature’s choice deterministic outcomgs’) of A(%) affectsF’. And we say that a
formula¢ is affected by a stochastit(z) action iff ¢ contains a fluent affected by(%); since
a case statement is defined as a logical formula, this defingktends to case statements.

Next, we note the following property:

3For simplicity, we assume that the reward is independent@farguments’ for any actionA(z) and thus
omit such reward dependencies here. However, if this watheatase, we could easily insert it in this equation
and make appropriate adjustments to our later equations.
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Property 5.1.2 When a basis function case stateméyit) is affected by a stochastic ac-
tion A(%), BA@[b;(s)] will contain the action argumentg as free variables. The inverse
of this property is also true: if a stochastic actid(i') does not affect a basis function s),
BA@]b,(s)] will not contain the action arguments as free variables.

To exploit this property, we let denote the set of indicesfor basis functions;(s) that
are affected by an action(7) (so that for alli € I}, BA@ [b;(s)] contains the free variables
7). Likewise, we let/, denote the set of indices of basis functidng) not affected by an
action (so that for alf € I/, BA@Ib,(s)] does not contain the free variablés Then, we
exploit the fact that thélz' is vacuous for case statements not containing free vasaidsd
remove these terms from the scope of #iequantification. This yields the following result
for B4 applied to a linear-value function representation:

) wibi(s)] (5.10)

i

BA

=P wB @ b)) | @ 37 | wB*@ [bi(s)]

iely iel}

Consequently, if no fluent occurs in more than a few basis fonstand few fluents are affected
by an action then we can reasonably expect the result of mgply” to retain some additive
structure.

As a concrete example to demonstrate the backup operatortharexploitation of addi-
tive structure, let us computg?[.] for our previously specified linear-value function from
Equation 5.5:

B¢ [yCase(s)] = 3t*, ¢ BT [yCase(s)] (5.11)
= 3t*, ¢ BYW D w, - bCasey(s) @ wy - bCases(s) ® ws - bCases(s)]
=3t ¢ {w; - B b Casey (s)] @ wy - BT [bCases(s))
Dws - Bd””e(t*’c*)[bCaseg(s)]}

. { 3b. BoxIn(b, paris, s) : 0.9 3b,t. BoxOn(b,t,s) : 0.9
=dt",c" Cw; - D wy -

¢ 0 i O

b, t. [t = t* A\ ¢* = paris A ey TruckIn(t, ¢y, s)]
®ws - | VTruckIn(t, paris, s)| A BozOn(b,t, s) 2 0.9
e .0
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Here, we note that the first and second basis functions weraffezted by thedrive(t*, c*)
action and thus their backup through this action is equitale a backup through aoop.
Since the third basis function is affected by the actibive(t*, ¢*) and this introduces the
action parameters andc* into the result of its backup, we can push the quantifiers jngb
this third case statement:

BY¢[yCase(s)] = 3t*, ¢*. Bt <) [yCase(s)]

3b. BozIn(b, paris, s) : 0.9 3b,t. BoxOn(b,t,s) : 0.9
:w:l ' [44 . O @ w2 ' 13 . O

b, t. [t =t* A" = paris A ey TruckIn(t, ¢y, )]
D@ws - I, c" S| VTruckIn(t, paris, s)] A BozOn(b,t, s) 0.9
¢ -0

Finally, we carry out the explicifit*, ¢* operation on the third case statement where we dis-
tribute the quantifiers inside the case partitions and sfynpt described in Section 4.2.3 of
Chapter 4. This allows us to remove tRé&", c* by rewriting equalities and exploiting the
non-empty domain assumption:

B¢ [yCase(s)] = 3t*, ¢*. BY" < yCase(s)] (5.12)
3b. BozIn(b, paris, s) : 0.9 3b,t. BozOn(b,t,s) : 0.9
:wl ' [44 . O @ w2 ' [44 . O

3b,t. [(Jey. TruckIn(t, ey, s)) V TruckIn(t, paris, s)| A BoxOn(b,t,s) : 0.9
_« 0

©® ws -

This example demonstrates the best cas&ftfr] where an action only affects one basis func-
tion thus allowing the other basis functions to be removedfthe scope of thez operator.
Then thedz operator can be easily applied to a single case statemdrawvincurring a repre-
sentational blowup that would otherwise occur if iéranged over a sum of case statements
and the explicit “cross-sumes was required.

Unfortunately in many cases, more than one basis functidirbeiaffected by an action.
For example, if we had computdgi™ea?[yCase(s)], all three basis functions would have been
affected by the action and we would have had to explicitly pota the “cross-sum of the
backups of all three basis functions. While this worst casectbely cancels many of the
benefits of linear-value approximation since additivedtite can no longer be exploited, we
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will see that by generating our basis functions in a regdechanner, we can often manage to
avoid computing the explicib, even whenrall basis functions are affected by an action. We
will discuss this aspect during basis function generation.

5.2 Approximate Solution Methods

In this section, we describe two useful linear-value appnation methods: first-order approx-
imate linear programming (FOALP), and first-order appraadenpolicy iteration (FOAPI).
Both of these methods are generalized from the propositibiiP case outlined in Chap-
ter 3, Section 3.3.2 to the first-order case. We do not covst-dider approximate value
iteration due to its issues with divergence in the grouna: €&sitsiklis and Van Roy, 1996;
Guestrinet al, 2001 that trivially extend to the first-order case. Indeed, ounaexperi-
mentation with first-order approximate value iteration ragghes has proved fruitless due to
divergence issues.

5.2.1 First-order Approximate Linear Programming

We now generalize the approximate linear programming (Aapyroach for propositional
factored MDPs from Equation 3.15 in Chapter 3 to first-ordermdDIf we simply substitute
appropriate notation, we arrive at the following formubatiof the first-order ALP (FOALP)
approach:

Variables: w; ; Vi <k
k

Minimize: " (P w; - bi(s)

s =1

Subject to:0 > R(s) & B4

k
. =1
S wi-bi(s); ¥ A,s (5.13)
i=1

As for ALP, our variables are the weights of our basis funetiand our objective is to mini-
mize the sum of values over all statesWe have one constraint for each stochastic action
(e.g., in BOXWORLD, A € {unload, load, drive}) and each state. Unfortunately, while the

objective and constraints in ALP for a factored MDP range @v@nite number of states this
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direct generalization to the FOALP approach for FOMDPs megudealing with infinitely (or
indefinitely) many situations.

Since we are summing over infinitely many situations in theAEP objective, it is ill-
defined. Thus, we redefine the FOALP objective in a mannepttesierves the intention of the
original approximate linear programming solution for MDRs the ALP approach of Equa-
tion 3.15, the objective equally weights each state andmzaas the sum of the value function
over all states. However, if we look at the case partitigngs), t;) of each basis function
b;(s) case statement (recall the case statement representatiorEfjuation 4.8), we note that
each case partition serves as an aggregate represenfagiamund states assigned equal value.
Consequently, rather than count ground states in our FOAlgttwe—of which there would
be an infinite number per partition—we suppose that eacls lhasction partition is chosen
because it represented a potentially useful partitionihgtate space, and thus weight each
case partition equally. Consequently, we rewrite the ab@&LEP objective as the following:

k k
> Duwi-bils) = Duwid bils) (5.14)
s =1 17:1 s )
- D 2

i=1 (¢t )ED;

Here we uséb;| to indicate the number of partitions in thi#h basis function. Thus, we see
that this approach can be seen as aggregating states wibaisiasfunction partition into one
abstract state and then weighting this abstract state ramifan importance w.r.t. the other
abstract states. When theare simply indicator functions for some conditions as we @ften
assume in this chapter, we note the objective further sfiaplio) _ . w; — every basis function
and its associated weight is equally important. Of coutlsis, golution requires approximat-
ing the original objective and thus FOALP does not represengxact generalization of the
ground ALP approach to the first-order case. We discuss tbegihs of weaknesses of such
an approach in our concluding remarks for this chapter.

With the issue of the infinite objective resolved, this lesaus with one final problem — the
infinite number of constraints (i.e., one for every situati® Fortunately, we can work around
this since case statements are finite. Since the vafoe each case partitio(w;(s), ¢;) is con-
stant over all situations satisfying the(s), we can explicitly sum over theuse;(s) statements
in each constraint to yield a single case statement repiagamof the constraints. The key ob-
servation here is that the finite number of constraints mepried in the single “flattened” case
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statement (for which we provide an upcoming example in Eqodi.17) hold iff the original
infinite set of constraints in Equation 5.13 hold.

To understand this, let us provide an example of the comssréor the drive action for
FOALP substituting our previously defined basis functiéi&se;(s) from Equation 5.4 for
bi(s), the results of the34 ¢ operator for these basis functions from Equation 5.12, had t
reward definition for BXWORLD given byrCase(s) in Equation 4.9 forR(s). We substitute
all of these directly into the constraint form of Equatiod®above:

3b. BoxIn(b, paris, s) : 10 3b. BozIn(b, paris, s) : 0.9
0> D wr -
e . 0 e L0
3b,t. BoxOn(b,t,s) : 0.9
D wWo
- : 0
o 3b, t. [(Fer. TruckIn(t, c1, s)) V TruckIn(t, paris, s)] A BoxOn(b,t,s) : 0.9
w3
_« . 0
3b. BozIn(b, paris, s) : 1 3b,t. BozOn(b,t,s) : 1
Sw - Swy -
¢ 10 - 10
b, t. TruckIn(t, paris, s) A BoxOn(b,t,s) : 1
Sws - (¢, paris, 5) CLLERS IV (5.15)
- .0

Next we perform an explicitc ando for some of the case statements, simplify the resulting
partitions, and distribute the weights into the partiti@ues:

0> 3b. BoxIn(b, paris, s) : 10 — 0.1 - w; o 3b,t. BoxOn(b,t,s) : —0.1 - wy (5.16)
— ¢ O = O
3b, t. TruckIn(t, paris, s) A BoxOn(b,t, s) 0 —0.1 - ws
@ | 2“A3b,t,c1. TruckIn(t, cq,s) A BozOn(b,t,s): 0.9-ws |; Vs
e : 0

To maintain our representation in a compact and perspictwusg, we define the following
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propositional renamings for the first-order formulae insthease statemertts:

¢1(s) = Fb. BoxIn(b, paris, s)

¢o(s) = Tb,t. BoxOn(b,t, s)

¢3(s) = 3b,t. TruckIn(t, paris, s) A BoxOn(b,t, s)
¢4(s) = 3b,t,c1. TruckIn(t, ey, s) A BozOn(b,t, s)

And finally, we can fully expand the to obtain an explicit representation all FOALP
constraints for thelrive action in our BD XWORLD example:

d1(8) A Pa(s) A ¢s(s) :0>10—-0.1-w; +—0.1-wy+ —0.1-ws
d1(5) A da(s) A =¢3(s) A pal(s) : 0>210—-0.1-wy +—0.1-wy+0.9-ws
d1(8) A da(s) A —p3(s) A —pa(s) 0>10—0.1-w; + —0.1"-wy
d1(8) A 2a(s) A ¢s(s) : 0>10—0.1-w; +—-0.1-w;
d1(8) A a(s) A mds(s) A pa(s) - 0>10—-0.1-w; +0.9 - ws
01(8) N —da(s) A —ds(s) A —pu(s) 0>10—-0.1-w; +—0.1-ws v
—91(8) A @a(s) A ¢3(s) : 0>—-0.1 w2+ —0.1-w;
—91(8) A @a(s) A =g3(s) A dals) 0> —-0.1-wy+0.9-ws
—1(s) A da(s) A —¢3(s) A =gals) 0> —0.1-ws
—¢1(8) A —a(s) A ¢3(s) : 0>—0.1-ws
—p1(8) A a(s) A —ps3(s) A ¢a(s) 0>0.9-ws
—01(s) A 2¢a(s) A —s(s) A —a(s) : 0>0
(5.17)

Here, if any case partition formula had been inconsistertywould have removed it and the
corresponding constraint.

While we note that technically there are an infinite humberarsfstraints (one for every
possible situatiors), there are only a finite number distinct constraints. In fact, the case
representation conveniently partitions the state spaceregions with the same constraint.
Thus, one approach to the FOALP solution would enumerat®alistent constraints for every
action and then directly solve the resulting LP. In additwthe above constraints for thieive

40ne will note that the renaming of first-order formulae wifiidpositional” variables is in the same spirit as
FOADDs. Consequently, we note that FOADDs prove to be anieffienethod for representing and performing
operations on the constraints that occur in FOALP and FOAPI.
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action in BOXWORLD, this approach would require us to carry out a similar pracedor the
unload, load, andnoop actions; however, once we did this, we would have all of thestraints
necessary for solving the FOALP first-order linear prograecgication.

However, as the number of basis functions increases intsigegnumber of constraints can
clearly grow exponentially in the number of case statementhe constraint, just as in the
propositional version where the number of constraints wasmential in the number of state
variables. We reviewed various techniques in Section 3@.2orking around this problem
in the propositional case, including the constraint geti@maechniques of Schuurmans and
Patrascti2001] used to efficiently generate a subset of the constraintsreztio solve the LP.
This suggests we might benefit by generalizing constrainegsion to solve first-order LPs.
But before we attack this problem specifically for FOALP, wieaduce first-order approximate
policy iteration that happens to define a first-order LP sintib FOALP.

5.2.2 First-order Approximate Policy Iteration

We now generalize approximate policy iteration from thepmsitional case to the case of
first-order approximate policy iteration (FOAPI).

To start off, FOAPI requires that we derive a suitable fingten policy representation from
a value functionV (s). For this, we can use the policy representation that we dotred in
Equation 4.28 of Chapter 4 updated to use B1d:] operator with our implicit linear-value
function representation df (s) from Equation 5.1 where we assumestochastic actions of
the form A;(Z):

7(s)[V(s)] = casemaxR(s) & U BA[V (s)] (5.18)
i=1..m
At this point, we know that the the result &f4:[-] may retain linear structure, however we
have not given a definition of the operator that can exploit additive structure. We return to
this issue in a moment, but for now assume that the explioitss-sum’s is applied to (1) any
additive structure remaining in the result of tRé:[-] operator and (2) the sum &f(s) and the
result of theu operator.

We will assume that this policy derivation method makes tiditeonal policy annotations
that were made for Equation 4.28. To provide an example, wallreCase(s) from Equa-
tion 5.5 and assume that we have the weight assignfnent= 10, w, = 0, w3 = 0} for this
linear-value function representation. This weight assignt essentially reduceg€ase(s) to
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a representation ofCase(s), so we letV (s) = rCase(s) and recall the result of our previous
policy instancer Case(s)[rCase(s)] derived in this instance:

7 Case(s)[rCase(s)] (5.19)
3b. BozIn(b, paris, do(a, s)) :19.0 — noop
=| 2“A 3t c. BoxOn(b*, t*, s) A TruckIn(t*, paris,s)| . 8.1 — unload(b*,t*)
i 0 — noop

We note that the weights we chose faFuse(s) made the derivation of the policy quite
trivial (by zeroing out the second and third basis funct)pss let us briefly digress to consider
a more complex case and its implications.{4#f; = 1,w, = 1,w; = 1}, the first issue one
might notice when attempting to derive a greedy policy id the U operator forces us to
perform an explicit “cross-sumé over its operands (assuming they retained some additive
structure afte’3“[] was applied). However, performing an explicit sum of therapés forces
policy derivation to require time and space that is expdaéimthe number of basis functions,
effectively cancelling out the representational benefitslmear-value function representation.
However, there are a number of ways to avoid this expondritalup:

1. We could attempt to exploit additivity in the policy repemtation with additional repre-
sentational machinery.

2. We could use the method of comparing each action Q-fume¢tianoop policy in the
spirit of Guestrinet al.[2001; 2002, in an attempt to extract a compact policy represen-
tation.

3. We could exploit assumptions in the specification of tr@dbaunctions that allow us to
achieve a compact policy representation.

While all of these options are viable, the simplest and masigitforward method for our
purposes comes from the third choice. However, since we havget covered basis func-
tion generation, we postpone this discussion until later @sume for now thatCase(s) is
compact and can be derived efficiently (i.e., without coasity policy representations that are
exponential in the number of basis functions).

For FOAPI approach, we will need to define a set of case statisnfier each actior;
that is satisfied only in the world states wheteshould be applied according tds). Conse-
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quently, we define an action restricted policy,(s) as follows:

ma;(s) = {{0, 1) (¢, 1) € m(s) and(¢, 1) — A}

Our previous policy example from Equation 5.19 allows usdow two example instantiations
T Caseuniond(s) andm Case,qop (s) Of action restricted policies:

7 Case ynioad(s)

—[3b. BoxIn(b, paris, do(a, s))]
A[Fb*, t*, c. BoxOn(b*,t*, s) A TruckIn(t*, paris, s)| : 8.1 — unload(b*,t*)

T Cas€noop(S)

3b. BozIn(b, paris, do(a, s)) :19.0 — noop
—“ A =[30*, t*, c. BoxOn(b*,t*, s) A TruckIn(t*, paris, s)| : 0 — noop

Now, we make two additional modifications#q,. Given that we know that every partition
of 74, contains one non-negated formula of the faft.¢(z*) (meaning if this formula can
be satisfied, executa,;(z*)), we briefly “unquantify” the formula and re-express it inrtes
of free variables — essentially, we remove th&. We refer to the result as,, ) since the
action variables are again free. Also, following the exagfl our policy indicator functions
from Equation 3.13 in Chapter 3, we convert the value of the statement to be.°> To make
this concrete, let us modify Case yni0q4(s) as described to yield Casepioadv- 1) (5):

7 Caseunioad(s*1+)(S) (5.20)

—[3b. BoxIn(b, paris, do(a, s))]
A[Fe. BoxOn(b*,t*, s) A TruckIn(t*, paris, s)| : 0 — unload (b*, t*)

Of course the only differences betweel'ase ynioaq(s) aNdm Case ynioaa(s¢+)(s) are that the
action variable$* andt¢* are now free variables and the valueSof has been converted
The reason for doing this will become apparent now that wededime the first-order LP for

5In Equation 3.13 we set all policy “partitions” where the mmponding action should be appliedit@nd
all other partitions to—oc so that the constraint would be trivially satisfied. In thetfiorder case, the case
representation affords us the ability to simply not repnes@y partitions where the policy would not be applied
as this will prevent any constraint from being applied faggé situations.
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FOAPI.

We can generalize approximate policy iteration to the firster case by calculating suc-
cessive iterations of weights](.i) that represent the best approximation of the fixed-pointeval
function for policy7((s) at iterationi. We do this by performing the following two steps at
every iteration after initializingw® = 0 andi = 1:

1. Obtain the policyr® (s) from the current value weighig“—") using Equation 5.18.

2. Solve the following first-order LP that determines thegis:(*) for the L., minimizing
projection of the approximate value function for policy)(s):

variables:w!” ... w(”
Minimize: 3 (5.21)
k
Subject to:3") > |R(s) @ 31" (Wng*)(s) © BAE) EB wj(.i) : bj(s)]>
j=1

3. If 70)(s) = 7w~ (s) (equivalentlyw® = 1) or 3 is less than a prespecified
tolerance then exit, else incremerand goto step (1).

Here we note that this first-order LP is an exact analogue ofign 3.12 from Chapter 3.
We usewfjgf*)(s) for two purposes: (1) as an indicator function to restriet #alidity of the
constraint for actiom only to those regions of state space whearghould apply according to
the policy, and (2) as a constraint to enforce action segati the freeB4@") variable backup
operator to be consistent with one of the policy partitibns.

We've reached convergender ) (s) = w(=1)(s) (or equivalentlyi® = =Y), And if
convergence is reached, the following theorem holds gikierptojection errop3® obtained
from the final LP solution of Equation 5.21:

Theorem 5.2.1.Let V(s) be the approximated value function obtained by the weigtitsof
the final LP solution of Equation 5.21 for FOAPI applied to aegm FOMDP where FOAPI
has converged. Let® be the objective value of this final LP solution. Then the rdbmunds
on Vx(s) (the value function obtained by acting according to the dyepolicy 7 w.r.t. V(s))

6As an aside, we also remark that the constraints represgnitzosic dynamic programming step under policy
restrictions, thus also enabling a form of successive agapiation in first-order MDPs.
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derived from pluggingg in for 3 in Equation 2.19 hold for all possible finite ground domain
instantiations of this FOMDP.

Proof. See Section B.2 of Appendix B.

Thus, FOAPI provides us with an approximate solution methad provides error bounds
that hold forall possible domain instantiations when convergence is aidaiBut what do
we do if FOAPI does not converge? Although we don't providemnfal proof, loss bounds
should still be possible to guarantee for a policy derivednfiFOAPI if the algorithm did not
converge. In the case of a (ground) MDP, such a loss boundecaarbputed from the sum of
discounted projection errors resulting from each iteratibapproximate policy iteration. For
an explanation and derivation of this result, we refer tlagleg to Section 3.2.4 @uestrin et
al. [2004.

The final question remaining for FOAPI is how to solve the fosder LP given in Equa-
tion 5.21. First, we note that it is simply a mechanical pesc® write out the exact form of
the constraints of Equation 5.21 on every iteration. To@ahia useful constraint form, it is
important to explicitly compute théz* operator in each constraint in a similar manner to that
done for theB“[-] operator. Once this is done, we will have an additive formhef¢onstraints
similar to those observed for FOALP in Equation 5.15. Thestjoa again is how to solve this
first-order LP without enumerating all of the constraintshswn previously for FOALP. We
tackle this problem next.

5.3 First-order Linear Programs

All linear-value approximation methods require the speatfon and solution of &rst-order
linear program (FOLP) A FOLP is nothing more than a standard linear program wheze t
constraints are written in terms of a sum of case statemembsavcase partition values may
be specified as linear combinations of the weights. Howafécjently solving FOLPs poses
a number of difficulties and we work through efficient solagao these difficulties in this
section.
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5.3.1 General Formulation

A first-order linear program is specified as follows:

Variables:wy, ..., wy ;
Minimize: f(wy, ..., wy)
Subject to:0 > casey 1 (W, s) & ... casey (W, s) ; Vs (5.22)

0 > casen, 1(W,s) @ ... D casepn(W,s); Vs

The variables and objective are as defined in a typical LRyte difference being the form of
the constraints. We allow thigin each partition¢;, ¢;) of case(w, s) to be linearly dependent
on the weightsi (e.g.,t; = 3w;+2w,). We note that the first-order LPs for FOALP and FOAPI
can be cast in this general form. As previously discussediimF®ALP example, we could
simply compute the explicit “cross-sund to flatten out all sums into a single case statement
that enumerated all constraints as in Equation 5.17. Howéwis could be inefficient as it
scales exponentially in the number of summed case statem&nttunately, we can extend
constraint generation methods used in factored M[¥etuurmans and Patrascu, 2D@ithe
first-order case as we show next.

5.3.2 First-order Cost Network Maximization

Recalling our discussion of constraint generation for trmugd case from Chapter 3, there
were two important components that enabled an efficientisolu First, we must be able to

rewrite the first-order LP constraints in the following fatwhere the RHS of the constraint
assumes the form of a cost netwdrk:

0 > max[case; (W, s) & ... & case, (W, s)] (5.23)

Second, we need to show that we can efficiently generate tlx@mzing value within this
first-order cost network without enumerating all combioas of assignments to each case
statement (which grows exponentiallyri.

"While we have previously used casemax for maximization oases, we note that here we are just interested
in the maximum value that is possible via a consistent jalgction of case partitions from each case statement
in the constraint.
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Algorithm 8: FOMax(C,(R; ... R,)) — (S, v)

input 1 (1) AsetC = {casey,...,casey,}.
(2) An ordering(R; ... R,,) of all relations inC.
output  : (1) The maximum value achievable.
(2) A setS of partitions{{(¢;, t;) € case;}fori=1...nstv=t +...+t,.
begin
/I ConvertC into CNF
for i =1...n)do
foreach ({(¢;, ;) € case;(s)) do
| Convertg; to a set of CNF formulae.

foreach (relation R € (R; ... R,,) (in order))do

/I Divide C into two sets of cases based on whether they coritain
Cr = {case;|Vj.((¢;,t;) € case;) N ¢; does not contain relatioR }
O = {case;|3j.((¢;,t;) € case;) A ¢; contains relation?}
Remove all case statementg(f, with their explicit “cross-sum?s.

Il C is now a single case statement angis a set of CNF formulae for allp;, t;) € C%,
foreach ((¢;,t;) € C4, in order from highest to lowest valudp
Resolve all clauses if; (including new resolvents) on relatidf
Remove all clauses ifn; containingRR.
if (0 € ¢;) then
| Discard(¢;,t;) and continue with nextp;, ¢;).
foreach ((¢;,t;) € C, wheret; > t;) do
if (¢; 2 ¢; (modulo variable renaming}hen
L | Discard(¢;,t;) and continue with next;, ¢;).

L c={ciyucy
vi=0; S:=0
foreach (maximal value partition{¢;, ¢;) of eachcase € C) do
| v:=wv+t;; S:=SU allpartitions from inpuC' contributing to(¢;, t;)

Returnv, S.

end

To determine thenax, in this form of the constraints, we provide t#& Maz algorithm
in Algorithm 8 that efficiently carries out this computatioft is similar to variable elimi-
nation[Zhang and Poole, 1994except that we use first-order ordered resolution in pldce o
propositional ordered resolution. Thus, we term this galimsd variable elimination technique
used byFOMax to berelation elimination We provide a concrete example of the application
of FOMaz in Figure 5.1 in the context of the first-order constraintg@ation algorithm intro-
duced in the next section.

We note that the ordered resolution strategy we are using ikerot refutation-complete
in that it may loop indefinitely at an intermediate relatidménation step before finding a
latter relation with which to resolve a contradiction. TiEgn unavoidable consequence of the
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fact that refutation resolution for general first-orderdhes is semidecidable. Nonetheless, we
note that when the resolution procedure does finitely teateinthen the conjunction of case
partition formulae returned b¥OMaz is guaranteed to be satisfiable as a consequence of the
completeness of refutation resolution.

From a practical implementation standpoint, it is necgstabound the number of reso-
lutions performed at each relation elimination step to pnéwnon-termination of'OMax due
to an infinite number of resolutions. This renders the atborirefutation-incomplete and thus
may generate unnecessary constraints corresponding #&disfiable regions of state space.
While these constraints serve to overconstrain the set sitfieasolutions, this has not led to
infeasibility problems in practice.

5.3.3 First-Order Constraint Generation

We can use thé'OMaz algorithm to efficiently find the maximal constraint violati when we
have constraints of the form in Equation 5.23. This allowsougefine the following first-order
constraint generation algorithm where we have specifiecessmtution tolerance:

1. Initialize LP with@ = 0, i = 0, and empty constraint set.

2. For each constraint in the cost-network form of Equatid@85find the maximally vio-
lated constraint”' (if one exists) using thé’OMazx algorithm applied to the constraint
instantiated withz’.

3. If C’s constraint violation is larger thamaddC' to the LP constraint set, otherwise return
W' as solution.

4. Solve LP with new constraints to obtaifi*!, goto step 2

In first-order constraint generation, we initialize our LRhan initial setting of weights,
but no constraints. Then we alternate between generatmgfraints based on maximal con-
straint violations at the current solution and re-solving ILP with these additional constraints.
This process repeats until no constraints are violated anblave found the optimal solution.
In practice, this approach typically generatas fewer constraints than the full set, which
would be exponential in the number of case statements indhsti@int. To demonstrate this,
we provide a simple example of finding the most violated aamstin Figure 5.1.

Using first-order constraint generation, we can now effityesolve the first-order LP from
Equation 5.22, which forms a subroutine of both the FOALP B@&PI algorithms.



Suppose we are given the following hypothetical constraint specificatianffi@t-order linear program:

Vb, c. Dst(b,c) D BoxIn(b,c,s) : 10 3b, c. Dst(b,c) N —~BozIn(b,c,s): w 3t, c. TruckIn(t, c, s) : we )
w5 L 0

OZmaX( [13 . @ [14 . @
s - INE

Suppose our last LP solution yielded weights = 2 andwy = 1. We can efficiently compute the most violated constraint (if one exis
evaluating the weights in the constraint and applying #f@Max algorithm. We begin by converting all first-order formulae to CNF wh
c,...,cg are Skolemized constants:

>
0= mgx( {Dst(c1,c2), 7 BozIn(cy,c2,5)} 1 0 © {—=Dst(b,c) V BoxIn(b,c,s)} -2 © {—~TruckIn(t,c,s)} : 0

{—=Dst(b,c) V BoxIn(b,c,s)} :10 {Dst(c3,ca), " BoxIn(cs,ca,8)} 1 2 {TruckIn(cs,ce,s)} : 1 )

Assume the relation elimination order BoxIn, Dst, TruckIn. We enter the main loop d&fOMaz and begin by eliminating th&oxIn relation:
we take the cross-sum of case statements containidtypz/n, resolve all clauses in each partition (including all new resolvents), @ndave al
clauses containin@oxIn (indicated by struck-out text):

{=Dstlbrey-Boxknlbrers), Dst(cs, c4), =Boxlnlesrersy,—Dst(cs, cq), 0 } 1 12
1 =Dstthoer s Borluihoeosy | : 08 {TruckIn(cs,ce,s)} : 1
>
0= mgx( {Dst(c1,c2), Dst(cs, c4), =BoxInteryeays), =Boxln{esrers) } 29 {=TruckIn(t,c,s)} : 0
{=Dst{bre)vBozln{brers) Dst(c1, c2), =Bozlnlersess),~Dst(cr, c2), 0 } 1 -2

Because the partitions valué& and —2 contain the empty claugk(i.e., they are inconsistent), we can remove them. And because the pant|
value8 dominates the partition of valuk(i.e.,2 < 8 and the clauses of the val@gartition are a superset of the clauses of the vaiyartition),
we can remove it as well. This yields the following simplified result:

{TruckIn(cs,ce,8)} : 1
> :
0w [T78] e i AT

Is) by
lere

tion

From here it is obvious that thést elimination step will have no effect and ti&uckin elimination step will yield a maximal consistent

partition with value9. Since this is a positive value and thus a violation of the original constraint,amegenerate the new linear constra
0 > 10 + —w; + wo based on the original constituent partitions that led to this maximal constvéotetion.

nt

Figure 5.1: An example use of FOM&Ato find the maximally violated constraint during first-or@@nstraint generation.
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Algorithm 9: BasisGen(FOMDP, FOALP /FOAPI, 7,n) — B

input : (1) A FOMDP specification.
(2) A solution method (FOALP or FOAPI)
(3) a value threshold
(4) an iteration limitn
output  : A setB of basis function$ Case;(s) and corresponding weights;.
begin
/I Note: rCase(s) may be a sum of cases, so we can start with many basis functions
B := {rCase(s)}
for(:=1...n)do
foreach (bCase;(s) € B) do
foreach ({¢;(s),t;) € bCase;(s)) do
foreach (deterministic actiomd; (%)) do

—¢; A 3T Regr(¢i(do(Ai(7),s))) 1

“
.

Solve for the weightsi using FOALP or FOAPI.
foreach (bCase;(s) € B) do
if (w; < 7)then
| DiscardbCase;(s) from B and ensure it is not regenerated.

if (no new basis functions generated on this iteratithren
| ReturnB, w.

ReturnB, w.

end

5.4 Automatic Generation of Basis Functions

The use of linear approximations requires a good set of Haaigtions that span a space
that includes a good approximation to the value function. l&veome work has addressed
the issue of basis function generatidtoupartet al., 2002a; Mahadevan, 200510 methods
have been specifically targeted to generate basis funatipisiting first-order structure for
FOMDPs. We consider a basis function generation methoditiaats on the work of Gretton
and ThiebauxX2004, who use inductive logic programming (ILP) techniques tastouct a
value function from sampled experience. Specifically, theg regressions of the reward as
candidate building blocks for ILP-based construction efyhlue function. This technique has
allowed them to generate fully erstage-to-go optimal policies for a range of Blocks World
problems.

We leverage a similar approach for generating candidates basctions for use in the
FOALP and FOAPI solution techniques. Algorithm 9 providesoaerview of our basis func-
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tion generation algorithm. The motivation for this appioas as follows: if some portion of
state space has valuev > 7 in an existing approximate value function for some nondtivi
thresholdr, then this suggests that states that can reach this regenféund by Regrf)
through some deterministic action) should also have reddervalue. However, since we have
already assigned value g we want the new basis function to focus on the area of staieesp
not covered by) so we negate it and conjoin it witRegr(¢).

As a small example, given the initial weighted basis funttiGase; (s) = rCase(s) from
BOXWORLD,

3b. BoxIn(b, paris, s) : 10
bCaser(s) —w - : ozIn(b, paris, s) ol (5.24)

we would derive the following weighted basis function fréiase; (s) when considering de-
terministic action4; = unloadS(b*,t*) during basis function generation:

bCases(s) = (5.25)

—[3b. BoxIn(b, paris, s)| A [3e. BoxOn(b*,t*, s) A TruckIn(t*, paris, s)] : 1
_« 0

wsy -

If one examines the form of these two basis functions, théntayonality” inherent between
the new basis functions and the ones from which they wergetbellows for significant com-
putational optimizations. For example, we note that sihegtop partition ofb Case;(s) takes
the form¢, and the top partition ofCases(s) takes the form-¢; A ¢o, these two partitions are
mutually exclusive and could never jointly contribute te tralue of a state. Thus, when two
basis functions are orthogonal in this manner, we can dffiigigoerform an explicit “cross-
sum” @ on them to obtain a singleompactcase statement representing both basis functions:

bCasey2(s) =bCase;i(s) & bCases(s) (5.26)
3b. BozIn(b, paris, s) Jwy - 10
= | =[3b. BozIn(b, paris, s)| A [e. BoxOn(b*,t*, s) A\ TruckIn(t*, paris, s)| : )
o« : 0

This style of basis function generation also has many coatiomal advantages for FOALP
and FOAPI. To see this, we return to our original discussimmcerning the fact that thB“||
operator as defined in Equation 5.10 will not be able to pxesadditive structure when all
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basis functions in the linear-value function represeotasire affected by the stochastic action
A. Recalling Property 5.1.2, if all basis functions are affeldby A, then the backu @]

of each basis function will contain free variablésequiring their explicit “cross-sum” to be
computed when théz operator ofB“[-] is applied. However, in the best case, if the explicit
“cross-sum” was already pre-computed foorthogonal basis functions by merging them into
a single case statementof- 1 partitions then there will be no explicit “cross-sum” to foem
during BA@|.] and thedi operator can be directly applied without a representakiolosvup.

Of course, since different actions generate different ohegonal basis functions from
the same “parent” basis function, it will not generally htidt all basis functions are pairwise
orthogonal to each other. Nonetheless, if we can exploitrthiial orthogonality ofubset®of
the basis functions to efficiently carry-out their expli@toss-sum”, then we can still achieve
an exponential time speedup relative to the worst-caseedi th-] operator that requires the ex-
plicit computation of the “cross-sum”. To see how subsetsasiis functions can be efficiently
summed, we refer back to Equation 5.26 that provides an ebessum of two orthogonal basis
functions. In general, any mutually orthogonal subset siffunctions can be merged in this
way.

The policy derivation of FOAPI can be similarly efficient senit relies on the application
of the B4[-] operator. And the exploitation of orthogonal basis funtsion the partial computa-
tion of the “cross-sum” in the linear-value representatitso facilitates thé'OMazx algorithm
since it lowers the worst-case complexitylof Max where all case statements must be explic-
itly summed. Thus, for both FOALP and FOAPI, we note that we &gploit orthogonal basis
function generation to mitigate exponential space and sicading in the number of basis func-
tions, where worst-case exponential scaling arises atwspoints in both solution algorithms
due to the need to explicitly compute the “cross-sum” of thedr-value representation.

On a final note, while we do not claim that this method of basmetion generation will be
appropriate for all domains, we will next demonstrate thatarks reasonably well for many
stochastic planning problems and that it is relatively efficin this case.

5.5 Empirical Results

We discuss a number of empirical results on PPDDL planniraplpms from the ICAPS
2004/[Littman and Younes, 2004land ICAPS 2006Gereviniet al, 2004 International Prob-
abilistic Planning Competitions (IPPC). We divide the distois of results according to each
competition in order to reflect the differences in the contioet setup, the data collected, and
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the specific planners that entered each competition.

5.5.1 ICAPS 2004 Probabilistic Planning Problems

We applied FOALP and FOAPI to thedWORLD logistics and BOCKSWORLD proba-
bilistic planning problems from the ICAPS 2004 IPPGttman and Younes, 2004aln the
BoxWORLD logistics problem, the domain objects consist of truckanpk, boxes, and cities.
The number of boxes and cities varied in each problem instdnt there were always 5 trucks
and 5 planes. Trucks and planes are restricted to particulées between cities in a problem
instance-specific manner. The goal iI®BNORLD was to deliver all boxes to their destina-
tion cities and there were costs associated with each acfibe transition functions allowed
for trucks and planes to stochastically end up in destinatmther than that intended by the
execution of their respective drive and fly actions&.d8 KSWORLD is just a stochastic version
of the standard domain where blocks are moved between theaall other stacks of blocks
to form a goal configuration. In this version, a block may bepgred while picking it up or
placing it on a stack according to some probability.

We used the VampirERiazanov and Voronkov, 2002heorem prover and the CPLEX 9.0
LP solver in our FOALP and FOAPI implementations and appiedbasis function generation
algorithm given in Algorithm 9 to a FOMDP version of these HRDdomains. It is important
to note that we generate our solution to th@®VoRLD and BLOCKSWORLD domains offline.
Since each of these domains has a universally quanitifiedrcewaur offline solution is for a
generic instantiation of this reward following Section 4fChapter 4. Then at evaluation time
when we are given an actual problem instance (i.e., a setrofttoobjects and initial state
configuration), we decompose the value function for eachiggtanstantiation of the reward
and execute a policy using the additive decomposition amir@lso outlined in Section 4.7
of Chapter 4. We do use additional axioms to restrict certaianti slots to have functional
characteristics, e.g. in@&WORLD, we restrict trucks to only be in one city. Unfortunately,
this information restricting legal states is not encodeBRDDL, but required for our solution
(otherwise additional constraints for illegal states agaayated and these adversely influence
the basis function weights). We do not enhance or otherwisdifsnour offline solution once
given actual domain information although this would be asrase for future research.

We set an iteration limit of 7 in our offline basis function geation algorithm and recorded
the running times per iteration of FOALP and FOAPI; thesesai@vn in Figure 5.2. There ap-
pears to be exponential growth in the running time as the mumbbasis functions increases.
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Offline Solution Time for Each FOALP/FOAPI Basis Gen. Iteration
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Figure 5.2: FOAPI and FOALP solution times for theoBWORLD and BLOCKSWORLD
problems vs. the iteration of basis function generation.

However, we note that if we were not using the “orthogonalSibdunction generation, we
would not get past iteration 2 of basis function generatioa tb the prohibitive amount of
time required by FOALP and FOAPI in this case 10 hours). Consequently, we can conclude
that our basis function generation algorithm and optiniret have substantially increased the
number of basis functions for which FOALP and FOAPI remaiablé solution options. In
terms of a comparison of the running times of FOALP and FOAM,apparent that each per-
forms better in different settings. INndAXWORLD, FOAPI takes fewer iterations of constraint
generation than FOALP and thus is slightly faster. InoBKSWORLD, the policies tend to
grow more quickly in size because the Vampire theorem prbasrdifficulty refuting incon-
sistent partitions on account of the heavy use of equalitifismlFOMDP domain. This impacts
not only the solution time of FOAPI, but also its performaasave will see next.

We applied the policies generated by the FOALP and FOAPIlivessof our basis func-
tion function generation algorithm to threeoBWORLD and five B.OCKSWORLD problem
instances from the ICAPS 2004 IPC. We compared our plannirtgrsyt® the three other top-
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Problem Competing Probabilistic Planners
NMRDPP | mGPT | Humans | Classy | FF-Replan || FOALP | FOAPI
bx c10 b5 438 184 419 376 425 433 433
bx c10 b10 376 0 317 0 346 366 366
bx c10 b15 0 - 129 0 279 0 0
bw b5 495 494 494 495 494 494 490
bw b1l 479 466 480 480 481 480 0
bw b15 468 397 469 468 0 470 0
bw b18 352 - 462 0 0 464 0
bw b21 286 - 456 455 459 456 0

Table 5.1: Cumulative reward of 5 planning systems and thelFo#nd FOAPI (100 run avg.)
on the BoxWORLD andBlocks Worldprobabilistic planning problems from the ICAPS 2004
IPPC(- indicates no data).dWORLD problems are indicated by a prefix lmt and followed
by the number of citieg and boxes used in the domain. BOCKSWORLD problems are
indicated by a prefix obw and followed by the number of blocksused in the domain.

performing planners on these domafnstMRDPPis a temporal logic planner with human-
coded control knowledgeGrettonet al., 2004; mGPTis an RTDP-based plannEBonet and
Geffner, 2004 (Purdue-)Humanss a human-coded planneGlassyis an inductive policy
iteration planner, an&F-Replan[Yoon et al., 2004 (2004 version) is a deterministic replan-
ner based on FPHoffmann and Nebel, 2001 Results for all of these planners are given in
Table 5.1.

We make four overall observations w.r.t. these results:

1. FOALP and FOAPI produce the same basis function weightstia@refore the same
policies for the BB XWORLD domain.

2. We only used 7 iterations of basis function generation thisl effectively limits the
lookahead horizon of our basis functions to 7 steps. A loekdlof 8 would be required
to properly plan in the final BXWORLD problem instance and thus both FOALP and
FOAPI failed on this instance.

3. Due to aforementioned problems with the inability of FQAddetect inconsistency of
policy partitions in the BOCKSWORLD domain, its performance is severely degraded
on these problem instances in comparison to FOALP. FOALR ¢m¢ use a policy
representation and thus does not encounter these samemgobl

8The names we use for the planners are intended to intuitilahpte their approach are not necessarily their
given names. See the associated references for details.
®We could not increase the number of iterations to 8 due to mgoanstraints.
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4. Itis important to note that in comparing FOALP and FOAPIHe other planners, NM-
RDPP and Humans used hand-coded control knowledge. FF-Reptaa very efficient
search-based deterministic planner that had a significkairdiage because near-optimal
policies in these specific goal-oriented problems can baiodt by assuming that the
highest probability action effects occur deterministicalnd making use of classical
search-based planning techniques. The only fully autonsnstochastic planners were
MGPT and Classy, and FOALP performs comparably to both oéthsners and out-
performs them by a considerable margin on a number of probistances.

5.5.2 ICAPS 2006 Probabilistic Planning Problems

We now present results for FOALP on the ICAPS 2006 probataifganning competition. For
these problems, we do not present results for FOAPI. As vimghICAPS 2004 competition
problems, the difficulty with FOAPI is that its policy repeggations tend to grow combina-
torically as more basis functions are added during basistifum generation until the policy
size outstrips the ability of the theorem prover to identifgonsistent policy partitions. This
severely degrades performance and prevents scaling to laemahbasis functions required to
obtain reasonable performance on these planning problems.

Consequently, we present results for FOALP applied to thoeeaihs from the compe-
tition: BLOCKSWORLD, TIREWORLD, and HEVATORS. We've already covered the basic
description of BOCKSWORLD, one of the main differences in this competition being that t
table was not considered to be a block and thus there weréaddiactions for picking up
and putting blocks down on the tableIREWORLD is a relatively simple problem where the
goal is to drive from a goal city to a destination city, whikeifig able to pick up a spare tire in
some cities. One stochastic outcome of driving betweeescisi that a tire may go flat and can
only be fixed when a spare tire is present. Thus, routes wihsdihat contain spare tires are
preferred to other routes that do not. Finally,EVATORS is a problem with a grid-like state
space. The horizontal dimension of the grid correspondssdipns on a floor and the vertical
dimension corresponds to different floors. There may beaébes at each position that can
move vertically between floors. An agent can occupy one joos@in one floor and can move
left or right between positions or can move into or out of agvator if it exists at the given
floor or position. Any elevator can be moved up or down indeleetly of whether the agent
resides in it. There can be gates at certain positions, wirighabilistically teleport the agent
back to the start position of floor 1, position 1. Finally thare a number of coins at different
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Figure 5.3: The performance of five planners on the ICAPS 206&WORLD planning com-
petition problem. The domain instantiations become laagethe problem instance ID in-
creases.

known positions and the goal is to retrieve them all.

Our solution approach is identical to that used for the ICAB&42problems. To recap, we
used the Vampire theorem prover and the CPLEX 9.0 LP solvaurir®@ALP implementation
and applied the basis function generation algorithm giveRigure 9 to a FOMDP version
of these PPDDL domains. For theoBWORLD and BH EVATORS problems that had universal
rewards, we additively decompose their solution accortbr@gection 4.7 of Chapter 4. As done
before, we specified additional background theory axionssrileing constraints on functional
slots of fluents that were required to obtain reasonabldisaki(e.g., only one block could be
directly stacked on another block inBcksWoRLD). Without these domain axioms, FOALP

erroneously generates constraints for illegal statesla@gktextra constraints adversely affect
the solutions obtained.

In Figures 5.3, 5.4, and 5.5, we provide data for FOALP andpiing planners that spec-
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Figure 5.4: The performance of five planners on the ICAPS 2Q@&/ETORS planning compe-
tition problem. The domain instantiations become largeghagroblem instance ID increases.

ifies the number of problem instances solved, the onlinetisoligeneration tim¥, and the

average number of actions required to reach the goal in esd®essful problem. We compare

to the following planners that entered the competition:RR)G [Buffet and Aberdeen, 2006

which uses policy gradient search in a factored representat the Q-functions; (23fDP[Te-
ichteil and Fabiani, 20déwhich uses SPUDD-style ADD-based dynamic programrhiitmpy
et al, 1999 with reachability constraints based on initial state kremigle; (3)Paragraph[Lit-

tle, 2004, which uses an extension of Graphpldium and Furst, 1995for probabilistic

planning; (4)FF-Replan[Yoon et al,, 2007 (2006 version) is a deterministic replanner based
on FF[Hoffmann and Nebel, 2001 We note that all of the planners in this competition aside
from FOALP are ground planners in that they use a propositicgpresentation of a PPDDL
problem for a specific domain instantiation.

100ffline solutions were permitted 4 hours per problem to remaaihin the overall competition time limit of 24
hours. However, since the offline solution time can be amedtiover an indefinite number of domain instances,
we do not report this in the online time.
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Figure 5.5: The performance of five planners on the ICAPS 2006d&SWORLD planning
competition problem. The domain instantiations becomgelaas the problem instance ID
increases.

The results vary by problem, so we explain each in turn. IREWORLD, FOALP’s policy
allowed it to solve most problems although we note that atingrto the average number of
actions to the goal, its policy was suboptimal in comparispather planners. In this case, it
appears that the approximation inherent in the FOALP amprésred poorly in comparison to
a deterministic replanner like FF-Replan that could perfagarly optimally on this problem.
We note that FOALP’s slow policy evaluation on this problendue to the transitive nature of
the road connection topology and the lack of optimizatioR@ALP’s logical policy evaluator.
In ELEVATORS, the top three planners including FOALP all performed coraply with the
deterministic replanner performing slightly faster thlae tthers, again due to the suitability
of this domain for deterministic replanning and the relatpeed of that approach. The goals
in this domain are highly decomposable and FOALP thus bedkdiibstantially from its addi-
tive goal decomposition approach. In8cksWoRLD, FOALP shows the best performance,
solving more problems, taking less time on the hard instgrmed reaching the goal with the
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fewest actions. In this case, FOALP’s performance owes toasiwvantages: (1) first-order ab-
straction in BocksSWORLD considerably helps the system avoid much of the combiratori
complexity that the ground planners face, and (2) the agditpal decomposition, although not
optimal for all BLOCKSWORLD problems, performed very well on these problem instances.

5.6 Summary

In this chapter, we introduced a first-order generalizatiblinear-value approximation using
a linear combination of first-order basis functions. Thenimteoduced generalizations of the
backup operators used to exploit linearity in the dynamegpamming backup of this linear-
value representation. We next introduced the linear-vapyeoximation techniques of FOALP
and FOAPI for FOMDPs and cast them as the setup and solutiepexfialized first-order
linear programs. We introduced the general first-orderalingogram (FOLP) formulation
that captures both the FOALP and FOAPI solutions along with dolution to a FOLP via
constraint generation methods. Constraint generationadsthequired the efficient solution
of a first-order cost network and we introduced #@Max algorithm for this purposel’OMazx
essentially performs a lifted version of variable elimioatthat we ternrelation elimination
Finally, we introduced a technique for basis function gatien that can be exploited efficiently
in the linear-value function representation, the backugrators, theFOMazx algorithm, and
the policy representation used by FOAPI.

Having solved all of these problems, we applied our techesqio problems from the
ICAPS 2004 and ICAPS 2006 International Probabilistic Plagr@ompetitions, comparing
to a number of other planners in the process. While FOAPI enag@erform poorly due to
a blowup in its policy representation and inability to scidea reasonable number of basis
functions on most problems, FOALP fared comparatively walen using the additive goal
decomposition technique for universal rewards from ChagteSection 4.7. In some cases,
FOALP was able to exploit first-order structure in the domaml in terms of success rate
and the number of actions to the goal, it could often perfompar or better than hand-coded
policies, learning-based approaches, constraint-bggdaches, and deterministic replanning
approaches. The key to FOALP’s success in these cases iswlaatthe only first-order plan-
ner and thus could exploit relational structure that theotiround planners could not. And
perhaps the key to extending its success is to combine ittraittitional online techniques used
by the other planners in order to enhance its performance.

In addition, it would also be useful to revisit the compudatbf the objective in the first-



CHAPTERS. LINEAR-VALUE APPROXIMATION FORFOMDPs 158

order LP for FOALP since it was an approximated version of uhéorm state-relevance
weighting assumption of the ground ALP objective. Theretax@reasons to revisit this com-
putation: (1) as suggested by de Farias and Van [R693, there may be better alternatives
to uniform state relevance weighting, and (2) there may heebEOALP approximations of
the objective than the approach we have taken here. Whileutihertt objective allows for effi-
cient computation and appears to yield reasonable perfarenia practice, even better results
may be attainable if wadaptthe importance of each weight in the FOALP objective. For
example, we might attempt to give more importance to weigtpsesenting more frequently
visited case partitions of basis functions by computingekeected occupany probability of
each basis function partitidule Farias and Van Roy, 20D3

Notwithstanding additional enhancements, our presesativalue function approximation
results are very encouraging in general for the lifted firster approach to planning that we
motivated in Chapter 4. However, in addition to further picadtresearch to enhance the results
of FOALP and related methods, there are still entire classpsoblems that our first-order ap-
proach presented so far can neither represent domainendeptly, nor solve efficiently. For
example, when we introduced factored MDPs in Chapter 4, weedotheir ability to rep-
resent factored action spaces and additive rewards. Winfetly, in the case of FOMDPs,
when these factored actions and additive rewards scaletgtdomain size, we do not have
the representational machinery to specify such a problahowi resorting to domain-specific
representations. TherYSADMIN problem is an ideal example of this — every computer could
independently fail or reboot on each time step and the reseaitbd additively with the total
number of computers that were running. FOMDPs do not cugrdrave the ability to rep-
resent this indefinite factored structure and thus in the¢ deapter, we turn to representing
these problems in a domain-independent manner and extetigdrsolution techniques from
this chapter to efficiently solve them.



Chapter 6

Factored First-order MDPs

So far we have defined the factored MDP model in Chapter 3 and@h&DP model in Chap-
ter 4. However, it is interesting to note that many factorddg cannot be compactly specified
in the FOMDP formalism previously defined where we use the msmpactthroughout this
chapter to mean “the size of the representation is indeperdéhe size of any particular do-
main instantiation”. For example, we formalizedSADMIN as a factored MDP in Chapter 3,
but we have not yet defined it as a FOMDP. There are two diffe=iiin doing this: First,
SYsSADMIN has an additive reward that scales with the number of comgputet the FOMDP
formalism does not have the means for compactly specifyisgm that scales with the do-
main size. Second,YSADMIN has a factored action space that does not make a strong frame
assumption —everycomputer can independently reboot or crash as a result @ictien exe-
cuted. To model this compactly, we need to factor actioncedfento a number of independent
aspectsthat scales with the domain size and specify a factored jwinibability distribution
over aspects that exploits the (probabilistic) independenherent in their definition. In the
current FOMDP formalism, the representation of this joirgtribution cannot be specified
compactly.

In general, SSADMIN is just a motivating example for a much larger class of retstlly
structured MDPs that we refer to ésctored FOMDPs As another example of a factored
FOMDP, we can easily imagine a simple factored variant okB/ORLD that we call F-
BoxXWORLD, where a box loaded on a truck may independently “drop” daéftiluck at each
time step with some small probability if it is not otherwisepécitly loaded or unloaded, and
where the “drop” of each box is probabilistically independeNhile we will still assume the

1Roughly defined, an aspect is an independent outcome of imm ast used previously in Chapter 4.
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same existentially quantified reward as in the originalxBVoRrLD (c.f., Equation 4.9), the
need to model the additional “drop” aspects for each box wehstochastic action is executed
forces us to consider a transition distribution whose autef@vent space scales exponentially
with the domain size, hence whose representation usingndieistic Nature’s choice actions
scales exponentially with domain size. In general, modeérogenous events in FOMDPs
using a number of action aspects that scales linearly in dneath size will have a Nature’s
choice deterministic action representation that scalpsmantially in the number of aspects
and thus exponentially in the domain size.

The factored FOMDP formalism that we will introduce allonsto compactly represent
some FOMDPs such asrSADMIN and F-BoxWORLD that cannot be compactly represented
as FOMDPs. To define the class of FOMDPs that may be compaghgsented as factored
FOMDPs, we say that a FOMDP representatsmales with domain sizé the space of its
representation as a FOMDP from Chapter 4 is proportionakaitte of a domain instantiation.
Then in general, a FOMDP is a candidate for compact reprasentas a factored FOMDP if
it has at least one of the following two properties:

(a) Anindefinite additive reward whose number of additivenponents scales with the do-
main size; OR

(b) An indefinite number of independent action aspects iteles with the domain size.

In order to generalize the FOMDP representation of Chapterfddtored FOMDPs, we
introduce the following two representational extensiange FOMDP:

1. We introduce sum and product aggregators to specify imeldiéwards and joint tran-
sition distributions over aspects of stochastic actioas ftale with domain size. The
sum aggregator can often compactly represent propertyt{#e tihe product aggregator
partially addresses property (b).

2. We define a factored model of action effects that allowseahststic action executed by
the agent to decompose into independent aspects. We theifiyspgoint distribution
over deterministic sub-actions for each of these aspedsvarintroduce modifications
to the situation calculus to efficiently handle (decisibedretic) regression with these
sub-actions. Together with the product aggregator, thesten sufficient to compactly
represent property (b).
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We will discuss the impact of both of these representatienaancements on various solution
methods at length in this chapter. In general,aseald always obtain a universal solution al-
gorithm for factored FOMDPs by compiling them into a FOMDBpresentation for a specific
domain size, thus allowing the direct application of the HOR/solution methods of Chap-
ters 4 and 5. However, converting from the compact repraientof a factored FOMDP
satisfying properties (a) or (b) to a FOMDP representatmmaf specific domain size would
incur a representational blowup at least linear in the darmsae if only (a) held (due to the
linear number of additive reward components) and at legsbreantial in the domain size if
property (b) held (due to the exponential number of Natuchice deterministic actions as
previously discussed). But this blowup just refers to the sizhe FOMDP representation and
we have not even begun to consider the computational impalce sepresentation size on the
time complexity of its solution. At the very least we can catga simple lower bound on the
time and space complexity of solution methods that convéattred FOMDP to a FOMDP
for a specific domain size since the FOMDP representatiornt beuprovided as input to these
algorithms; thus, this lower bound is at least linear in tomdin size if only property (a) holds
and exponential in the domain size if property (b) holds.

Given these unencouraging lower bounds on the time and spagaexity of solving a fac-
tored FOMDP by converting it to a FOMDP and using the previpdsfined solution methods
of Chapters 4 and 5, one objective in the specification of fadt&-OMDP algorithms would
be to demonstrate potential cases where the time and spaqg#esaty of a factored FOMDP
solution is sub-linear in the domain size when only propéayholds, sub-exponential in the
domain size when property (b) holds, or potentially indejm of domain size in special
cases of (a) or (b) — results that are all impossible to oftaimethods that solve a factored
FOMDP by converting it to a FOMDP. In general, when we say éhfatctored FOMDP solu-
tion algorithm isefficientfor a given problem, we imply that it meets one of these thriera.
With this goal of efficiency in mind, we define (approximate)uions for factored FOMDPs
that generalize the symbolic dynamic programming and thvalue approximation techniques
described in Chapters 4 and 5. To demonstrate the solutibniteees that will be needed to
efficiently handle specific types of problem structure, wé work through various steps of
our solution algorithms for the YsADMIN and F-BoxXWORLD problems; the example rep-
resentation and factored FOALP solution of SADMIN appeared previously in Sanner and
Boutilier [2007.

2Throughout this chapter, we will use the unqualified use eftésm “FOMDP” to mean the FOMDP repre-
sentation of Chapter 4 and the term “factored FOMDP” to redghe formalism provided in this chapter.
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However, in generalizing the symbolic dynamic programmamgl linear-value approxi-
mation solutions from FOMDPs to factored FOMDPS, we remhgk bur investigation into
these solution methods is only in its initial stages and esults w.r.t. SSADMIN and F-
BoxWORLD are anecdotal at best in reference to a general solutiorafored FOMDPSs.
However, it is important to note that an efficient, exact sotu algorithm for all factored
FOMDPs is impossible. A negative result of Jae[@00d implies that there is no algorithm
that can perform exact inference in the DBN representatiatetying the factored FOMDP
that can avoid exponential time complexity in the domair sizthe worst case. We discuss
this result in our concluding remarks along with generalgasgions for how we might cope
with this worst case in practice.

6.1 Factored FOMDP Representation

In order to specify indefinitely scaling additive rewardsldransition distributions, we begin
by introducing the sum and product aggregators. Then weepbto formalize stochastic
actions with multiple independent aspects and deterngrssib-action outcomes as well as a
factored transition distribution based on this action nhod®Illowing this, we introduce the
situation calculus machinery and assumptions requireffitoemtly handle sub-actions in the
situation calculus. Throughout this discussion, we mégaach construct using ther SAD-
MIN problem. Finally, we conclude by applying the same modelorghalism to specify a
factored FOMDP model for F-8XWORLD.

6.1.1 Sum and Product Aggregators

We introduce sum aggregators that are similar in purposevasit/ated by the count aggre-
gators of Guestriret al. [200d3 that permit the specification of indefinite-length sums over
all instantiations of a case statement for a given objestsclaikewise, we introduce the novel
product aggregator that performs a similar role to the sugneagator, except for products rather
than sums. We can easily motivate the sum aggregator bytitegio represent the reward in
the SrSADMIN problem. Given a domain object cla€smyp of n computerscy, ..., c,}, we
know that the SSADMIN reward scales with the number of computers that are up amangmn

rCase(s) = Up(ci,s) 1 o Up(ca,s) @1 oo Up(cn,s) =1 6.1)
- Up(ci,s): 0 = Up(ca,s): 0 - Up(cp,s): 0
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However, we note two problems with representing tke/SDMIN reward in this manner. First,
the number of case statements in the reward scales with thaidsize and thus will not be an
efficient representation for large domains, not to menti@impact of this representation on
the time and space complexity of the solution algorithmso8d, this reward specification is
domain-specific in that it refers to exactlycomputers; ideally, we would prefer to have both
a compact and domain-independent specification of rewar8¥eADMIN. This would then
directly facilitate the solution of factored FOMDPs for efthitely large domains, something
that is otherwise impossible with a domain-specific repregen.

To permit the specification of indefinite length sums and potsl we introduce sum and
product aggregators that are defined in terms ofittend @ operators where we use a meta-
logical notation that can only be expanded given a concreteadh instantiatiors:

Z case(c, s) = case(cy,s) ® - - B case(cp, s) (6.2)
ceC
H case(c, s) = case(cy,s) @ -+ - @ case(cp, ) (6.3)
ceC

While the sum and product aggregator can easily be expandsthdl domain instantiations,

there is generally no finite representation for indefinitalgen due to the piecewise constant
nature of the case representation. That is, even iftttieis explicitly computed, there may be
an indefinite number of distinct constant values to reprieisethe resulting case.

Using the sum aggregator, we can now easily define th®@A®MIN reward in a domain-
independent manner:

rCase(s) = Z ( Up(e.s) @1 ) (6.4)

ce Comp - Up(C, S) 2 0

Later we will see how we can define the transition probabitit$ySADMIN using the product
aggregator.

3Here we assume a generic object class {ci, ..., c,}, not necessarily computers.
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6.1.2 Operations with Sum and Product Aggregators

Following are various properties of tie, and [ [. aggregators that we can use during the
solution of our FOMDP. Since we know that

Regr(casey(do(a, s)) @ casea(do(a, s))) = Regr(casei(do(a,s))) ® Regr(cases(do(a, s)))

and likewise for® owing to the logical definition of the case statement and tiopgrties of
Regr, we can easily infer the following:

Regr(z case(c, do(a, s))) = ZR@gr(case(c, do(a, s))) (6.5)

Cc

Regr < H case(c,do(a, s))) = H Regr (case(c, do(a, S))) (6.6)

Since the sum aggregator is defined in terms ghe standard properties of commutativity,
associativity, and distributivity o over & hold. Likewise, since the product aggregator is
defined in terms of, the standard properties of commutativity and associgthold. In this
chapter, we will make use of the following equivalences taat be easily derived as corollaries
of these properties:

Z casey(c, s) @ Z cases(d,s) = Z[casel(c, s) @ cases(c, s)] (6.7)

ceC deC ceC
case;(s) ® Z cases(c,s) = Z[casel(s) ® cases(c, s)] (6.8)
ceC ceC
[caseq(s) @ cases(s)] @ H casez(c,s) = case1(s) ® H cases(c, s) ®
ceC ceC
cases(s) ® H cases(d, s) (6.9)

deC

6.1.3 Factored Stochastic Actions

Recalling our original FOMDP stochastic action represémarom Chapter 4, Section 4.3.3,
we decomposed stochastic “agent” actiotisr) into a collection of deterministic Nature’s
choice actionsy, (%), - - - , n,(Z), each corresponding to a possible outcome of the stochastic
action. We then used a case statement to specify a distnibixin; (z), A(Z)) according to
which Nature may choose a deterministic action from thisdegtnever the stochastic action is
executed.
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This approach assumes that once Nature chooses a detdiorantson, it must commit to
all effects incurred by that deterministic action. Let ussider modeling 8SADMIN in this
FOMDP framework assuming some fixed number of computerd/hen the agent reboots a
computer in SSADMIN, the status of each computer may evolve independently obttiner
computers. Thus, given computers, each with 2 possible status configurations (upt)r
this leads t@" deterministic actions sinaeachdistinct joint outcome must be specified with
a separate deterministic action. While we cannot avoid tbietfeat S'SADMIN has2™ deter-
ministic actions, we can potentially avoid explicitly enerating all of these joint deterministic
actions by exploiting the fact that the stochastic rebotibaalecomposes into a number of
independent aspects corresponding to direct and exogeaifaecss that act individually and
independently (in a probabilistic sense) on each computer.

In this section, we introduce a factored approach to repte®g stochastic actions and
their associated transition distributions as well as theessary situation calculus machinery to
integrate them into our FOMDP framework.

Aspects and Deterministic Sub-actions

When an action has multiple independent effects, a more comgaresentation than a direct
joint enumeration of these effects would be to specify iraejenaspectof a stochastic action
in a generalization of the factored PSTRIPS operators of@eand Boutilief1997.# In this
framework, we can independently specify local probabiiistributions over each aspect and
combine them into a joint factored distribution using a DBRelrepresentation — albeit a
DBN over an indefinite number of aspects that generally scagefanction of the domain size.
To justify the slightly cumbersome notation that we introdin this section, we first begin
with a motivating example. INYSADMIN, if there aren computers then theeboot( Comp : x)
action that reboots computewwill have n aspects that we denote generically@sot, (Comp :
x, Comp : y) wherey refers to the other computers that could be affected as # ofghis ac-
tion. Specifically, the aspectsboot; (z, c1), . . ., reboot; (x, ¢, ) each represent the local effects
of stochastic actiomeboot(Comp : x) on each individual computes. We could imagine a
second class of aspeaishoots(Comp : x, Comp : z) specifying whether a computerspon-
taneously catches fire when computes rebooted (as may be appropriate in a realistic model
of Dell laptops).

“Motivated by this earlier work and in anticipation of faadrFOMDPSs, we intentionally used the term aspect
to identify probabilistically independent sets of actidfeets in the PPDDL representation of Chapter 4.
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In a general framework, we consider that each stochastioradi ) may have indepen-
dent aspects that we denote By(Z, y), . .., A,(Z, ) wherex represents the stochastic action
parameters;/is optional and represents additional domain objects tieandividually affected
by each aspect, and the action subscripts p denote that we have different classes of as-
pects. Altogether, iff is non-empty, then we will have a total pf || aspects for stochastic
action A(Z) where

y] indicates the total number of distinct assignments to theabldomains
of variables iny.

We refer to Nature’s deterministic choices for aspects teuiieactionsin a general frame-
work, for each aspect,;(Z, y/) we can specify a s&V;(z, y) of deterministic Nature’s choice
sub-actions asv;(Z,y) = {n:1(Z.9), ..., ni4(Z,y)} whereq > 2. Often, we use a random
variable notation for Nature’s choice wheng(7,y) € N;(Z,7). Then we can represent a
distribution over Nature’s choice deterministic sub-as for each aspect as a case statement
P(n;(Z,9)|Ai(Z,9), s) expression in a manner similar to Section 4.3.3.

For example, in 8SADMIN, we can specify two possible deterministic Nature’s choice
sub-actions for each aspeeboot, (z, ¢;): ni(x, ¢;) €= {rebootS(z, ¢;), rebootF (x, c;) } where
rebootS (z, ¢;) causes; to be running andebootF'(x, ¢;) causes; to be crashed. Following our
notation from Section 4.3.3, we can specify an instanc€ ©f; (7, )| A;(Z, ¥), s) for aspect
reboot, (z, ¢;) and its deterministic sub-action outcomeg@&se(n,(z, ¢;)|reboot(z, ¢;), 5):°

pCase(rebootS (c;)|rebooty (x,¢;) Nx = ¢;,8) = (6.10)
pCase(rebootS (c;)|rebooti(x, c;) Nx # ¢;, 8) = (6.11)
Conn(d, c;) N\ Up(d, s 1
ey ( (dcx) A Up(d; 5) )
Up(c;,s) : 0.95 ~Conn(d, ¢;) V-~ Up(d,s) : 0

®

- Up(ci,s) : 0.05

1+Zd< Conn(d,c;) 1 )

—Conn(d,c;): 0

Here we see that the probability that a computer will be mgrifi it was explicitly rebooted is
1. Otherwise, the probability that a computer is runningeshels on its previous status and the
proportion of computers with incoming connections thatramening. The probability of the

°We use the predicat€onn(c;, ¢;) to indicate that there is a directed connection from compytéo ¢;.
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failure outcomerebootF'(¢;) is just the complement of the success case:

pCase(rebootF (c;)|reboot(x, ¢;), s) = © pCase(rebootS(c;)|U(¢;)) (6.12)

At this point, the reader familiar with the factored PSTRIR®mators of Dearden and
Boutilier [1997 may note the absence of discriminants in the framework ptedehere. In
fact, we do have discriminants, but for consistency withRGMDP framework we model them
with the case representation of transition probabilitiesthe factored PSTRIPS framework,
probabilities were restricted to be constants and thusidigtants were needed to distinguish
between the different effect probabilities that would @fisr different states and actions. How-
ever, in our specification above, these state- and actiperiient probabilities are specified
directly in the representation @f(n;(Z, 7)| A;(Z, %), s). Thus, for a correct probability speci-
fication, we will require that the same properties that hetdliie discriminants in the factored
PSTRIPS discriminant representation also hold for our garem,(Z, v)|A:(Z,v), s) repre-
sentation, namely that the probability distribution ovitrgasub-action outcomes of an aspect
sum to 1:

q
Vi, i | @D Pnis(&,5)|Ai(Z, 7)), s) = (6.13)
j=1
In addition, eachP(n;(Z, v)|A;(Z, ), s) should be a disjoint partitioning of state space such
that no two case partitions ambiguously assign multipléabdities to the same state.

Joint Actions and Transition Probabilities

Now that we have specified the distribution over determmistib-action outcomes for in-
dividual aspects, we need to specify how these sub-actiome ¢ogether to specify a joint
deterministic action. This is actually quite simple. Simee will define the effects of a joint
deterministic action to be thenionof effects for each of its sub-actions in the next section, we
can specify a deterministic joint actiane N 4(Z) as theassociative-commutati@mposition

o of Nature’s choice deterministic sub-action outcomesfbaspectsi;(¥) of a stochastic ac-
tion A(Z). Following previous notation, we can wrifé,(Z) as the following where; stands

for a specific constant substitution f@'landgjj stands specifically for thgh possible variable
substitution:

NA(Z) = {NL(Z,51) X - X Ny (Z,5iq1) X - X Np(Z,91) X -~ x N(Z, 57} (6.14)

<
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Now, assuming a notational equivalence between a set oft@nohtheir associative-commutative
composition usin®, then for alla € N4(%), a is a composition of one sub-action from each
ground aspect of stochastic actidiir).

For example, in the BSADMIN domain, ifn = 4 and we have 4 aspects fetboot(z),
namely reboot (z, c1), . .., rebooty (z, c4), then one deterministic joint actiancould be the
following:

a = rebootS(x, cy) o rebootF (x, cg) o TebootF (x, c3) o rebootS(z, c4) (6.15)

At this point one might ask whether different sub-actionthimi a joint deterministic action
could interfere with each other. Once we have defined thetsffer sub-actions in the next
section, this will be equivalent to the question of whethds-actions can have inconsistent
effects. This is an important issue and one that we will asklomce we formalize the semantics
of deterministic joint actions within the situation calaslframework. However, we must first
specify the probability distribution over joint actionstass will be an important component in
our guarantee of consistency.

Our example fora in Equation 6.15 was just one of many possible joint deteistin
actions for one domain instantiation o SADMIN, and in a general (indefinitely) factored
FOMDP, we will need to specify a joint distribution over athgsible joint deterministic out-
comes of a stochastic action. Fortunately, we can explatwkadge of the independence of
aspects to define the probability of any joint determiniatiiona in terms of its constituent

sub-actionsy; (%, ), where we assume for simplicity that each aspect dependsesamey:

PalA@,s) =[] 120 9lA 5. 5) (6.16)

As long as the properties specified in Equation 6.13 holddeh® (n; (7, ¢)| A:(Z, %), s), then
we can obtain the following proposition:

Proposition 6.1.1. P(a|A(Z), s) defines a proper probability distribution overi.e.,

> PlalA@@),s) =T : 1]. (6.17)

IlGNA(f)

Proof. See Section B.3 of Appendix B.

Thus, for SYSADMIN, we can now easily specify a compact joint distribution ostr
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possible deterministic action outcomesreloot(z). For a concrete example of the probability
of the joint deterministic action specified in Equation 6.15, we would obtain the following
probability specification where the actual numerical ptolitges follow from the evaluation of
Equations 6.10, 6.11, and 6.12 for the particular stateestims ofs:

pCase(alreboot(x), s) =
pCase(rebootS(cy)|rebooty(c1), s) @ pCase(rebootF (cq)|rebooty(cz), s)
®@pCase(rebootF (cs)|rebooty(c3), s) @ pCase(rebootS(cq)|reboots(cq), s)

Joint Actions and the Situation Calculus

Up to this point we have ignored the actual semantics of & whoice deterministic sub-
actions and joint actions, but we now address these issodsedin, we can directly define the
semantics of deterministic joint actions with effect axgas we did in Section 4.2.2, except
that we must take care to define effect axiomsdlbrpossible joint actions and effects. For
example, in SSADMIN with n = 2 computers, we would obtain the following complete set
of 4 effect axioms (which can be easily converted to the néimaé effect axiom form of
Equations 4.1 and 4.2):

a = rebootS(cy) o rebootS(c2) D Up(cy,do(a, s)) A Up(ca, do(a, s))
) A = Up(ca,do(a, s))

)

)

a = rebootF(c; Co

) (c2)

a = rebootS(cy) o rebootF (c2) O Up(cy,do(a, s)
) (ca) D = Up(cy,do(a,s)) A Up(ce,do(a,s))
) (o) D = Up(c1,do(a, s)) A —=Up(ce,do(a,s)) (6.18)

a = rebootF (cy) o rebootF (cy

While this representation of the effect axioms correctlyrEdithe action semantics fov SAD-
MIN, it is not compact since the number of distinct joint actisnales exponentially with the
domain size. In general, for ar'SADMIN domain withn computers, we would hav# joint
actions, not to mention the conjunction ofeffects we would have to specify f@achjoint
action. Clearly, a solution approach based on the explicitregration of all effect axioms for
all joint actions in a factored FOMDP such agssADMIN would lead to an algorithm whose
complexity scales exponentially in the domain size.

To avoid explicit enumeration of the effects for all jointtiaas, we exploit the factored
structure inherent in the joint action representation astiae that effects for joint actions can
be specified as a union of effects of their sub-actions. Tdlsgesuch an assumption can be



CHAPTER6. FACTORED FIRST-ORDERMDPS 170

reasonable, we note that for the effect axioms given fos/ADMIN in Equation 6.18, each of
the effect conjuncts in the consequence of the axiom arisesodexactly one of the sub-actions
in the antecedent. We now proceed to formally define comggecesentation of effect axioms
in this manner whergve omit a discussion of preconditions for ndwut later show how we
can reintroduce them.

In this section, we represent the effect of an action to benagistent (potentially empty)
conjunction of positive and negative fluents in a post-acttate (i.e., elements of this con-
junction may be of the forn#'(Z, do(a, s)) or =F(Z, do(a, s))). We use the notatiol,,, z y
to specify the effects of Nature’s choice sub-actianz, 7). For example, in 8SADMIN
Erevoots(z,c) = Up(ci, do(a, s)) and Erepootr (z.e,) = —Up(ci, do(a, s)). We assume that aef-
fect set, for joint actionsa can be specified as a union of effects for each Nature’s choice
sub-actiom,; (%, i) from whicha is composed:

Bo= U Buep (6.19)

g, i=1l..p

Based on this relationship, we can easily write out the unabped effect axioms for joint
actions in the following manner where we uSgto specify a compositior over multiple
terms:

0= Opicymi@| > N\ B (6.20)

y,i=1...p

From this definition and the previous specification of effeIS L, ;0015 (z,c,) AN Erepootr (z,c:)
for SYSADMIN, we can easily derive all of the effect axioms for all jointians in SrSADMIN
including the example for = 2 computers in Equation 6.18.

Now, rather than explicitly construct effect axioms for legaint actiona, we can exploit
the fact that the effects for a joint action are just the urubeffects for each of its sub-actions.
Technically, this should allow us to specify effect axionedtly in terms of sub-actions if
we could simply test whether a joint action contains a sumacBut this is easy, we simply
define thed predicate that tests whether the joint-action on the LHSmmosed from the
RHS term. For example, givenas specified in Equation 6.15, we know thatl rebootS(c;)
is true, buta J rebootF'(c4) is false. And we can now express unnormalifactored effect
axiomsdirectly in terms of sub-actions in the following generalmmar:

Vi,y.a 3 ni(Z,9) D E

(6.21)
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For example, in 8SADMIN, we can now specify the following positive and negative &ffe
axioms for the joint actiom directly in terms of sub-actions:

Ve, a J rebootS(c;) O Up(ci, do(a, s)) (6.22)
Ve;. a 3 rebootF (¢;) D = Up(ci, do(a, s)) (6.23)

And it is easy to see that this compact (in fact, constargelizpecification of effect axioms
suffices to specify all of the effects for any arbitrarySA\DMIN domain size, including the
example form = 2 computers in Equation 6.18.

Now we tackle preconditions for effects. As done for effeais assume that preconditions
are associated with sub-actions. We could easily integraonditions into our factored effect
axioms; however, we will instead find it advantageous to aehtbe preconditions directly into
the probability distribution governing Nature’s choicédsaction outcomes since this lays bare
important probabilistic structure that we can exploit im ealution methods.We formalize this
in the following assumption:

Assumption 6.1.2.1f ¢(Z,y, s) is a precondition for the successful execution of sub-actio
n;(Z,y) of an aspectd;(#, ) in situations, then we assume that the case statement repre-
sentingP (n,;(Z, )| A;(Z, ¥), s) contains the case partitioftp(Z, ¥/, s), 0) (c.f. Equation 4.8).
Furthermore, letting thewoop,(Z, y) sub-action represent an outcome 4f(Z, y/) with no ef-
fects, we assumi(noop, (%, )| A;(Z, ), s) contains the case partitiotp(Z, ¥, s), 1).

As a consequence, if two sub-actions had mutually exclysiegeonditions then this as-
sumption would ensure that any joint action composed froamthvould have probability O.
Our SrsADMIN examples does not require preconditions on sub-actiongeVey, in the F-
BoxXWORLD problem that we formally define in Section 6.1.4 and preseiiable 6.1, we do
make use of preconditions defined in this way.

Our factored representation of effect axioms now permit®wonvert them to the normal
form representation of Equations 4.1 and 4.2 and convart th&SSAs as done in Section 4.3.3.
This in turn directly facilitates the efficient computatiofh the regression operator. As an
example, since the two axioms above are the only effect axfonSySADMIN and are already
in normalized form, we can use these to directly compile tBA& $r SysADMIN’s only fluent
Up(c, s):

Up(ci,do(a, s)) = a J rebootS(x,c;) V Up(c;, s) A —a 3 rebootF (x, ¢;)
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And regression follows directly from the SSAs and the deting given in Chapter 4, Sec-
tion 4.2.3. In ¥SADMIN we obtain the following example of regression using SSAsutad
from our factored effect axioms:

Va. a 3 rebootS(c;) DO Regr[Up(c;, do(a,s))]
Va. a J rebootF (c;) D  Regr[Up(c;, do(a,s))]

T (6.24)
1 (6.25)

Joint Actions and Consistency

Having defined the probabilistic and logical machinery fain§ actions, the question arises
as to what happens if a joint actienis composed of inconsistent effects, for example]
rebootS (x, ¢;) anda 2 rebootF (z, ¢;). Clearly for Sr'SADMIN, this could never occur because
only one deterministic actionebootS(x, ¢;) or rebootF (x, ¢;), is chosen pet; (we prove this
formally below). But for the sake of argument, let us assuna¢ @ahconflict is possible, as it
will be for more general factored FOMDPs like the FBNORLD problem that we formalize
next. If we evaluate®egr|p(do(a, s))] wherea is a joint deterministic action with inconsistent
effects, we would obtain. by definition. This is fine, but then we simply need to ensuatifra
joint deterministic outcome of a stochastic actioA (%) is inconsistent the®(a|A(Z), s) = 0,
otherwise we could assign a non-zero probability to beirgnimnconsistent state.

To satisfy this condition, we make the following formal asgion regarding the consis-
tency of action effects in a factored FOMDP definition wheréhis context, we assume a case
statementase(s) satisfiescase(s) > 0 if one its case partition&s;(s), t;) hast; > 0:

Assumption 6.1.3.For all joint deterministic outcomes = O,
actionsA(z), if P(a|A(Z), s) > 0then we assume

i1..,ni(Z. 7) of all stochastic

| /\ E,@q | isconsistent
o

Effectively, we see here that the onus is on the specifier ®ffdbtored FOMDP to cor-
rectly formalize the problem in order to ensure that all zene probability joint actions are
consistent. Fortunately, this is often easy to verify withexplicitly enumerating all possible
joint actions as we did above foryYSADMIN. The following sufficient conditions show that
Assumption 6.1.3 can be verified by a pairwise analysis oéetspof all stochastic actions in
the following manner:
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Proposition 6.1.4. Let A;(Z,7;) and A, (%, %) be two distinct aspects of stochastic action
A(Z) (i.e., eitheri # h or 5j; # 7,) and recall thatN;(Z, 7;) and N (Z, ;) are the respective
sets of Nature’s deterministic sub-action outcomes for @fthese aspects. Then for (%)
andi # h andyj; # g, wheren,(Z,1/;) € N;(Z,v;) andn,(Z, ) € Nu(Z, 3), if the following
condition holds:

VE [ P(ni(Z,5)|A@),5) >0 A P(n(Z,4i)|A@), 5) > 0
D (E NE

ni (Z,75) i (Z,5x)

) is consistent (6.26)

then Assumption 6.1.3 must hold for the given factored FOMDP

Proof. See Section B.3 of Appendix B.

Now we demonstrate how this proposition can be used to vérd@gorrectness of\YSAD-
MIN. First we note that, as theySADMIN factored FOMDP has been defined, there is
only one stochastic actioreboot(x) that we need to analyze. Fe¢boot(x), we must look
at all aspectsreboot;(x,c;) and reboot,(x,c) wherec; # c¢,. We note thatn, (z,¢;) €
{rebootS(x, c;), rebootF (z,c;)} and likewisen,(x,cx) € {rebootS(z,cy), rebootF (z,cy)}.
For all assignments of, (z, ¢;) andn, (z, ¢;), we note

Vz. [ pCase(ni(z, ¢j)|reboot(z),s) >0 A pCase(ni(x,cy)|reboot(z),s) > 0 |

according to Equations 6.10, 6.11, and 6.12 so we must lgeesihow that for alk and ef-
fects £y, (o,c;) @nd B, (2,,) that their conjunction is consistent. Consequently, we erate

all possible conjunctions of these effects as defined pusWyoand check consistency (which
holds trivially by inspection since; # ¢, and thus each ground fluent can take on any truth

assignment while maintaining consistency):

V.
V.

rebootS (z,c;) /\ ErebootS(ac Ck) U, €, Cj) A Up(l’, Ck)) IS ConSiSten]:

3

rebootS (x,c;) A ErebootF(x k) T x, Cj) A% UP(I, Ck)) is ConSiStent

[E — (
[E (

V. [ rebootF (x,c;) /\ ErebootS(a: ck) B— (_‘ Up x, Cj) A Up(:L’, Ck)) iS ConSiStent
[E — (

V. = Up(z,c;) N—=Up(z,cy)) is consistent

rebootF (z,c;) A ErebootF(x ck)

This formally proves the consistency of the#SADMIN factored FOMDP.
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6.1.4 Formalizing Another Factored FOMDP

Having introduced the factored FOMDP formalization as raigd by SSADMIN, we now
demonstrate the flexibility of this formalism for modelinget F-BoxWORLD problem. We
begin with the specification of &XWORLD as made in Figure 4.1 of Chapter 4, except that
we now modify two parts of the representation: (1) we repa&tanize actions and transition
probabilities forunload, load, drive to satisfy the representation of action preconditions made
in the factored FOMDP representation; (2) on each time step,box that is on a truck can
independently fall off the truck if it was not explicitly ld@d or unloaded, which is modeled
with additional exogenous aspects that indefinitely scatle domain size.

Our first task is to specify all stochastic actions, theirezs$p, sub-action outcomes for
these aspects and their respective probabilities. Thesgigen in Table 6.1. For the first as-
pects —unload; (b, t,c), load,(b,t, c), anddrive; (t, c) — the deterministic action outcomes,
probabilities, and corresponding effect axioms are seicalht identical to thr original BX-
WORLD although some preconditions in the effect axioms are novesgmted in the transition
probabilities, thus requiring the additional shared \aga in the action parameterization. We
note that the second aspect of each stochastic action rangiesll boxes, trucks, and cities and
permits each box to be dropped off a truck according to soaependent fixed probability dis-
tribution; it is important to note that these second aspeahabilities fordropS(--- , V', t', )
ensure that this sub-action outcome can only occur withzesn-probability when (a) it does
not interfere with the first aspect and (b) when bbis actually loaded on a truakin city ¢'.

Thus, we see that F-®&WORLD is exactly the variant as previously described — the
action dynamics are exactly that obRWoRLD with the additional aspects that each box may
independently fall off a truck with 0.1 probability when thare not being explicitly loaded
or unloaded. Furthermore, this specification guarantessathpairs of non-zero probability
sub-actions that can co-occur in a joint action have caasistffects Having now specified
factored FOMDPs for both¥Y&ADMIN and F-BoxWORLD, we proceed to generalize solution
techniques from Chapters 4 and 5 to find (approximately) agitsulutions for them.

6.2 Factored Symbolic Dynamic Programming

We now proceed with an extension of symbolic dynamic prognarg for the factored FOMDP
representation. Recalling Chapter 4, we note that symboheuwyc programming (SDP) con-

SThis verification is straightforward, but tedious.



’ Action ‘ Aspects ‘ Sub-actions ‘ Probability Effect Axioms ‘

4 @)
unload(b,t,¢) | unloady (b, t,c) unloadS (b, t, ¢) On(b,t,s) A TIn(t,c,s) 9 a 3 unloadS(b,t,c) D ~On(b,t, do(a, s)) T
=(On(b,t,s) A TIn(t,c,s)): 0 a 3 unloadS(b,t,c) D BIn(b,c, do(a, s)) %
_{
m
unloadF (b, t, c) On(b,t,5) A Tin(t,c, 5) 1 (note: unloadF (b, t, ¢) equivalent tonoop) g
=(On(b,t,s) A TIn(t,c,s)): 1 ¢
p
unloada(b,b/ ',¢') | dropS(b, b/, 1/, ') bV ANOnl,t',s) A\ TIn(t',c,s) 1 a 3 dropS(b,b',t',¢) D =0n(V,t', do(a, s)) 2
T T =(bA£V ANOn{,t',s) N TIn(t',c',s)): 0 a 3 dropS(b,b',t',¢) D BIn(V', ¢, do(a, s)) ;CU)
m
/ / ! / ! U
Yo't dropF (b,V/, ', ') b#£ Y A OnY,t,5) A Tin(t', ¢, s) 9 (note: dropF (b, t, c) equivalent tonoop) T
S(b£ Y ANOnb,t',s) A TIn(t',d,s)): 1 g
n
O
load (b, ¢) loads (b, ¢) loadS (b, £, ¢) On(b,t,s) A TIn(t,c,s) .9 a J loadS (b, t,¢) D On(b,t, do(a, s)) g
=(On(b,t,s) A TIn(t,c,s)): 0 a J loadS(b,t,c) D ~BlIn(b, ¢, do(a, s)) g
/4l / / . z
loadF (b, t,c) On(b,#',5) A TIn(t', ', 5) -1 (note:loadF (b, t, c) equivalent tonoop) O
=(On(,t',s) N TIn(t',c/,s)) 1 g
loada (b, V't ') dropS (b, V', t', ) (note: same probabilities and effectsdaspS (b, V', t', ¢') for unloads)
Yo't ¢ dropF (b, V/,t', ) (note: same probabilities and effectsdaspF (b, b, t', ¢’) for unloads)
: | )
drive(t,ci,c) | drivei(t,cy,c) driveS(t, c1,c) Tin(t,cr,5) - 1 a 2 driveS(t,c1,¢) 5 TIn(t, ¢, s)
- TIn(t,cq,s): 0 a 3 driveS(t,c1,¢) D = TIn(t, cq, $)

TIn(t,c1,8) 0
—TIn(t,c1,s): 1

driveF (t,c1,c) (note: driveF (t, c) equivalent tonoop)

/ / !/ / . .| / /4! - /4l
drives(t/, ', 1') dropS(/, ¢ 1) BIn(V',c,s) N TIn(t', ¢, s) 1 a 3 dropS (', t') D —0n(,t', do(a,s))
—(BIn(t/,c,s) AN TIn(t',c/,s)) : 0 a J dropS(V',c,t') D BIn(V',, do(a, s))
/ / !/ /
Yo't c dropF (b, ,t') BIn(Y', ¢, 5) A TIn(t', ', 5) 9 (note: dropF' (V', ¢/, t') equivalent tonoop)
—(BIn(t/,c,s) A TIn(t',c/,s)) : 1

H
\l
Table 6.1:Factored FOMDP formulation of F-®&WORLD. PredicateslruckIn, BoxIn, BoxOn have been shortened to fit the table on one page. o1
Variables start with the same letter of their type (iBox, Truck, City) and unused action parameters are omitted from the second aspects.
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sisted of two steps: (1) first-order decision-theoreticesgion and (2) symbolic maximization.
As we will see, it is easy to symbolically define these stepg$dotored FOMDPSs, but it often
requires some ingenuity to derive a compact and simplifisditéor SDP.

6.2.1 Exploiting Irrelevance

As we discussed in Chapter 3, an important aspect of efficienttye dynamic programming
solution of propositionally factored MDPs is exploitingopabilistic independence in the DBN
representation of the transition distribution. The saniEbaitrue for factored FOMDPs except
that now we must provide a novel first-order generalizatioprobabilistic independence:

Definition 6.2.1. An aspect4,(Z, i) having a set of deterministic sub-action outcomesr, /)

—»

is irrelevantto a formulag(s) (abbreviatedirr[¢(s), A;(Z, y)]) iff
Vni(Z, ) € Ni(Z, 7). [Regr(¢(do(ni(7,7),5))) = o(s)] . (6.27)

This definition simply states that an aspect is irrelevaatfarmulag(s) if all deterministic
sub-action outcomes of that aspect cannot affect the reigresf a formula. In general, we can
prove the case equivalence needed to show irrelevance bertimg the case representation
to its logical equivalent and querying an off-the-shelfaten prover. Most often though, a
simple analysis of the effect axioms and the removal of digi@rinconsistencies such as
equality tests of distinct terms will allow us to show eqlérae by syntactic comparison
without the need for theorem proving.

For example, in F-BXWORLD, we can say that the aspektve; (¢, c) that governs whether
a truckt is successfully driven to city (c.f., Table 6.1) is relevant t@ruckin(t, ¢, s), butirrel-
evant toBozIn(b, c, s). This follows from an analysis of the effect axioms for héveS(¢, c)
anddriveF (t, ¢) sub-action outcomes @f-ive, (¢, c) where we see thatriveS(t, c) clearly af-
fects TruckiIn(t, c, s), but neither sub-action affecBozin (b, ¢, s). Furthermore, the more con-
stant substitutions we have in a formula or action, the moedevance we can detect. Assum-
ing we have unique constartist,, ¢;, ¢; and a ground aspedtive; (t1, ¢; ), thendrive, (t, ¢;)
is relevant tadt, c. TruckIn(t, c, s), but irrelevant toTruckIn(ts, ¢;). A simple analysis of the
effect axioms and the removal of inconsistent equalities @njunctions easily allows us to
show this.

Once we have detected irrelevant action aspects w.r.tnaulax(s), we candrop any irrel-
evant sub-actions for these aspects from a joint actiovhen performingRegr(¢(do(a, s))).
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More formally we can state this with the following propositiwhere we note that the domain
of ¢ is restricted by the condition = n;(Z, ) o c:

Proposition 6.2.2(Removal of Irrelevant Aspects)

[7”7"[¢(S),Ai(f, g)] 2
{V ni(Z,9) € N;i(Z,7), Ya € Na(Z), Ve. (a=ny(Z,§)oc) D
(s),m

Regr|¢ (Z,7) oc] = Regr[gb(s),c]}

Proof. See Section B.3 of Appendix B.

6.2.2 Backup Operators

Now that we have specified a compact representation of Najurebability distribution over
deterministic actions, we will exploit this structure iretbackup operators that perform the
first-order decision-theoretic regression step of synahayfinamic programming.

Following our definitions of thé&34(®[.] and B[] operators from Chapter 5, Section 5.1.2,
we extend these definitions to incorporate factored tramsinodels that are now possible
in factored FOMDPs. We start with th@4(®[.] operator with updated notation for factored
FOMDPs:

BA®] =~ @ [ (alA(Z ®Regr(V(d0(a,s)))] (6.28)

aENA )

Of course,P(a|A(Z)) is implicitly factored according to Equation 6.16 and thetémed action
representation, so we can expand this out using previowgtiontwhere (1) we substitute
a= 0y iz1.,i(T, gj), (2) we express the marginalization overalt N, (%) as an equivalent
sum over all factored sub-actions(Z, /), and (3) we substituté(a|A(Z)) with its factored
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representation from Equation 6.16:

BAD[V(s)] = &
n1(Z,1)EN1(Z, Y1) o mp (£, 7 ) ENp (Z,7]

‘gl)"'“nl (fvgl)ENl(f»gl)a7”p(f,g\g|)€]\fp(f,gj‘y~‘)
T I] Pl g,s)

ge{y;lp..,g.j‘m}i:l...p
® Regr(V (do(ni(Z,41) o -+ o ny(Z, i) © - o ma (T, 4h) o -+ o (T, Gz ), 8)))
(6.29)

Fortunately, we will often find that many sub-actions can éerded irrelevant to a value func-
tion or aggregated in some compact manner that will prevenneed for regression through
the fully specified joint action. We will see this borne outtwo very different ways in the
SYsSADMIN and F-BoxWORLD examples.

First, however, let us recall thg“[.] operator from Equation 5.8 in Chapter 5:
BV (s)] = 37. {B*@[V(s)]} (6.30)

If the result of B4(®[.] can be represented as an expression using, © over standard case
statements as defined in Equationwighoutproduct or sum aggregators then we can apply
directly, taking care to exploit (linear) structure in owwe function if it exists as discussed
in Section 5.1.2 of Chapter 5. However, if the result®t@][.] contains indefinite sum or
product aggregator structure, the applicatiordgfis less straightforward and we must leave
this operator in purely symbolic form; in some cases, we bélbble to directly evaluatér in
conjunction with symbolic maximization that we describatne

6.2.3 Symbolic Maximization

We note that the result of thg“ [V (s)] operator is close to our definition of a Q-function from
Equation 4.25 except that we have omitted the reward. Sosletdd in the reward now to

obtain a proper Q-function representation for a factoredBE®. Assuming we are given a

(t-1)-stage-go-to value function, we can computesiage-to-go Q-function for actiod as

’As done previously, we assume that the reward is not depéndehe action and thus omit it here. However,
if this was not the case, we could easily insert it in this ¢igmaand make appropriate adjustments to our later
equations.
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follows:
Q'(s, A) = R(s) ® B[V (s)] (6.31)

As before, thisQ'(s, A) represents a logical description of the Q-function for@ctil indi-
cating the values that could be achieveddny instantiation ofA (%) if acting so as to obtain
Vt=1(s) after the action is performed.

And now, given the Q-functions, we want to maximize over titernomputel’*(s) just as
we did in the original definition of symbolic dynamic programmg from Chapter 4. Notwith-
standing computational difficulties owing to the structafethe Q'(s, A), we recall Equa-
tion 4.26 and represent this computation symbolically mssg we have actiond!, ... A™:8

Vi(s) = casemax[Q'(s, A) U...UQ"(s, A™)] (6.32)

In the case where we are fortunate enough to repregént A) as a standard case state-
ment from Equation 4.8 where the case partition values amenigal constants, we can com-
puteU and casemax as defined previously and this completes onefssgmbolic dynamic
programming. However, we note th&fs) may contain indefinite sum aggregator structure as
in Equation 6.4 and’*~!(s) may also contain indefinite sum or product aggregator stract
Furthermore as mentioned previously and as we will show f&dxWoRLD, V~!(s) or its
backup may be specified as case statements with case pavtilioes that are a function of
domain properties rather than simple numerical constaetsflurther discussion below). Both
the indefinite and parameterized case structure that msg axrthese case statements will al-
most always propagate to the representatioR'dt, A), thus preventing the direct application
of theU and casemax case operators as previously defined in Chaptér grovide remedies
to exploit some of this additional structure in the follogisections.

Parameterized Case Structure

In some cases, the result 8f(@)[.] may be parameterized by properties of the domain such
as the sizes of individual object classes, or more generlynts of the number of satisfying
instances of some domain property. Thus, the resultf) -] may have the following generic

8We superscript the indices for different action templatethis chapter to avoid confusion with the action
subscripts that can be used to denote aspect indices fotieupear action.



CHAPTER6. FACTORED FIRST-ORDERMDPS 180

parameterizedase format:

¢1 1 fi(7)
(t = case[pr,ti;- sontn]) = |t = | 1 (6.33)

Here f;(-) may be any arithmetic function and its argument may rangeavariety of domain
and state properties. For example, we will see preciseli sustructure when we provide
an example backup computation for FBBWORLD in Section 6.2.4 where some of the case
partition values of3*oa?®".")[.] will be a function of the count of boxes on trucks in Paris in
situations. We note that such a parameterized case format does notmpseraplications for
the computation of34[] as previously noted (th&z can still be pushed directly into the par-
titions of the case representation), but it will pose a fewdarate complications for symbolic
maximization that we discuss now.

If Q(s,A) = BA®[V*"1(s)] takes on the parameterized structure of Equation 6.33 then
we can still perform & as usual in Equation 6.32, but we need to modify casemax taakp
check that a value is greater than all other values. To awaicbersome notation, we simply
provide a small example:

Vi AP ALfi() = ()] fil)

casemax U1 : fi(e) _ Vi AN Afo(0) = [1()] 0 falt) (6.34)
Y 1 fol:) 1 A =y > )
()

=1 Ao D fa(

In general, to perform the casemaxroparameterized case partitions, we need to look at the
powerset of the configurations);, —¢;} of each case partitiofy;, ¢;) in the operand. Then
within each element of that powerset, we need to assign tiatitunal value that is maximal for
that region of state space. While such a parameterized casoea produce a case statement
with n - 2" case partitions in the worst case, we note that often thetiurad form of f;(+) is
such that many inequalities can actually be determinedowttknowing the exact values of the
function arguments. For example fif(-) takes a value that is a linear function of its arguments
then it is easy to determine thét(z,y) = 2x + 3y strictly dominatesfy(x,y) = = + y for

x > 0 andy > 0. If these conditions held, we could then remove the secose partition of

the casemax result in Equation 6.34 since it would be incbesi.

As such, we now can perform the full symbolic dynamic prograng update on parame-
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terized case statements using the above modification toneasdJnfortunately, the task will
not be as simple for indefinite case structure as we will sge ne

Indefinite Case Structure

If Q!(s, A) contains indefinite sum aggregator structutben we can neither perform the
nor the casemax directly as specified in Equation 6.32. Batbetiproblems arise from the fact
that the indefinite sum aggregator structure leads to arfimtenumber of cases to analyze
for each of these operations. When does such structure atour ' (s, A) representation?
If the reward was additively defined with a sum aggregatem thy the linearity of thez4(@|.]
operator, its result will retain this sum aggregator suiet

In this case, we indirectly maximize ov€¥ (s, A )U...UQ"(s, A™) by deriving an explicit
policy and using this to restrict the value function, much same as we did in FOAPI. To do
this, we must first define the case operaté?, which produces an indicator function for states
where the inequality holds:

case[pi, ti 11 < n] > case[p;,v; : § < ml
= case[p; N, It > vi] i <mn,j <m] (6.35)

Intuitively, to perform a> operation on case statements, we simply perform the camnekipg
operation on the intersection of all case partitions of therands:

pr APl
@1 110 S P10 b _ SWARUEI
P21 D s 110 P2 NP1t 1
P2 Aipa 1 0

Second, following the policy construction of Guesteéhal [2004, we can assume that
our default policy is to applyoop, and that we only want to execute actidiiz) in a state
for instantiations of? that offer maximum advantage over theop. Thus we can write an
advantage functiod DV",_, ,,,(s) as the following difference computation:

ADV?! (s) = casemaXi¥ (R(s) @ BA@[ViY(s)] © Ql(s, noop)) (6.36)

A>noop

SWe do not discuss symbolic maximization wh@h(s, A) contains indefinite product aggregator structure.
10Based on the> definition, we can easily define similar procedures holdorgf,<, and< case operators.
As in previous chapter§,is an indicator function taking the valuevhen its argument is true afibtherwise.
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Here we see thal DV 4, ,..0,(s) represents the maximal Q-value advantage that can be had
by taking some instantiation of actiof over anoop. This may seem like a small step, but
this step is crucial for obtaining a finite representatioa pblicy even in circumstances where
the Q-functions retain indefinite sum aggregator structdree key insight is that an action
will typically only have (finite) local effects and thus thest of the state will evolve according
to it's default distribution, presumably the same as #hep distribution. Thus, by looking
at the advantage function, most of the indefinite structboeikl be identical and thus cancel
out in theo. While we are not claiming this will occur for all factored FQMs with sum
aggregators in their Q-functions, such structure is nobomoon and we will see an example
in Section 6.2.4 of how it can be exploited for thes?AADMIN domain.

Now, from advantage functions, we need to derive a policycatdr function indicating in
which states each action should be applied. We can compateding a first-order generaliza-
tion of the policy generation technique used for factoredm80in Section 3.2.2 of Chapter 3.
We assume we are given actiods, ..., A™, and for the purpose of breaking ties, a total
preference ordering (perhaps random) over actions, theriall actionsA® and A’ such that
A" # A7, we have eitherl’ - A7 or A7 = A’. From this, we can then computg, as follows:

1. Initialize 7!, =

2. For eachd’ s.t. A" £ A’ updater?,,:

. Ai=noop AJ=mnoop
7TAi =

A=A 1l ® (ADVi‘i>n00p(S) > ADV? (3))

AJ»noop

. { AP Al gt @ (ADV? (s) > ADV* (s))

To calculate thewoop policy, we simply perform the following calculation:

Thoop = SESTECRENCE (6.37)

Finally, following the methodology used to extract a freeiafle policy as done in Equa-
tion 5.20 of Chapter 5, we can do likewise to obtamf) from 7’,. Note that we previously
stated that we could not explicitly compuks! [V (s)] for indefinitely structured/(s). How-
ever, we can now comput@™ [V (s)] if we have a collection of policies’ ;. .- Mym(z aS
follows:

BT V()] = P 3. [wgi@ ® BA® [V(s>]] (6.38)
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And in turn, we can finally note that this gives us an indireetimod for computind/*(s)
via the policy forV*=1(s):

V(s) = rCase(s) & B™ [V!'(s)] (6.39)

Also as a side benefit of specifyirgf [V (s)], we also have a method for computing the value
of a policy under successive approximation. This providesvith a method for performing
modified policy iteration, or as we will see in a future sewtia factored extension of first-order
approximate policy iteration.

6.2.4 Examples

Up to this point, our discussion has been quite abstract spause for a moment to provide
a few insightful examples of the previously defined operatiapplied to the F-BXWORLD
and SYsADMIN problems.

Backups and Parameterized Structure

To demonstrate a situation where this parameterized castust occurs, we demonstrate
an application of theB“[] operator for the F-BXWORLD problem. Specifically, we com-
pute Bunload®”t".c) [y Case(s)] wherevCase®(s) = rCase(s) as defined in Equation 4.9 from

Chapter 4.

To computeB“™oed(b"#"<)) [y, Case®(s)], we begin by writing out the full backup using the
template from Equation 6.40 and the FeBWORLD definition from Table 6.1 where we as-
sumeBox = {b1,..., b}, Truck = {t1,... . ¢n}, and City = {c1,..., ¢} cities in our
problem domain leading to a joint action composed®f- |C| - |T'| + 1 sub-actions that we
need to marginalize over:

Bunload(b*,t*,c*)[UCaS€O(S)] =- @ (640)
n(b*,t*,c*)e{unloadS (b*,t*,c*),unloadF (b* ,t*,c*)}

nz(b*7171,tl761)€{d7‘0ps(b*7b17t1,Cl),dTOpF(b*,bhtl,Cl)} ’I’Lz(b*,b‘B‘ ,t‘T‘ ,C‘C‘)e{dT‘OpS(b*7b|B|7t|T‘,C‘C‘),dTOpF(b*,b‘B‘,t‘T‘ ,C|C‘)}

{pC’ase(nl(b*,t*,c*)unload(b*,t*,c*))® H H H [pCase(na(b*,b;, t;, ci)|unload (b*,t*, c*))]

bi€ Box c;j € City t), € Truck

® Regr
L« 0

EleOIIn(l% pG/TZ.S, do(nl (b*at*vc*) © nQ(b*a blvtla Cl) ©---0 ’I’Lg(b*, b\B\at|T|aC\C|)7 8)) : 10 ‘| }

For completeness, we note th€'ase definitions that follow from Table 6.1 with appropriate
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variable renamings:

pCase(unloadS (b*,t*, c*)|unload (b*, t*, c*)

BozOn(b*,t*, s) N TruckIn(t*,c*,s) 9
- —(BoxOn(b*,t*,s) A TruckIn(t*,c*,;s)) : 0
pCase(unloadF (b*,t*, ¢*)|unload (b*, ' c*x)
BozOn(b*,t*, s) A TruckIn(t*,c*,s) 1
[ S(BozOn(v*, ¢, 5) A TrackIn(t*, ", 5)) 1
pCase(dropS(b*, b;, t;, c)|unload (b*, t*, c*)
b* # b; A\ BoxOn(b;, t;,s) A\ TruckIn(t;, cg, s) .|

# (b* # b; A BoxOn(b;, t;,s) N\ TruckIn(t;,cx,s)): 0

pCase(dropF (b*, b, t;, cx)|unload (b*, ", c*)

b* # b; A BozOn(b, t;,s) N TruckIn(t;, ck,s) .9
=(b* # b; A BoxOn(b,t;,s) A\ TruckIn(t;,c,s)) @ 1

Now, our first task to simplify this computation is to idemtifrelevant structure. Unfor-
tunately, given the existentially quantifiétbzin (b, paris, -) fluent, we note that many actions
are relevant — we could unload a box that makes/n (b, paris, -) true, or any box,, ..., b
could drop off a truck to make this fluent true. However, anysigs of irrelevance does show
that allny (b*, b;, t;, cx) for ¢, # paris are irrelevant tab. BoxIn (b, paris, do(a, s)), SO we can
remove these aspects from the joint action and aspect nadiggition.

Nonetheless, we still have an indefinite number of actioas &ne not irrelevant. How-
ever, we can make one powerful observation. For all possibiebinations of sub-actions
na(by, c1,t1) o -+ o na(bypy, ¢cy, tiry) from whicha can be composed, only one aspect of the
formny(b*, b;, t;, paris) = dropS(b*, b;, t;, paris) for anyb; andt; (i.e., only one arbitrary box
falling off some truck) is required to mak#. BoxIn(b, paris, do(a, s)) true since it is easy to
verify the following:

Vb;, t;. a 3 dropS(b*, b, t;, paris) D Regr[3b.BoxIn(b, paris, do(a,s))| =T .

Likewise if all ny(b*, b;, t;, paris) = dropF (b*, b;, t;, paris), then the regression is equivalent
to anoop.

Based on this analysis, we can aggregate all relevant aspgétsb;, ¢;, paris) into two
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sets: set (a) where all,(b*, b;, t;, paris) = dropF (b*, b;,t;, paris) and set (b) where at least
oneny(b*, b, t;, paris) = dropS(b*, b;,t;, paris). Now, it is easy to compute the probability
of set (a), it is just the product of probabilities of theop F' sub-action for all of these aspects
which iSp — 0‘9\{(bi,tj>\bieBoxAbi;éb*. BO[EOTL(bi,tj,S)/\Truck‘ln(tj7pa'f'is,s)}|’ orin WOTdS, 0.9 to the power

of the number of boxes on trucks in Paris excluding the bordenloaded. And the proba-

bility of set (b) is obviouslyl — p. Since all joint actions in sets (a) and (b) regress unifgrmi
we can obtain the following (somewhat ad-hoc) simplifiedespntation of the backup:

Bunload(b*,t*,c*)[,UCG/SG()(S)] = (641)

D D

n1(b*,t*,c*)e{unloadS (b* t*,c*),unloadF (b* t*,c*)} moc{set(a),set(b)}

pCase(ny (b*,t*, ¢*)|unload (b*,t*, c*)) & pCase(ns|unload(b*,t*, c*))

3b. BoxIn(b, paris, do(ny (b*,t*,¢*) o ny, s)) : 10
e L 0

® Regr

Given that we know all of the probabilities for thease and the results of regression
through the four possible joint actions, we can explicitgrfprm the regressions (simplifying
equalities where possible in the process), and write oustine over these four cases:

B“”load(b*’t*’c*)[UC'aseO(s)] = - (6.42)
© 9.p 3b. [(t = t* A BozOn(b,t*,s) A TruckIn(t*, paris, s)) V BoxIn(b, paris, s)] : 10
_« 20

® .1-(1—p) EIb“ [(3t. BozOn(b,t,s) A TruckIn(t, paris, s)) V BoxIn(b, paris, s)] : 1(())

3b. [(t = t* A BozOn(b,t*,s) A TruckIn(t*, paris, s))
@ .9-(1—p)-| V(3t. BoxOn(b,t,s) A TruckIn(t, paris, s)) V BoxIn(b, paris, s)] : 10
_« - 0

3b. BoxIn(b, paris, s) : 10
¢ 0

Of course to determine the joint action that led to each acaseneed only examine the proba-
bilities that led to them. Her® is for unloadS(b*,t*, ¢*), .1 is for unloadF (b*,t*, c*), p is for
set (a) of actions, and — p) is for set (b).
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Finally, we perform the explicit sum to obtain the followisgnplified representation of

the backup:
B“"load(b*’t*’c*)[vC’aseO(s)} = - (6.43)
3b. BoxIn(b, paris, s) : 10

=“AA{Tb. [(t = t* A BoxOn(b,t*, s) A TruckIn(t*, paris, s))
V(3t. BozOn(b,t,s) A TruckIn(t, paris, s)) V TruckIn(t, paris,s)]} 1 10 —p

—“Adb. [t =t A BoxOn(b,t*, s) A TruckIn(t*, paris, s)] : 9
=“A 3b. [3t. BoxOn(b,t,s) N TruckIn(t, paris, s)] 110 — 10p
i« . 0

This is a fascinating result that symbolically represeimsrelevant information for this backup
for any domain size. That is, as defined previoudly- p) represents the chance that a box
falls off a truck in Paris and by definition approacheas the number of boxes on trucks in
Paris approaches>. This exactly reflects the fact that the more boxes there areugks in
Paris, the higher the chance that any one of them can indeptndall off the truck. This
result is in the original spirit of symbolic dynamic programmg, which intended to compute
and represent such information symbolically. In additae, note that due to the dependence
on p, whose value is domain-instance dependent, we must trisahsha parameterized case
statement as defined previously.

In concluding this example, we note that most of the reagptonobtain this result was
ad-hoc in the sense that we have not provided formal algostfor automating it. However,
we remark at this early stage of investigation into factdf@MDPs that our goal is simply to
demonstrate various types of structure that can be exgloite

Example of Backup with Indefinite Structure

In the case of 8SADMIN, we have a reward defined with a sum aggregator, which gives us
an entirely different kind of structure than we had in theecaSF-BoxWORLD. We illustrate

this notion with an example of the backii}s*****®)[vCase’(s)] for the SrSADMIN problem.
Recall thatCase’(s) = rCase(s) from Equation 6.4. Then we can write the backup as follows
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wheren is the number of computers in the domatn:
Breboot(x)[,ucase[)(s)] = @
a1 €{rebootS(c1),rebootF (c1)},...,an €{rebootS (cn),rebootF (cn)}
Regr|Up(c;, 8),a10---0a,| 1
(HpCase a;|reboot (x > ® Z grivple s) ]
Z cie Comp Regr[=Up(ci, s),a10---0a,]: 0

Now we distribute] [ through) ~ and reorded _ with P:

Breboot(w) [UCCLSQD (5>]

=7 2 D

ci€Comp | a1€{rebootS(c1),rebootF (c1)},....anE{rebootS (cp),rebootF (cn)}
- Regr|Up(c;, s),a10---0ay,| 1
(HpCase(aJreboot(a:))) ® griUp(cs 5), ax ]
i=1 Regr[=Up(ci, s),a10---0ay]: 0

This last step is extremely important because it capturedatiored probability distribution
[ ] inside a specifie; being summed over. Thus, for alkSADMIN problems, we now exploit
the fact that we can provérr(Up(c;, s), reboot;(c;)] for all i # j. This gives substantial
simplification via Axiom 6.2.2:

Bt @) [yCase(s)] =
Regr(Up(c;,s),a] @ 1
0% Z @ pCase(al|reboot(z)) @
c;€Comp | a€{rebootS(c;),rebootF (c;)} Regr[_‘Up(C“S)’a] - 0

Now we explicitly perform th&p over the sub-actions:

Breboot [UCCLS@ (8)] _
R U 9 ) b tS i 1

g Z pCase(rebootS(c;)|reboot(x))) ® egr[Up(ci, s), rebootS(c;)]
c;eComp Regr[—\ UP(CZ',S), TebOOtS(ci)] 0

Regr[Up(c;, s), rebootF'(¢;)] 1
Regr[—Up(c;, s), rebootF (¢;)] © 0

@ pCase(rebootF (c;)|reboot(x)) ®

Recalling the results of regression from Eqs. 6.24 and 6.25ee that the regressed top prod-
uct simplifies to 1 and the regressed bottom product simgltbed. Now, recalling the defi-

12Here, we write Nature’s choice sub-actions witlsince for this problem we have previously assumed the
number of computers is.
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Figure 6.1: Diagrams of the exampler SADMIN connection topologies that we focus on in
this document.

nition of pCase(rebootS(c)|reboot(z)) from Egs. 6.10 and 6.11, we obtain the final pleasing

result:
Bt @ [y Case(s)] = Z pCase(rebootS(c;)|reboot(x)) (6.44)
c;eComp
(v=c [T:1
Conn(d, c; Up(d, s 1
sz( (d, ci) A Up(d, 5) )
= Z , Up(ci,s) @ 0.95 o ~Conn(d,c;) V ~Up(d,s) : 0
C Com T C;
c;€Comp ﬁUp(Ci,S): 0.05 Conn(d,c;) 1
1+,
\ —Conn(d,c;): 0

Example of Symbolic Maximization with Indefinite Structure

To complete the factored symbolic dynamic programming (58&p we would first seek to
computeB™°![yCase’(s)]. However, noting our previous discussion, this is diffidoltdo
in a simplified closed form since the resultBf***°*(*)[yCase’(s)] contains indefinite additive
structure. Consequently, we need to take the indirect rduteterminingB7°"*! [vCase®(s)]
via a policy as previously described.

To simplify the example, we make additional domain constgaihat restrict our network
configuration to the simple unidirectional ring topologgrfr Figure 6.1(b) where each com-
puterc;_; is connected te; (where subtraction is modulg).
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In this case, we can then simplify Equation 6.44 down to thievieng representation:

Up(ci,s) A Up(ci—1,s) + 0.95
B ) yCase’(s)] =~ Y | Up(ci,s) A=Up(cit,s) : 0475 (6.45)

“€Cml Up(cy, ) A Up(ciy,s) 1 0.05
- Up(ci, s) N —=Up(ci_1,s) : 0.025

And assuming we haverop action, which takes the same transition distributioncsot (x)
minus the case of Equation 6.10 (sinaep has no parameter), we can compBt&°? [vCase®(s)]:

Up(ci,s) AN Up(ci_1,s) + 0.95
Up(ci,s) N=Up(ci—1,s) 0475
= Up(ci, ) A Up(ci_1,s) = 0.05
= Up(ci,s) N=Up(ci—1,s) : 0.025

B"?[yCase’(s)] = v Z (6.46)

c; € Comp

Thus, we seek to compute arCase(s) instance of an advantage functiohDV (s) as
defined previously. Foreboot (), we can do this as follows:

aCaS€] cpoot(2)>noop (5) = CASEMARBT (B* D [vCase'(s)] © qCase' (s, noop))

x=c¢; AN=Up(ci, 8) AN=Up(cizq,s) 0 0.975

x=c¢; AN=Up(e,s) A Up(ci—y,s) @ 0.95

x=c; N Up(ci,s) N=Up(ci_1,s) @ 0.525

. Z x=c¢ A Up(c,s) AN Up(ci_1,s) = 0.05
cieComp| T F i N Up(ciy8) A Up(cii,s) 0

x # ¢; A Up(ci, s) A~ Up(ci1, ) 0

z#¢; A=Up(ci,s) N Up(ciza, 9) 0

x#c; NUp(ci,s) N=Up(cizy,s) 0

(Fz.x =¢;) A= Up(ci,s) A =Up(ci_q, ) : 0.975
—“A(Jz.x=¢;)) N=Up(ci, s) A Up(ci—q,s) i 0.95
—“A(Jz.x=¢;) N Up(ciys) A= Up(ciq,s) @ 0.525
—“A(Fx.x =¢;) AN Up(ciys) A Up(ciei,s) = 0.05

While initially we had thedz. on the outside of the _, we noted that only one of the cases
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could haver = ¢;, with the rest where: # ¢; contributing0 and therefore removable from
the > . This leaves us with one remaining case (whe# c¢;), which we then existentially
quantified. And as a reality check, we note that this advantagctions makes sense — the
more computers that are down in a single unidirectional eotion, the more advantageous it
is to reboot one of those computers.

Since we only have aeboot(x) and anoop action in S'SADMIN, we note that by the
previous discussion, the policy feeboot(x) can then be represented in the following manner
using the action precedeneeop > reboot:

WO&S@l(S)mbOOt = aoa’setreboot(z»-noop(s) > acaseizoop}noop(s) (647)
= acaseieboot(x)>noop(s) > (648)

(Fz.x = ¢;) A= Up(ci, s) A= Up(ci-1, S)
| A Erz =) A=Up(ei, s) A Up(ciot, 8) (6.49)

—“A(Jz.xz=¢;) AN Up(ciys) AN =Up(ci-q, S) -
—“A(3z.x =¢;) N Up(ciys) A Up(ci-t, 8)

|
= = = =

This policy is essentially a decision list that prioritize=booting computers based on their
status and the status of their upstream neighbor.

We note that in computing thevop policy as previously described, we will get the follow-

ing result
WCasel(s)mop = S wCase' () reboot (6.50)
=T :1le[T:0] (6.51)

= (6.52)

sincer Case’ (s) 500 €Xaustively partitions the entire state space.

Now, we need to extract a free variable policy fO@asel(s)reboot(x) as described previ-
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ously, which gives us the following representation:

(x =¢;)) A= Up(ciy 8) A= Up(ci-q, 5) 1
=[(Fx.x = ¢;) A= Up(ciys) A= Up(ci—q, 8)]
(x =¢;)) N=Up(ci, s) A Up(ciza, s) 1

=[(Fz.x = ¢;) A= Up(ciys) A =Up(cizq, 8)]
=[(3x.x = ¢;) A= Up(ci,s) A Up(ci—i, 9)]

(x =¢;) N Up(ci,s) N—=Up(ci—1, S) 1
=[(Fz.x = ¢;) A= Up(ciys) A =Up(ci-q, 8)]
=[(3z.x = ¢;) A= Up(ci,s) A Up(ci-i, 9)]

=[(3z.x = ¢;) A Up(ci, s) A= Up(ci-1, 9)]

(x =¢;) AN Up(ci,s) AN Up(ci—i, S) o1

(6.53)

7T OCLS@I (s)reboot(x) -

And finally, based on Equation 6.39, we arrive at the follayviepresentation farCase' (s)
for SYSADMIN under the unidirectional ring constraints:

vCase'(s) = rCase(s) & B™C*' [uCase’(s)]
= rCase(s) ¢ 37. [ﬂC’aseieboot(I) ® B D yCase(s)]]

Tr=c : 1.0
Up(ci,s) AN Up(cizi,s) 0 0.95
Up(c,s) 1
= Z @ dx. |y Z Up(ci,s) N—=Up(ci_1,s) : 0.475
ce Comp _|Up(07 S) 2 0 ce Comp .
=Up(ci, s) N Up(ciq,s) = 0.05
=Up(ci, s) N —Up(ci—1,s) : 0.025

Note that we cannot get rid of the sum aggregator structutiissherently defines the value
function structure of 8SADMIN. Nonetheless, this is a purely symbolic representatiohef t
maximum value achievable farCase’ (s) that has explicitly computed the casemax and thus
is amenable to further factored symbolic dynamic programgnsieps.

6.3 Linear-value Approximation for (some) Factored FOMDPs

We note that in factored SDP, the value function represemtatten blows up uncontrollably
in only a few steps. This is especially true when the resdltacored SDP iterations intro-
duce parameterized or sum/product aggregator structnece simplifying this structure and
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maintaining a compact representation is difficult undes¢heircumstances. Furthermore, it
is not always clear how to explicitly compute the result afttmed SDP without leaving the
casemax and possibly th&' operators in symbolic form, which can complicate subsetjuen
factored SDP iterations.

Given this representational blowup and inability to sifyplthis suggests that we might
want to use linear-value function approximation methodshBps the most important advan-
tage of such an approach w.r.t. factored FOMDPs as preyiowded in Chapter 5 is that it
does not require simplification, just the estimation of gaaights. And as we will see, even
when we can't explicitly compute the casemaxdarand must leave these operators in their
original symbolic form, we may still be able to efficientlyaduate the linear programs at the
heart of linear-value approximation methods.

While we will consider indefinite structure in our discussadtinear-value approximation,
we note that the linear-value approximation approachéswhaonsider here currentprohibit
the solution of problems such as FGBWORLD that introduce parameterized case structure in
their backups. A linear-value approximation solution focls problems would require solving
parameterized (first-order) linear prograntisat specify LPs in terms of free parameters such
as domain and state properties (e.g., the number of boxasickstin Paris in a given state).
In general the solution to parameterized LPs appears to lopeam problem in the literature
and we do not attempt to address this issue in this thesis.eQaestly, from this point on, we
only consider factored FOMDPs with indefinite sum and pro@dggregator structure that do
not induce parameterized case structure. And for this reas® exclude F-BXWORLD from
future examples and focus solely omSADMIN.

6.3.1 Linear-value Representation

In this section, we demonstrate how we can represent a carapacoximation of a value
function for a factored FOMDP defined with rewards using s@ggregators. We represent
each first-order basis function as a sunt dfasis functions much as we have done for factored
MDPs and FOMDPs. However, using the sum aggregator, we egpatiameters across
classe®f basis functions given by a parameterizg, s) statement:

k
Vi(s) = @ w; Z bi(c,s) (6.54)

For example, we can use the following'ase(s) instance ofl/(s) to represent the value
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vCase(s) =w; Z bCasey(c,s) ® wo Z bCases(c, s), (6.55)

which accounts for the single (unary) and pair (binary) ®&snctions commonly used in the
SysADMIN literaturelGuestriret al,, 2002; Schuurmans and Patrascu, 4@@ereb Case;(c, s)
are instances df;(c, s) and parameters are tied for each of the unary and pair basitida

classes:
U, 1
bCasey(c, s) = p(e.s) (6.56)
-Up(c,s): 0
U A deo C AU i1
—(Up(c,s) A JegConn(c,co) A Up(cz)) : 0

There are a few motivations for this value representation:

e Expressivity: Our approximate value functioshouldbe able to exactly represent the
reward. Clearly the sum over the first basis function abowallus to exactly represent
the reward in SSADMIN, while if it were defined with ardc as opposed to &, it
would be impossible for a fixed-weight value functiondcale proportionallyto the

reward as the domain size increased.

o Efficiency: The use of basis function classes and parameter tying cmasiy reduces
the complexity of the value approximation problem by contlyaepresenting an indef-
inite number of ground basis function instances. While aurAd_P solutions scale with
the number of basis functions, we will demonstrate that olut®ns scale instead with
the number of basis functiatiasses

As far as automatically constructing these basis functisrncerned, we note that we
can attempt to generalize regression-based techniquasSextion 5.4 of Chapter 5. In this
case, however, the selection of which deterministic (joawtions to regress through is a bit
more challenging. In Chapter 5, we typically had a few deteistic outcomes per stochastic
action whereas here we can have an indefinite number of deistim joint actions. If we
do not know which subset of joint actions to consider for disnction generation, we may
just choose to use thB4[-] backup operator to derive potential basis functions (whean
be computed). Since the most difficult and combinatoricakplosive part of factored SDP
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is computing the symbolic maximization over multiple anspgenerating our basis functions
using the backup operators in this way would still save usifpgrforming this task.

For example, we note that the previous two basis functionspeeified for SSADMIN
were (1) the rewar@Case(s) and (2) the result of computing”*°?[rCase(s)]. In general, the
single, pairwise, triple, etc. basis functions used in thieADMIN literature can be derived by
the B"°°P[.] operator in this way. While this approach seems effectivé&Si@ADMIN, it is not
clear to what extent such a simple approach will generatizetier problems.

6.3.2 Factored First-order Approximate Linear Programming

Now, we generalize the first-order approximate linear paogning (FOALP) approach from
Chapter 5 to the case of factored FOMDPs. Simply substit@pmyopriate factored FOMDP
structure into Equation 5.13 we can specify the followinggdaed FOALP (fFOALP) solution
for factored FOMDPs in terms of a first-order linear prograheveZ(s) is our case represen-
tation of reward:

Variables: w; ; Vi <k
k

Minimize: Y " @ w; - Y " bi(cs)
=1 c .

k
o > w@s); VA (6.58)
i=1 ¢

Cc

Subject to:0 > R(s) @ B*

As before we note that our objective is an indefinite summafiwer all situations) and we
have an indefinite number of constraints (one for each swoa). However, in the factored
FOMDP formalism, we can now also have indefinite sum and proaggregator structure in
the objective and constraints owing to the possibility affsatructure in the reward and value
representations. For example, for SADMIN, we are using a rewarfl(s) = rCase(s) from
Equation 6.4 defined with a sum aggregator and we are usimgarivalue approximation of
vCase(s) from Equation 6.55 also based on the sum aggregator.

If the objective has no sum or product aggregator struchee tve can simply use the same
approximation as used for FOALP in Chapter 5. We note thatrifinaar-value representation
does not contain product aggregators (i.e., we do not use ithéhe basis functions (s) that
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we have chosen), we need not consider such structure in {eetob. We can handle the
remaining problem of indefinite sum aggregator structuréherobjective fairly easily with
an approximation. We compute an approximation of the olmedh fFOALP following the
approach for FOALP given in Chapter 5, Section 5.2.1. Explgitommutativity of® with
>, we approximate the above fFOALP objective as follows:

Z@wizbi(cﬁs) :@ wi-ZZbi(as)
k
Nzwi.|a. Z

(d5tj)€b;

| b?| (6.59)

In the last step, we made an additional assumption that €eble in the ) ~_b;(¢, s) should
be weighted uniformly and thus remove the. and replace it with a constant multipliét,
which represents the number of ground basis functions ®b#sis function clasl. If all
basis functions use the sarp¢,, thenc becomes a constant multiplier that we can factor out
of the objective. Otherwise, to determifi we need to know the actual size of domain object
classes? Here,|b;| represents the number of partitionsjmnd for each basis function, we sum
over the value; of each partition¢,, t;) € b; normalized byb;|. This gives an approximation
of the importance of each weight in proportion to the overall value function.

Before we tackle the problem of solving an LP with indefinitsiged constraints, we in-
troduce the factored generalization of first-order apprate policy iteration that will specify
a constraint form similar to fFOALP.

6.3.3 Factored First-order Approximate Policy Iteration

Defining factored first-order approximate policy iterat{@OAPI) turns out to be trivial given
that we previously had to define ti#[-] operator in our efforts to define symbolic maximiza-
tion for factored FOMDPs with indefinite structure. The pglmanipulation procedures to
performB~|-] in Equation 6.38 exactly reflect what we need to do for fFOARI tus, we can
immediately generalize the procedure given in SectiorRoPChapter 5.

As for API and FOAPI, in fFOAPI we calculate successive itierss of Weightswj(.i) that
represent the best approximation of the fixed-point valuetion for policyr(?(s) at iteration
i. We do this by performing the following two steps at everyatsn: after initializingw®) =

13As we will discuss later when we evaluate the constraintsywlleactually have this information since we
make domain size assumptions in our fFOALP solution.
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0andi = 1:

1. Obtain the policyr”(s) from the weightsiz(—" using the procedure outlined in Sec-
tion 6.2.3. From this, we can easily derw§ ) s) for all actionsA. We replace the
values in ther A(ﬁ*)( s) case partition values meland discard the value case partitions
(as for FOAPI as discussed in Section 5.2.2, we need not genend test constraints
where the policy does not apply).

2. Solve the following first-order LP that determines thegis:*) for the L., minimizing
projection of the approximate value function for policy’(s)

variables:w!”, ... w!”
Minimize: 3 (6.60)
Subject to:5) > |R(s) © 37 <7ng o(s) ® BT @ Z bi D

i VA, s

k
o wi’ - bi(@s)
j=1 é

3. If 7 (s) = 7()(s) or 3% is less than a prespecified tolerance then exit, else inereme
and goto step (1).

We've reached convergender®(s) = 701 (s) (or equivalentlyw® = (1), And if
convergence is reached, we conjecture that the loss boand&f (Equation 2.19) generalize
to this case through a generalization of Theorem 5.2.1.

On a final note, we observe that our constraints could cordath indefinite sum and
product aggregator structure just as for fFOALP. As suchneged some method for solving
an LP with such constraints, which we tackle next.

6.3.4 Constraint Generation with Indefinite Constraints

Now we turn to solving for maximally violated constraintsarconstraint generation solution
to the first-order LPs given in Egs. 6.58 and 6.60. We make sgoiraptions here: (a) each
basis function takes the forin . b;(¢, s) and (b) the reward takes the foryi . R(c, s) where
the ). in (a) and (b) refer to the same object domaifi

while we are not necessarily restricted to have such symeaéstructure in our reward and linear-value
approximations, we note that the constraint generatiorhogst outlined in this section can only generally be
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Under these assumptions, we will often find that the resyittomstraint structure of fFOALP
(6.58) and fFOAPI (6.60) for each actioh has the following generalized format where we
have replaced theés with max:

S

0 > max 37 { case1(Z,8) @ ... ® case,(T,s) ® Z [casepi1(C, %, 5) D ... & casey(C, T, s)] }

(6.61)

We cannot guarantee that this structure holds for a givebl@mnoas (c) we may not be able to
fully reduce the indefinite product aggregator structurthatransition distribution to a finite
product (by exploiting irrelevance or other properties)ewltomputing the backup operators,
(d) the backups may induce parameterized case structu¢e) tire policy may take the form
of a single case statement with indefinite sum or producteaxgdor structure or parameterized
structure. However, if (a) and (b) hold andneof (c), (d), or (e) occurs then we note that the
above general constraint structure arises in the followiay:

1. Recall that the case statement and the result of all opsigbplied to case statements can
be written as a first-order formula (albeit a potentiallyafiditely long formula if sum
or product aggregator structure are present). Thus, we Bemeéex” thedz quantifier
(implicit from the backup operations in fFOALP or expligitstated in the constraint for
fFOAPI) from each constraint to the front of our constragpmesentation.

2. Any non-sum aggregator structure in the constraints aache policy in fFOAPI can be
represented byase; (7, s) for 1 <i < p.

3. Under our assumptions, the backup can be distributedighrthe) _ . into each basis
function and any residual finite product struct@drom the transition function can be
explicitly computed, thus yielding sum aggregator streetinat can be represented in
the form)__ case;(c, @, s) for (p + 1) < j < ¢. Then we can exploit commutativity
of @ to rewrite ) _case,1(C, 2, s) @ ... B Y. casel(C, T, s) in the representation of
Equation 6.61.

We note that such a constraint structure holds for fFOALRiegpo problems like SSADMIN
for which we provide a concrete example at the end of this@ect

This constraint form is very similar to that solved for thestfiorder linear programs in
Chapter 5 (c.f., Equation 5.22) with one important exceptitiere we have the addition of the

made to work under such assumptions.
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sum aggregator which prevents us from achieving a finiteessgrtation of the constraints in
all cases (recall that_ . is an indefinitely large sum).

While we could conceive of trying to find a finite number of coasits that closely ap-
proximate the form in Equation 6.61, it is not clear how toweesa good approximation for all
domain sizes. In fact, itis very easy to construct examplasttave very different solutions for,
say, even vs. odd sized domains so it is not clear that a geth@main-size independent solu-
tion should always be desiréd.On the other hand, grounding these constraints for a specific
domain instantiation is clearly not a good idea since thragch would scale proportionally
to the domain size.

Fortunately, there is a middle ground that has received afloesearch attention very
recently—first-order probabilistic inference (FOPPoole, 2003; de Salvo Braat al., 2004.
In this approach, rather than makingdamain closureassumption and grounding, a much
less restrictivedomain sizeassumption is made. This allows the solution to be carrig¢drou
a lifted manner and the solutions to be parameterized by dneath size. Recent worlde
Salvo Brazet al, 2004 has explicitly examined a “first-orderiiax-> . cost network similar to
Equation 6.61 that we would need to evaluate during comstgaineratiort®

Inversion Elimination

Brazet al. [de Salvo Brazt al, 2005; de Salvo Braet al,, 2004 introduce the FOPI tech-
niques of(partial) inversion eliminatiorand counting elimination We do not use counting
elimination here and thus do not cover it. However, we do ogersion elimination for con-
straint simplification, which we describe next.

Assuming thatasep(c, s) only mentions relations or fluents in setand caser(c, s) only
mentions relations or fluents in sBts.t. P N R = (), we can perform the following inversion

BImagine a logistics domain where a truck and a plane canefedin item between cities connected in a
straight line with the truck and plane at one end and the gahleaother. The truck, for some reason, can only
move forward exactly two cities at a time (i.e., no odd-léngioves) and the plane although having a very high
cost, can move freely between any two cities. In the optiraklten, the truck is used for domains with an even
number of cities and the plane used for an odd number of ¢@ating to very different values.

181t turns out that oumax-Y_ formalism is actually more general than FOPI in that we cgmeasent not
only parameterized factorsver propositional variables, but also general first-ofdemulae within our case
statements. Nonetheless, these FOPI techniques can bdorgeteeralize to our framework.
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elimination transform:

0> maxz [casep(c, s) ® caser(c, s)] (6.62)

= [max Z casep(c, s)
S

[

D

max Z caseg(c, s)] (6.63)
This result follows simply from the fact thatisep(c, s) and caseg(c, s) can be maximized
independently as they have no common structure which masticon the joint evaluation of
their maximal values.

Now we introduce two additional elimination techniques mder to demonstrate an effi-
cient solution to SSADMIN.

Existential Elimination

We introduceexistential eliminationn order to exploit a powerful transformation for rewriting
and operator in a concisg . case(c) format. In what follows, we handle the case for a single
Jz since it can be applied sequentially for each quantifiechizdeiin the case oiz.

We assume that we are given a constraint of the following form

0 > max {Elx. Z case(c;, T, s)} (6.64)
B c,eC

where eachrase(c;, x, s) is restricted to reference in its case partition formulae using only

the testr = ¢; (or by negationr # ¢;). For examplecase(c;, z, s) could have the following

structure:

x:CiA¢1(S) . t1

=c N\ Q; . t;
case(c;, x,s) = T =i N oils) (6.65)
T F# ¢ Npipa(s) : tiv

TFE G Non(s) 1ty

Our ultimate goal is to be able to rewrite the constraint ini&epn 6.64 in an equivalent form
that does not contain ther operator. We describe how to do this in the following disausby
introducing additional variables and case summands irgatmstraint structure and making
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substitutions in our originadase(c;, x, s) representation.

To solve this problem, we will assume that we have a tramsgidering- (with equality:
») on all of the elements in the domain 6fU {c,+1} where|C| = {ci,...,c,} such that
c1 = Co > -+ = Cy = cpy1. We define a functiomezt(-) that specifies the next element in the
order such thatiezt(c;) = ¢;11 ; 1 < i < n. And we introduce a new variabléc;) whose
definition is the following:

Vee C.b(c;))=x=cNc ¢

In words, b(¢;) is defined as equivalent to the statement= ¢ for somec comingbeforec;
in the ordering.” The beauty of this definition is that we cae it to redefine: = ¢; in the
following manner:

Ve e C. [x = c] = [=b(c) A b(next(c))]

This equivalence is most obvious in wordst “= ¢ is the same as being chosen before
next(c), but not before in the ordering.” Now we can rewriteise(c;, z, s) ascase’(¢;, ¢it1, S)
where we substitute every occurrencexof= ¢ andx # c¢ with this equivalent definition
(that does not contain the variabte thus allowing us to remove the vacuous quantifiey.
Rewriting thecase(c, x, s) statement from Equation 6.65, we would obtain the following

=b(c;) A b(next(c;)) A p1(s) ok

=b(c;) A b(next(c;)) A ¢i(s) .
—(=b(ei) Ab(next(ci))) A diga(s) * i

(6.66)

case' (¢, Cit1,8) =

=(=b(c;) A b(next(c;))) A on(s) @ tn

Now, if only we could enforce the definition éfc;) while ensuring that at least one= ¢;
was chosen for; > ¢; = c¢,.1 (to enforce the semantics afr), then we would have an
equivalent rewrite of our constraint without the variablelo do this, we begin by defining the
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following two axioms:

Ve e C. (b(c) D b(next(c)))
=b(c1) Ab(cns1)

The first axiom states in words thatif= ¢ for somec that occurs before; thenc also occurs
beforenext(c;). If this axiom is satisfied for alt € C, it ensures that the definition éfc;) is
satisfied. The second axiom states in words thatc; for somec; wherec; = ¢; = ¢,.1, thus
enforcing thatr = ¢; holds true for at least one.

Now we introduce an expression that encodes the above twmaxand takes the valwe
when both of these axioms are satisfied:

=b(er) Ab(cpar) 0 - Z b(c;) D b(next(c;) 0
b(er) V =b(cngr) @ —oo | S| (b(ei) D b(next(c;)) : —oo

Having done this, we achieve our goal by rewriting the ogjconstraint withouBiz where by
construction, if its maximal value is greater thano, then the original form of the constraint
with the 3z is satisfied:

0> max{ ( > case!(ci cipr,8) B Y b(ei) D b(next(c;)) = 0 )

’ eieC eec| ~(0(ei) D b(next(c;))) 1 —o0

D

b(cr) V =b(cpyr) 1 —00

—b(ct) Ablcpsr) s 0 }

Linear Elimination

We next introduce an elimination technique intended to @kglymmetry in special cases of
themax-) problem. In Figure 6.2, we are given a sum oweof case statements of the form
case(c;, civ1) (Wheree; andc;, ; are consecutive w.r.t. some total order). We generally tefe
this summation form abnearly connecteaince eachr; co-occurs withe;_; in case(c;_1, ¢;)
andc;,; In case(c;, ¢;1) (except for the first and last variables which each only oatune
case(c;, ¢;v1) summand). Our goal is to compute the max over all variablesmxthe first
and last, each previous solution can be usedioigblethe size of the next solution due to the
symmetryinherent in the elimination. As shown(2) = max,, Zle case; and is structurally
identical tomax,, _7 , case; modulo variable renaming, thus leavingto be eliminated from
the sum to obtaim(4). Applying the same elimination again t¢4) yields(8) and so on. In
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« Compute: r(n) = MaxX, ¢, 2iz1_, case(c;ci.,)

[ci [einn | |
T L ]1
where case(c;,¢;,;,8)= [ L[| T |-5
T L [-5
T T [0
T
lenfea| | leefes| | [eafes]| |
TlL]1 TlL]1 Tl 2
- r@)=maxc, [ L[ T[] 4 [L[T[5] =[L[T[4
Tl L5 Tl L5 T L4
TIT [0 TIT [0 T1T [0
. — <
lesfes| | lefes]| | [eafe]| |
T[L] 2 T[] 2 L] 4
T[T 4 T(T 4] =[L1 [T ][=2
- r@=maxe; T Y T T L2
TITlo0 TITlo0 TIT[o0
leafes] | [esfew] | [eale] |
T 1] 4 T L] 4 T]L][8
- r@B)=maxcs [ L[ T2+ | L]T]2]=[L]T]2
T L]-2 T L2 TIL2
TIT]0 TIT] 0 TIT 0

Figure 6.2: An example dinear elimination

general,r(2") can be computed directly from(2"~!) in this manner. Thus, the elimination
can be done i (log n) space and time and the maximizing instantiations can besepted
in O(logn) space also due to the inherent symmetry of the variablerassigts.

Example of Linear and Existential Elimination

Having described a generic constraint structure and vargimination techniques intended
to efficiently find the maximally violated constraint undemadain size assumptions, we now
provide an example of this applied too SADMIN. To simplify our exposition, we use the uni-
directional ring topology constraints of Figure 6.1(b) amel use just the unary basis function
classbCase;(c, s) from Equation 6.56.

We note that the following techniques efficiently genematzthe pairwise, triple, etc. basis
functions discussed previously since they all make a ligegamnected assumption that leads
to symmetry that can be exploited by both linear and exigteatimination. And for more
complex network topologies that include lines (or ringsa&#isndamental building block, these
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networks can be decomposed and linear and existentialrgltron applied to each line with
the results easily pieced together.

With the prior assumptions, we now examine the fFOALP camstrstructure that we
would get for thereboot (x) action for S'SADMIN:

k
o @ w; - bCase;(s) ; Vs

=1

k
0 > rCase(s) @ B [@ w; - bCase;(s)

i=1

Now we expand out each of the case statements into theirlaepr@sentation and substitute
our single basis linear value function representation. & gewrite our constraints in terms
of max, to get rid of thevs:

U 1y o1 U i ]
0 > maX{ Z p(C S) D Breboot [wl Z p(C S)
’ c;€ Comp _‘Up(ci75) 0 c;€ Comp _‘Up(ci78> 0
Up(ci,s) 1
Dwy Z p(ci, s) }
c;€Comp —'Up(ci,s) ;0

Noting that the result oB87°!(®) for this particular case was given in Equation 6.45, we can
easily deriveB™"°! by existentially quantifying it, so we substitute it in totan:

Up(ci,s) N Up(ci—1,s) ¢ 0.95
Up(ci,s) @1
0 > max Z @ w; -y 3. Z Up(ci,s) N—=Up(ci—1,s) : 0.475
B c;€ Comp ﬁUp(CZ—,S) 2 0 c; € Comp

= Up(ci,s) N Up(ci—1,s) = 0.05
= Up(ci, ) N —Up(ci—1,s) : 0.025

w
' -Up(ci,s): 0

c; € Comp

Next we apply existential elimination to get rid of thiz assuming that we have defined
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next(c;) = ¢;—1 and exploit commutativity ofs to reorganize the __ _.,,..:

ﬁb(Ci) N b(Ci_l) . 1.0
Up(ci,s) AN Up(ci_1,s) + 0.95
Up(ci,s) @1
0 > max { Z Un(cs) 0 @ w;-v| Up(ci,s) AN=Up(ci_1,8) : 0475
s _ - Ci,S) -
ci€Comp P - Up(ci, s) N Up(ci—1,s) : 0.05
= Up(ciys) N=Up(ci_1,s): 0.025

\

Up(ci,s) = 1| | b(e) Db(ciy) @ 0 )@ —b(c,) Ab(cy): 0 }

@’LU1 D
= Up(ciys): 0 b(c) A =b(ciq) 1 —o0 b(cy) V —b(cy) 1 —o0

From this point, we have a representation that is directlgraable to the application of linear
elimination. To see this, we explicitly compute the “cr@ssn” of the four case statements
inside the paren§). Then we merge eaclic;) and Up(c;, s) into a single 4-valued variable

with domain as follows

and rewrite this sum asuses(v;, vi11). For uniformity, we can easily rewrite the last ndn;
term overb(c,), b(cy) in the form case; (v1,v,). Thus, we obtain the following rewrites of the
above constraint culminating in the final constraint formewéhwe push thenax in using the
principles of variable elimination:

0 > max {casel(vn,vl) &) ( max Z cases(v;, Uil)> }
v2

v, o V2, Un—1 %
=1

n
> max {casel(vn, v1) D cases(vy,v,) B ( max Z cases(vy, vi_1)> }

V1,Un V2. Un—1 %
=2

n—1
> max {casel(vn, v1) @ cases(vy,v,) O ( max Z cases(viy1, vz)> }

V1,Un V2y.eny Un—1 <
=1

Now, we can determine the innerax,, ., , Z;‘:_f cases(v;i11,v;) by linear elimination in

O(logn) time since this is essentially the form we evaluated in FégB2 except that the
variablesy; are quaternary rather than binary (which can be easily actmated). The final
and outetnax,, ,,, is only over 2 variables and can be computed in constant time.



CHAPTER6. FACTORED FIRST-ORDERMDPS 205

Therefore, once we have a weight instantiation during caimgtgeneration, we can linearly
evaluate the maximizing variable assignment for this aaingtin O(logn) time. This gives
us the maximizing value for the constraint and if it is a vimla, we can easily extract the
structure of this constraint to add it to our LP. Thus, we &&¢ for fFOALP on this particular
SYSADMIN problem, constraint generation tak@log n) time per iteration.

As noted at the beginning of this subsection, these tecksigeneralize to larger sets of
basis functions (pairs, triples, etc...) since these dlil@kthe symmetry that can be exploited
by linear and existential elimination. Furthermore, thesdniques can also be applied to more
complex network topologies that can be decomposed ints layesolving each decomposed
piece separately and then piecing the solutions together.

6.4 Empirical Results

All of the solution techniques that we have described sorfatargeted to very specific types of
problem structure and we note that the collection of tealesgve have presented is far from a
universal solution. Our goal in our solution approachestaasale sub-linearly in the FOMDP
representation size, however, as we will discuss in thelasiun, the results of Jaegt00d
imply this is generally impossible. As a consequence, ourec implementation of linear-
value approximation methods is geared specifically towtrelsypes of problem structure that
we have exploited above, i.e.,ySADMIN problems with network topologies consisting of
linearly connected structure.

Given the general difficulty of automatically finding a corappolicy representation in the
policy-driven approaches of factored SDP and fFOAPI fes&DMIN, the only practical first-
order approach to solving this problem was fFOALP. We apphé&P and fFOALP solutions
to the SrSADMIN problem configurations from Figure 6.1(a,b,d) using unasi®functions;
each of these network configurations represents a distias of MDP problems with its own
optimal policy. Solution times and empirical performance shown in Figure 6.3. We did not
tie parameters for ALP in order to let it exploit the propestof individual computers; had we
done so, ALP would have generated the same solution as fFOALP

The most striking feature of the solution times is the saltalof fFOALP over ALP.
ALP’s time complexity isQ2(n?) since each constraint generation iteration must evaluate
ground constraints (i.en, ground actions), each of length(i.e., n basis functions). fFOALP
avoids this complexity by using one backup to harallgpossible action instantiations at once
andexploiting the symmetric relational structure of the coaisits by using existential and lin-
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ear elimination (plus inversion elimination for the statwerk) to evaluate them i (log n)
time. Empirically, the fFOALP solutions to theserSADMIN problems generate a constant
number of constraints and since LPs are polynomial-timeasdé, the complexity is thus poly-
nomial inlog n.

In terms of performance, as the number of computers in thearktincreases, it becomes
difficult to obtain a high reward since on average, more thaamputer will fail on a given
time step (for sufficiently large problems), yet only one paiter can be rebooted at each time
step. This leads to a necessary degradation of even theapimticy value as the domain
size increases. Comparatively though, the implicit parantging of fFOALP’s basis function
classes does not hurt it considerably in comparison to AeRamly, the difference becomes
negligible for the networks as the domain size grows. Thacaies that tying parameters
across basis function classes may be a reasonable apporydalge domains. Secondly, for
completely symmetric cases like the unidirectional ring,sge that ALP and fFOALP produce
exactly the same policy—albeit with fFOALP having produdbis policy using much less
computational effort.

We note that the FOMDP formalism from Chapter 4 (originallpearing in Boutilieret
al. [2001]), the extensions for linear-value representation in Chidptand all other FOMDP
formalisms[Holldobler and Skvortsova, 2004; Kerstiagal., 2004; Wanget al,, 2007 cannot
compactly represent factored structure in FOMDPs. Othatfitst-order approachd&ernet
al., 2003; Gretton and Thiebaux, 2004; Guesgtral, 2003 require sampling where in the
best case these approaches could never achieve sub-lomeplexity in the sampled domain
size.

6.5 Concluding Remarks

We have contributed the sum and product aggregator langexigesion for the specification
of factored FOMDPs that were previously impossible to reent in a domain-independent
manner as FOMDPs. And we have generalized symbolic dynamgrgmming to exploit
novel definitions of first-order independence and sum/pebdggregator structure. We have
also shown how parameterized structure can arise in thé@ohf factored FOMDPs as it did
for the F-BoxXWORLD problem.

In addition to exact solution methods, we have generaline@t-value approximation solu-
tion techniques to handle factored FOMDPs. In many caseqrésence of sum and product
aggregator structure in our factored FOMDP definition pnéveis from obtaining a finite-
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length form of the constraints in the linear program repmnés@ns that arise from these solu-
tions. Nonetheless, we showed that we can make a mildlyictagtrdomain size assumption
and exploit the resulting constraint structure to effidestaluate them in a constraint gener-
ation framework without grounding. To do this, we borroweahf the first-order probabilistic
inference (FOPI) frameworPoole, 2003; de Salvo Bra al., 2003 and introduced the novel
existential and linear elimination techniques for respett exploiting existential and linear
structure in the evaluation of cost networks during comstrgeneration. Using these tech-
niques, we empirically demonstrated that we can solve t®ABDMIN factored FOMDPSs in
time and space that scales polynomially in the logarithnihefdomain size—results that were
impossibleto obtain for previous techniques that relied on grounding.

Unfortunately, while we have provided the representatimhlaasic symbolic dynamic pro-
gramming equations for factored FOMDPs, we have only begweratch the surface of their
solution methods. Thus, this chapter should be viewed noemantroduction to the factored
FOMDP representation and potential solution methods rdkiza a guide to its generic solu-
tion. A lot of the underlying theories are in development #émel methods for manipulating
and simplifying first-order case expressions are just beggto be explored. It is beyond
the scope of this thesis to address all of these topics cdrapsévely, nonetheless, it was our
objective to provide an idea of what is possible with theseshsolution approaches.

In conclusion, we do note one negative result that may pigreéaplain our inability to
provide comprehensive algorithms for factored FOMDP sohst Jaegef200q proved that
lifted inference in relational Bayes nets (i.e., those egjent in expressive power to op€ase
representation for transition DBNs in factored FOMDPs, Wtdondition probabilities on first-
order formulae) cannot always be done exactly for triviatrigs (i.e., determining the prob-
ability of a single ground atom) in a manner whose inferémtmanplexity is less than that of
performing inference in a fully grounded problem. Sincesrehce in the backup operator for
factored FOMDPs is at least as expressive as these triveaiag) this implies that we will
not always be able to symbolically evaluate a factored ttiansdistribution (or cost network
constraint structure built from this distribution) in anyagtotically faster manner than that
obtained by fully grounding it out — thus losing the benefitsh@ compact factored FOMDP
representation.

Nonetheless, this does not preclude the possibility ofriotstl classes of structure for
which we can obtain efficient solutions. As an example, fabpgm structures similar to the
F-BoxWoRLD and SYsADMIN problems discussed in this chapter, we note that there ifmuc
hope for efficient solutions. And one additional idea is tiiate are willing to approximate
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our model in order to fit into a class of efficiently solvableMMDPs, then we can use a solution
to this approximated model as guidance for other more coatipaially expensive algorithms
ranging from seed values for value iteration to ground stiarsearch to reward shaping in re-
inforcement learningNg et al., 1999; Marthi, 200¥. Or we may just choose to act according
to this approximated model, especially if we can obtainrdsounds on performand®earden
and Boutilier, 1997. We revisit this idea in our concluding chapter since it ima an effec-
tive framework for making use of FOMDPs and factored FOMDPem they excel, while
avoiding their use where they are problematic.



Chapter 7
Conclusions

We have come a long way since we first introduced the grountherated state MDP and its
variant solutions as the basic model for representing ahdingodecision-theoretic planning
problems. Since that point, we have introduced factorastire into MDPs and we have
covered a variety of exact and approximate solution allgorit that exploit this factored MDP
structure. We have also introduced the FOMDP representttiexploit some of the relational
and first-order structure inherent in many planning probtepresentation languages such as
PPDDL. And we have combined factored and first-order strecioto a factored FOMDP
model that combines the representational advantages|of bot

Not only have we shown that various forms of factored andtimeial structure can be
exploited in the concise and natural representation of MBPw#e have also demonstrated
that this structure can be exploited in solution methods el We have introduced a variety
of methods for exploiting structure in exact solution agmtees and we have heavily moti-
vated the linear-value approximation approach for exjplgitll levels of MDP structure. For
this approach, we have presented comparative results lienhGAPS International Proba-
bilistic Planning Competitions that demonstrate that ost-farder linear-value approximation
approach is competitive with other state-of-the-art pasn And finally, we have also pre-
sented encouraging empirical results showing vast restluetn solution complexity on certain
types of problems over less-structured approaches thringgexploitation of various forms of
structure — be it context-specific, additive or multiplivatindependence, or the exploitation
of factored MDP structure, first-order MDP structure, deposable goal structure or combi-
nations of the above.

Here, we review the major contributions of the thesis, aatiome interesting directions for
future work, and part with some concluding remarks on theméaork of first-order decision-
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theoretic planning in structured relational environments

7.1 Summary of Contributions

In a thesis such as this one that draws on so much backgrourld iv@an be difficult to
discern new contributions from prior work. Consequentlybriefly review some of the major
contributions of this thesis:

1. Affine Algebraic Decision Diagrams:Having identified various shortcomings with the
algebraic decision diagram (ADOBaharet al, 1993 representation, we introduced
the affine ADD (AADD) to simultaneously exploit additive, ttiplicative and context-
specific independence in factored MDP representation dntd@omethods. We proved
that the AADD never performs more than a constant factor orsime and space than
an ADD and can lead to an exponential-to-linear reductiotinme and space over the
ADD. And we presented a variety of empirical results sugggshat AADDs are of-
ten as good as or better than ADDs or tabular representatidghe solution of factored
MDPs. Unfortunately, a preliminary investigation into thee of AADDs for approx-
imate inference in MDPs has not proved fruitful; yet appnaaiion approaches seem
crucial for scaling beyond the limits of exact inference itsimultaneously mitigating
issues of representational blowup that may occur due to noah@recision errors in the
AADD computations.

2. First-order Decision Diagrams: In the same way that ADDs and AADDs exploit struc-
ture to compactly represent factored MDPs, we introducetidirder ADDs and first-
order AADDs (collectively termed FO(A)ADDS) to represetrusture in the case rep-
resentation of FOMDPs. We introduced an additional typetifcture — first-order
context-specific independence — that can be exploited isetlidgagrams and we dis-
cussed how to perform case operations directly on this septation. We explored the
difficulties that can occur with using FO(A)ADDs for all FOMDsolution computa-
tions and thus advocated a hybrid approach for their usestiadiled the fully automated
solution of a few example FOMDPs.

One of the key components for producing compact FO(A)ADDhésuse of equality

simplification procedures to (a) remove unneccessaryhasand quantifiers and (b) to
distribute quantifiers as deeply into a formula as possiblmi effort to expose proposi-
tional structure in a first-order formula. Our current agmto for simplification is based
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on the heuristic search-based application of rewrite ralgébned in Chapter 4, but it is
likely that there are better and more efficient methods fanglthis.

3. Additive Decomposition of Universal Rewards:FOMDPs with universally quantified
rewards pose a number of interesting difficulties for solutechniques based on the case
representation or its decision diagram extensions. Halisgussed these issues, we then
proceeded to propose an additive goal decomposition apiptoeghandling universal re-
wards motivated in part by the work dBoutilier et al, 1997; Singh and Cohn, 1998;
Meuleauet al., 1998b; Poupart al., 2002a. This approach required an offline generic
solution combined with an online additive decompositiorQe¥alues w.r.t. goals spec-
ified at run-time. Then we outlined an approach for explgitthe additivity of Q-
values to efficiently perform run-time policy evaluation.eWsed these techniques in
the FOALP and FOAPI planners — FOALP, in particular, provedé a capable plan-
ner, due in part to its ability to efficiently exploit univatseward structure. However, we
remark that additive goal decomposition is only a heuriggiproach and it is relatively
easy to construct examples where it will fail; it is not cleawhat extent enhancements
and a deeper analysis of goal structure can mitigate theddepns.

4. Linear-value Approximation for FOMDPs: We showed how to generalize linear-value
approximation techniques from factored MDfzuestrinet al, 2002; Schuurmans and
Patrascu, 20Q1to the case of FOMDPs. This solution involved a number of howe-
tributions w.r.t. the introduction of the first-order limgarogramming paradigm, a gen-
eralization of the variable elimination algorithm to rétext elimination, and the use of
this algorithm in an efficient constraint generation appho# solving the first-order
linear program. Additionally, we showed how the generabborthogonal basis func-
tions could be exploited in our solution algorithms. Togetlall of these contributions
made first-order generalizations of approximate lineag@amming (FOALP) and ap-
proximate policy iteration (FOAPI) possible. And in coméiion with additive goal
decomposition as mentioned previously, FOALP managedtipeoiorm state-of-the art
stochastic planners on certain classes of problems dugedgptoitation of relational and
goal-oriented structure.

We note that the generalization of approximate linear @ogning (ALP) to the first-
order case of FOALP was only heuristic in that we could noedatly represent the
ALP objective in FOALP. It would be useful to revisit our aggotions in modeling the
FOALP objective to determine if there are better approachiéisile we did manage to
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directly generalize approximate policy iteration (API}he first-order case of FOAPI —
thus obtaining a first-order generalization of the API enounds — we note that FOAPI
proved to be a difficult method to apply in practice. The maimbem with FOAPI was

that its policy representation could not be maintained inragact form and the growth
of the policy representation as more basis functions wede@duickly outstripped the
ability of our theorem prover to detect inconsistency. THos FOAPI to be a viable

approach in the future, we need to focus on compact ways teedand represent the
policy. Finally, for both FOALP and FOAPI, we remark that daasis function gen-
eration was highly heuristic and geared towards a specifiofggrobabilistic planning

problems. More work is needed to identify general, autothatethods of producing
first-order basis functions.

5. Representation and Solution of Factored FOMDPs: We contributed the factored
FOMDP formalism to permit FOMDPs to domain-independerglyresent factored struc-
ture such as additive rewards and factored actions that 8a#i the domain size. We
provided a compact formalization of effect axioms and dssed a number of their prop-
erties that could be exploited in solution approaches.

Beyond the representation, our investigation of solutiothoes was highly exploratory
and we were only able to provide small examples and ad-homappes for exploiting
some of the structure that may occur in factored FOMDPs. kamgle, we identified a
case where parameterized case structure may arise and vifeechodr case operators to
handle such additional structure. We also contributediapaed symbolic dynamic pro-
gramming and linear-value approximation techniques teescértain factored FOMDPSs.
Even though our linear-value approximation approach wasigp to a domain size, we
introduced a framework that allowed the constraints to ksuated without requiring
domain grounding. These ideas built on the first-order duiistic inference (FOPI)
work of [Poole, 2003; de Salvo Braa al., 2005; de Salvo Braet al., 2004 where we
also introduced the two novel elimination methodsristential eliminatiorandlinear
eliminationfor performing variable elimination in this framework witht grounding.
Together, these ideas permitted the factored FOALP solatithe S'SADMIN problem
in space and time that scaled sublinearly in the domain sizeresult that is impossible
to obtain for the corresponding grounded ALP approach. kewthis work is just the
tip of the iceberg and leaves many important open questiods as “what classes of
factored FOMDP structure can be solved efficiently?” We mlexsome guidance on
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this problem in the next section covering directions foufatwork.

6. Correspondence of Symbolic Dynamic Programming for FOMDPs ad Dynamic
Programming for MDPs: We provided a proof of correspondence between symbolic
dynamic programming (SDP) for FOMDPs and Dynamic Programgnfior MDPs. The
key to this proof was showing that when an SDP solution to FBM 3 grounded w.r.t.
a domain closure assumption, the result is equivalent tsohgtion obtained by first
grounding the FOMDP and then applying standard ground MD&tisa techniques.
We remark that this was an alternate proof approach tharmgiyen in[Boutilier et al,
2001]. There the emphasis was on proving the correctness of thea®&joFithm at a
purely logical level (including the case of infinite modell) our proof, we focused on
proving correspondence between the first-order and welvkinground MDP solutions.
Among other things, this allowed us to lift the results fopegpximation error bounds to
the first-order case.

7.2 Future Directions

With respect to this thesis work, there are a number of opes #rat are worth further explo-
ration. Here we enumerate a few of them:

1. An interesting approach for the practical applicatio-F@MDPs to decision-theoretic
planning is to combine their approximate offline solutiorthvonline methods for en-
hancing their performance. And for ideas, we need only lddkerange of successful
planners used in planning competitions. Perhaps one of th& oseful approaches
would be to use offline methods for solving FOMDPs to geneaatemain-independent
approximated value function. Then we could use such a vahuibn as a heuristic seed
for online search methods such as RT[BRrtoet al, 1993. Another approach would
be to consider domain-specific control knowledge encodédmporal logic constraints
as in TLPlanBacchus and Kabanza, 240@rogram constraints as in Golgevesque
et al, 1997 (both TLPlan and Golog are deterministic planners) or decitheoretic
extensions such as DT-Goldgoutilier et al, 2004. We discuss the use of program
constraints further in a moment.

2. We did not fully evaluate all of the possible combinati@istructural exploitation in
FOMDPs. For example, we introduced both FOADDs and FOAADIRg, we only
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used FOADDSs in our experiments since preliminary experis@volving FOAADDs
demonstrated that there was little additive or multipheastructure to exploit in these
problems. Furthermore, we discussed the APRICODD exten$iSRODD for approx-
imate value iteration with ADDs in Chapter 3, but we did notsider similar extensions
for approximate value iteration with first-order ADDs for MDPs. Given the success
of APRICODD, this approach is quite appealing for first-ordgpraximate value itera-
tion; when the FOADD representing the value function becotoe large we can simply
prune out nodes in the FOADD (as demonstrated in APRICODD fdDAID Figure 3.6)
in an effort to reduce the size of the value function while imizing the approximation
error.

3. We only skimmed the surface of research on factored FOMORzhaps the single
greatest unanswered question for factored FOMDPs is hodetatify structure that can
be efficiently exploited by solution methods — and furthereydow to automate these
solutions. One approach to addressing this would analygeifspclasses of problem
structure, their efficient solution (if possible), and hdwege classes of problem structure
could be combined while still permitting efficient solutgrin many ways, this is similar
to the field of description logics in its nascency, when regears sought to determine
which combinations of logical constructors permitted &t subsumption reasoning.
However, the well-known result of Levesque and Brachiii®87 for description log-
ics (showing that very minor changes in logical repres@matan lead to major changes
in tractability) portends a similar negative result forttaed FOMDPs due to the un-
derlying connections at an abstract logical level. Thatesy simple factored FOMDP
structures that are efficiently solvable in isolation mateiact such that their combi-
nation is no longer efficiently solvable. However, such dssion is only hypothetical
and a clear formal analysis is needed to verify this. Nore#isg in light of the results
of Jaegef200d as discussed in the conclusion of Chapter 6, it does becoraetblat
exact solutions to factored FOMDPs will not always be tralgtaand thus we discuss
additional ideas for approximate solution approaches nmbaniy.

One other interesting avenue for future research is on rdsthwat extend first-order
probabilistic inference (FOPI) ide&Roole, 2003; de Salvo Brat al., 2005; de Salvo
Brazet al,, 2004 to the relation elimination approach of Chapter 5 to permibaengen-

eral application of FOPI to linear-value approximatiorhteiques for factored FOMDPs.
At the current time, FOPI-based inference focuses on namiified relational structure
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in the form of parameterized factors (i.parfactorsin the FOPI lexicon), yet general
factored FOMDPs clearly permit the use of quantifiers in thgecstatement represen-
tation that generalizes parfactors to full first-order togHowever, while the represen-
tational generalization is clear, the algorithmic geneagion is much less clear since
the lifted propositional ordered resolution used at théguaor level in FOPI has much
better computational properties than the first-order @deesolution used at the case
level in relation elimination (i.e., the propositional \at is guaranteed to terminate on
any single elimination step whereas the first-order vamaay not). But perhaps the use
of specially restricted languages and more complex ordesalution methods based on
reduction orderings may resolve some of these difficul@efgscinating thesis on this
latter topic is given by Motik2004.

4. One very fascinating idea and perhaps one of the most pragniises of FOMDPs and
factored FOMDPs is at the highest level of an abstractiomahsdy for agent-based
decision-theoretic planning. Dearden and Bouti[i#997 demonstrate that an MDP
model can be approximated to a structure that is efficientiyadle and that error bounds
can be obtained on the resulting optimal policy in the abstihmodel w.r.t. the opti-
mal policy in the non-abstracted version. If we lift suchulesto FOMDPs and factored
FOMDPs, then this offers a very appealing paradigm for thed. we can approximate a
general (factored) FOMDP model to a level that we know we cdwesefficiently while
obtaining error bounds on the performance of the optimakpoh this approximated
model. Or, further afield, we can use a solution to this apprated model as guidance
for other more computationally expensive algorithms likeund heuristic search or as
shaped rewardg et al,, 1999; Marthi, 200¥or seed valueBNiewiora, 2003 for value
iteration in the non-abstracted MDP model.

In addition to the immediate open ends of our current reease have only touched
on the surface of FOMDPs and the vast array of stochastisidecprocesses and symbolic
solution methods that are possible. There remain a numbproofising directions for the
exploitation of structure in relationally-specified deéarstheoretic planning problems that we
briefly describe here:

1. One of the original goals in the FOMDP and symbolic dynaprmgramming frame-
works [Boutilier et al,, 2001 was to allow for very general symbolic representations.
While most current FOMDP research has assumed a constantinahtepresentation
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of the values in case statement partitions, we began to ensduations where we might
obtain parameterized case structure in Chapter 6. We coultince this line of in-
quiry into parameterized value representations in theestraf modeling continuous
state properties, perhaps combined with discrete stafgepres in ahybrid (FO)MDP.
This idea is intriguing in that it permits the specificatiohFOMDPs with the state
represented in terms of continuous quantities where actitety range over continuous
variables and rewards may scale continuously with stat@hlas (or relations). It is
quite easy to formulate some simple problems in this donsaich as moving quantities
of water between tanks by opening and closing val\euskrecht and Kveton, 2004;
Guestrinet al, 2004. However, solving such a problem domain-independentlyedfid
ciently will likely require a significant extension of curmemethods.

2. In many FOMDPs there is an element of underlying topolaigigaph structure. For
example, in logistics planning, this graph structure maglve the accessibility of dif-
ferent cities via roads and flight routes. Currently, thispgratructure is not exploited
by our solution methods. Yet its regularity, if knowrpriori, could likely be exploitable
by solution methods that could “compile” out this graph stawe. This approach would
be far more advantageous than relying on the first-order iggesentation to extract
relevant graph properties using the cumbersome speaiircafitransitively composed
relations (i.e.dcy, c2. Road(cy, ¢o) A Jes. Road(cs, c3) A Jeq. Road(cs, eq) A ...

3. We often have a predefined set of constraints on the bataivém agent and we need to
optimize the agent’s policy w.r.t. those constraints. If ve@ specify the program con-
straints in the form of a Golog progralhevesqueet al, 1997, then we can generalize
the hierarchy of abstract machines (HAM) architectiRarr and Russell, 1998; Andre
and Russell, 2001; Andre and Russell, 2D@2he case of solving FOMDPs w.r.t. Golog
program constraints. Such a solution would permit the @yprately) optimal execu-
tion of an incompletely specified program over all possildendin-instantiations. Var-
ious approaches in the decision-theoretic DT-Golog fraareWBoutilier et al, 2000;
Soutchanski, 2001; Ferreat al., 2003 have provided an initial investigation into these
ideas.

Altogether, it should be clear that this thesis only repnéséhe tip of the iceberg for first-
order decision-theoretic planning in structured relal@nvironments. And the above sugges-
tions are but a few of the many possible avenues in this fetialttlof research.
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7.3 Concluding Remarks

For a few years immediately succeeding the publication sttbrder MDPs and their symbolic
dynamic programming solutidiBoutilier et al,, 2001], this approach was disparaged as being
unrealistic for practical applications due to the complewf value functions or due to the need
for logical simplification and theorem proviyoonet al., 2002; Gardiol and Kaelbling, 2004;
Guestrinet al, 2003. While these are all in fact significant obstacles to be ovaem the
practical application of first-order MDPs to decision-thet@ planning applications, this thesis
has aimed to show that these obstacles are not insurmoenttivhs provided a substantial step
in the direction of demonstrating that with careful attentpaid to the first-order representation
and algorithms specifically designed to exploit that repnéstion, lifted solutionsanwork in
practice. And at the present point in time, not only can theykwbut they can scale well
beyond that of grounded approaches in many notable cases.

Despite these successes, many researchers will contirasoi lifted first-order meth-
ods and resort to grounded methods for the very practicabrethat grounded methods are
both easier to understand and easier to implement. But teesiegreat potential payoff to
be gained by understanding and working at the first-ordesl lehen approaching decision-
theoretic planning problems. And there is a world of relagilcand symbolic structure waiting
to be exploited. This thesis represents just a few pointhah $pace of ideas and there are
likely a plethora of breakthroughs in first-order decistbporetic planning patiently awaiting
discovery. Our hope is that this thesis lays out the foundatfor further exploration of this
space and helps move this nascent field further along theopatfactical impact.



Appendix A

Proof of Correctness of Symbolic Dynamic
Programming

In this appendix, we provide a proof of correspondence batvgymbolic dynamic program-
ming (SDP) for the FOMDP model of Chapter 4 and dynamic prognarg (DP) for the MDP
model of Chapter 2 under finite domain assumptions.

A.1 General Proof Approach

The key to this proof is showing that when a SDP solution to FEIFd is grounded w.r.t. a
finite domain via domain closure axiomshe result is equivalent to the solution obtained by
first grounding the FOMDP and then applying standard groumPMolution techniques (see
Figure A.1 for a visual representation of this proof).

Boutilier et al.[2001] provide a proof that SDP and thus every step of value itergtio-
duces a correct logical description of the value functioowiver, they do not provide an ex-
plicit correspondence between FOMDPs formalized with teeegninistic situation calculus
and MDPs as formalized in Chapter 2 with explicit stochastitoas. While the correspon-
dence is not difficult to show, it is nonetheless useful to enidks explicit. Thus, we provide a
direct correspondence between FOMDPs and MDPs in this Appamnd provide an alternate
proof of correctness of first-order value iteration basethascorrespondence

Throughout this appendix, when we say ground, we mean toaietste interpretations to a finite domain via
domain closure axioms. Domain closure will be formally defirn the next section.

219
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FOMDP Solution Algorithm

R FOMD,[P,[- = FOMDP Value Function
epresentation
Ground Ground
(Domain (Domain >
Closure) Closure)| =
Ground MDP _
Reprt:sentation = Ground MDP Value Function

Ground MDP Solution Algorithm

Figure A.1: Proving correspondence between FOMDPs and MDPs

A.2 Correspondence of Case and Ground Representations

For simplicity, we will assume an unsorted first-order logith equality. While we have previ-
ously assumed a sorted representation, we will assumedtiaformation has been compiled
into an unsorted logical form wheké&ort : ¢ ¢(c) has been rewritten ag:. Sort(c) D ¢(c)
and likewisedSort : ¢ ¢(c) has been rewritten a%. Sort(c) A ¢(c). In the following pre-
sentation we draw on the logical notation and semanticsrieotied first-order logic given in
Brachman and Levesqui2004. It is particularly important to note the following two reist
tions:

e Predicate SymbolsiWe assume a set of predicatBsof each arity0 < i < m for some
finite maximumm. We assume="¢ P.

e Function SymbolsWe assume a set of function symbglsof each arity) < 5 < n for
some finite maximunn.

We recapitulate the case notation introduced in Chapter 41s@di in the first-order MDPs
in this thesis. We use the notation:

t = case[pr,li;- - On,ty] (A.1)

as an abbreviation for the logical formula:

\A{oint =t} (A.2)

i<n
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Here, theg,(s) arestate formulagwhose situation term does not uge) and we assume in
these proofs that thg are real-valued constants such tiat;; € R. We will always assume
an implicit case element-¢; A ... A ¢, —o0) to ensure that the case statement exhaustively
assigns a value to all possible ground states and we assat@ltbase partitions are mutually
exclusivé unless otherwise noted. We assume that the free variabtde logical formula for
whicht = case[¢1,t1; - - - ; dn, t,,] iS @an abbreviation does not appear in any ofd¢he

A finite interpretation is a paitt = (D,Z) whereD is a finite, nonempty set of domain
elements{cy, ..., ¢} andZ is a mapping from all predicate nameskhfor 0 < ¢ < m into
a subset oD’ and from function names iffi; for 0 < j < n into a map ofD’ — D. We
represent variable bindings for free variables of a fornada variable assignment which
is a set of substitutiongv/c} of ¢ € D for variablev. We usepu to represent the formula
resulting from making the substitutions pffor free variables inp. We say an interpretation
& and a variable binding satisfy a formulap, written 3, u = ¢, if ¢u can be recursively
evaluated to be true under the model-theoretic interpoetaif first-order logic syntax given
3 [Brachman and Levesque, 2004

A domain closure assumptida an axiom that restricts the universe of objects to those
explicitly in a finite domainD. Throughout this appendix, we will refer to a case statement
under a domain closure assumption, written genericallysas”. We will assume that the
following domain closure axiom isnplicit in the background theory:

Ve.x=cV...Vr=c (A.3)

A.3 Correspondence of Representations and Operations

Although we typically use a ground representation expksasease”, we note that there is a
simple transformation betweemnse? and the more familiar ground representation of propo-
sitional factors used in the ground factored MDP represiemtdrom Chapter 3. Here we
present a simple method for convertingse” to a propositional factor whereuse? that we
call grounding

Definition A.3.1 (Grounding) To groundcase? to a propositional factoilC' as demonstrated
in Figure A.2, we perform the following steps where we assumeadhéipns of case” are
mutually exclusive and exhaustive:

2Mutual exclusivity can be easily enforced with the unaryeraax operator from Chapter 4.
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dr. A(x) :10
D _
e T 32 Alz): b

— Prop. Factoc"

|||+
|||+
S

Figure A.2: Given the tabular representation of a casers&técase”, its grounded repre-
sentation as a propositional factor fBr= {c;, c2} is given on the RHS. If our language had
included function symbols, we would have included extraiouis in the facto€' representing
all truth-value of all possible function equalities.

1. Expand all quantifiers into finite conjunctiong) (or disjunctions f) over all elements
of D. Itis easy to see that the resulting case statement will omihsist of connectives
over ground atoms and terms (with the exception of varigble

2. Build a tabular representation of a propositional factorthat enumerates all truth as-
signments of all ground atoms w.f®. (the ground atoms for equality suffice to represent
all function valuations) referenced by these” formula in therows of the table.

3. Each rowr of C' represents a set of interpretations w.r.t. domalrthat are consistent
with the truth assignments to ground atoms in that row. Eagvrof C' is also assigned
a valuet,. Because& forms an exhaustive truth table over relevant ground atdies,
rows of C' disjointly and exhaustively partition the set of all intezfations for a fixed
domainD (no interpretation could satisfy the assignments from tvitetint rows). We
denote the set of all interpretations for rowof C' to bep,. We assume there are no free
variables ofcase® other thant, which appears in the formal logical representation of
t = case®. If (¢;, ;) is a partition of case” andVS € p,..S = ¢, then we assign value
t, = t; for rowr.

Next we define a binary relation— that allows us to establish a correspondence between
case® and a ground propositional factor.

Definition A.3.2 (—). Let all symbols be defined as in Definition A.3.1. Define thempo
atomsrelevantto case® as all of the ground atom truth assignments that could bergiztdy

required during the model-theoretic evaluation of the tajirepresentation ofase”. Assume
that the rows o’ exhaustively enumerate all truth assignments to relevanirgl atoms of
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case®. Then the correspondencese” — C holds iff for all rowsr of C, there exists exactly
one partition(¢;, ;) of case? s.t.VS € p,..S, {t/t,} E ¢ ANt =1t;.

Lemma A.3.3. If we groundcase® to obtainC' using Definition A.3.1, theruse? — C.

Proof. Let all symbols be defined as in Definition A.3.1. By the defamitof the grounding
procedure, the rows af' exhaustively partition all possible relevant ground atahsase?
(an examination of the rules for model-theoretic evaluatieveal that we need only know
truth assignments to the ground atoms for the relations amctibn symbols w.r.tD in case?,
which the grounding procedure indeed provides).

Now, choose any particular rowof C'. We know that every row (viewed as an interpre-
tation) is a model of exactly ong;. This follows from the mutually exclusive and exhaustive
nature of partitionge;, ¢;) in case” and the fact that row makes truth assignments to all rele-
vant ground atoms afuse”. Since ally € p, are just augmentations of the truth assignments to
r, we then know'S € p,.S = ¢;. Furthermore, by the definition of the grounding procedure,
we can infert, = ¢;. From this, we can then infer from Definition A.3.2 thatse” — C
must hold. O

We provide a simple example of a case statement under doresire and its grounded
representation as a propositional factor in Figure A.2.eNbat the top partition of theuse”
statement is modeled by the three bottom rows of the prapoaitfactorC' and that each row
of C corresponds to exactly one partition@fse®.

For a binary operatiorop € {®,®, ©, max}, the application ofop on tabular represen-
tations of propositional factors can be expressed in extutl same form as a binary operation
on the case representation: a cross-product operagjonof all rows with inconsistency re-
moval (and optional simplification).

We note that performing operations on case statements dod&in closure is equivalent
to transforming the case statements to propositional$aid performing the same operations
on propositional tables. To show that this is correct, wer@ithe following theorem:

Theorem A.3.4. Using Definition A.3.1 to groundase? to C; and case? to Oy, let case? =
(case? op case¥) and letCr = Cy op Cy. Thencase® — Ck.

Proof. From Lemma , we know thatase? —— C; and casel? —— C,. Our goal is to show
that case® — Cp by Definition A.3.2.

By the construction of i as the result of a binary operation on ground propositicabirs
(previously discussed), we know that it exhaustively emaites truth assignments to all ground
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atoms ofC; andC, which in turn include all relevant ground atomsafe? andcasel’. As
the only possible relevant ground atomscafe? are those corresponding to the grounding
of function symbols and predicates afse? andcase? (recall thatcase® simply contains a
conjunction of formulae fronease? andcase?), we can infer thaC'r exhaustively enumerates
truth assignments to all relevant ground atomswtZ.

By the construction ofaseX, we know that all partitions ofasel are exhaustive and
mutually exclusive. This follows from the fact that eachcafe? and case? were exhaustive
and mutually exclusive and thus the resulting cross-prooiuzase partitions imase® likewise
retains this property.

Now, choose a row of C's. By construction, we know that rowwas formed from a row
iin C; and arowj in Cs. Letp! and p? be the set of respective intepretations corresponding
to a rowi of C; and row; of C,. We note the following: (1¥/3; € p!. 31 E ¢ and (2)
Vs € ,0?. Iy | .

By definition of the case operations there will be a case eleéfgnt,) in casef where
O, = O1 N\ ¢y @ndt, =ty op ty if ¢1 A\ ¢ ¥ L. To complete the proof, we first need to
show thatvSy € p} N p2. S, {t/(t1 op 1)} = ¢ At =1, fOr (¢, t,) in casel; (ie., we
need to show that all interpretations of rowof Cr model the correct value w.r.tasek).
Replacingg, with the equivalenty; A ¢-, and recursively decomposing the model-theoretic
interpretation ofA, this requires us to show (3)Sr € p; N p7. S, {t/(t1 op t2)} = ¢,
(4)VSg € pj N p3. g, {t/(tr op t2)} | ¢a, @nd (B)VSr € pj N p3. Sk, {t/(t1 op t2)} |=
t = t,.. (3) and (4) follow respectively from (1) and (2); (5) follewirom the definition of
t, = t1 op ty. Finally we need to show; A ¢, ¥ L, but this follows easily since (3) and (4)
imply VS € pj N p3.S = ¢1 A ¢, and we knowp; N p? is non-empty because it contains the
model corresponding to rowof C'y. n

A.4 Correspondence of a FOMDP and an MDP

To begin the correspondence proofs given in Figure A.1, wstrimst define the FOMDP and
its grounded MDP variant.

To define a FOMDP, we slightly modify notation from Chapter 4lsthat we use the
case specification both for a generic FOMDP and a specific instém@void confusion with
the ground MDP notation. A FOMDP is described by a reward cgmentrCase(s),
case statements representing Nature’s choice distribotrer deterministic action outcomes
pCase(n; (), Ai(y), s) where for each stochastic action tern(y) for 1 < i < p there is
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a corresponding set of Nature’s choice deterministic aatiotcomesz; ;(¢) for 1 < i < p,

1 < 5 < g, and a set of successor state axioms (SSAs) for each flueMliande’s choice
action. Often, when we are referring to a specific action, vile dvop the indexi, e.g.,
pCase(n;(Z), A(Z)). Somewhat more importantly, we note the following notagioconven-
tion:

e Since state properties can be recovered from situationstelue to the Markovian as-
sumptions of an MDP, we drop the situation tesnfrom all FOMDP case statements
from here out. The use of the stage-to-go indexill allow us to track the state that a
case statement is referring to.

To define an MDP and derive it from a FOMDP grounded w.r.t. donfa, we use the
factored propositional MDP notation from Chapter 3. We detfireeset of stateS? in terms of
all possible truth assignments to a vector of binary stat@bkesz’ consisting of the following
variables:

e Foralli (0 < i < m), for all predicate name® € P;, and for all¢ € D¢, there is a
binary variable representing whether the at&@) is true. Again, due to the inclusion
of the equality predicate, this suffices to handle all funttraluations.

In essence, under a domain assumpfigrithe state variableg are capable of representing all
possible mappings for a finite interpretations = (D, 7).

With these definitions, we define the MDP reward as a fag{af) for ¥ € SP, and for all
i,j (1 <i<p, 1<j<yq),andwe define the MDP value function (%) for ¢ > 0 and
7 e SP.

The setAP contains all grounded versions of stochastic actidn@/) (1 < i < p) for
a FOMDP grounded w.r.t4”. Likewise, the sef\'? contains all grounded Nature’s choice
deterministic actions; ;(7/) (1 < i < p,1 < j < q). We defineA” and \/? in the following
way where we assume is the arity of action4;:

e AP: Foralli (1 < i < p) and for all¢ € D%, there is a stochastic action symbol for the
term A;(7).

e NP: Foralli (1 <i<p)forallj(l<j<yq),andforallc € D%, there is a Nature’s
choice deterministic action symbol for the term;(c).

We note that the FOMDP and MD$haresymbols at a syntactic level, namely those4R
and NP, which are function terms in the FOMDP case and enumeratatdslg in the ground
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MDP case. However, the “meaning” of the symbols can be digguabed by context in the
following presentation unless otherwise noted.

Next we show how to build the transition functiof§z’|z, A;(¢)) for all actionsA;(¢) €
AP in the MDP givenP(n; ;(¢)|A;(¢), Z) in the FOMDP wheren; ;(¢) € NP, A;(¢) € AP,
andz € SP.

To do this, we need to show how a next-statean be determined given a current state
# and Nature’s choice deterministic action;(¢). Recalling the definition of successor-state
axioms (SSAs) from Chapter 4, Section 4.2.2, this is easye&oh relational fluenf'(7/, s)3,
we have an SSA of the forR(y, do(a, s)) = ®r(¥, a, s). Given a ground action = n; ;(¢)
and the corresponding set of SSAs, we can determine theualtle of all atoms represented
in 27 directly from these SSAs; for each atomiif) we find its corresponding fluent — call
it F'(d,s) — then we evaluat®(d, n; ;(€), s) on the pre-action statéto determine whether
that atom should be set to true or false. We denoterthibat results from performing action
n; ;(€) in Z with the notationt” = Progress(Z, n; ;(¢)).

Given stochastic actionl;(¢) we want to build P(Z’|Z, A;(¢)) by summing the proba-
bility of reachingz’ from Z given one of Nature’s choice deterministic outcomes(c) of
A;(¢) for eachz’ andz . We implement this directly with the following calculatiomhere
I[-] is an indicator function taking the valdewhen its argument is true aridotherwise and

pCase® (n,(), A(€)) — P(ny (@) A(e), #)

q

P(&|%, Ai(€)) = Y _I[# = Progress(,n;())] - P(ni;(8)|Ai(@), Z) (A.4)

J=1

Given the constructions above, we can now obtain an MDP nostdrom a particular
FOMDP under domain instantiatia:

Definition A.4.1 (Grounding a FOMDP w.r.t.D to obtain an MDP) A FOMDP and its
grounding w.r.t. a domairD to obtain an MDP are given by the following ground correspon-
dences wherg ¢ S? (the function may actually only be over a subset of varialies),
ni; (¢, %) € NP, and 4;(¢) € AP (as defined above):

e Obtain R(z) from rCase® by grounding according to Definition A.3.1
e Obtain P(7'|%, A;(¢)) from pCase® (n;(¢), A(¢)) via Equation A.4.

e Use the discount from the FOMDP for the MDP.

3We ignore functional fluents in this presentation as in Céiagt but they could be incorporated if needed.



APPENDIXA. PROOF OFCORRECTNESS OFSYMBOLIC DYNAMIC PROGRAMMING 227

Note that given a FOMDP-stage-to-go value functionCase””, we can likewise obtain a
ground representatior’ () using Definition A.3.1.

Now we return to the overall goal of our proof as illustratedrigure A.1. Definition A.4.1
gives us the correspondence between the FOMDP and its gidiRi representation illus-
trated as the vertical— on the LHS of Figure A.1. But it also gives us a means for groogdi
a FOMDP value functionCase”” to obtainV* () for anyt > 0 so that we can verify the verti-
cal— on the RHS of Figure A.1. Consequently, our task in the remgiséctions is to show
that symbolic dynamic programming and dynamic programnaiggrithms (respectively, the
top and bottom horizontal— in Figure A.1) preserve the correspondencase’” — V(&)
of the respective representations forzalt 0.

A.5 Correspondence of FODTR and DTR

Given the correspondence between a FOMDP and an MDP w.maitbcD from Defini-
tion A.4.1, we now seek to show a correspondence betwenofider decision-theoretic re-
gression (FODTR) and decision-theoretic regression (DTRafspecific action instantiation
A(Z).

To recap, in Chapter 3, we introduced DTR as a crucial stepamymamic programming
solution of MDPs that yields the Q-function:

Q"% A(6)) = DTRIV!'(Z), A()] (A.5)
= R(@) +7 Z P(&)Z, A(@) V()

Here we have substituted appropriate notation from Dedimifi.4.1 on the RHS of this equa-
tion.

In Chapter 4, we introduced FODTR as a crucial step in the dy;mpragramming solution
of FOMDPs that yields the first-order Q-function. We inclutleere in its original form with
situation terms in order to ensure thiadgr is well-defined:

qCase'™ (s, A(%)) = FODTR[vCase'(s), A(if)] (A.6)

q
= rCase & casemaxy.y @{pC’ase(nivj(cﬁ, Ai(9), s) ® Regr(vCase®(do(n, ;(7),5)))}

i=1
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For this proof, we are only interested in showing corresjgoice for a specific action parameter
substitution{#/¢} so we can use the slightly simplified form of FODTR:

qCase'™ (s, A(¢)) = FODTR[vCase'(s), A(¢))] (A.7)

q
= rCase @y @{pCase(nm(E'), A;(@), 8) ® Regr(vCase(do(n; (), s)))}
j=1
Note that in the following, we treat case statements as tsatg-oriented and thus drop situa-
tion terms for the most part. However, we must reintroduteasion terms to perforlfOD TR,
but we assume they are stripped off once the result has besputed.
To prove correspondence of FODTR and DTR, we need to provetlogving theorem:

Theorem A.5.1. GivenrCase®”, pCase®(n;(c), A(¢)), SSAs, and' from a FOMDP, obtain
R(%), P(Z'|%, A;(©)), andy for an MDP w.r.t. domairD from Definition A.4.1. LegCase’™ P (A(?))
= FODTR[vCase', A(¢)] as given in Equation A.7 for som&ase’. Obtain V(Z) from
vCase’ using Definition A.3.1. Le®'(Z, A(¢)) = DTR[V!(¥), A(¢)] be obtained by first
grounding the FOMDP w.r.tD as defined above and applying the ground computation as
given in Equation A.5. ThepCase'tHP(A(E)) — Q'F1(F, A(P)).

Proof. First we establish the one-to-one correspondence of tleestatements in Equation A.7
and the propositional factors in Equation A.5 as assumedeiimiion A.4.1. Specifically, it is
immediately obvious thatCase” — R(Z) andvCase” — V(Z) by Definition A.3.1 and
Lemma A.3.

Now we prove correspondence of the expectation portionsquiaiion A.7 and Equa-
tion A.5 (i.e., the content in the square bra¢ésn both equations). To make this clear, let
us temporarily ignore the reward and the discount fagtand define two new equations where
we have substituted the definition 8{2"|%, A;(¢)) from Equation A.4 in the first equation:

QU (7, A(0) = Z Z {I[&" = Progress(&,ni;(6)] - P(ni;(6)A4:(e), f)Vt(f’)}]

L X

(A.8)

qC’asef}%ﬁ(s, A(Q)) = @ {pCase(n; ;(c), A;(0), s) @ Regr(vCase'(do(n;;(¢),s)))}

Lj=1

(A.9)

Our goal is to show;Case'; _ (A(€)) — Q" (¥, A(2)). Specifically, letp, be the set of
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respective intepretations corresponding to someﬁmvatféﬂ(f, A(©)) having state variable
assignment, and taking value,. And let (¢, v,) be some partition in]Caset_Jr]%N(A(éj). If
VS € p,.S = ¢ then our goal is to show that = v,.

We know by the definition of FODTR that for all Nature’s choicetcomesz; ;(¢) (j =
1...q) of A;(¢) that¢ = Regr|¢/(do(n;;(é),s))] for some value partition¢’;, t;) of vCase’.
Thus, givenp, we can directly express, = > 7_, t; - pCase(n; ;(C), Ai(2)).

Similarly for DTR, givenz, andn;;(¢)), letts, », (s denote the value of"*(z)) for the
unique, satisfyingl[z, = Progress(Z,,n;;(¢))] = 1. Then, we can directly express =
i1t @ - Pni(0)]Ai(0), 7).

To provev, = v4, we need to show (1)Case(n; ;(c), A;(¢)) — P(n;;(c)|A:i(c), Z\)
(already shown at beginning of proof) and (2)= tz, .., ;». To prove (2), we need to show
that if p, is a set of interpretations consistent withandp, |= ¢, then a set of interpretation$
consistent withr. (obtained by progressing. throughn; ;(¢)) must satisfwS € o). = ¢,

We prove (2) by contradiction. Assume s a set of interpretations consistent withand
pr = ¢. Also assume there exists 8nc p, s.t. 3 is consistent withr;, andS [~= ¢”. Briefly
reintroducing situation terms, we deriyés) via the SSAs using(s) = Regr[¢}(do(n; ;(c), s))]
and then drop the situation tersrirom ¢(s) to obtaing. We know that the models. of ¢ must
be consistent witl¥,. Then the ground atom truth assignmentg’ofnust be consistent with
the predecessor-state conditionthat makey’ true. The interpretations ipl that are consis-
tent with 7. (by definition) must also satisfy3 € o). |= ¢ — this is the crucial step and
follows from the fact that the truth assignmentsizinhad to satisfy all of the preconditions
that led tog; and thusz, = Progress(Z,, n; ;(¢)) (which simply uses a ground version of the
SSAs) can only produce truth assignmentg’jrihat are consistent with all interpretations of
¢’;. But this result contradicts our assumption and thus we caolgde that for alls € o], s.t.
S is consistent withy, thatS = ¢

This proves correspondence of the expectatigfisse'’; (A(2)) — Q"% (%, A(@)).
From this result and the two equations

QT A(0) = R(Z) + v QU (&, A(0))
qCase™ (A(C)) = rCase @ v - qC’asetf}%ﬂ(A(é’))

we can easily infer thagCase P (A(2)) — Q' (&, A()) follows directly from the results
of our case operation correspondence Theorem A.3.4. n
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A.6 Correspondence of Symbolic and Ground Maximization

Having proved the correspondeng€asc’™ P (A(E)) — Q'*!(x, A()) for a ground action
A(c), we now proceed to tackle the maximization required to makefull Bellman backup
and obtain the correspondence paifuse’™'? — V1 (7).

As previously defined, we assume the FOMDP hastion templates!, (y), ..., A,(¥).
To compute the Bellman backup in the ground case, we must te@kenaximum ofQ(Z, a)
over all ground actions ¢ AP, where the elements od” can be partitioned according to
which of thep action templates they were derived from. Since maximipasocommutative
and associative, we first tackle the maximization for alluga action instantations of a single
stochastic action templaté(y) = A;(7) (1 < i < p). Recalling thaty; is the arity ofA;, we
enumerate all possible ground instantiatigns ¢ asc € D whereD* = {¢, ..., ¢y }.

Theorem A.6.1. Define the FOMDP, MDP w.r.t. domaif?, corresponding value functions
vCase"P andV*(Z), and Q-functiongCase' TP (A(2)) andQ* (7, A(¢)) as in Theorem A.5.1.
Let gCase' P (A(3)) be the result of computing Equation A.7 fefase"” and action tem-
plate A(y) w.r.t. a given FOMDP. Then the following correspondence §iold

casemady ¢Case' VP (A7) — max 1z a
v q (A(9)) werae A@A(y_)‘)}Q (Z,a)

Proof. We can make the following equivalence transformations warite the LHS until it
directly corresponds to the RHS (we justify the steps below):

o1(Y) 1 3. 61(Y) 1
casemaxdy. | : : . |=casemax : D (A.10)

On(¥) - tn 3. () : tn

G1(G) V...V o (@ag))
= casemax| : D (A.11)

¢n(51) V...V ¢n(5‘A(g)|> Tt
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$1(Cagp))
— casemay - = (A.12)

gbn(E]A(gj)\) . tn

$1(1) Tt ¢1(Cam)) * h

= max : P T L (A13)
On(c1) : tn ¢n(Ga@)) * tn

= max qCase' P (a) (A.14)

a€{A(e1),.., A ae))}

Q™7 a) (A.15)

— max

a€{A(e1),-A(G )}
The LHS of Equation A.10 is just the LHS of the theorem. The fguivalence in Equa-
tion A.10 follows from the properties of the quantifier and the disjunction of case elements
within a case statement. The second equivalence in Equatidnfollows from the application
of domain closure assumptions. The third equivalence irakgu A.12 is a rewrite of the case
elements since they are already disjunctively defined ancanelistribute the conjoined= t¢;
terms for each case element into the disjunction.

The rewrite between Eqgs. A.12 and A.13 follows from the lemminediately following
this proof (note that we have switched from unary casemaxdoymax). The transforma-
tion from Equation A.13 to Equation A.14 simply involves atatgnal substitution and the
final step follows from the correspondenceg@tase’t P (a) — Q'*'(%, a) proved in Theo-
rem A.5.1 for a ground actiom and the correspondence of the casax) operation proved in
Theorem A.3.4. Thus, the theorem follows. O

Lemma A.6.2. The transformation between Egs. A.12 and A.13 is an equiv@lpreserving
transform.

Proof. The rewrite between Egs. A.12 and A.13 follows from the sdroamf the unary case
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maximization operator and n-ary maximization operatossussed in Chapter 4. Assume for
an interpretatiory thatS = ¢; where(g;, t;) is an element of case statement in Equation A.12
and for all other case elemens;, ¢;) eithert; <t or ¥ ¢;.

Let (¢, 1) be a case element in the resulting cross-product used toutentipe n-ary
maximization of Equation A.13. To show the equivalence efsamantics of this maximization
with the previous from Equation A.12, we need to show that i ¢,, thent,, = ¢;. We
assume the condition and break this into two cases:

(1) ¢., was formed from a partition conjoined witkp;, ), or
(2) ¢, was not formed from a partition conjoined with;, ¢;).

For (1), we know that ifp,, is consistent then all oth€k,;,t;) must havet; < t;, so the
max yieldst,, = t;. For (2), we can show that = —¢; due to the mutual exclusivity of all
partitions in the n-ary cross-product. Since this violatesprevious assumption that= ¢;,
we know this case is vacuous and (1) must hold. Thus, the @euive of Eqs. A.12 and A.13
follows. O

Now we complete the (symbolic) dynamic programming stepr the ground case, we
specify the completion of the dynamic programming step a$atowing maximization (where
a € AP(y) denotes that ranges over all ground instantiatiod$c) of action templated;(¢/)
given domairD):

VH(#) = max max Q"7 a) (A.16)

=1..p aEA;D(gj)
And for the FOMDP representation, we break the symbolic dyingrogramming step into
the following two step maximization given by the following:

vCase™t = ax casemaxlyj. qCase'™ (A;(¥))) (A.17)
i=1...p

Now we prove the final theorem that guarantees correspord#rtynamic programming and
symbolic dynamic programming for one step:

Theorem A.6.3. Define the FOMDP, MDP w.r.t. domaif», corresponding value functions
vCase"” andV*(Z), and Q-functiongCase ™ 'P (A()) andQ'*+!(Z, A(¢)) as in Theorem A.6.1.
Let vCase' ™" be obtained from computing Equation A.16 andiét! (%) be computed from
Equation A.17. ThenCase'™ P —— VI+1(7).
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Proof. Based on the assumptions and Theorem A.6.1, we know

casemaxly. qCase't (A;(7)) — max Q' (Z,a).
aeA?(gj’)
The remainder of the theorem follows from the correspondesfcthe max operands from
Lemma A.3 and operator applications, for which correspandéhas already been proved in
Theorem A.3.4. ]

A.7 Correspondence of Symbolic and Ground Value Itera-
tion
Our previous theorems lead us to the following obvious tesul

Theorem A.7.1. GivenrCase®, pCase® (n;(¢), A(¢)), andy from a FOMDP, obtainR(7),
P(Z'|#, Ay(¢)), and~y for an MDP w.r.t. domairD from Definition A.4.1. LetCase' (for ¢t >
0) be obtained by applying symbolic dynamic programming feteps. LeV*(Z) (for ¢ > 0)
be obtained by applying ground dynamic programmingtfsteps. ThemCase"” — V(Z)
forall ¢ > 0.

Proof. The proof is by induction. As defined respectively in Chapgand 4V°(7) = R(7)
andvCase®? = rCase®. By Lemma A.3, we know thatCase®? — VO(Z) for any finite
domainD. This provides the base case for 0. For the inductive step, we have shown that

LD, Vvt after applying one step of

given vCase’® —— V(Z), we can provesCase
(symbolic) dynamic programming to the respective valugasgntations via Theorem A.6.3.

This proves the inductive case for ali> 0. Thus the theorem follows. O



Appendix B

Remaining Proofs

B.1 Proofs from Chapter 3

Lemma 3.4.2. Fix a variable ordering over, ..., z,. For any functiory(z, ..., =,) map-
ping B" — R, there exists a unique generalized AADBDover variable domainy, ..., =,
satisfying the given variable ordering such that for akk B" we havey(p) = Val(G, p).

Proof. We prove this lemma by induction on Forn = 0, we have a function representing a
constantC'. The constraints imply that = C + 0 - 0 is the only legal representation of this
function.

Now, for the inductive case, we assume that we havariables in our functiorf (z4, . .., x,)
with variablex; first in the ordering. We inductively assume that the lemmidsitor the rep-
resentation of the functiong,(x1 = true,zs,...,x,) and fi(z1 = false,zs, ..., x,) Over
n — 1 variables so that both of these functions are representeahioqye generalized AADDs
Gn = ¢, + bpF, andG, = ¢ + b F. If G, = G, then this case is satisfied by our inductive
assumption sinc¢(z4, . . ., x,,) technically ranges over — 1 variables. Otherwisé/,, # G,
so the only way to represefitx, . . ., =, ) in the grammar is to use ajinode branching on;.
Constraint (1) implies that we can have at most ¢fn@ode above), and F; branching on vari-
ablez;. So we buildF" = if (F"*") then ¢}, + b, F}, else ¢, + b F; andG = ¢+ bF to represent
f(x1, ..., 2,). Letryy = min(cp, ¢1), Tmax = max(cp + by, ¢ + by), @nNdrgnge = max — Tmin;
these respectively denote the minimum, maximum, and valaae sf the child functions,
and G, which allow us to normalize the newly constructBchode to have a range @, 1],
while at the same time providing us with the offsetnd multiplierb for the newly constructed
G node.

234
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Now, we must solve for, b, ¢, b}, ¢;, b) that satisfy constraints (2) and (3). This gives us
the following six equations that must be simultaneousliséat:

C = Tmin
b= Tmin + Trange

ch=">b-c+c

by = b0,
a=b-cd+c
bi=b-b

In matrix form, this linear system is non-singular whign> 0, which follows fromr;, +
Trange > 0 @S implied by constraint (4). Thus, the matrix is full rankda@he linear system has
one unique solution. By simple Gaussian elimination, we @aivd this unique solution as the

following; C = Tmins 0 = Tmin + Tranges C;z — th—"min CE = 9 "min b;z _ by b; — b This

Trange Trange Trange ! Trange

shows us that there is only one unique constructiof ¢ represenf (z1, ..., x,). Thus, the
inductive case is satisfied and the statement of the lemriwavl n

Theorem 3.4.3. For all functionsF; : B* — Rand F; : B — R (n > 0 andm > 0),
the time and space performancedduce(F;) and Apply(F}, F3, op ) for AADDs (operands
and results represented as canonical AADDS) is within a ipligaitive constant oReduce(F})
and Apply(Fy, F», op ) for ADDs (operands and results represented as canonical $)0iD
the worst case assuming any fixed variable ordering.

Proof. The ADD Reduce and Apply algorithms can be seen as analogs of the corresponding
AADD algorithms without the overhead of progagating theraffiransforms of edge weights
during recursive calls and normalizing them when returnikigwever, a comparison of the
ADD/AADD Reduce and Apply algorithms shows that there are only a constant number of
additional constant time operations for manipulating edgehts in each AADD algorithm

in comparison to the corresponding ADD algorithm. Thus ezaihto the AADD algorithm
incurs an additional constant time overhead over the gooreting call to the ADD algo-
rithm. We denote the respective constant time to evaluageA®D Reduce or Apply call to

be TReduce and 772" | respectively. Likewise, we denote the respective timeveduate one
AADD Reduce or Apply call to beT fuce — T Reduce 4 CReduce qugprely — pavely 4 culerly,

whereC' represents the additional constant time overhead of théocan AADD in compar-
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ison to the ADD.

Now, we only need to show that the AADD makes equal or fewels dal Reduce and
Apply than the ADD version. First we note that under the same Viariadgering, an ADD is
equivalent to a non-canonical AADD with fixed edge weights 0,b = 1. Thus, if we did
not normalize AADD nodes irReduce and Apply, then there would be a direct 1-1 mapping
between eaclkeduce and Apply call for ADDs and the corresponding call for AADDs. Since
normalization can only increase the numberRafiuce and Apply cache hits and reduce the
number of cached nodes, it is clear that an AADD must geneguel or fewerReduce and
Apply calls and have equal or fewer cached nodes than the coriggokDD. This allows us
to conclude that in the worst case, the AADD generates as rRatyce and Apply calls and
cache hits as the ADD. Assumingcalls are made by both the ADD and AADD variants of
Reduce and Apply, then the ADD requires total timel felce andnT, %" for each respective
algorithm whereas the AADD requires timgT feduce 4 CReducey andp (T422Y 4 C4EPY ) for
each respective algorithm. This verifies that the AADD opers are within a multiplicative

Reduce Reduce
TAbp“+CAADD

constant of the time required by the corresponding ADD dpmra (specifically422-5-4
ADD

TApply +CApply

for Reduce andADDT—AADD for Apply).

Apply
ADD

An analogous proof for space can be obtained by substittgpare” for “time” above. []

Theorem 3.4.4. There exist function$; and F; and an operatomp such that the running
time and space performance apply(F, F», op) for AADDs can be linear in the number of
variables when the corresponding ADD operations are exptiaen the number of variables.

Proof. Two functions and4pply operation examples where this holds true &g | 2'z; &
S 2 and [T, v @ [[1, v *. (Examples of these operands as ADDs and AADDs
were given in Figures 3.7(c) and 3.8.) Because these conmqmgaesult in a number of ter-
minal values exponential in, the ADD operations must require time and space exponential
n. On the other hand, it is known that the operands can be remexsin linear-sized AADDs.
Due to this structure, thd pply algorithm will begin by recursing on the high branch of both
operands to depth. Then, at each step as it returns and recurses down the lowh et
decision test;, the respective additive difference &fand multiplicative coefficient of?" in

the corresponding high-branch and low-brantpply operation calls will be normalized out
for the respective operations @fand® due to the canonical caching scheme in Table 3.2, thus
yielding cache hits for all low branches. For each operatioithe specified pair of functions,
this results im cached nodes arith Apply calls for the AADD operations. O



APPENDIXB. REMAINING PROOFS 237

B.2 Proofs from Chapter 5

Theorem 5.2.1. LetV(s) be the approximated value function obtained by the weigtits
of the final LP solution of Equation 5.21 for FOAPI applied tgisen FOMDP where FOAPI
has converged. Let® be the objective value of this final LP solution. Then the rdomunds
on Vx(s) (the value function obtained by acting according to the dyepolicy 7 w.r.t. V(s))
derived from pluggingg® in for 3 in Equation 2.19 hold for all possible finite ground domain
instantiations of this FOMDP.

Proof. At convergence, we know thai® = «¢~!). Then in summary, we note that the con-
straints in the FOAPI LP provide a bound on the Bellman errathefvalue function corre-
sponding tai®, which we can then use to derive a bound on the error of actiogrding to a
greedy policy w.r.t. this value function as described for R&n Section 2.5.2 of Chapter 2.

Define theSDP|-] operator to take a value functidf(s) and compute its one-step symbolic
dynamic programming backup under the FOMDP dynamics aseatkfinSection 4.4. Then
we break the proof into two parts:

1. At convergencethe constraints can be transformed with the followingesedf rewrites
explained below:

k
B9 > |R(s) @ 37" (ﬁ;}w) ) @ BAT) @ w! ) @ wl” b;(s) |; VA, s
> |R(s) @3 (7 (5)V(s)] @ BA( *>[V(s>]) oVi(s)|; vA,s (B.1)
> |SDP[V(s)|©V(s) |; Vs (B.2)

To obtain Equation B.1, we simply substitut&ds) in for its linear-value representation
as defined in the statement of the theorem. To make it expheit the policy case
statementsrng*)(s) were derived from/ (s), we make this explicit using the notation
ﬂng*)(s)[‘/(s)]. To obtain Equation B.2 we apply Lemma B.2.1 below.

2. By Theorem A.7.1 (that proves the correspondence betweesinadic dynamic program-
ming and ground dynamic programming) and Theorem A.3.4 fiitaves the correspon-
dence of the case operaterfor the first-order and grounded representations of a case
statement) both from Appendix A, we know that the consteaintEquation B.2 hold
for all ground domain instantiations. Since these grounustaints imply a Bellman
error 3% for all ground domain instantiations of the approximateldigdunctionV’(s),
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the error bounds ol (s) (the value function obtained by acting according to the dyee
policy # w.r.t. V(s)) derived from plugging3®” in for 3 in Equation 2.19 hold for all
ground domain instantiations.

The final result of step 2 proves the theorem. O

Lemma B.2.1. Under the assumptions and notation of Theorem 5.2.1, ifdnstcaints

B > ]R(s) 837 (1§ (G)V(s) & BADV(s)]) 0 V(s) |5 VA, s

hold then the constraints® > |SDP[V (s)] © V(s) |; Vs must also hold.

Proof. We prove this through the following derivation, which wetjfysbelow:

39 > | R(s) & 37 (wfjgf*)(s)[ws)] @BA@*)[V(s)]) oVi(s)|; va,s (B.3)
> [R(s) o J [af* (Wﬁfzf*)(s)[‘/(s)] @BA<f*>[v<s>])] SV (s)|; Vs (B.4)
A
[ Va1 N dpar(2*,s) 10 Gan(T*,s) 1tay
ZR(S)@U Jz SN L P oV(s)|; Vs
1 Yan A Gan(T,8) 10 | | pan(@.5): tan
(B.5)
1/},4,1 VAN 3?@[5&1(?,8) . tAJ
> |R(s) @ U S c o |eVi(s)|; Vs (B.6)
4 wA,n A 3f*¢A,n(f*7 5) : tA,n
> |R(s) & m(s)[V(s)| ©V(s)]; Vs (B.7)
> |R(s) @ casema><U BA[V(s)]> oV(s)|; Vs (B.8)
A
> |SDP[V(s)|© V(s) |; Vs (B.9)

We assume that the constraints in Equation B.3 hold and pdoweeewrite them in Equa-
tion B.4 where we have exploited the disjointness of the poﬁﬁézf*) for eachA; that is, for
any situatiors, if a partition ofwng*) holds true then no partition @fg)(f*) for B # A can also
hold true. This guarantees equivalence to Equation B.3 sireceonstraint is “active” for one
A'in eachs and thus Equation B.4 self-selects whid¢ltonstraint should apply for eagh

The transform to Equation B.5 is purely notational where weeharitten out the case
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statements foBAE@) [V ()] andwﬁfzﬁ*). Note that the case statements share the formula pre-
fixed with ¢ since the policy case statemerﬁzf*)(s)[V(s)} for action A was derived from
BAE)[V(s)] (c.f., Section 4.4.4). The formulae prefixed withrepresent the additional guard
formulae added to each policy partition to prevent it fronplgmg when higher valued pol-

icy partitions were possible. Then, performing the explicioss-sum”® (and removing all
inconsistent partitions) and distributing tB&* into the result, we obtain Equation B.6.

We recognize that the case statements withintthe Equation B.6 are just the action-
specific policy case statements(s)[V (s)], which were derived in Section 5.2.2 of Chapter 5
by partitioning the policyr(s)[V (s)] into case statements for each action. Thus we apply the
U to reverse this derivation and obtain Equation B.7. Next wesstuter(s)[V (s)] with its
derivation from the RHS of Equation 4.28 (c.f. Section 4.4.£bapter 4) to obtain Equa-
tion B.8. Noting that the first two terms of Equation B.8 are jirgt definition ofSDP [V (s)],
we obtain the final result in Equation B.9 that proves the lemma ]

B.3 Proofs from Chapter 6

Proposition 6.1.1. P(a|A(Z), s) defines a proper probability distribution overi.e.,

> PlalA(@),s) =[T : 1. (B.10)

aGNA(:i’)

Proof. We can effectively sum over all € N4 (%) by generating a summation over all possible
instantiations of: according to its definition in Equation 6.14. Doing this antdsituting the
definition of P(a|A(Z), s) from Equation 6.16, we obtain the following:

Y PlalA(@).s) = D

a€N4(Z) n1(Z1)ENT(Z Y1) o p (Z,51 7)) ENp (8171 )51 (F,31) EN1(E, 1) o1 (B 7)) ENp (£, 7)

[T IIPeu@aEi.s)

Now, we can exploit the independence of the random variab[e*sgj) inherent in this factored
representation of the joint probability distribution to rpmalize over each; (7, gj) indepen-
dently. Here we push the first marginalization into its ordlevant factor, where the result
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follows from the properties oP (n,(Z, /)| A;(Z, ), s) as defined in Equation 6.13:

Y. PlalA@),s) = D

a€NA(T) N2 (Z,1)EN2(Z,51) o 1p (£, 7 ) ENp (T, 7)1 (F,31) EN1(E 1)1 (B3 7)) ENp (Z1171)

11 11 P(ny(&, ) A7, 7). 5)

7]’6{1.71 ..... ilzﬂ} if =i then i=1 else i=2

D Pu@ i) 5),s)

n1(Z,i1)EN1 (Z,51)

- ®

na(Z,41)EN2(Z,41),-mp (71 7)) ENp (F,31 71 )1 (£,51) ENL(E 1) oo (8,81 51 ) ENp (£,5177)

11 I1 P(ni(, §)| As(Z, ), )

ﬁe{gjl,...,mm} if J=i1 then i=1 else i=2

Repeating this marginalization process indefinitely urdil@remain, we obtain the final result:

S PlaA@),s) =[T - 1]

aGNA(f)

This proves the proposition. n

Proposition 6.1.4. Let A;(Z, ;) and A,(Z, ) be two distinct aspects of stochastic action
A(Z) (i.e., eitheri # h or §j; # i) and recall thatN;(Z, 7;) and N,(Z, ;) are the respective
sets of Nature’s deterministic sub-action outcomes for @fithese aspects. Then for a( %)
andi # h andyj; # 4, wheren,(Z, ;) € N;(Z,7;) andn,(Z, ) € Nu(Z, %), if the following
condition holds:

VZ. [ P(ni(Z, ;)| A(Z),s) >0 A P(nu(Z,5:)|A(E), s) >0
o (B, NE

1y (2,5

(@) ) is consistent

then Assumption 6.1.3 must hold for the given factored FOMDP

Proof. By definition of inconsistency and the conjunctive effectresgntation, we note that
the effect sett, = U; ,_, , £,z for ajoint actiona is inconsistent iffA. ,_,  E, 2
contains at least two respective conjoined fluents of thenfbi(%, s) and —F'(Z, s). Since

we previously assumed that a singﬂgi(iy;) is consistent, these two fluents must have been
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contributed by two sub-action effect séf§, . . ) andE

(%9

In addition, sinceP(a|A(Z), s) > 0, it must trivially hold that

) Where eithet # h or ij; # .

P(ni(Z,4;)|A(Z),s) >0 A P(ny(, )| AZ),s) > 0

since both of these are multiplicative factorsi(fa| A(%), s) by definition in Equation 6.16.
Since every inconsistent joint actianwith P(a|A(Z),s) > 0 has at least two constituent

sub-actionsy; (7, ;) andny,(Z, 7;,) with inconsistent effects anBl(n,(Z, ;)| A(Z), s) > 0 and

P(ni(Z, jx)|A(Z), s) > 0, this proves Proposition 6.1.4. O

Proposition 6.2.2. (Removal of Irrelevant Aspects)

Irr[p(s), AT, 9)] D
{Vni(Z,79) € Ni(Z,¥), Ya € Na(Z), Ve. (a=ni(Z,§) oc) D
Regr|o(s), n;(Z,9) o ] = Regr|¢(s), c]}

Proof. From the definition offrr[¢(s), A;(Z, 7/)] we know that

Vnz(fa g) € Nz(:a g) Regr(qb(do(nz(f, 5)78))) = ¢(5)

By this result and the construction of SSAs in terms of factarfect axioms derived from
E,, &, (c.f., Section 6.1.3 and Equation 6.21), we can concludeathdisjoined elements of
the SSAs relevant to fluents of-) contributed byE,, z 7 simplified to L and were removed
during Regr|o(do(n;(Z,7)))], thus yieldings(s). Since the effects considered in the regression
of Regr(¢(do(con;(Z,y), s))) are compiled fronf, U E,,, z 7 and we know that the disjoined
elements of the SSAs relevant to fluent$6f) contributed by, z » simplify to L, the effects
contributed byF,, z; can be ignored during this regression. Then the only effet¢sant to
the regression on the LHS and RHS of the final line of the prdjosare £. and thus the
regressions are equivalent. n
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