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Abstract

The Abstraction and Reasoning Corpus (ARC) aims at bench-
marking the performance of general artificial intelligence al-
gorithms. The ARC’s focus on broad generalization and few-
shot learning has made it difficult to solve using pure machine
learning. A more promising approach has been to perform
program synthesis within an appropriately designed Domain
Specific Language (DSL). However, these too have seen lim-
ited success. We propose Abstract Reasoning with Graph Ab-
stractions (ARGA), a new object-centric framework that first
represents images using graphs and then performs a search
for a correct program in a DSL that is based on the abstracted
graph space. The complexity of this combinatorial search is
tamed through the use of constraint acquisition, state hash-
ing, and Tabu search. An extensive set of experiments demon-
strates the promise of ARGA in tackling some of the compli-
cated object-centric tasks of the ARC rather efficiently, pro-
ducing programs that are correct and easy to understand.

In an attempt to better measure the gap between machine
and human learning, the Abstraction and Reasoning Corpus
(ARC) was created by Chollet in 2019. The dataset is a col-
lection of 1000 image-based reasoning tasks, where each
task asks for an output image given an input. To “learn” a
procedure that produces said output, each task comes with
2–5 input-output image pairs as training instances; these
training inputs are different from the actual test input, but
can be solved by the same (unknown) procedure. Some ex-
amples are shown in Figure 1. A competition with over
900 teams was hosted on Kaggle to solve the ARC (Kaggle
2020). Despite a massive effort, the solutions only achieved
20% accuracy on the hidden test set, at best. In fact, the
first-place solution could not solve two of the three exam-
ples shown in Figure 1 despite their simplicity to a human.

Recognizing objects, actions performed on them, and re-
lationships between them makes up a large portion of hu-
man cognition core systems (Spelke and Kinzler 2007). The
ARC embodies this notion in its tasks. In fact, Acquaviva
et al. (2021) found that when humans attempt to solve ARC
tasks through language, half of the phrases they use relate
to object detection. Therefore, an object-centric approach to
solving the ARC is highly promising. Surprisingly, this key
insight is yet to be leveraged.

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Sample ARC Tasks. Three tasks (each two con-
secutive columns) are shown. For a given task, each row
contains one example input-output pair. The top three rows
contain the “training” instances and the bottom row contains
the “test” instance. The goal is to use the training instances
to solve the test instance. The left task (“object recoloring”)
requires recoloring the size-6 grey objects to red and other
grey objects to blue. The middle task (“object movement”)
requires moving the red columns up until they hit the blue
object. The right task (“object augmentation”) requires ex-
tending the size-1 objects directly above, below or to the
sides of the green object towards it until they make contact.

ARGA: Abstract Reasoning with Graph
Abstractions

Toward this goal, we propose Abstract Reasoning with
Graph Abstractions (ARGA), an object-centric framework
for solving ARC tasks. Our design rationale is to build
a computationally efficient, extensible, object-aware ARC
solver through careful integration of the following:

– Representation: Enabling object awareness requires a
move from treating the input as pixels towards a graph
of objects with spatial or other relations. We design a va-
riety of such graph abstractions to cater to the diversity
of the ARC and its different definitions of objects.

– Structure: Grounded in first-order logic, our graph-



Figure 2: Illustration of ARGA’s constraint-guided search. Note that a reconstructed 2D image is used at each node for better
visualization. Nodes in the actual search tree consists a set of abstracted graphs.

based DSL makes it possible to define complex but in-
terpretable solution programs for tasks of the ARC. This
is in contrast to pure neural network-type approaches that
attempt to map input to output in an often black-box fash-
ion.

– Search: With the representation and DSL in place, we
opt for a complete tree search algorithm. Given a task,
the search seeks a program in the DSL that produces the
correct outputs for each of the task’s training examples.
Whenever a correct program for a task exists in our DSL,
the search can find it given sufficient time.

– Constraints: Leveraging the observation that (solved)
training examples not only tell us what a correct program
does but also what it should not do (e.g., in Fig. 1 (left),
objects should not move), we use constraint acquisition
to simplify our combinatorial search space. Constraints
are expressed in the very same graph DSL and may be
acquired by an arbitrary algorithm.

Fig. 2 illustrates the DSL, Search, and Constraints compo-
nents of ARGA; Fig. 4 illustrates the Representation. With
ARGA, we hope to provide AI researchers who are inter-
ested in the ARC and similar few-shot reasoning situations
with the first such system upon which they can build and ex-
plore the capabilities of graph and search-based reasoning.
Our implementation is available on GitHub1.

Because object-oriented abstraction and reasoning are
major failure modes of state-of-the-art ARC solvers, we de-
fine criteria to select a subset of object-oriented ARC tasks
as a testbed for the evaluation of our methods in compari-
son to other top solvers. The 160 tasks in question span a
wide range of challenging problems that can be categorized
as object recoloring, object movement, and object augmen-
tation. We show how ARGA’s design and performance are
favorable in the following ways:

– Extensibility and Modularity: Every component of
ARGA can be extended almost independently to target
additional ARC tasks or optimize performance: novel
graph abstractions can be added, additional object filters

1https://github.com/khalil-research/ARGA-AAAI23

and transformations can be appended to the DSL, new
search strategies can be tested, and faster constraint ac-
quisition algorithms may seamlessly replace ours.

– Computational Efficiency: Our DSL contains a num-
ber of object-based selection filters as well as transfor-
mations (e.g., recoloring, moving, etc.). Because these
can be composed together to form a candidate program
for an ARC task, the resulting search space is combina-
torially large. Nonetheless, through experiments on 160
object-based ARC tasks, we show that when ARGA finds
a solution, it does so by exploring a minute number of
possible solutions, effectively three orders of magnitude
fewer than the winner of the Kaggle competition.

– Effectiveness: Our current DSL includes only 4 base
filters and 11 transformations. Yet, we solve 57 of 160
tasks, only slightly behind the Kaggle winner’s 64 of 160.
The latter includes a much larger body of transformations
that were obtained by examining many more ARC tasks.

System overview
We propose a two-stage framework that takes an object-
centric approach to solving an ARC task. First, the graph ab-
straction stage inspired by work on Go (Graepel et al. 2001),
where the 2D grid images are mapped to (multiple) undi-
rected graph representations that capture information about
the objects in the images at a higher abstracted level. Sec-
ond, the solution synthesis stage, where a constraint-guided
search is used to formulate the series of operations to be ap-
plied to the abstracted graphs that will lead to a solution. The
space of possible operations is defined by an ARGA-specific
relational Domain Specific Language (DSL).

Since the DSL defines operations on the abstracted
graphs, we will first describe the graph abstraction stage and
formally define the structure of the abstracted graphs. Then,
the DSL will be defined in detail. Finally, the solution syn-
thesis stage will be discussed.

Graph Abstraction
Graph abstraction allows us to search for a solution at a
macroscopic level. In other words, we are modifying groups



Figure 3: Example solution generated by ARGA. The input image is first abstracted into a graph in which each node represents
a set of adjacent pixels that are not black. Two nodes share an edge iff there is at least one cell in each node with the same
coordinate value along either axis. The solution here first colors in blue all nodes not containing exactly six pixels, then colors
in red all nodes with exactly six pixels. The number of pixels contained in a node is defined as its “size”, a node attribute that
ARGA can use in its search for a correct program.

Object Type Set Object Type Description
i ∈ Image A 2D grid image
p ∈ Pixel A pixel on an image
g ∈ Graph An abstracted graph
n ∈ Node A node in an abstracted graph
e ∈ Edge An edge in an abstracted graph
c ∈ Color Color (including background)
s ∈ Size Size of a node (# pixels)
d ∈ Direction Directions within the 2D image
pa ∈ Pattern A pattern found on the image
t ∈ Type Generic Type (any above)

Table 1: Object Types in ARGA.

of pixels at once, instead of modifying each individual pixel
separately. As a result, this approach has a smaller search
space than its non-abstracted, raw image counterpart.

We now formally introduce terminology that aids in defin-
ing our abstracted graphs (such as those shown in Figure 3)
that will be leveraged by the DSL of the next section. The
language we use builds on first-order logic which provides
a flexible and expressive language for describing typed ob-
jects and relations. Object types in our DSL are shown in
Table 1 and can be used as unary predicates, e.g., Node(n)
is true iff n ∈ Node. Some example relations between ob-
jects are shown in Table 2 and the full set of relations can be
found in Appendix Table 6.

Let i be any input or output 2D grid image from an ARC
task. i can be completely specified by its set of pixels p.
Let g be an abstracted graph with sets of abstracted nodes
n. The relations that hold between these types are shown in
Table 2. Each Node n represents an object that is detected
in the original image i based on the rules of the abstraction

Typed Object Binary Relations Description
containsNode(Graph,Node) Graph contains Node
containsP ixel(Node, P ixel) Node contains Pixel
neighbor(Node,Node) An edge exists between two Nodes
color(Node,Color) color of Node
size(Node, Size) size of Node
Rel(Type, Type) Generic Relation (any above)

Table 2: Example Object Relations in ARGA.

Figure 4: Visualization of graph abstractions. Apply-
ing two different graph abstractions to an image. Left:
non-background single-color connected pixels. Right: non-
background single-color vertically-connected pixels.

(e.g., one graph abstraction is “non-black neighboring pixels
of the same color form a node”) and relations between the
nodes represent relationships between these objects.

Therefore, the graph abstraction process executes a map-
ping that generates some abstracted graph G for image I .
We note that there are multiple ways in which this mapping
can be defined. Different graph abstractions can be used to
identify objects in the image using different definitions of
what an object is. Since the resulting abstracted graphs from
different graph abstraction definitions share the same under-
lying structure, we are able to expand the solution space sig-
nificantly without modifying the DSL.



The usefulness of having multiple definitions of an object
can be observed in the example shown in Figure 1 (Middle).
Upon first inspection, one may think that objects are defined
as connected pixels with the same color. However, upon fur-
ther inspection, we realize that the connected red pixels in
different columns are in fact different objects as they do not
share the same modification in the output images. Therefore,
defining multiple abstraction processes improves ARGA’s
ability to correctly capture object information from the in-
put images. The two different abstractions mentioned in the
example are further discussed in the following:
non-background single-color connected pixels: In this ab-
straction, an object (or node) is defined as a set of connected
pixels sharing the same color. The pseudocode for the ab-
straction algorithm is shown in Appendix Algorithm 1 and
an illustration of this abstraction is in Figure 4.
non-background single-color vertically-connected pix-
els: In this graph abstraction, an object is defined as a set
of vertically connected pixels that are not the background
color. An illustration of this abstraction is in Figure 4.

Overlapping Objects
Note that our representation allows for a pixel to be associ-
ated with multiple nodes in the graph, as objects are mod-
ified. This can be intuitively understood by observing that
objects may overlap with one another on the grid as one ap-
plies a sequence of transformations to solve a given task. Our
graph abstraction ensures that although some objects may be
partially obscured, they are still kept track of and considered
to be a whole object. This allows the system to have the ob-
ject persistence knowledge prior.

A Graph DSL for the ARC
We now introduce a lifted relational DSL for ARGA built
upon the objects and relations defined in the previous sec-
tion. The DSL is used to formally describe the filter language
used to match node patterns, determine graph transforma-
tion parameters, and carry out transformations on abstracted
graphs as described in the following. An example solution
expressed using the DSL is shown in Figure 3.

Filters
Filters are used to select nodes from the graph. The funda-
mental grammar is a subset of first-order logic:

Filter(x) ::= Type(x)

::= Filter(x) ∧ Filter(x)

::= Filter(x) ∨ Filter(x)

::= ¬Filter(x)

::= ∃y Rel(x, y) ∧ Filter(y)

::= ∃y Rel(y, x) ∧ Filter(y)

::= ∀y Rel(x, y) =⇒ Filter(y)

::= ∀y Rel(y, x) =⇒ Filter(y)

::= Rel(x, c) [c is a constant]
::= Rel(c, x) [c is a constant]

Figure 5: Example Task from the ARC that requires dy-
namic transformation parameter. The target color of a
grey node is determined dynamically based on the input.

The following example filters match nodes with 6 pixels,
with grey as their color, and whose neighbors are all blue,
respectively:

filterBySize6 (n) ≡Node(n) ∧ size(n, 6)

filterByColorGrey(n) ≡Node(n) ∧ color(n, grey)

neighborsAllBlue(n) ≡Node(n)

∧∀yNeighbor(n, y) =⇒ color(y, blue)

Transformations

Transformations are used to modify nodes selected by fil-
ters. They do so by modifying the values of object relations.
Table 3 describes a few of the transformations; the full list
can be found in Appendix Table 8.

Transformation Description
updateColor(Node, Color) Update color of Node to Color
move(Node,Direction) Update pixels of Node to move

in Direction
rotate(Node) Update pixels of N to rotate it

clockwise
extend(Node,Direction) Add additional pixels to Node in

Direction
transform(Node, v1, . . . , vk) Generic transformation with

k parameter values (v1, . . . , vk)

Table 3: Example Transformations.

An example transformation definition is shown below.

updateColor(n : Node, c : Color)

−→ color(n, c) ∧ ¬color(n, c′) ∀c′ ∈ Color s.t. c′ ̸= c

In this example, the transformation updateColor updates
(−→) the color of the Node n to c. It does so by assign-
ing color(n, c) to true and color(n, c′) to false for all other
colors c′ in the abstracted graph representation.

Dynamic Parameter Transformations

In the example shown in Figure 1 (Left), we can “statically”
identify the color that the nodes should be updated to. How-
ever, this does not work for Figure 5, because the target
color of a transformed grey object is that of its neighboring
size-1 object. Therefore, we define parameter binding func-
tions which allow us to dynamically generate parameters for
transformations. The grammar for parameter binding as well



as its interpretation and an example are provided next:

Param(x, v) ::=v = c [c is a constant]
::=Rel(x, v)

::=Rel(v, x)

::=∃y Rel(x, y) ∧ Filter(y) ∧ Param(y, v)

::=∃y Rel(y, x) ∧ Filter(y) ∧ Param(y, v)

While it shares a similar grammar to filters, the
Param(x, v) has special semantics that we pause to dis-
cuss. First, the goal of Param(x, v) is to find possible
matching parameters for an object x, hence we never ap-
ply a filter to x in the grammar since we are not aiming to
restrict it — x is assumed to be given. Second, we can inter-
pret Param(x, v) as providing all possible parameter values
v that make Param(x, v) true. However, we need a unique
parameter v; if no v matches for a given x then Param(x, v)
fails to return a parameter and we cannot apply the transfor-
mation (it is considered a noop). If multiple v match, then
we deterministically order and return the first matching v.
While this is generally undesirable behavior, we note that
our search over dynamic parameter bindings Param(x, v)
most often only succeeds when Param(x, v) represents a
functional matching such as Param(x, v) ≡ Color(x, v)
since we know that Color is an injective relation. Hence,
we do not a priori restrict the grammar search to func-
tional parameter bindings, but find in practice that successful
Param(x, v) bindings found in search tend to recover func-
tional mappings from x 7→ v based on invariant properties
inherent in the training examples.

We remark that this dynamic parameter grammar includes
static cases such as Param(x, v) ≡ v = blue, which would
ignore the node x and always return the parameter blue.

Following is a more complex parameter binding:

bindSize1NeighborColor(x, v) ≡
∃y neighbor(x, y) ∧ size(y, 1) ∧ Color(y, v))

Here, bindSize1NeighborColor(x, v) matches (and re-
turns) the color v of any neighbor of x with a size of 1 pixel.
In the example shown in Figure 5, suppose we have grey
Node n selected by filters; we can then find the color to up-
date it by calling bindSize1NeighborColor(n,Color).

Full Operation
With the filters, transformations and parameter bindings for-
mally defined, we may now combine them to perform a
full modification to the abstracted graph. Given a filter,
a transformation, and k parameter bindings Parami(x, v)
(i ∈ {1 . . . k}) for each parameter taken by the transforma-
tion (possibly none if k = 0):

for each n ∈ Node

if filter(n)

then vi ← [ {v|Parami(n, v)} for i ∈ {1 . . . k}
transform(n, v1, . . . , vk)

We assume that ← [ deterministically selects a unique value
vi if |{v}| ̸= 1. The set of operations required for solv-
ing the example in Figure 5 are filterByColorGrey,

updateColor and bindSize1NeighborColor. We note that
tasks such as the example shown in Figure 3 do not require
dynamic parameters; in those instances, the parameter bind-
ing found in the solution simply returns a static value v = c.

Solution Synthesis
With a DSL clearly defining the solution space and the input
images successfully abstracted, a search will be conducted
to synthesize a solution. Many ARC tasks have very com-
plicated logic with multiple detectable objects, which means
that even with our high-level graph abstraction, the search
space is too large to be explored exhaustively. Therefore,
the key objective in developing our algorithm is to reduce
the search space. To achieve this, we introduce a constraint
acquisition module which acquires constraints that are used
to prune unpromising branches of the search tree, i.e., se-
quences of transformations which cannot possibly result in
a correct solution to the training tasks. Other tricks such as
hashing and Tabu List are also used to speed up the search.
An illustration of a search tree is shown in Figure 2

Search Strategy
We implement a greedy best-first search. Suppose ARC
task t has m training instances, with input-output images
{inputi , outputi} for i ∈ {1, . . . ,m}. Each node in our
search tree contains a set of graphs {ginput i} for i ∈
{1, . . . ,m}. ginput i represents inputi after the abstraction
process and the application of a sequence of operations
(o1, . . . , oj , . . . , ok) for j ∈ {1, . . . , k}, where each oj is
a full operation as defined previously. The special case of
k = 0 corresponds to no operations applied, i.e., the root
node of the search tree.

To expand a node with abstracted graphs {ginput i}, we
first identify the set of all valid full operations O. Then, for
each o ∈ O, we apply it to {ginput i} and obtain updated
abstracted graphs {g′i} for i ∈ {1, . . . ,m}. We add the new
abstracted graphs {g′i} into the search tree as a new node and
update the sequence of operations that led to it by appending
operation o to obtain (o1, . . . , ok, o).

Heuristic Function
To determine the node to be expanded in each iteration of the
search, our primary metric measures how close the node is to
the target training output. For each node, we reconstruct the
corresponding 2D image for each of the abstracted graphs
{ginput i}. We then compare the reconstructed images with
the training outputs {outputi} and calculate a penalty score
based on pixel-wise accuracy, as detailed in Appendix Ta-
ble 9. Large mismatch in pixels between the “predicted” and
the actual output results in a large penalty. The node in the
search tree with the lowest score is selected for expansion.

Constraint-Guided Search
We illustrate this concept with an example. All objects in
Figure 1 (Left) should not change in position. We can there-
fore define the constraint positionUnchanged, which is satis-
fied when a node and the updated version of that node share



the same set of pixels, thus making sure that the node’s po-
sition on the image remains unchanged through the transfor-
mation. All transformations that modify a node’s pixels can
therefore be pruned by this constraint in the search tree. A
visualization is shown in Figure 2.

The constraints can be defined using the same language
we’ve introduced earlier. For instance, positionUnchanged
is defined as:

positionUnchanged(n : Node, n′ : Node) ≡
∀p ∈ P containsP ixel(n, p) ≡ containsP ixel(n′, p)

which holds if for all pixels p ∈ P , containsPixel(n, p)
and containsPixel(n′, p) return the same value. Constraints
defined for ARGA can be found in Appendix Table 10.

Given a set of constraints C that must be satisfied and a
node in the search tree with a set of graphs {ginput i} for i ∈
{1, . . . ,m}, the search space is pruned as follows. Suppose
we have a full operation o that selects n from ginput i with
filter operation f and transforms it with operation t to pro-
duce updated node n′. If ∃c ∈ C ∧ c(n, n′) = False,
then the branch in the search tree created by applying o to
{ginput i} is pruned, as it does not satisfy constraint c.

Constraint Acquisition
To obtain a set of constraints to prune the search space, we
introduce a simple constraint acquisition algorithm inspired
by the ModelSeeker (Beldiceanu and Simonis 2012) and In-
ductive Logic Programming (Lallouet et al. 2010).

We have the generic constraint constraint(n : Node, n′ :
Node) where n, n′ can be understood as a node before and
after modification by a transformation. To determine the
constraints that must hold for a particular ARC task from
the set of all possible constraints, we compare the training
output images to the corresponding input images.

While expanding a node in the search tree, we apply the
same abstraction process for the output images {outputi} as
the input images to obtain {goutput i} for i ∈ {1, . . . ,m}.
Then, for each full operation o ∈ O, we apply its filter op-
eration f to ginput i and goutput i to obtain pairs of nin and
nout. For each constraint c, if c(nin, nout) evaluates to True
for all pairs found by f , we say that constraint c must be
satisfied for all nodes selected by filter f . Therefore, all full
operations o with filter f and transformation t that violate
constraint c can be pruned.

Hashing
It is highly likely that different transformations or sequences
of transformations result in the same abstracted graph. To
avoid duplicate search efforts, we hash each node in the
search tree so that equivalent nodes are only explored once.
The search tree therefore has the structure of a Directed
Acyclic Graph. An example of this is shown in Figure 2.

Tabu List
In our current implementation, abstracted graphs from dif-
ferent abstractions share the same search tree. It is there-
fore possible that greedy best-first search will get stuck in
unpromising local solutions. To avoid this, we implement a

simple Tabu List, which keeps tracks of the performance of
each abstraction. If an abstraction is generating increasingly
worse results, we temporarily place it on the Tabu List so
that no nodes with this abstraction will be explored.

Experiments
Chollet (2019) states that the ARC aims to evaluate
“Developer-aware generalization”, and all ARC tasks are
unique and do not assume any knowledge other than the core
priors. Therefore, implementing and evaluating ARGA on a
subset of ARC tasks should provide useful insight into the
effectiveness of our method without the need for extensive
development of transformation functions, which are not the
focus of our contribution.

We focus on a subset of 160 object-centric tasks from the
ARC and categorize them into three groups: (1) Object Re-
coloring tasks, which change colors of some objects in the
input image; (2) Object Movement tasks, which change the
position of some objects in the input image; (3) Object Aug-
mentation tasks, which expand or add certain patterns to ob-
jects from the input images. An example task from each of
the three sub-categories is shown in Figure 1.

For comparison, we evaluated the Kaggle Challenge’s
first-place model (top quarks 2020) on the same subset of
tasks. The model was executed without the time limitation
enforced by the competition and the highest-scored candi-
date produced by the model was used to generate the final
prediction.

Results
The performance of ARGA and the Kaggle competition’s
first-place solution are shown in Table 4. With the exception
of Object Movement tasks, our model performed slightly
worse than the Kaggle winner in terms of accuracy. This
is likely due to the solution space spanned by our DSL not
being expressive enough, as it was developed using only a
subset of the 160 tasks. On the other hand, the DSL used in
the Kaggle solution was developed by first manually solving
200 tasks from the ARC (top quarks 2020).

Despite lower accuracy, ARGA achieves much better ef-
ficiency in search as we are able to reach the solution with 3
order magnitude fewer nodes explored. This suggests that
with a more expressive DSL and a more efficient imple-
mentation, ARGA should be able to solve more tasks with
much less search effort (ARGA is currently implemented in
Python while the Kaggle solution is implemented in C++).

Furthermore, the gap between the number of tasks for
which all training instances are solved (# Training Correct)
and the number of tasks for which the single test instance is
solved (# Testing Correct) is much smaller for ARGA. This
suggests that ARGA is better at finding solutions which gen-
eralize correctly while the Kaggle solution often overfits to
the training instances.

Ablation Study Table 5 shows the performance of differ-
ent variations of ARGA; the accuracies are reported on all
160 tasks. We see that the use of constraint acquisition is
very effective in reducing the search space, resulting in 38%
lower average nodes explored before reaching the solution.



Model Task Type # Training Correct # Testing Correct Average Nodes Average Time (sec.)
ARGA movement 18/31 (58.06%) 17/31 (54.84%) 3830.35 89.75

recolor 25/62 (40.32%) 23/62 (37.10%) 12316.87 326.83
augmentation 20/67 (29.85%) 17/67 (25.37%) 4668.82 67.09
all 63/160 (39.38%) 57/160 (35.62%) 7504.81 178.66

Kaggle movement 21/31 (67.74%) 15/31 (48.39%) 2176777.67 62.45
First Place recolor 23/62 (37.10%) 28/62 (45.16%) 2290441.32 93.19

augmentation 35/67 (52.24%) 21/67 (31.34%) 2248151.10 66.07
all 79/160 (49.38%) 64/160 (40.00%) 2249924.92 77.08

Table 4: Results on subset of ARC. # Training correct is the number of tasks that got all the training instances exactly right. #
Testing correct is the number of tasks that got the testing instance exactly right. Average Nodes is the average number of unique
nodes added to the search tree before finding a solution for correctly solved tasks. Average Time (sec.) is the average time in
seconds to reach solution for correctly solved tasks.

Model # Training Correct # Testing Correct Average
Nodes

Average
Time (sec.)

ARGA 63 (39.38%) 57 (35.62%) 7504.81 178.66
-CA 62 (38.75%) 55 (34.38%) 12114.25 227.62
-SF 60 (37.50%) 54 (33.75%) 8530.17 197.54
-TL 64 (40.00%) 57 (35.62%) 7702.53 169.52
-H 62 (38.75%) 57 (35.62%) 26107.58 172.77

Table 5: Ablation study. ARGA is the complete system. -
CA is ARGA without constraint acquisition. -SF is ARGA
using a breadth-first search strategy for abstractions. -TL is
ARGA without Tabu List. -H is ARGA without hashing.

Furthermore, the results show that Tabu List, hashing, as
well as the proper searching strategy are all important for
the best performance. We note that as seen in Appendix Ta-
ble 11, there are no significant differences in the sets of tasks
solved by variations of ARGA.

Related Work
Current ARC Solvers There have been many attempts at
solving the ARC. Most of those that have shown some suc-
cess leverage a DSL within the program synthesis paradigm
(Kaggle 2020). It has been shown that humans are able to
compose a set of natural language instructions that are ex-
pressive enough to solve most of the ARC tasks, which sug-
gests that the ARC is solvable with a powerful enough DSL
and an efficient program synthesis algorithm (Johnson et al.
2021). Indeed, this is the approach suggested by Chollet
(2019) when introducing the dataset: “A hypothetical ARC
solver may take the form of a program synthesis engine” that
“generate candidates that transform input grids into output
grids.”

Solutions using this approach include the winner of the
Kaggle challenge, where the DSL was created by manu-
ally solving ARC tasks and the program synthesis algo-
rithm is a search that utilizes directed acyclic graphs (DAG).
Each node in the DAG is an image, and edges between the
nodes are transformations (top quarks 2020). The second-
place solution introduces a preprocessing stage before fol-
lowing a similar approach (de Miquel Bleier 2020). Many
other Kaggle top performers share this approach (Golubev
2020; Liukis 2020; Penrose 2020). Fischer et al. (2020) pro-

pose a Grammatical Evolution algorithm to generate solu-
tions within their DSL. Alford et al. (2021) utilize an ex-
isting program synthesis system called DreamCoder (Ellis
et al. 2020) to create abstractions from a simple DSL through
the process of compression. The program then composes the
solution for new tasks using neural-guided synthesis.

Other approaches to solving the ARC include the Neural
Abstract Reasoner, which is a deep learning method that suc-
ceeds in a subset of the ARC’s problems (Kolev, Georgiev,
and Penkov 2020). Assouel et al. (2022) developed a compo-
sitional imagination approach which generates unseen tasks
for better generalization. Ferré (2021) develops an approach
based on descriptive grids. However, these approaches have
not achieved state-of-the-art results.

Constraint Acquisition (CA) is a field that aims to gen-
erate Constraint Programming (CP) models from examples
(De Raedt, Passerini, and Teso 2018). State-of-the-art CA
algorithms may be active, requiring interaction from the
user (Bessiere et al. 2013; Arcangioli, Bessiere, and Lazaar
2016), or passive, requiring only initial examples (Bessiere
et al. 2005).

The passive CA algorithm used for ARGA was influenced
by ModelSeeker (Beldiceanu and Simonis 2012), which
finds relevant constraints from the global constraint catalog
(Beldiceanu, Carlsson, and Rampon 2005) as well as the sys-
tem developed by Lallouet et al. (2010) which uses Inductive
Logic Programming (ILP) and formulates constraints from
logical interpretations.

Conclusion

We proposed Abstract Reasoning with Graph Abstractions
(ARGA), an object-centric framework that solves ARC tasks
by first generating graph abstractions and then performing a
constraint-guided search. We evaluated our framework on
an object-centric subset of the ARC dataset and obtained
promising results. Notably, the efficiency in reaching the so-
lution within the search space shows that with further devel-
opment of the DSL, our method has the potential to solve far
more complicated problems than state-of-the-art methods.
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Technical Details

Algorithm 1: non-background single-color connected pixels
graph abstraction
Input: Grid Image I
Output: Abstracted Graph G

1: Identify background color background-color
2: Construct 2D grid graph I’ for image I with node for

each pixel in the image and edge between each adjacent
pixel.

3: Initialize abstracted graph G
4: for color in all available non-background color do
5: Find sub-graph SG of I’ with node.Color == color
6: Find connected components C of SG
7: for component in C do
8: Add node to G
9: G.pixels = component

10: G.color = color
11: end for
12: end for
13: Add edges between nodes based on image I with rela-

tion vertical or horizontal
14: return G

Typed Object Binary Relations Description
containsNode(Graph,Node) Graph contains Node
containsP ixel(Node, P ixel) Node contains Pixel
edgeSource(Node,Edge) Node is the source node for Edge
edgeTarget(Edge,Node) Node is the target node for Edge
direction(Edge,Direction) direction of Edge
overlap(Node,Node) Two Nodes are overlapping
neighbor(Node,Node) An edge exists between two Nodes
color(Node,Color) color of Node
size(Node, Size) size of Node
Rel(Type, Type) Generic Relation (any above)

Table 6: Full List of Object Relations in ARGA. Fur-
ther quantitative information can be introduced by imple-
menting new relations. For example, to account for dis-
tance between two nodes, we can introduce new relation
distance(Edge,Distance) where Edge is the edge be-
tween the two nodes.

Filter Description
filterByColor(Node,Color) return True if Node has Color
filterBySize(Node, Size) return True if Node is of Size
filterByNeighborColor(Node,Color) return True if Node has neigh-

bor with Color
filterByNeighborSize(Node, Size) return True if Node has neigh-

bor with Size

Table 7: Base Filters.

Transformation Description
updateColor(Node,Color) Update color of Node to Color
move(Node,Direction) Update pixels of Node to

move 1 pixel in Direction
moveMax(Node,Direction) Update pixels of Node to

move in Direction until it col-
lides with another node

rotate(Node) Update pixels of Node to ro-
tate it clockwise

fillRectangle(Node,Color) Fill background nodes in rect-
angle enclosed by the node
with Color

hollowRectangle(Node,Color) Color all nodes in rectangle
enclosed by the node with
Color

addBorder(Node,Color) Add additional pixels to Node
in Direction

insertPattern(Node, Pattern) Insert Pattern at Node
mirror(Node, P ixel,Direction) Mirror Node toward Direction

around Pixel
extend(Node,Direction) Add additional pixels to Node

in Direction
flip(Node,Direction) Flip Node in place in some di-

rection
transform(N, [k]) Generic transformation with k

parameters.

Table 8: Full List of Transformations.

Actual Predicted Penalty
Background Non-background 2
Non-background Background 2
Non-background Non-background wrong color 1
Non-background Non-background right color 0
Background Background 0

Table 9: Heuristic Function used in Search

Constraint Description
positionUnchanged(Node,Node) Node does not change posi-

tion after update
colorUnchanged(Node,Node) Node does not change color

after update
sizeUnchanged(Node,Node) Node does not change in size

after update
constraint(Node,Node) Generic constraint

Table 10: Example Constraints.

ARGA -CA -SF -TL -H
ARGA 57 54 53 56 56
-CA 54 55 51 53 54
-SF 53 51 54 53 52
-TL 56 53 53 57 55
-H 56 54 52 55 57

Table 11: Solved Tasks Overlaps.


