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Abstract

Knowledge Graphs (KGs) provide a widely used format for
representing entities and their relationships and have found
use in diverse applications including question answering and
recommendation. A majority of current research on KG infer-
ence has focused on reasoning with atomic facts (triples) and
has disregarded the possibility of making complex eviden-
tial observations involving logical operators (negation, con-
junction, disjunction) and quantifiers (existential, universal).
Further, while the application of complex evidence has been
explored in KG-based query answering (KGQA) research, in
many practical online settings, observations are made sequen-
tially. For example, in KGQA, additional context may be in-
crementally suggested to narrow down the answer. Or in in-
teractive recommendation, user critiques may be expressed
sequentially in order to narrow down a set of preferred items.
Both settings are indicative of information filtering or track-
ing tasks that are reminiscent of belief tracking in Bayesian
inference. In fact, in this paper, we precisely cast the prob-
lem of belief tracking over unknown KG entities given incre-
mental complex KG evidence as a Bayesian filtering prob-
lem. Specifically, we leverage Knowledge-based Model Con-
struction (KBMC) over the logical KG evidence to instanti-
ate a Markov Random Field (MRF) likelihood representation
to perform closed-form Bayesian inference with complex KG
evidence (BIKG). We experimentally evaluate BIKG in incre-
mental KGQA and interactive recommendation tasks demon-
strating that it outperforms non-incremental methodologies
and leads to better incorporation of conjunctive evidence vs.
existing complex KGQA methods like CQD that leverage
fuzzy T-norm operators. Overall, this work demonstrates a
novel, efficient, and unified perspective of logic, KGs, and
online inference through the lens of closed-form BIKG.

Introduction
Effective storage and utilization of information from dif-
ferent sources is a central problem in AI. In recent years,
the use of Knowledge Graphs (KG) for storing and rep-
resenting relational and interconnected domain knowledge
has garnered substantial interest in various domains rang-
ing from healthcare (Rastogi and Zaki 2020) to recommen-
dation (Guo et al. 2020). Despite the considerable advan-
tages offered by KGs, leveraging them as knowledge bases
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for AI agents presents significant challenges due to their in-
herent incompleteness and noisiness (Pujara, Augustine, and
Getoor 2017). These challenges have motivated extensive re-
search about different methodologies for performing reason-
ing and inference over KGs. To date, most existing works
have devoted their focus to inference using atomic level ob-
servations, i.e. observations that involve KG triples, for tasks
such as KG completion (Bordes et al. 2013), or entity classi-
fication (Steenwinckel et al. 2022). However, more complex
tasks such as query answering (QA) (Ojokoh and Adebisi
2018) or interactive recommendation (He, Parra, and Verbert
2016) that can potentially leverage KG content may gener-
ally require more complex combinations of logical operators
(conjunction (∧), disjunction (∨), negation (¬)) and quanti-
fiers (existential (∃), universal (∀)) over atomic KG triples.

Concrete examples of such complex evidence involving
logical operators can be observed in the task of KG-based
query answering (KGQA) (Zhang et al. 2018; Jain 2016)
with queries such as “which diseases cause fever (∧) are
transmitted by an (∃) insect endemic to New Zealand (∨)
Australia”. Or in interactive movie recommendation (Sun
and Zhang 2018), a user may ask for a “Korean (∧) ac-
tion movie (∧) featuring a (∃) female actress practicing
a (∃) martial art”. Although works in KGQA have pro-
posed frameworks to answer complex KG-based queries in-
volving logical operators (Arakelyan et al. 2020; Ren, Hu,
and Leskovec 2020), their methodologies only operate in a
single-shot manner, leaving open the question of how to rea-
son over KGs in a sequentially interactive setting. Note that
in both above examples, additional evidence could be pro-
vided in an incremental setting, e.g., information about the
presence of other symptoms for narrowing down the answer
in the KGQA example, or user critiques regarding different
genres of recommended movies to narrow down the set of
preferred items in the interactive recommendation example.

The sequential inference required in such applications has
a high resemblance to the belief tracking problem for which
Bayesian Inference methods have been extensively lever-
aged (Roumeliotis and Bekey 2000; Henderson 2015). In-
spired by this similarity, we cast the problem of reason-
ing over unobserved KG entities with incremental com-
plex evidence as a Bayesian filtering problem, and pro-
pose a novel framework for Bayesian Inference with Com-
plex Knowledge Graph Evidence (BIKG) which is based on
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Figure 1: A schematic illustration of inference using BIKG
framework for a movie recommender AI chatbot.

Knowledge-based Model Construction (KBMC) (Wellman,
Breese, and Goldman 1992). In particular, we construct a
Markov Random Field (MRF) regarding the complex log-
ical KG evidence instantiated with tensor-factorized likeli-
hood representations. We then propose an efficient solution
to perform Bayesian updating over an unknown entity in
light of this incremental evidence. Finally, due to the limita-
tions raised by applying existential quantification for multi-
path reasoning, we introduce the Marginal quantifier to the
BIKG framework and provide a closed-form solution for its
application. To make this framework concrete, Figure 1 pro-
vides a schematic view of the graphical model constructed
to update the user belief in the aforementioned example.

We experimentally evaluate the reasoning capability of
BIKG in two diverse tasks: incremental KGQA and sequen-
tial recommendation, involving five KGs in total. We com-
pare BIKG with different variants of CQD (Arakelyan et al.
2020), a strong methodology for complex KGQA that uti-
lizes T-norm and T-conorm operators from fuzzy logic. The
results demonstrate that BIKG outperforms CQD for incor-
porating complex evidence in incremental reasoning tasks.

Background and Related Work
Knowledge Graphs
A Knowledge Graph (KG) is a graph-structured knowl-
edge base that stores interlinked information about objects,
events, persons, abstract concepts etc. (Paulheim 2017). A
KG is represented as a directed graph K = (E ,R) where
E is the set of entities (nodes) and R the set of relations
(edges) between entities in E . It can also be viewed as a
set of triple facts (h, r, t) which indicate existence of the
relationship r, from entity h to entity t. Despite the colos-
sal amount of information that real-world KGs contain, they
are severely incomplete and noisy (Pujara, Augustine, and
Getoor 2017). To overcome this issue, several methods have
been proposed for Knowledge Graph Completion (KGC)
that aim to infer plausible relations based on the observed
KG information. Works in this area include variations of
neural networks for learning embeddings for KG entities and

relations and estimating the plausibility of a triplet (Trouil-
lon et al. 2016; Xiao et al. 2015), symbolic methods that try
to extract logical rules governing KG triples (Chen, Wang,
and Goldberg 2016; Galárraga et al. 2013), and neurosym-
bolic methods aiming to combine and preserve advantages
of both approaches (Guo et al. 2016, 2018).

Knowledge Graph Embeddings
Knowledge Graph Embedding (KGE) is a major line of
work in KGC research. KGE methodologies assign embed-
dings to the KG nodes and relations in a specific represen-
tation space and leverage a scoring function that maps the
learned representations for a candidate triple to a plausibility
score. This score is an estimate for the plausibility of exis-
tence of that triple in the KG. The main objective of KGE
methods is to train embeddings in a way to increase (de-
crease) the plausibility score of correct (incorrect) triples.

In this work, we use the SimplE KGE method (Kazemi
and Poole 2018) because of its efficient computation and
simple multiplicative scoring function that aligns with the
Bayesian formulation by introducing a tensor factorized
likelihood. In order to account for directionality of KG rela-
tions, SimplE assigns two embedding vectors ze ∈ RN and
zeinv ∈ RN to each entity e and two vectors zr ∈ RN and
zrinv ∈ RN to each relation r, and for a triple (h, r, t), de-
fines its scoring function as Φ(h, r, t) = 1

2 (⟨zh, zr, ztinv⟩ +
⟨zt, zrinv , zhinv⟩). Here, ⟨v,w,x⟩ = (v⊙w) ·x where ⊙ and
· denote Hadamard and dot product respectively. The model
parameters are trained by forming a batch of KG triples and
negative samples and solving the following problem:

min
θ

M∑
m=1

log(1 + exp(−ym.Φ(h, r, t)m) + λ∥θ∥22, (1)

in which y ∈ {+1,−1} denotes the triple label, θ stands for
the model parameters, λ is the regularization hyperparame-
ter, and m is the iterator of batch samples.

Complex Question Answering on KGs
A majority of methods proposed for KGC have focused on
answering atomic queries over a KG by predicting missing
links. In recent years, a group of works have tried to extend
this setting to answering complex FOL queries, i.e. atomic
queries that are combined by FOL operators and quantifiers.
Due to the incompleteness of KGs, most complex queries
cannot be answered by graph traversal algorithms, and thus,
query answering methods are required that possess the abil-
ity to account for intermediate unobserved triples that are
highly plausible. Inspired by the generalization ability pro-
vided by KGE methods, a majority of works seek answers by
embedding queries and sets of entities to geometric shapes
(e.g., boxes or cones) (Hamilton et al. 2018; Zhang et al.
2021; Ren, Hu, and Leskovec 2020; Choudhary et al. 2021)
or probability distributions (Ren and Leskovec 2020). These
methods require a large set of training queries, substantial
training computation, and are unable to answer Out Of Dis-
tribution (OOD) queries. In response, CQD (Arakelyan et al.
2020) has proposed means to answer complex queries us-
ing gradient-based optimization and beam search leveraging
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Figure 2: An overview of inference procedure using BIKG for the MPE approach with and without using the Marginal quantifier.

only entity and relation embeddings. All of these methods
provide means to reason over KG with complex evidence
in a single-shot setting, and a methodology for performing
incremental reasoning over KGs remains missing.

Bayesian Inference with Complex KG
Evidence

Our proposed Bayesian Inference with Complex Knowl-
edge Graph (BIKG) framework is based on constructing a
Markov Random Field (MRF) following the structure of
the KG subgraph encompassing evidence and target entities.
This formalism enables us to adopt a probabilistic perspec-
tive on KG entities and relations, framing the KG inference
problem as a probabilistic inference task over the created
MRF. This idea is founded on KBMC (Wellman, Breese, and
Goldman 1992) framework that crafts a Bayesian Network
(BN) for performing inference on knowledge bases, but due
to limitations of BNs (Koller and Pfeffer 1997), we develop
an MRF to formalize the probabilistic inference problem.

In the primary phase of BIKG, we train the SimplE KGE
model to obtain embeddings for all KG relations and enti-
ties. Next, upon observing complex evidence concerning an
entity of interest, we construct the corresponding MRF as
shown in Figure 2. In brief, the overall objective of BIKG is
to exploit the observed evidence to update the belief distri-
bution maintained over the target entity.

The constructed MRF corresponding to the observations
at an increment n may involve three types of nodes: (i) Tar-
get node (g) which is the entity of interest necessitating in-
ference, (ii) Evidence nodes (dn) corresponding to the ob-
served KG entities, and (iii) Intermediate variable nodes (V)
that lie between evidence and target nodes and could be par-
titioned into three subsets: variable nodes directly connected
to evidence nodes (Vd), variable nodes connected to other
variable nodes (Vv), and variable nodes connected to the tar-
get node (Vg) such that Vd ∪ Vv ∪ Vg = V . We instantiate
the observed evidence nodes with znd , the embedding vectors
corresponding to their KG entities. Also, the factors between
MRF nodes are the tensor-factorized embedding vectors of

the corresponding relations znr .
Following the general setting of Bayesian inference, we

maintain a belief distribution over the target variable node
P (g) and aim to incrementally update it conditioned on the
observed complex evidence to obtain its posterior distribu-
tion. Denoting the set of observations up to increment n− 1
by Dn−1 and the new observation made at increment n as
dn, the posterior belief distribution P (g|Dn) is found as:

P (g|Dn) ∝ P (dn|g,Dn−1)P (g|Dn−1)

∝ P (dn|g)P (g|Dn−1), (2)

where Dn = Dn−1 ∪ {dn}. For the sake of generality, we
assume having no prior information about the target node
and consider a zero-centered Gaussian distribution with a
relatively large covariance matrix, P (g) = N (0,Σ) to rep-
resent the high uncertainty in our initial belief which will
be reduced after making sequential observations. In order
to update this belief, we have to propagate the observations
from evidence nodes toward the target node on the MRF, for
which we propose two different approaches.

Most Probable Explanation for Existentially
Quantified Variables
The unobserved intermediate variable nodes pose a chal-
lenge to the propagation of the observed evidence toward the
target node. To handle these variables, a possible approach is
to instantiate them with the KG entities that are in strongest
alignment with the observations. To this end, as indicated in
Figure 2, we traverse the MRF from evidence nodes toward
the target, and when confronting an intermediate variable
node, we use the scoring function of the tensor factorization-
based KGE model to obtain the plausibility scores for each
candidate entity to serve as its instantiation. These scores are
compiled into a table that we call Conditional Plausibility
Table (CPT) which is analogous to conditional probability
tables but its values may not be valid probability distribu-
tions. When coming across a conjunction, we require to find
the joint plausibilities of the conditioning sides, which due



to the tree structure of the MRF, is obtained by multiplying
the CPTs. Since finding the most plausible sequence of inter-
mediate variables requires a combinatorial search within the
joint CPTs, we restrain the search space by only keeping the
values of the top-k candidates for each variable node result-
ing in a beam of most plausible instantiations. By searching
through this beam, we identify the set of intermediate enti-
ties that result in the highest plausibility scores, a procedure
akin to the Most Probable Explanation (MPE) concept in
Bayesian inference. Formally, we aim to find instantiations
of variable nodes that are solutions to the following problem:

V∗ = argmax
V

∏
vd∈Vd,d∈{dn}

Φ(d, rd,v, vd)
∏

vi,vj∈{Vv∪Vg}

Φ(vi, ri,j , vj),

(3)

where ri,j denotes the relation between nodes i and j. This
approach resembles the CQD-beam algorithm (Arakelyan
et al. 2020) when using Product t-norm for complex query
answering modulo a key difference. Since CQD-beam aims
to find the answer nodes in a single-shot manner, it contin-
ues the beam search to instantiate the target node, but since
BIKG aims to incrementally update the target belief distribu-
tion, we halt the beam search at Vg nodes and instantiate the
variable nodes with their final top k candidates. In fact, we
are only interested in the instantiations of Vg nodes to use
them with evidence nodes directly connected to the target
node to update the target belief distribution by performing a
Bayesian update following Equation 2.

We address disjunctive evidence by first transforming it
to Disjunctive Normal Form (DNF) (Davey and Priestley
2002) and follow the MPE procedure to instantiate the vari-
able nodes for each conjunctive constituent. Since the truth
of any conjunctive constituent of a DNF evidence will make
the whole statement true, instead of finding a single updated
belief, we find a candidate posterior belief for each conjunc-
tive constituent resulting in a set of possible posteriors.

Marginalization: A Probabilistic Quantifier
for Multi-path Reasoning

Using the MPE approach to obtain posterior belief by instan-
tiating variable nodes with top candidates is apt for func-
tional or nearly functional relations, i.e. cases where the
number of true candidate tails for the (head, relation) pair
is limited. This approach provides a probabilistic view of
existential quantification for all intermediate variable nodes.
However, for unobserved variables that can be correctly in-
stantiated by multiple entities, instantiating them with a lim-
ited number of top candidates imposes clear limitations. For
instance, in examples provided in Figure 2, the number of
Black insects that are endemic to, New Zealand is expected
to be much lower than action movies with Japanese direc-
tors. We later verify this hypothesis in real-world KGs. In
addition, the likes relation in the recommendation example
is inherently different from other objective relations since
users possess various multi-modal tastes and their prefer-
ence for movies can stem from multiple diverse reasons.

As a refined solution to overcome shortcomings of the ex-
istential quantification view of the MPE, we introduce the

Marginal quantifier into BIKG to allow for “multi-path”
probabilistic reasoning. Since several true candidates for
such an intermediate variable are in agreement with the ob-
served evidence, instead of restricting the density of its prob-
ability distribution P (v) to a limited number of candidates,
we preserve its entire distribution and eventually marginal-
ize it out from its joint distribution with the target belief.

P (g|Dn+1) =

∫
P (g,v|Dn+1)dv. (4)

In our framework, we assume the distribution of all vari-
ables and factors to be Gaussian and update the target belief
distribution using Gaussian Belief Propagation (BP) (Weiss
and Freeman 1999). First, unobserved variable nodes cor-
responding to functional relations are instantiated following
the MPE approach. For Marginally quantified variables, we
use the set of neighboring evidence and instantiated vari-
able nodes, Y , to update the unobserved variable distribu-
tion. Considering instantiations of y ∈ Y to be distributed
as y ∼ N−1(hy,Jy) and the prior distribution over the un-
observed variable node v to be v ∼ N−1(hv,Jv) in which
h ∈ RN and J ∈ RN×N are the potential vector and pre-
cision matrix of the corresponding Gaussian distribution in
the canonical form (Bishop and Nasrabadi 2006), we first
update P (v) conditioned on this evidence.

P (v|y) = N−1(hv + hy,Jv + Jy). (5)
Next, we pass on the updated variable distribution to the tar-
get node g with prior P (g) = N−1(hg,Jg) and form the
joint distribution of g and v conditioned on the evidence.

P (g,v|y) ∝ exp{−1

2
gTJgg+

hg
Tg − 1

2
vTJvv + hT

vv − gTJg,vv}. (6)

At this point, the challenge is to obtain Jg,v. Assuming
Gaussian likelihood and considering the scoring function
of SimplE, the likelihood factor between g and v becomes
exp{⟨g, rg,v,v⟩} in which rg,v is the embedding vector of
the relation between g and v. Although this term is log-
bilinear in g and v and would appear to stymie closed-form
Gaussian belief propagation, we can rewrite ⟨g, rg,v,v⟩ as
gTDrg,vv to obtain Jg,v = −Drg,v , in which Drg,v is ob-
tained by reshaping rg,v as a diagonal matrix. Next, in or-
der to obtain P (g|y), we marginalize the joint distribution
found in Equation (6) over v.

P (g|y) =
∫

P (g,v|y)dv ∝ exp

{
−1

2
gTJgg + hg

Tg

}
×
∫

exp

{
−1

2
vTJvv + hT

vv − gTJg,vv

}
dv. (7)

In order to calculate the latter integral, we first write the ex-
ponentiated term in matrix form to obtain:

P (g|y) ∝ exp

{
−1

2
gTJgg + hT

g g

}
×∫

exp

{
−1

2

[
g
v

]T[
0 Jg,v

Jg,v Jv

] [
g
v

]
+

[
0
hT
v

] [
g
v

]}
dv. (8)



Algorithm 1: BIKG Algorithm
1: Input: Evidence at increment n represented in FOL,

KG embeddings, {P (g|Dn−1)}, and quantifier ∈
{MPE, MPE+Marginal }.

2: Convert evidence to DNF form.
3: Initialize an empty set of candidate posteriors.
4: for each conjunctive constituent do
5: Construct an MRF corresponding to the evidence.
6: Instantiate observed nodes di ∈ dn with zdi

.
7: for variable node vd ∈ Vd do
8: Compile CPT with Φ(d, rd,v, vd) values.
9: end for

10: Traverse MRF toward the target node.
11: for variable node vi ∈ {Vv ∪ Vg} do
12: Obtain set of neighboring nodes Nvi .
13: Compile joint CPT with

∏
vj∈Nvi

Φ(vi, ri,j , vj).
14: end for
15: Solve problem (3) to obtain V∗ = V∗

d ∪ V∗
v ∪ V∗

g .
16: for node v ∈ {Vd ∪ Vv} do
17: Obtain corresponding v∗ from V∗.
18: Instantiate v with zv∗ .
19: end for
20: if quantifier = MPE then
21: for node vg ∈ Vg do
22: Obtain corresponding v∗g from V∗.
23: Instantiate vg with zvg∗ .
24: end for
25: Obtain P (g|Dn) from (2).
26: else if quantifier = MPE+Marginal then
27: Obtain P (g|Dn) from (9) and (10).
28: end if
29: Add P (g|Dn) to set of candidate posteriors.
30: end for
31: Output: {P (g|Dn)}

Since the term inside the integral is in the form of a jointly
Gaussian distribution, its marginal probability distribution
can be obtained using the Schur complement. Thus, we have
P (g|y) ∼ N−1(ĥg, Ĵg), where

ĥg = hg − Jg,v(Jv)
−1(hv), (9)

Ĵg = Jg − Jg,v(Jv)
−1Jg,v. (10)

In brief, despite the log-bilinear form introduced by using
a tensor-based likelihood, we managed to provide all nec-
essary calculations for incorporating the Marginal quantifier
into BIKG framework in closed Gaussian form to facilitate
multi-path reasoning with efficient computations. The over-
all workflow of BIKG is summarized in Algorithm 1.

Experiments and Evaluation
We evaluate BIKG1 on two different tasks involving infer-
ence using complex KG-based evidence: sequential complex
KGQA and critique-based conversational recommendation.

1https://github.com/atoroghi/BIKG

Task Description
Sequential Query Answering While complex query an-
swering on Knowledge Graphs (KGs) is a well-established
field of study, current works exclusively focus on the single-
shot paradigm that involves presenting the model with a sin-
gle piece of evidence represented through a complex First-
order Logic (FOL) query. We extend this task to the sequen-
tial setting in which evidence is observed in an incremental
manner, i.e. at each session, the model is provided with a
new piece of evidence. A clear real-world example of this
task is reasoning about patient diagnosis by observing med-
ical test results, which often come sequentially as it is infea-
sible to take all possible tests at once.

Critiquing with Complex Feedback Critiquing is a com-
mon conversational recommendation paradigm in which the
model tries to adapt its recommendations according to the
user’s feedback in an iterative process (Chen and Pu 2012;
Toroghi et al. 2023). In each critiquing session, the system
recommends a set of items to the user, and the user either
accepts them or provides feedback regarding their prefer-
ence toward a subset of recommended items or item at-
tributes. The system tries to leverage the observed evidence
of the user’s interests and adjust its recommendations toward
their preferences. Existing critiquing methodologies allow
for simple attributes of items (Wu et al. 2019; Yang, Shen,
and Sanner 2021), but using BIKG, we can extend this task
to define the new problem of reasoning over user’s inter-
ests with complex knowledge-based critiques. In this task,
in each critiquing session, the user provides complex FOL
feedback to the recommender, and the recommender has
to adjust its belief over user interests and recommend new
items accordingly.

Datasets
Sequential Query Answering We evaluate BIKG on
three KGs: FB15k (Bordes et al. 2013), FB15k-237
(Toutanova and Chen 2015), and NELL995 (Xiong, Hoang,
and Wang 2017). These KGs are established datasets fre-
quently utilized in complex KGQA works. Since queries
presented in Ren, Hu, and Leskovec (2020) that are com-
monly employed in the literature do not support sufficient
evidence for all query types to be used in multiple se-
quences, we extract 3000 queries for each of their query
types and divide its evidence nodes into three sessions. For
instance, for each 2-intersection query, we extract 6 evidence
nodes to use 2 of them per session. In generating queries, we
ensure that at least one part of each query is excluded from
the training set of KG so that a graph traversal method on
the training KG cannot answer any query.

Critiquing with Complex Evidence Given the absence
of pre-existing datasets for sequential critiquing with com-
plex evidence, we extract KG-based queries for items from
two frequently utilized recommendation datasets: Movie-
lens 20M (Harper and Konstan 2015) and LFM-1b (Schedl
2016). To do so, we first use entity matching results pro-
vided in Zhao et al. (2019) to match items from each dataset
to the corresponding entities from Freebase KG (Bollacker
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Figure 3: Comparison of improvement in hit rate@10 during the critiquing sessions for various chain types. CQD-{M, Ł, P}
refer to variants of CQD using Minimum, Łukasiewicz, and Product T-norms.

Name #Entities #Relations # Avg Legitimate
2p variables

FB15k 14,951 1,345 34.47
FB15k-237 14,505 237 31.85
NELL995 63,361 200 8.46

MovieLens 20M + FB 159,606 98 1769.49
LFM-1b + FB 166,830 93 489.69

Table 1: Summary of Dataset Statistics

et al. 2008) and extract a number of related triples up to
two hops away from each item. Next, by adding a node to
the KG for each user in the dataset, we form a user-item
KG (Yu et al. 2013). Finally, taking the user-item pairs from
the validation and test sets, we extract queries for each item
following the same procedure as query extraction for com-
plex query answering and extract 1000 queries for each type.
Note that since critiquing queries must contain both user and
item nodes, the simplest query type in this task is 2p. A sum-
mary of the statistics for all five KGs is provided in Table 1.

Evaluation
For the sequential query answering task, we perform
Bayesian inference following the MPE approach and at each
increment, select the closest entity to the center of the pos-
terior target distribution as the answer. However, for the cri-
tiquing task, we also experiment using the marginal quan-
tifier for the item node to obtain the posterior user belief
distribution. For disjunctive queries, we average the scores
obtained from all candidate posteriors. To validate our hy-
pothesis regarding the inadequacy of the existential quanti-
fier for the recommendation task, we compare the number of
KG entities that are valid instantiations for the variable node
in the 2p queries for all datasets and report them in Table 1.

This number is substantially higher for the recommendation
KGs, and instantiating the variable node corresponding to
the item with a few top candidates leads to the oversight of
other legitimate entities.

We use CQD (Arakelyan et al. 2020), one of the strongest
complex query answering models that uses fuzzy T-norm
and T-conorm operators for handling complex queries as
the comparison baseline and use hit rate at 10 as the eval-
uation metric. Since the performance of CQD is dependent
on the used T-norm, we evaluate it with three common T-
norms: Minimum, Łukasiewicz, and Product. We use the
CQD-beam variant of CQD due to its stronger performance
and closer workflow to BIKG. To ensure a fair comparison,
since CQD is tailored to answer queries by considering all
pieces of evidence in a single-shot manner, we accumulate
observations and at each session, present evidence from pre-
vious queries to it as well. Contrarily, as a Bayesian method-
ology, BIKG is expected to encompass a historical record of
past observations within its belief and thus, it is only pre-
sented observations from the most current session.

Results

Sequential Query Answering The detailed results of the
sequential query answering task are provided in Table 2.
It can be observed that BIKG outperforms different varia-
tions of CQD on all three datasets, most query types, and
even most sessions. The superiority of BIKG is more evi-
dent in queries including disjunction (2u and up) and pro-
jection (2p and 3p). CQD excels in infrequent cases, often
confined to one dataset and BIKG performs at least on par
with it on other datasets. These results indicate the limita-
tions of T-norms as a statistically plausible method to inte-
grate multiple evidence pieces into the target beliefs, while
the Bayesian approach effectively overcomes this deficiency.



FB15k
1p 2p 3p 2i 2u

Method S#1 S#2 S#3 S#1 S#2 S#3 S#1 S#2 S#3 S#1 S#2 S#3 S#1 S#2 S#3

CQD-M 0.654 0.685 0.686 0.592 0.590 0.592 0.478 0.481 0.481 0.717 0.852 0.883 0.737 0.716 0.717
CQD-Ł 0.654 0.696 0.718 0.592 0.593 0.590 0.482 0.486 0.484 0.745 0.842 0.875 0.610 0.593 0.639
CQD-P 0.654 0.693 0.713 0.592 0.590 0.593 0.482 0.486 0.484 0.745 0.848 0.878 0.741 0.728 0.721
BIKG 0.654 0.696 0.718 0.592 0.624 0.649 0.482 0.503 0.515 0.745 0.842 0.875 0.744 0.773 0.783

3i pi ip up

Method S#1 S#2 S#3 S#1 S#2 S#3 S#1 S#2 S#3 S#1 S#2 S#3

CQD-M 0.935 0.969 0.945 0.526 0.111 0.554 0.350 0.363 0.326 0.386 0.379 0.368
CQD-Ł 0.966 0.986 0.950 0.588 0.304 0.717 0.350 0.388 0.406 0.387 0.379 0.392
CQD-P 0.963 0.990 0.952 0.574 0.179 0.694 0.350 0.388 0.380 0.399 0.313 0.410
BIKG 0.966 0.986 0.996 0.588 0.662 0.717 0.455 0.445 0.465 0.419 0.447 0.448

FB15k-237

1p 2p 3p 2i 2u

Method S#1 S#2 S#3 S#1 S#2 S#3 S#1 S#2 S#3 S#1 S#2 S#3 S#1 S#2 S#3

CQD-M 0.522 0.587 0.604 0.472 0.468 0.460 0.414 0.415 0.412 0.555 0.682 0.719 0.688 0.656 0.658
CQD-Ł 0.522 0.572 0.595 0.479 0.473 0.479 0.416 0.419 0.415 0.661 0.744 0.775 0.541 0.513 0.545
CQD-P 0.522 0.548 0.603 0.447 0.444 0.457 0.416 0.419 0.415 0.649 0.741 0.774 0.691 0.675 0.665
BIKG 0.522 0.572 0.595 0.474 0.501 0.513 0.416 0.448 0.462 0.661 0.744 0.775 0.696 0.729 0.738

3i pi ip up

Method S#1 S#2 S#3 S#1 S#2 S#3 S#1 S#2 S#3 S#1 S#2 S#3

CQD-M 0.851 0.898 0.857 0.369 0.097 0.407 0.145 0.142 0.150 0.220 0.225 0.238
CQD-Ł 0.900 0.943 0.896 0.410 0.137 0.473 0.146 0.143 0.159 0.219 0.228 0.249
CQD-P 0.903 0.942 0.890 0.393 0.110 0.459 0.146 0.143 0.153 0.232 0.224 0.258
BIKG 0.900 0.943 0.953 0.410 0.457 0.473 0.176 0.174 0.171 0.275 0.282 0.291

NELL995

1p 2p 3p 2i 2u

Method S#1 S#2 S#3 S#1 S#2 S#3 S#1 S#2 S#3 S#1 S#2 S#3 S#1 S#2 S#3

CQD-M 0.607 0.654 0.645 0.408 0.397 0.398 0.340 0.359 0.358 0.774 0.781 0.762 0.816 0.810 0.800
CQD-Ł 0.607 0.673 0.710 0.417 0.411 0.408 0.341 0.359 0.358 0.830 0.879 0.893 0.687 0.653 0.671
CQD-P 0.607 0.621 0.693 0.422 0.410 0.408 0.341 0.359 0.358 0.800 0.845 0.858 0.823 0.812 0.805
BIKG 0.607 0.673 0.710 0.422 0.451 0.472 0.341 0.379 0.394 0.830 0.879 0.893 0.824 0.838 0.843

3i pi ip up

Method S#1 S#2 S#3 S#1 S#2 S#3 S#1 S#2 S#3 S#1 S#2 S#3

CQD-M 0.876 0.871 0.869 0.513 0.251 0.498 0.296 0.275 0.277 0.323 0.316 0.322
CQD-Ł 0.989 0.996 0.943 0.567 0.434 0.638 0.294 0.277 0.330 0.324 0.312 0.336
CQD-P 0.958 0.953 0.915 0.538 0.278 0.598 0.294 0.277 0.318 0.324 0.312 0.335
BIKG 0.989 0.996 0.996 0.567 0.622 0.638 0.338 0.361 0.372 0.359 0.393 0.402

Table 2: Results of sequential complex query answering task. CQD-{M, Ł, P} refer to variants of CQD using Minimum,
Łukasiewicz, and Product T-norms. Each S#n ∈ {1, 2, 3} column refers to the nth query answering session. Letters {p, i, u} in
the query type names refer to projection, intersection, and union respectively. The reported evaluation metric is hit rate@10.

Critiquing with Complex Evidence Results of the multi-
step critiquing experiments are provided in Figure 3. These
results depict that BIKG excels CQD in capturing user pref-
erences by reasoning over complex evidence observed dur-
ing multiple critiquing sessions. While employing BIKG
with the MPE approach outperforms CQD in most cases,
the use of Marginal quantifier often leads to a more consid-
erable improvement, consistent with our previously eluci-
dated hypothesis. These results highlight the significance of
the Marginal quantifier in the BIKG framework which can
endow it with a higher multi-path reasoning capability.

Conclusion
We proposed BIKG, a Bayesian framework for incremental
reasoning over KGs with complex logical evidence. BIKG
takes a probabilistic perspective on KG inference by con-
structing an MRF corresponding to observations, inferring
unobserved variables using the MPE methodology, and per-
forming closed-form multi-path reasoning by incorporat-
ing the Marginal quantifier. The promising performance of
BIKG on sequential KGQA and interactive recommendation
tasks demonstrates its efficacy for performing incremental
reasoning, paving the way for versatile future extensions to



other logical systems and applications in different domains.
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