
Online Class-Incremental Continual Learning with Adversarial Shapley Value

Dongsub Shim1*, Zheda Mai1*, Jihwan Jeong1*, Scott Sanner1

Hyunwoo Kim2, Jongseong Jang2

1 University of Toronto, 2 LG AI Research
(dongsub.shim, zheda.mai)@mail.utoronto.ca, (jhjeong, ssanner)@mie.utoronto.ca, (hwkim, j.jang)@lgresearch.ai

Abstract

As image-based deep learning becomes pervasive on every
device from cell phones to smart watches, there is a grow-
ing need to develop methods that continually learn from data
while minimizing memory footprint and power consump-
tion. While memory replay techniques have shown excep-
tional promise for this task of continual learning, the best
method for selecting which buffered images to replay is still
an open question. In this paper, we specifically focus on the
online class-incremental setting where a model needs to learn
new classes continually from an online data stream. To this
end, we contribute a novel Adversarial Shapley value scoring
method that scores memory data samples according to their
ability to preserve latent decision boundaries for previously
observed classes (to maintain learning stability and avoid
forgetting) while interfering with latent decision boundaries
of current classes being learned (to encourage plasticity and
optimal learning of new class boundaries). Overall, we ob-
serve that our proposed ASER method provides competitive
or improved performance compared to state-of-the-art replay-
based continual learning methods on a variety of datasets.

1 Introduction
Image-based deep learning is a pervasive but computation-
ally expensive and memory intensive task. Yet the need for
such deep learning on personal devices to preserve privacy,
minimize communication bandwidth, and maintain real-
time performance necessitates the development of methods
that can continuously learn from streaming data while min-
imizing memory storage and computation footprint. How-
ever, a well-documented defect of deep neural networks that
prevents it from learning continually is called catastrophic
forgetting (McCloskey and Cohen 1989) — the inability of a
network to perform well in previously seen tasks after learn-
ing new tasks. To address this challenge, the field of con-
tinual learning (CL) studies the problem of learning from
a (non-iid) stream of data, with the goal of preserving and
extending the acquired knowledge over time.

Many existing CL approaches use a task incremental set-
ting where data arrives one task (i.e., set of classes to be
identified) at a time and the model can utilize task identity

*Authors contributed equally.
Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

during both training and testing (Kirkpatrick et al. 2017; Li
and Hoiem 2016; Lopez-Paz and Ranzato 2017). Specifi-
cally, a common practice in this setting is to assign a sep-
arate output layer (head) for each task; then the model just
needs to classify labels within a task, which is known as
multi-head evaluation (Chaudhry et al. 2018). However, this
setting requires additional supervisory signals at test time —
namely the task identity — to select the corresponding head,
which obviates its use when the task label is unavailable. In
this work, we consider a more realistic but difficult setting,
known as online class-incremental, where a model needs to
learn new classes continually from an online data stream
(each sample is seen only once). In contrast to the task in-
cremental setting, this setting adopts the single-head evalu-
ation, where the model needs to classify all labels without
task identity. Moreover, we focus on image classification, a
common application where this setting is used (Aljundi et al.
2019a,b; Lee et al. 2020; Chrysakis and Moens 2020).

Current CL methods can be taxonomized into three ma-
jor categories: regularization-based, parameter isolation, and
memory-based methods (Parisi et al. 2019; De Lange et al.
2019). Regularization-based methods incorporate an addi-
tional penalty term into the loss function to penalize the up-
date of critical model parameters (Kirkpatrick et al. 2017;
Zenke, Poole, and Ganguli 2017; Aljundi et al. 2018; Ritter,
Botev, and Barber 2018). Other regularization-based meth-
ods imposed knowledge distillation techniques to penalize
the feature drift on previous tasks (Li and Hoiem 2016; Wu
et al. 2019; Rannen et al. 2017). Parameter isolation methods
assign per-task parameters to bypass interference by expand-
ing the network and masking parameters to prevent forget-
ting (Mallya and Lazebnik 2018; Lee et al. 2020; Yoon et al.
2018). Memory-based methods deploy a memory buffer to
store a subset of data from previous tasks. The samples from
the buffer can be either used to constrain the parameter up-
dates such that the loss on previous tasks cannot increase
(Chaudhry et al. 2019a; Lopez-Paz and Ranzato 2017), or
simply for replay to prevent forgetting (Rebuffi et al. 2017;
Chaudhry et al. 2019b).

Regularization methods only protect the model’s ability to
classify within a task and thus they do not work well in our
setting where the ability to discriminate among classes from
different tasks is crucial (Lesort, Stoian, and Filliat 2019).
Also, most parameter isolation methods require task identity

Random Replay MIR ASER

Figure 1: 2D t-SNE (van der Maaten and Hinton 2008) visualization of CIFAR-100 data embeddings and their class labels
(different colors) showing current task samples (triangle), memory samples (pale circle) and retrieved memory samples for
rehearsal (bold x). For each point, we obtain the latent embedding from reduced ResNet18 (Chaudhry et al. 2019a). Note
that Random Replay (Chaudhry et al. 2019b) distributes its retrieved samples non-strategically, MIR disproportionately selects
seemingly redundant samples in a single – apparently most interfered – class (red), whereas ASER strategically retrieves
memory samples that are representative of different classes in memory but also adversarially located near class boundaries and
current task samples.

during inference, which violates our setting. Therefore in
this work, we consider the replay approach which has shown
to be successful and efficient for the online class-incremental
setting (Aljundi et al. 2019b,a). Since the memory buffer
is the only place to store data from previous tasks, a key
question for replay-based methods is how to update and re-
trieve memory samples when new data arrives? For exam-
ple, Chaudhry et al. (2019b) proposed a simple but strong
baseline that randomly updates and retrieves samples, while
the highly effective Maximally Interfered Retrieval (MIR)
method (Aljundi et al. 2019a) chooses replay samples whose
loss most increases after a current task update. However, if
we visualize the latent space of retrieved memory samples
chosen by each method in Figure 1, we see that the methods
mentioned above fail to strategically select samples that both
preserve existing memory-based class boundaries while pro-
tecting against current task samples that interfere with these
boundaries (detailed discussion in caption of Figure 1).

We address the deficiencies observed above by propos-
ing a novel replay-based method called Adversarial Shap-
ley value Experience Replay (ASER). ASER is inspired by
the Shapley value (SV) (Shapley 1953) used in cooperative
game theory to fairly distribute total gains to all players — in
our CL setting, we use the SV to determine the contribution
of memory samples to learning performance (Ghorbani and
Zou 2019; Jia et al. 2019a,b). We also introduce an adver-
sarial perspective of SV for CL memory retrieval that aims
to score memory samples according to their preservation of
decision boundaries for “friendly” samples in the memory
buffer (to maintain learning stability and avoid forgetting)
and their interference with “opponent” samples from the cur-
rent task that disrupt existing memory-based class bound-
aries (to encourage plasticity and optimal learning). Through
extensive experiments on three commonly used benchmarks
in the CL literature, we demonstrate that ASER provides
competitive or improved performance compared to state-of-
the-art replay-based methods, especially when the memory
buffer size is small.

2 Continual Learning
Problem Definition
Online Class-Incremental Learning Following the re-
cent CL literature (Aljundi et al. 2019a,b; Lee et al. 2020;
Chrysakis and Moens 2020), we consider the online su-
pervised class-incremental learning setting where a model
needs to learn new classes continually from an online data
stream (each sample is seen only once). More concretely, a
neural network classifier f : Rd 7→ RC , parameterized by
θ will receive input batches Btn of size b from taskt. Taskt
consists of classes that the classifier has never seen before in
task1:t. Moreover, we adopt the single-head evaluation setup
(Chaudhry et al. 2018) where the classifier has no access to
task identity during inference and hence must choose among
all labels. Our goal is to train the classifier f to continually
learn new classes from the data stream without forgetting.

Metrics Since the goal of CL is to continually acquire
new knowledge while preserving existing learning, we use
two standard metrics in the CL literature to measure perfor-
mance: average accuracy for overall performance and for-
getting to measure how much acquired knowledge the algo-
rithm has forgotten (Chaudhry et al. 2018, 2019b). In Aver-
age Accuracy, ai,j is the accuracy evaluated on the held-out
test set of task j after training the network from task 1 to i.
In Average Forgetting, fi,j represents how much the model
forgets about task j after being trained on task i. For T tasks:

Average Accuracy(AT) =
1

T

T∑
j=1

aT,j

Average Forgetting(FT) =
1

T − 1

T−1∑
j=1

fT,j

where fi,j = max
l∈{1,··· ,i−1}

al,j − ai,j

Experience Replay Methods

Experience Replay (ER) The research of ER and the im-
portant role of replay buffers has been well-established in the
reinforcement learning area (Rolnick et al. 2019; Foerster
et al. 2017). Recently, ER has been widely applied in super-
vised CL learning tasks (Reimer et al. 2019; Aljundi et al.
2019a,b). Compared with the simplest baseline model that
fine-tunes the parameters based on the new task without any
measures to prevent forgetting, ER makes two simple modi-
fications: (1) it stores a subset of the samples from past tasks
in a memory bufferM of limited sizeM ; (2) it concatenates
the incoming minibatch Bn with another minibatch BM of
samples selected from the memory buffer. Then, it simply
takes a SGD step with the combined batch, followed by an
online update of the memory. A generic ER algorithm is pre-
sented in Algorithm 1.

What differentiates various replay-based methods are the
MemoryRetrieval in line 3 and the MemoryUpdate in line 5.
Although there exists another stream of replay methods that
utilize a generative model to produce virtual samples instead
of using a memory buffer (Shin et al. 2017), recent research
has demonstrated the limitations of such approaches with
convolutional neural networks in datasets such as CIFAR-10
(Aljundi et al. 2019a; Lesort et al. 2018). Hence, we focus
on the memory-based approach in our work.

Basic ER is a simple but strong baseline that applies
reservoir sampling in MemoryUpdate and random sampling
in MemoryRetrieval. Despite its simplicity, recent research
has shown that naive ER outperforms many specifically de-
signed CL approaches with and without a memory buffer
(Chaudhry et al. 2019b).

Algorithm 1: Generic ER-based method
Input : Batch size b, Learning rate α
Initialize: MemoryM← {} ∗M ; Parameters θ;

Counter n← 0
1 for t ∈ {1, . . . , T} do
2 for Bn ∼ Dt do
3 BM←MemoryRetrieval(Bn,M)
4 θ ← SGD(Bn ∪BM, θ, α)
5 M←MemoryUpdate(Bn,M)
6 n← n+ b

7 return θ

Maximally-interfered Retrieval (MIR) MIR is a re-
cently proposed method aiming to improve the MemoryRe-
trieval strategy (Aljundi et al. 2019a). MIR chooses replay
samples according to loss increases given the estimated pa-
rameters update based on the newly arrived data. However,
samples with significant loss increases tend to be similar in
the latent space, which may lead to redundancy in the re-
trieved data, as shown in Figure 1. Like ER, MIR uses reser-
voir sampling for the MemoryUpdate.

Gradient-based Sample Selection (GSS) Different from
MIR, GSS pays attention to the MemoryUpdate strategy
(Aljundi et al. 2019b). Specifically, it tries to diversify the
gradients of the samples in the memory buffer. Like ER,
GSS uses random sampling in MemoryRetrieval.

3 Efficient Computation of Shapley Value via
KNN Classifier

When we return to Figure 1 and analyze the latent embed-
dings of memory samples, we observe the natural cluster-
ing effect of classes in the embedding space, which has
been well-observed previously in the deep learning litera-
ture (Min et al. 2009; Donahue et al. 2014). On account
of this, we observe that some samples may indeed be more
important than others in terms of preserving what the neu-
ral network has learned. For example, data from one class
that are near the boundary with data from another class in
some sense act as sentinels to guard the decision boundary
between classes. This suggests the following question: how
can we value data in the embedded space in terms of their
contribution to accurate classification?

Given that the embedding plot of Figure 1 suggests that a
new data point is likely to take the classification of its near-
est neighbors in the embedding space, we could rephrase
this question as asking how much each data point in memory
contributes to correct classification from the perspective of a
K-Nearest Neighbors (KNN) classifier. Fortunately, the ex-
isting research literature already provides both a precise and
efficient answer to this question viewed through the lens of
Shapley data valuation for KNN classifiers (Jia et al. 2019a;
Ghorbani and Zou 2019; Jia et al. 2019b). Before we cover
this solution, we first pause to recap the purpose of Shapley
values.

Shapley Value (SV) for Machine Learning The
SV (Shapley 1953; Roth 1988) was originally proposed in
cooperative game theory to decide the share of total gains
for each player in a coalition. The SV has a set of mathemat-
ical properties that make it appealing to many applications:
group rationality, fairness, and additivity. Conversely, it
can be shown that the SV is the only allocation scheme that
satisfies these three properties.

In the context of machine learning, the SV has been used
to estimate the individual contribution of data points to the
performance of a trained model in the context of all other
data (Ghorbani and Zou 2019; Jia et al. 2019b). Formally, let
N denote the number of data points and I = {1, . . . , N} be
the associated index set. Then, each datum is interpreted as
a player of a cooperative game with the goal of maximizing
test-time performance. Let v(S) define a utility function of
the ML model over a subset S ⊂ I on which the model
is trained. Then, the SV of a data point of index i with the
utility v(S) is the following:

s(i) =
1

N

∑
S⊆I\{i}

1(
N−1
|S|
) [v(S ∪ {i})− v(S)] (1)

Intuitively, when we consider every possible subset of data
points, s(i) measures the average marginal improvement of

utility given by the sample i. By setting the utility as test ac-
curacy in ML classification tasks, the SV can discover how
much of the test accuracy is attributed to a training instance.

Efficient KNN Shapley Value Computation Specific to
our requirements for data valuation in this paper, recent work
has developed an efficient method for SV computation in
a KNN classification framework (Jia et al. 2019a). This is
a critical innovation since the direct powerset-based com-
putation of the SV requires O(2N) evaluations for general,
bounded utility functions. Furthermore, each evaluation in-
volves training an ML model with a given subset of data
(S). This is prohibitive in most modern deep learning appli-
cations, not to mention online CL with neural networks. As
shown in (Jia et al. 2019a) and summarized below, the exact
KNN-SV can be computed in O(N logN).

Let (xev
j , y

ev
j) denote an evaluation point and Dc =

{(xi, yi)}Nc
i=1 a candidate set, where yev

j and yi are labels.
We compute the KNN-SVs of all examples in Dc w.r.t. the
evaluation point with the utility function (2). The KNN util-
ity function over a subset S ⊂ Dc measures the likelihood
of correct classifications:

vj,KNN(S) =
1

K

min(K,|S|)∑
k=1

1[yαk(S) = yev
j] (2)

where αk(S) is the index of the kth closest sample (from
xev
j) in S based on some distance metric. Each sample i is

assigned a KNN-SV — sj(i) — that represents the average
marginal contribution of the instance to the utility. Due to
the additivity of SV, we obtain the KNN-SV of a candidate
sample w.r.t. the evaluation set (De = {(xev

j , y
ev
j)}Ne

j=1) by
taking the average: savg(i) = 1/Ne

∑Ne

j=1 sj(i).
(3) and (4) show how to recursively compute the exact

KNN-SVs of samples in Dc w.r.t. (xev
j , y

ev
j) ∈ De starting

from xαNc
(the farthest point from xev

j) (Jia et al. 2019a):

sj(αNc
) =

1[yαNc
= yev

j]

Nc
(3)

sj(αm) = sj(αm+1)+

1[yαm
= yev

j]− 1[yαm+1
= yev

j]

K

min(K,m)

m
(4)

Here, sj(αm) is the KNN-SV of the mth closest candidate
sample from xev

j . Note that the dependency on the utility v is
suppressed as vKNN is always used. We refer readers to (Jia
et al. 2019a) for detailed derivation of these results.

4 Adversarial Shapley Value Experience
Replay (ASER)

We have now affirmatively answered how to value data in
the embedded space in terms of its contribution to accurate
classification by leveraging the efficient KNN-SV computa-
tion. Equipped with this powerful global data valuation al-
gorithm, we now present our novel ER method dubbed Ad-
versarial Shapley value ER (ASER) that leverages the SV
for both MemoryRetrieval and MemoryUpdate.

A key insight with our ASER approach for MemoryRe-
trieval is that we need to balance the competing needs at the
crux of CL, i.e., we need to retrieve memory samples for re-
play that prevent forgetting while also finding samples that
maximally interfere with the incoming batch Bn to ensure
plasticity in learning. This leads us not only to leverage a
cooperative notion of the SV (where higher SV is better) as
it relates to M but also an adversarial notion of the SV as
it relates to Bn (where lower – and, in fact, negative – SVs
indicate interference). In addition ASER also adopts a coop-
erative SV approach to the MemoryUpdate process.

Formally, we can view a neural network classifier (f) as
two separate parts: a feature extractor (fext : Rd 7→ Rh) and
a fully connected neural classifier (fcl : Rh 7→ RC), where
h is the dimensionality of the latent space X l. We implic-
itly define a KNN classifier and use the Euclidean distance
in X l. Then, by (3)-(4), we can compute the KNN-SVs of
candidate samples w.r.t. evaluation samples.

As previously noted, ER’s performance depends on de-
ciding what to store in memory (i.e., MemoryUpdate) and
what to replay from memory (i.e., MemoryRetrieval). One
key desiderata is that we want samples inM as well as Bn
to be well-separated by fext in the latent space. To this end,
we target two types of samples inM for retrieval: those near
the samples in Bn but have different labels (Type 1); those
that are representative of samples in the memory (Type 2).
Training with samples in Type 1 encourages the model to
learn to differentiate current classes from previously seen
classes. Samples in Type 2 help retain latent decision bound-
aries for previously observed classes.

We ground our intuition as to how samples interfere and
cluster with each other in the latent space based on two prop-
erties of the KNN-SV. Given a candidate sample i ∈ Dc and
an evaluation set De, the KNN-SV of the point i w.r.t. an
evaluation point j ∈ De, i.e. sj(i), satisfies the following
(see Appendix1 A for proof):
• Property 1. sj(i) > 0 if and only if yi = yev

j . Also,
sj(i) = 0 only when S = {i′|yi′ = yev

j , ∀i′ ∈ {i +

1, . . . , Nc}} = ∅.
• Property 2. |sj(m)| is a non-increasing function of m for
m such that ym = yev

j . Similarly, |sj(n)| is a non-increasing
function of n for n such that yn 6= yev

j . And for m ≥ K,
|sj(m)| − |sj(m′)| > 0 holds for m < m′, where m′ is the
smallest index with 1(ym = yev

j) = 1(ym′ = yev
j), if there

exists l ∈ (m,m′) such that 1(yl = yev
j) 6= 1(ym = yev

j). In
other words, as i gets closer to the evaluation point j, |sj(i)|
cannot decrease for points with the same 1(yi = yev

j), and
for i ≥ K, it can only increase when there exist more than
one differently labeled points.

The first property states that a candidate sample i has a
positive KNN-SV if it has the same label as the evaluation
point being considered (cooperative); the sample will have a
negative KNN-SV if its label is different than the evaluation
point (adversarial). By combining both properties, we note:

1 Please find the appendix in our extended version on arXiv.
Link: https://arxiv.org/abs/2009.00093

If sj(i) is large, the candidate i is close to the eval-
uation point j in the latent space (X l) and has the
same label (yi = yev

j). On the other hand, if sj(i) is
a negative value of large magnitude, then i is close
to j, yet has a different label (yi 6= yev

j). Thus, we
conjecture that a good data candidate i has high
positive SV for memory M and negative SV with
large magnitude for the current input task Bn.

When we consider the whole evaluation set, we take the
mean sDe

(i) = 1/|De| ·
∑
j∈De

sj(i), and the above analysis
still holds in average. Therefore, by examining the KNN-
SVs of candidate samples, we can get a sense of how they
are distributed with respect to the evaluation set inX l. Then,
we define the adversarial SV (ASV) that encodes the Type
1 & 2 criteria

ASV(i) = max
j∈Ssub

sj(i)− min
k∈Bn

sk(i), (5)

as well as a “softer” mean variation ASVµ

ASVµ(i) =
1

|Ssub|
∑
j∈Ssub

sj(i)−
1

b

∑
k∈Bn

sk(i), (6)

where i ∈ M \ Ssub and Ssub is constructed by subsam-
pling some number of examples fromM such that it is bal-
anced in terms of the number of examples from each class.
This prevents us from omitting any latent decision bound-
aries of classes in the memory. Note that Ssub is used as
the evaluation set in the first term, whereas the input batch
Bn forms the evaluation set in the latter term. The candidate
set is M̄ = M \ Ssub, and we retrieve samples of size bM
from the set that have the highest ASVs (Algorithm 2). We
denote our ER method using the score ASV (5) as ASER,
while ASERµ uses ASVµ (6) instead. For computational ef-
ficiency, we randomly subsample Nc candidates from M̄.

Algorithm 2: ASER MemoryRetrieval
Input : Memory batch size bM

Input batch Bn; Candidate size Nc;
Subsample size Nsub;
Feature extractor fext

1 Ssub
Nsub∼ M // get evaluation set

2 Dc
Nc∼ M\ Ssub // get candidate set

/* get latent embeddings */
3 LBn , LSsub , LDc ← fext(Bn), fext(Ssub), fext(Dc)
4 for i ∈ Dc do
5 for j ∈ Ssub do
6 sj(i)← KNN-SV(LDc , LSsub) as per (3), (4)

7 for k ∈ Bn do
8 sk(i)← KNN-SV(LDc , LBn) as per (3), (4)

9 score(i)← ASV(i) as per (5) or (6)

10 BM ← bM samples with largest score(·)
11 return BM

Note that both ASER methods do not greedily retrieve
samples with the smallest distances to either Ssub or Bn.

This is because for a single evaluation point j, sj(αm) =
sj(αm+1) when yαm = yαm+1 . So, a few points can have
the same score even if some of them are farther from the
evaluation point. This is in contrast to a pure distance-based
score where the closest point gets the highest score. In
Appendix1 B, we show that our method outperforms pure
distance-based methods, proving the effectiveness of the
global way in which the SV scores candidate data based on
the KNN perspective.

We summarize our method in Algorithm 2, and compare
it with other state-of-the-art ER methods on multiple chal-
lenging CL benchmarks in Section 5.

Memory Update Based on KNN-SV For MemoryUp-
date, we find that samples with high KNN-SV promote clus-
tering effect in the latent space. Therefore, they are useful to
store in the memory, which aligns with the original meaning
of the SV. More concretely, we subsample Ssub ∼ M and
compute 1/|Ssub|

∑
j∈Ssub

sj(i) for i ∈ M̄∪Bn. Then, we re-
place samples in M̄ having smaller average KNN-SVs than
samples in Bn with the input batch samples.

We use KNN-SV MemoryUpdate for ASER through-
out experiments in Section 5, while the ablation analysis
of different variations with random MemoryUpdate or ran-
dom MemoryRetrieval (both random retrieval and update re-
duces to ER) is presented in Appendix1 C. Note that ASER
with KNN-SV MemoryUpdate performs competitively or
better than the variations, underscoring the importance of
SV-based methods for both MemoryUpdate and MemoryRe-
trieval.

5 Experiments
To test the efficacy of ASER and its variant ASERµ, we
evaluate their performance by comparing them with sev-
eral state-of-the-art CL baselines. We begin by reviewing the
benchmark datasets, baselines we compared against and our
experiment setting. We then report and analyze the result to
validate our approach.

Datasets
Split CIFAR-10 splits the CIFAR-10 dataset (Krizhevsky
2009) into 5 different tasks with non-overlapping classes and
2 classes in each task, similarly as in (Aljundi et al. 2019a).
Split CIFAR-100 is constructed by splitting the CIFAR-100
dataset (Krizhevsky 2009) into 10 disjoint tasks, and each
task has 10 classes.
Split miniImagenet consists of splitting the miniImageNet
dataset (Vinyals et al. 2016) into 10 disjoint tasks, where
each task contains 10 classes

The detail of datasets, including the general information
of each dataset, class composition and the number of sam-
ples in training, validation and test sets of each task is pre-
sented in Appendix1 D.

Baselines
We compare our proposed ASER against several state-of-
the-art continual learning algorithms:

Method M=1k M=2k M=5k M=1k M=2k M=5k M=0.2k M=0.5k M=1k

iid online 14.7± 0.6 14.7± 0.6 14.7± 0.6 20.5± 0.4 20.5± 0.4 20.5± 0.4 62.9± 1.5 62.9± 1.5 62.9± 1.5
iid offline 42.4± 0.4 42.4± 0.4 42.4± 0.4 47.4± 0.3 47.4± 0.3 47.4± 0.3 79.7± 0.4 79.7± 0.4 79.7± 0.4

AGEM 7.0± 0.4 7.1± 0.5 6.9± 0.7 9.5± 0.4 9.3± 0.4 9.7± 0.3 22.7± 1.8 22.7± 1.9 22.6± 0.7
ER 8.7± 0.4 11.8± 0.9 16.5± 0.9 11.2± 0.4 14.6± 0.4 20.1± 0.8 26.4± 1.0 32.2± 1.4 38.4± 1.7

EWC 3.1± 0.3 3.1± 0.3 3.1± 0.3 4.8± 0.2 4.8± 0.2 4.8± 0.2 17.9± 0.3 17.9± 0.3 17.9± 0.3
fine-tune 4.3± 0.2 4.3± 0.2 4.3± 0.2 5.9± 0.2 5.9± 0.2 5.9± 0.2 17.9± 0.4 17.9± 0.4 17.9± 0.4

GSS 7.5± 0.5 10.7± 0.8 12.5± 0.4 9.3± 0.2 10.9± 0.3 15.9± 0.4 26.9± 1.2 30.7± 1.2 40.1± 1.4
MIR 8.1± 0.3 11.2± 0.7 15.9± 1.6 11.2± 0.3 14.1± 0.2 21.2± 0.6 28.3± 1.6 35.6± 1.2 42.4± 1.5

ASER 11.7± 0.7 14.4± 0.4 18.2± 0.7 12.3± 0.4 14.7± 0.7 20.0± 0.6 27.8± 1.0 36.2± 1.1 43.1± 1.2
ASERµ 12.2± 0.8 14.8± 1.1 18.2± 1.1 14.0± 0.4 17.2± 0.5 21.7± 0.5 26.4± 1.5 36.3± 1.2 43.5± 1.4

(a) Mini-ImageNet (b) CIFAR-100 (c) CIFAR-10

Table 1: Average Accuracy (higher is better), M is the memory buffer size. All numbers are the average of 15 runs. ASERµ has
better performance when M is small and dataset is more complex.2

• AGEM (Chaudhry et al. 2019a): Averaged Gradient
Episodic Memory, a memory-based method that utilizes
the samples in the memory buffer to constrain the param-
eter updates.

• ASER & ASERµ: Our proposed methods. ASER scores
samples in the memory with ASV in (5). ASERµ uses the
mean variation ASVµ in (6).

• ER (Chaudhry et al. 2019b): Experience replay, a recent
and successful rehearsal method with random sampling in
MemoryRetrieval and reservoir sampling in MemoryUp-
date.

• EWC (Kirkpatrick et al. 2017): Elastic Weight Consoli-
dation, a prior-focused method that limits the update of
parameters that were important to the past tasks, as mea-
sured by the Fisher information matrix.

• GSS (Aljundi et al. 2019b): Gradient-Based Sample Se-
lection, a MemoryUpdate method that diversifies the gra-
dients of the samples in the replay memory.

• MIR (Aljundi et al. 2019a): Maximally Interfered Re-
trieval, a MemoryRetrieval method that retrieves memory
samples that suffer from an increase in loss given the es-
timated parameters update based on the current task.

• iid-online & iid-offline: iid-online trains the model with
a single-pass through the same set of data, but each mini-
batch is sampled iid from the training set. iid-offline trains
the model over multiple epochs on the dataset with iid
sampled mini-batch. We use 5 epochs for iid-offline in all
the experiments as in (Aljundi et al. 2019a,b).

• fine-tune: As an important baseline in previous work
(Aljundi et al. 2019a,b; Lee et al. 2020), it simply trains
the model in the order the data is presented without any
specific method for forgetting avoidance.

Experiment Setting
Single-head Evaluation Most of the previous work in CL
applied multi-head evaluation (Chaudhry et al. 2018) where

2The discrepancy of CIFAR-10 result for MIR between the
original paper and this work is discussed in Appendix1 F

a distinct output head is assigned for each task and the model
utilizes the task identity to choose the corresponding output
head during test time. But in many realistic scenarios, task
identity is not available during test time, so the model should
be able to classify labels from different tasks. As in (Aljundi
et al. 2019a,b), we adopt the single-head evaluation setup
where the model has one output head for all tasks and is
required to classify all labels. Note that the setting we use –
online and single-head evaluation – is more challenging than
many other reported CL settings.

Model We use a reduced ResNet18, similar to (Chaudhry
et al. 2019b; Lopez-Paz and Ranzato 2017), as the base
model for all datasets, and the network is trained via cross-
entropy loss with SGD optimizer and mini-batch size of 10.
The size of the mini-batch retrieved from memory is also set
to 10 irrespective of the size of the memory. More details of
the experiment can be found in Appendix1E.

Comparative Performance Evaluation
Table 1 and Table 2 show the average accuracy and average
forgetting by the end of the data stream for Mini-ImageNet,
CIFAR-100 and CIFAR-10. Based on the performance of
iid-online and iid-offline, we verify that Mini-ImageNet and
CIFAR-100 are more complex than CIFAR-10, even though
three datasets have the same number of samples. Overall,
ASER and ASERµ show competitive or improved perfor-
mance in three standard CL datasets. Especially, we observe
that ASERµ outperforms all the state-of-the-art baselines by
significant margins in a more difficult setting where mem-
ory size is small and dataset is complex. Since the diffi-
culty of the three datasets is different, comparing the ab-
solute accuracy improvement may not be fair. Therefore,
percentage improvement3 is more appropriate here. Tak-
ing Mini-ImageNet as an example, ASERµ improves the
strongest baseline by 40.2% (M=1k), 25.4% (M=2k) and

3Percentage improvement is the ratio between absolute im-
provement and baseline performance. For example, in Mini-
ImageNet(M=1k), ASERµ improves MIR by 12.2−8.7

8.7
= 40.2%

Method M=1k M=2k M=5k M=1k M=2k M=5k M=0.2k M=0.5k M=1k

AGEM 29.3± 0.9 30.0± 0.9 29.9± 0.8 40.4± 0.7 39.7± 0.8 39.8± 1.0 36.1± 3.8 43.2± 4.2 48.1± 3.0
ER 29.7± 1.3 29.2± 0.9 26.6± 1.1 45.0± 0.5 40.5± 0.8 34.5± 0.8 72.8± 1.7 63.1± 2.4 55.8± 2.6

EWC 28.1± 0.8 28.1± 0.8 28.1± 0.8 39.1± 1.2 39.1± 1.2 39.1± 1.2 81.5± 1.4 81.5± 1.4 81.5± 1.4
fine-tune 35.6± 0.9 35.6± 0.9 35.6± 0.9 50.4± 1.0 50.4± 1.0 50.4± 1.0 81.7± 0.7 81.7± 0.7 81.7± 0.7

GSS 29.6± 1.2 27.4± 1.1 29.9± 1.2 46.9± 0.7 42.3± 0.8 39.2± 0.9 75.5± 1.5 65.9± 1.6 54.9± 2.0
MIR 29.7± 1.0 27.2± 1.1 26.2± 1.4 45.5± 0.8 40.4± 0.6 31.4± 0.6 67.0± 2.6 68.9± 1.7 47.7± 2.9

ASER 30.1± 1.3 24.7± 1.0 20.9± 1.2 50.1± 0.6 45.9± 0.9 36.7± 0.8 71.1± 1.8 59.1± 1.5 50.4± 1.5
ASERµ 28.0± 1.3 22.2± 1.6 17.2± 1.4 45.0± 0.7 38.6± 0.6 30.3± 0.5 72.4± 1.9 58.8± 1.4 47.9± 1.6

(a) Mini-ImageNet (b) CIFAR-100 (c) CIFAR-10

Table 2: Average Forgetting (lower is better). Memory buffer size is M. All numbers are the average of 15 runs.

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 10
Task Number

0.05
0.10
0.15
0.20
0.25
0.30
0.35

Av
er

ag
e

ac
cu

ra
cy

ASERµ
ER
fine-tuning
MIR
GSS
EWC
AGEM

(a) Mini-ImageNet

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 10
Task Number

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

Av
er

ag
e

ac
cu

ra
cy

(b) CIFAR-100

Figure 2: Average accuracy on observed tasks when M=1k. The shaded region represents the 95% confidence interval. ASERµ
outperforms other baselines especially when the model sees more classes (each task contains new classes).

10.3% (M=5k) in terms of percentage improvement. More-
over, as we can see in Figure 2, ASERµ is consistently bet-
ter than other baselines in both datasets. We also note that
ASERµ generally performs better than ASER. This is be-
cause if we use the ASV criterion as in (5), it has a higher
chance that the value is affected by an outlier point in the
evaluation set. So the ASVµ in (6) gives a more stable and
accurate value in complicated datasets.

Another interesting observation is that ER has very com-
petitive performances. Especially in more complex datasets,
it surpasses GSS and performs similarly as MIR, which
proves it to be a simple but powerful CL baseline. In ad-
dition, we find that for complex datasets, when memory
size is larger than 5000 (10% of the training data), most
of the replay-based methods (except for GSS) outperform
the iid-online, a baseline that trains the model with a one-
pass through the data but with iid-sampled mini-batch from
the whole dataset. This means that storing a small number
of training samples is crucial for combating forgetting as
well as the learning of the current task in the online class-
incremental setting.

We also verify claims from previous work (Lesort, Stoian,
and Filliat 2019; Farquhar and Gal 2018; Aljundi et al.
2019a). EWC, a regularization-based method, not only is
surpassed by all memory-based methods but also under-
performs the fine-tuning baseline. Additionally, AGEM, a
method that uses memory samples to constrain parameter

updates, delivers worse performance compared with reply-
based methods (ER, MIR, and GSS), especially when mem-
ory size increases.

Overall, by evaluating on three standard CL datasets
and comparing to the state-of-the-art CL methods, we have
shown the effectiveness of ASER and its variant ASERµ in
overcoming catastrophic forgetting, especially in more com-
plex datasets and memory size is relatively small.

6 Conclusion
In this work, we proposed a novel ASER method that scores
memory data samples according to their ability to preserve
latent decision boundaries for previously observed classes
while interfering with latent decision boundaries of cur-
rent classes being learned. Overall, in the online class-
incremental setting, we observed that ASER and its ASERµ
variant provide competitive or improved performance on a
variety of datasets compared to state-of-the-art ER-based
continual learning methods. We also remark that this work
paves the way for a number of interesting research direc-
tions building on this work. Although our SV-based method
has greatly improved the memory retrieval and update strate-
gies, we may be able to do better than simply concatenating
retrieved samples with the incoming batch. Hence, future
work could focus on more sophisticated methods to utilize
the retrieved samples. It would also be interesting to investi-
gate alternate CL-specific utility function variations for SV.

Acknowledgement
This research was supported by LG AI Research.

References
Aljundi, R.; Babiloni, F.; Elhoseiny, M.; Rohrbach, M.; and Tuyte-
laars, T. 2018. Memory aware synapses: Learning what (not) to
forget. In Proceedings of the European Conference on Computer
Vision (ECCV), 139–154.

Aljundi, R.; Belilovsky, E.; Tuytelaars, T.; Charlin, L.; Caccia, M.;
Lin, M.; and Page-Caccia, L. 2019a. Online Continual Learning
with Maximal Interfered Retrieval. In Advances in Neural Infor-
mation Processing Systems 32, 11849–11860.

Aljundi, R.; Lin, M.; Goujaud, B.; and Bengio, Y. 2019b. Gradient
based sample selection for online continual learning. In Advances
in Neural Information Processing Systems 32, 11816–11825.

Chaudhry, A.; Dokania, P. K.; Ajanthan, T.; and Torr, P. H. 2018.
Riemannian walk for incremental learning: Understanding forget-
ting and intransigence. In Proceedings of the European Conference
on Computer Vision (ECCV), 532–547.

Chaudhry, A.; Ranzato, M.; Rohrbach, M.; and Elhoseiny, M.
2019a. Efficient Lifelong Learning with A-GEM. In International
Conference on Learning Representations.

Chaudhry, A.; Rohrbach, M.; Elhoseiny, M.; Ajanthan, T.; Doka-
nia, P. K.; Torr, P. H. S.; and Ranzato, M. 2019b. On Tiny Episodic
Memories in Continual Learning.

Chrysakis, A.; and Moens, M.-F. 2020. Online Continual Learn-
ing from Imbalanced Data. Proceedings of Machine Learning and
Systems 8303–8312.

De Lange, M.; Aljundi, R.; Masana, M.; Parisot, S.; Jia, X.;
Leonardis, A.; Slabaugh, G.; and Tuytelaars, T. 2019. Continual
learning: A comparative study on how to defy forgetting in classi-
fication tasks. arXiv preprint arXiv:1909.08383 .

Donahue, J.; Jia, Y.; Vinyals, O.; Hoffman, J.; Zhang, N.; Tzeng,
E.; and Darrell, T. 2014. DeCAF: A Deep Convolutional Activation
Feature for Generic Visual Recognition. In Proceedings of the 31st
International Conference on International Conference on Machine
Learning - Volume 32, ICML’14, I–647–I–655. JMLR.org.

Farquhar, S.; and Gal, Y. 2018. Towards Robust Evaluations of
Continual Learning.

Foerster, J.; Nardelli, N.; Farquhar, G.; Afouras, T.; Torr, P. H.;
Kohli, P.; and Whiteson, S. 2017. Stabilising experience replay
for deep multi-agent reinforcement learning. In Proceedings of the
34th International Conference on Machine Learning-Volume 70,
1146–1155. JMLR. org.

Ghorbani, A.; and Zou, J. 2019. Data Shapley: Equitable Valuation
of Data for Machine Learning. In Proceedings of the 36th Interna-
tional Conference on Machine Learning, volume 97 of Proceedings
of Machine Learning Research, 2242–2251. PMLR.

Jia, R.; Dao, D.; Wang, B.; Hubis, F. A.; Gurel, N. M.; Li, B.;
Zhang, C.; Spanos, C.; and Song, D. 2019a. Efficient Task-Specific
Data Valuation for Nearest Neighbor Algorithms. Proc. VLDB
Endow. 12(11): 1610–1623. ISSN 2150-8097. doi:10.14778/
3342263.3342637.

Jia, R.; Dao, D.; Wang, B.; Hubis, F. A.; Hynes, N.; Gürel, N. M.;
Li, B.; Zhang, C.; Song, D.; and Spanos, C. J. 2019b. Towards
Efficient Data Valuation Based on the Shapley Value. In Proceed-
ings of Machine Learning Research, volume 89 of Proceedings of
Machine Learning Research, 1167–1176. PMLR.

Kirkpatrick, J.; Pascanu, R.; Rabinowitz, N.; Veness, J.; Desjardins,
G.; Rusu, A. A.; Milan, K.; Quan, J.; Ramalho, T.; Grabska-
Barwinska, A.; et al. 2017. Overcoming catastrophic forgetting in
neural networks. Proceedings of the National Academy of Sciences
of the United States of America 114 13: 3521–3526.
Krizhevsky, A. 2009. Learning Multiple Layers of Features from
Tiny Images. Technical report, University of Toronto.
Lee, S.; Ha, J.; Zhang, D.; and Kim, G. 2020. A Neural Dirich-
let Process Mixture Model for Task-Free Continual Learning. In
International Conference on Learning Representations.
Lesort, T.; Caselles-Dupré, H.; Ortiz, M. G.; Stoian, A.; and Filliat,
D. 2018. Generative Models from the perspective of Continual
Learning.
Lesort, T.; Stoian, A.; and Filliat, D. 2019. Regularization Short-
comings for Continual Learning. arXiv preprint 1912.03049 .
Li, Z.; and Hoiem, D. 2016. Learning Without Forgetting. In
ECCV, 614–629. Springer.
Lopez-Paz, D.; and Ranzato, M. A. 2017. Gradient Episodic Mem-
ory for Continual Learning. In Advances in Neural Information
Processing Systems 30, 6467–6476.
Mallya, A.; and Lazebnik, S. 2018. Packnet: Adding multiple tasks
to a single network by iterative pruning. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 7765–
7773.
McCloskey, M.; and Cohen, N. J. 1989. Catastrophic interference
in connectionist networks: The sequential learning problem. In
Psychology of learning and motivation, volume 24, 109–165. El-
sevier.
Min, R.; Stanley, D. A.; Yuan, Z.; Bonner, A.; and Zhang, Z.
2009. A Deep Non-Linear Feature Mapping for Large-Margin
KNN Classification. In Proceedings of the 2009 Ninth IEEE Inter-
national Conference on Data Mining, ICDM ’09, 357–366. IEEE
Computer Society. doi:10.1109/ICDM.2009.27.
Parisi, G. I.; Kemker, R.; Part, J. L.; Kanan, C.; and Wermter, S.
2019. Continual lifelong learning with neural networks: A review.
Neural Networks 113: 54 – 71.
Rannen, A.; Aljundi, R.; Blaschko, M. B.; and Tuytelaars, T. 2017.
Encoder based lifelong learning. In Proceedings of the IEEE Inter-
national Conference on Computer Vision, 1320–1328.
Rebuffi, S.-A.; Kolesnikov, A.; Sperl, G.; and Lampert, C. H. 2017.
icarl: Incremental classifier and representation learning. In Pro-
ceedings of the IEEE conference on Computer Vision and Pattern
Recognition, 2001–2010.
Reimer, M.; Cases, I.; Ajemian, R.; Liu, M.; Rish, I.; Tu, Y.; and
Tesauro, G. 2019. Learning to Learn without Forgetting vy Maxi-
mizing Transfer and Minimizing Interference. In ICLR.
Ritter, H.; Botev, A.; and Barber, D. 2018. Online structured
laplace approximations for overcoming catastrophic forgetting. In
Advances in Neural Information Processing Systems, 3738–3748.
Rolnick, D.; Ahuja, A.; Schwarz, J.; Lillicrap, T.; and Wayne, G.
2019. Experience replay for continual learning. In Advances in
Neural Information Processing Systems, 348–358.
Roth, A. E. 1988. The Shapley value: essays in honor of Lloyd S.
Shapley. Cambridge University Press.
Shapley, L. S. 1953. A value for n-person games. Contributions to
the Theory of Games 2(28): 307–317.
Shin, H.; Lee, J. K.; Kim, J.; and Kim, J. 2017. Continual learning
with deep generative replay. In Advances in Neural Information
Processing Systems, 2990–2999.

van der Maaten, L.; and Hinton, G. 2008. Visualizing Data using
t-SNE. Journal of Machine Learning Research 9: 2579–2605.

Vinyals, O.; Blundell, C.; Lillicrap, T.; kavukcuoglu, k.; and Wier-
stra, D. 2016. Matching Networks for One Shot Learning. In Ad-
vances in Neural Information Processing Systems 29, 3630–3638.
Curran Associates, Inc.

Wu, Y.; Chen, Y.; Wang, L.; Ye, Y.; Liu, Z.; Guo, Y.; and Fu, Y.
2019. Large scale incremental learning. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition,
374–382.

Yoon, J.; Yang, E.; Lee, J.; and Hwang, S. J. 2018. Lifelong Learn-
ing with Dynamically Expandable Networks. In International Con-
ference on Learning Representations.

Zenke, F.; Poole, B.; and Ganguli, S. 2017. Continual learning
through synaptic intelligence. In Proceedings of the 34th Interna-
tional Conference on Machine Learning-Volume 70, 3987–3995.
JMLR. org.

Appendix

A Properties of KNN Shapley Value
We prove the properties of KNN-SV presented in Section 4.
Given a candidate sample i = (xi, yi) ∈ Dc and an evalu-
ation point j = (xev

j , y
ev
j), where Dc is a candidate set with

|Dc| = Nc, we denote the KNN-SV of the point i w.r.t.
the evaluation point j as sj(i). For notational convenience,
we assume that points in Dc are sorted based on distances
from the evaluation point in ascending order. In other words,
d(i, j) ≤ d(i′, j) ∀i < i′ where d(i, j) is the distance be-
tween xi and xev

j .

Property 1. sj(i) > 0 if and only if yi = yev
j . Also, sj(i) =

0 only when S = {i′|yi′ = yev
j , ∀i′ ∈ {i+1, . . . , Nc}} = ∅.

Proof. Firstly, we prove sj(i) > 0 if and only if yi = yev
j

along with another statement, |sj(i)| < 1
i−1 . The proof is by

induction, starting from the base case when i = Nc. When
i = Nc, sj(Nc) =

1(yNc=y
ev
j)

Nc
as per (3). Hence, sj(Nc) > 0

holds iff yNc = yev
j . Additionally, we see that |sj(Nc)| ≤

1
Nc

< 1
Nc−1 . We can also verify the case for i = Nc − 1

using (4):

sj(Nc − 1) =

1
Nc

> 0 if yNc−1 = yNc = yev
j

1
Nc−1

> 0 if yNc−1 = yev
j 6= yNc

1
Nc
− 1

Nc−1
< 0 if yNc−1 6= yev

j and
yNc = yev

j

0 if yNc−1 6= yev
j and

yNc 6= yev
j

(A.1)

So, we again note that sj(Nc − 1) > 0 iff yNc−1 = yev
j , and

|sj(Nc − 1)| ≤ 1
Nc−1 <

1
Nc−2 holds.

Now, assume for i = m ≥ K+1, sj(m) > 0 iff ym = yev
j

and |sj(m)| < 1
m−1 . Then, for i = m− 1 ≥ K,

sj(m− 1) = sj(m) +
1(ym−1 = yev

j)− 1(ym = yev
j)

m− 1

=

sj(m) > 0 if ym−1 = ym = yev
j ,

sj(m) + 1
m−1

> 0 if ym−1 = yev
j 6= ym,

sj(m)− 1
m−1

< 0 if ym−1 6= yev
j and

ym = yev
j ,

sj(m) ≤ 0 if ym−1 6= yev
j and

ym 6= yev
j

(A.2)

Note that the second and the third cases in (A.2) hold be-
cause |sj(m)| < 1

m−1 by assumption. Additionally, it is
straightforward to check that |sj(m − 1)| < 1

m−2 holds
for all cases. Hence, we have shown the statement holds for
m ≥ K.

For m < K, we firstly note that |sj(K)| ≤ 1/K be-
cause |sj(K + 1)| < 1/K and sj(K) = sj(K + 1) +
1(yK=yev

j)−1(yK+1=y
ev
j)

K . Then, we see that the increment and
the decrement, if any, are always 1

K for m < K. Therefore,
sj(m) > 0 iff ym = yev

j . Furthermore, we have noted that
the sign of sj(i) has to change iff 1(yi = yev

j) 6= 1(yi+1 =

yev
j) because |sj(i + 1)| < 1/i. This implies sj(i) = 0 only

when S = {i′|yi′ = yev
j , ∀i′ ∈ {i + 1, . . . , Nc}} = ∅, and

we conclude the proof.

Property 2. |sj(m)| is a non-increasing function of m for
m such that ym = yev

j . Similarly, |sj(n)| is a non-increasing
function of n for n such that yn 6= yev

j . And for m ≥ K,
|sj(m)| − |sj(m′)| > 0 holds for m < m′, where m′ is the
smallest index with 1(ym = yev

j) = 1(ym′ = yev
j), if there

exists l ∈ (m,m′) such that 1(yl = yev
j) 6= 1(ym = yev

j). In
other words, as i gets closer to the evaluation point j, |sj(i)|
cannot decrease for points with the same 1(yi = yev

j), and
for i ≥ K, it can only increase when there exist more than
one differently labeled points.

Proof. We only show for m such that ym = yev
j as it can

be similarly done for n with yn 6= yev
j . If yl = yev

j ∀l ∈
(m,m′], then it trivially holds that sj(m) = sj(m

′). Now,
assume that there exists one l ∈ (m,m′) such that yl 6= yev

j

and that l = m+1. Then, we see that |sj(m)|−|sj(m′)| > 0
holds. This is because

sj(m) = sj(m+ 1) +
1(ym = yev

j)− 1(ym+1 = yev
j)

m

= sj(m+ 2) +
1(ym+1 = yev

j)− 1(ym+2 = yev
j)

m+ 1
+

1

m

= sj(m+ 2)− 1

m+ 1
+

1

m

= sj(m+ 2) +
(1
m
− 1

m+ 1

)
> sj(m+ 2) = sj(m

′), ∀m′ ≥ m+ 2 (A.3)

Then, we note that sj(m′′) = sj(m) for all m′′ ∈ (i,m]
where i < m is the largest index with yi 6= yev

j (if exists) or
i = 0. This shows that |sj(m)| > |sj(m′)| holds for m <

m′ if there is a single l ∈ (m,m′) with yl 6= yev
j . When there

are multiple (possibly consecutive) points with yl 6= yev
j , we

can always select m̂ ≥ m such that there is only a single
point (or several consecutive points) l with yl 6= yev

j , leading
to |sj(m̂)| > |sj(m′)|. By applying this multiple times, we
get |sj(m)| > sj(m

′)|.

B Detailed Performance Evaluation
Following the definition of ASV and ASVµ, we can replace
the Shapley value with distance (we use Euclidean as exam-
ple) in (5) and (6). Specifically, we want to retrieve a point i
such that its distances from samples of the same label inM
and its distances from input batch samples are both small.
Concretely, the score for a candidate point i is defined as
follows:

Dist(i) = −
[

min
j∈Ssub(i)

d(i, j) + min
k∈Bn

d(i, k)
]
, (B.1)

as well as a “softer” mean variation Distµ

Distµ(i) = −
[

1

|Ssub(i)|
∑

j∈Ssub(i)

d(i, j) +
1

b

∑
k∈Bn

d(i, k)

]
.

(B.2)

Here, i ∈ M \ Ssub and Ssub is defined as in Section 4 and
Ssub(i) = {i′|i′ ∈ Ssub & yi′ = yi}. d(i, j) is the Eu-
clidean distance between the candidate point i and an evalu-
ation point j in the latent space. Finally, we simply replace
the score in Algorithm 2 (line 9) with either one of the above
scores.

Detailed Result Tables
In addition to the algorithms listed in Section 5, in Table A.1
and Table A.2, we include more baselines for comparison:

• AGEM (Chaudhry et al. 2019a): Averaged Gradient
Episodic Memory, a memory-based method that utilizes
the samples in the memory buffer to constrain the param-
eter updates.

• ASER & ASERµ: Our proposed methods. ASER scores
samples in the memory with ASV in (5). ASERµ uses the
mean variation ASVµ in (6).

• Dist & Distµ: The Euclidean variants of ASER & ASERµ
that replace Shapley value with Euclidean distance, as de-
scribed above.

• ER (Chaudhry et al. 2019b): Experience replay, a recent
and successful rehearsal method with random sampling in
MemoryRetrieval and reservoir sampling in MemoryUp-
date.

• EWC (Kirkpatrick et al. 2017): Elastic Weight Consoli-
dation, a prior-focused method that limits the update of
parameters that were important to the past tasks, as mea-
sured by the Fisher information matrix.

• GSS (Aljundi et al. 2019b): Gradient-Based Sample Se-
lection, a MemoryUpdate method that diversifies the gra-
dients of the samples in the replay memory.

• MIR (Aljundi et al. 2019a): Maximally Interfered Re-
trieval, a MemoryRetrieval method that retrieves memory
samples that suffer from an increase in loss given the es-
timated parameters update based on the current task.

• iid-online & iid-offline: iid-online trains the model with
a single-pass through the same set of data, but each mini-
batch is sampled iid from the training set. iid-offline trains
the model over multiple epochs on the dataset with iid
sampled mini-batch. We use 5 epochs for iid-offline in all
the experiments as in (Aljundi et al. 2019a,b).

• fine-tune: As an important baseline in previous work
(Aljundi et al. 2019a,b; Lee et al. 2020), it simply trains
the model in the order the data is presented without any
specific method for forgetting avoidance.

Average Accuracy and Forgetting As we can see from
Table A.1 and Table A.2, ASER and ASERµ outperform
Dist and Distµ. The reason may be that both ASER meth-
ods do not greedily retrieve samples with the smallest dis-
tances to either Ssub (sub-sample fromM) or Bn(incoming
mini-batch). This is because for a single evaluation point j,
sj(αm) = sj(αm+1) when yαm

= yαm+1
. So, a few points

can have the same score even if some of them are farther
from the evaluation point.

We also verify some claims from previous work (Lesort,
Stoian, and Filliat 2019; Farquhar and Gal 2018; Aljundi
et al. 2019a). EWC, a prior-focused method, not only is
surpassed by all memory-based methods but also under-
performs the fine-tuning baseline. Additionally, AGEM, a
method that uses memory samples to constrain parameter
updates, delivers worse performance compared with reply-
based methods (ER, MIR, and GSS), especially when mem-
ory size increases.

Training Time EWC, ER and AGEM have similar train-
ing time and their training times are almost twice as the
finetune baseline. Since MIR, GSS and our proposed ASER
need to perform additional calculation during MemoryRe-
trieval and MemoryUpdate, the training times are longer
than the methods mentioned above. ASER takes longer than
MIR because MIR only has additional computation in Mem-
oryRetrieval but ASER carefully selects samples in both
MemoryRetrieval and MemoryUpdate. Compared with GSS,
ASER is more computationally efficient. Figure.B.1

C Ablation Studies
In ASER & ASERµ, we use ASV and ASVµ for scoring
samples for MemoryRetrieval, while KNN-SV is used for
scoring samples for MemoryUpdate. In this part, we ex-
amine several ablations to understand contributions of each
component in ASER methods. In addition to ASER, ASERµ
and ER as in Section 5, we compare 3 more variations:

• SV-upd: Use KNN-SV MemoryUpdate as described in
Section 4 while randomly retrieving samples from the
memory for replay.

• ASV-ret: Use (5) scoring function for MemoryRetrieval
while using reservoir sampling for MemoryUpdate.

Method M=1k M=2k M=5k

iid online 14.7± 0.6 14.7± 0.6 14.7± 0.6
iid offline 42.4± 0.4 42.4± 0.4 42.4± 0.4

AGEM 7.0± 0.4 7.1± 0.5 6.9± 0.7
ER 8.7± 0.4 11.8± 0.9 16.5± 0.9

EWC 3.1± 0.3 3.1± 0.3 3.1± 0.3
fine-tune 4.3± 0.2 4.3± 0.2 4.3± 0.2

GSS 7.5± 0.5 10.7± 0.8 12.5± 0.4
MIR 8.1± 0.3 11.2± 0.7 15.9± 1.6

ASER 11.7± 0.8 14.4± 0.4 18.2± 0.7
ASERµ 12.2± 0.8 14.8± 1.1 18.2± 1.1

Dist 7.9± 0.5 10.4± 0.7 15.5± 0.9
Distµ 8.1± 0.5 9.1± 0.7 14.9± 0.9

(a) Mini-ImageNet

M=1k M=2k M=5k

20.5± 0.4 20.5± 0.4 20.5± 0.4
47.4± 0.3 47.4± 0.3 47.4± 0.3

9.5± 0.4 9.3± 0.4 9.7± 0.3
11.2± 0.4 14.6± 0.4 20.1± 0.8
4.8± 0.2 4.8± 0.2 4.8± 0.2
5.9± 0.2 5.9± 0.2 5.9± 0.2
9.3± 0.2 10.9± 0.3 15.9± 0.4
11.2± 0.3 14.1± 0.2 21.2± 0.6

12.3± 0.4 14.7± 0.7 20.0± 0.6
14.0± 0.4 17.2± 0.5 21.7± 0.5
10.3± .3 12.4± 0.5 16.7± 0.6
10.5± 0.2 13.4± 0.4 17.2± 0.8

(b) CIFAR-100

M=0.2k M=0.5k M=1k

62.9± 1.5 62.9± 1.5 62.9± 1.5
79.7± 0.4 79.7± 0.4 79.7± 0.4

22.7± 1.8 22.7± 1.9 22.6± 0.7
26.4± 1.0 32.2± 1.4 38.4± 1.7
17.9± 0.3 17.9± 0.3 17.9± 0.3
17.9± 0.4 17.9± 0.4 17.9± 0.4
26.9± 1.2 30.7± 1.2 40.1± 1.4
28.3± 1.6 35.6± 1.2 42.4± 1.5

27.8± 1.0 36.2± 1.1 43.1± 1.2
26.4± 1.5 36.3± 1.2 43.5± 1.4
22.9± 0.9 31.6± 1.7 38.0± 2.3
23.4± 1.0 29.7± 1.2 35.6± 1.3

(c) CIFAR-10

Table A.1: Average Accuracy(higher is better). Memory buffer size M.

Method M=1k M=2k M=5k

AGEM 29.3± 0.9 30.0± 0.9 29.9± 0.8
ER 29.7± 1.3 29.2± 0.9 26.6± 1.1

EWC 28.1± 0.8 28.1± 0.8 28.1± 0.8
fine-tune 35.6± 0.9 35.6± 0.9 35.6± 0.9

GSS 29.6± 1.2 27.4± 1.1 29.9± 1.2
MIR 29.7± 1.0 27.2± 1.1 26.2± 1.4

ASER 30.1± 1.3 24.7± 1.0 20.9± 1.2
ASERµ 28.0± 1.3 22.2± 1.6 17.2± 1.4

Dist 30.4± 1.1 25.5± 1.7 26.3± 1.2
Distµ 29.7± 1.1 29.8± 1.1 27.1± 1.4

(a) Mini-ImageNet

M=1k M=2k M=5k

40.4± 0.7 39.7± 0.8 39.8± 1.0
45.0± 0.5 40.5± 0.8 34.5± 0.8
39.1± 1.2 39.1± 1.2 39.1± 1.2
50.4± 1.0 50.4± 1.0 50.4± 1.0
46.9± 0.7 42.3± 0.8 39.2± 0.9
45.5± 0.8 40.4± 0.6 31.4± 0.6

50.1± 0.6 45.9± 0.9 36.7± 0.8
45.0± 0.7 38.6± 0.6 30.3± 0.5
48.1± 0.8 43.8± 0.5 39.5± 0.8
48.0± 0.6 43.5± 0.6 39.9± 0.8

(b) CIFAR-100

M=0.2k M=0.5k M=1k

36.1± 3.8 43.2± 4.2 48.1± 3.0
72.8± 1.7 63.1± 2.4 55.8± 2.6
81.5± 1.4 81.5± 1.4 81.5± 1.4
81.7± 0.7 81.7± 0.7 81.7± 0.7
75.5± 1.5 65.9± 1.6 54.9± 2.0
67.0± 2.6 68.9± 1.7 47.7± 2.9

71.1± 1.8 59.1± 1.5 50.4± 1.5
72.4± 1.9 58.8± 1.4 47.9± 1.6
76.4± 2.3 63.7± 2.3 53.6± 3.8
77.6± 1.6 68.6± 2.0 58.8± 2.7

(c) CIFAR-10

Table A.2: Average Forgetting (lower is better). Memory buffer size M.

Method M=1k M=2k M=5k

ER 8.7± 0.4 11.8± 0.9 16.5± 0.9
SV-upd 13.4± 0.8 15.5± 0.7 18.4± 0.4
ASV-ret 6.9± 0.4 9.9± 0.9 16.2± 0.8

ASVµ-ret 7.4± 0.6 10.0± 1.0 17.1± 0.9
ASER 11.7± 0.8 14.4± 0.4 18.2± 0.7

ASERµ 12.2± 0.8 14.8± 1.1 18.2± 1.1

(a) Mini-ImageNet

M=1k M=2k M=5k

11.2± 0.4 14.6± 0.4 20.1± 0.8
14.0± 0.6 17.2± 0.4 20.9± 0.6
10.1± 0.3 13.9± 0.3 20.3± 0.3
10.8± 0.3 14.8± 0.4 21.7± 0.3
12.3± 0.4 14.7± 0.7 20.0± 0.6
14.0± 0.4 17.2± 0.5 21.7± 0.5

(b) CIFAR-100

M=0.2k M=0.5k M=1k

26.4± 1.0 32.2± 1.4 38.4± 1.7
25.9± 0.6 33.7± 1.4 41.2± 1.3
26.6± 1.0 34.7± 1.1 39.3± 1.6
25.8± 1.0 35.7± 1.4 40.2± 1.0
27.8± 1.0 36.2± 1.1 43.1± 1.2
26.4± 1.5 36.3± 1.2 43.5± 1.4

(c) CIFAR-10

Table C.1: Ablation analysis. Average Accuracy (higher is better). Memory buffer size M.

Method M=1k M=2k M=5k

ER 29.7± 1.3 29.2± 0.9 26.6± 1.1
SV-upd 29.2± 1.1 26.4± 1.5 24.6± 1.3
ASV-ret 27.6± 1.2 27.7± 1.3 25.5± 1.2

ASVµ-ret 28.3± 1.3 27.4± 1.2 23.2± 1.6
ASER 30.1± 1.3 24.7± 1.0 20.9± 1.2

ASERµ 28.0± 1.3 22.2± 1.6 17.2± 1.4

(a) Mini-ImageNet

M=1k M=2k M=5k

45.5± 0.5 40.5± 0.8 34.5± 0.8
45.9± 0.7 41.6± 0.7 36.6± 0.5
47.4± 0.4 42.0± 0.6 34.5± 0.8
45.5± 0.7 37.4± 0.5 31.8± 0.6
50.1± 0.6 45.9± 0.9 36.7± 0.8
45.0± 0.7 38.6± 0.6 30.3± 0.5

(b) CIFAR-100

M=0.2k M=0.5k M=1k

72.8± 1.7 63.1± 2.4 55.8± 2.6
73.6± 1.0 63.4± 1.6 52.4± 2.0
71.7± 2.1 60.1± 1.7 53.5± 2.5
73.6± 1.4 58.3± 2.2 49.0± 2.2
71.1± 1.8 59.1± 1.5 50.4± 1.5
72.4± 1.9 58.8± 1.4 47.9± 1.6

(c) CIFAR-10

Table C.2: Ablation analysis. Average Forgetting (lower is better). Memory buffer size M.

EWC ER
AGEM

GSS
MIR

fin
etu

ne
ASER

Method

0

200

400

600

Tr
ai

n
Ti

m
e(

s)

Figure B.1: Training time comparison for CIFAR-100

• ASVµ-ret: Use (6) scoring function for MemoryRetrieval
while using reservoir sampling for MemoryUpdate.

Table C.1 compares the average accuracy of these variations.
As for CIFAR-10, we can see that all SV-based methods
improve upon ER. In particular, ASER and ASERµ show
the largest improvements, suggesting the effectiveness of
the combination of the KNN-SV based MemoryRetrieval
and MemoryUpdate. For the other two datasets, it turns out
that SV-upd is a powerful MemoryUpdate method. Com-
pared to GSS (Aljundi et al. 2019b) which suggests an-
other MemoryUpdate method, we observe significant perfor-
mance boosts (see Table 1). In these two datasets, ASV(µ)-
ret methods and ER perform comparably. However, we note
that we can further fight the forgetting when MemoryRe-
trieval and MemoryUpdate are used together (Table C.2).
In summary, ASER with KNN-SV MemoryUpdate performs
competitively or better than the variations, underscoring the

importance of SV-based methods for both MemoryUpdate
and MemoryRetrieval.

D Dataset Detail
Table D.1 shows the summary of the datasets used for the
experiments. For a fair comparison, the classes in each task
and the order of tasks are fixed in all experiments. For Split
CIFAR-10, the first task contains class [0, 1], the second task
contains class [2, 3], and so on. For Split CIFAR-100, similar
to Split CIFAR-10, the first task contains class [0, 1, . . . , 9],
the second task contains class [10, 11, . . . , 19] and so on.

In original Mini-ImageNet, 100 classes are divided into
64, 16, and 20 classes respectively for meta-training, meta-
validation, and meta-test (Vinyals et al. 2016). For Split
Mini-ImageNet, we firstly combine 64, 16, and 20 classes
into one dataset. The first task contains the first 10 classes;
the second task contains the next 10 classes, and so on.

E Detail of Experiments
We use a reduced ResNet18, similar to (Chaudhry et al.
2019b; Lopez-Paz and Ranzato 2017), as the base model
for all datasets, and the network is trained via cross-entropy
loss with SGD optimizer. Note that several replay-based
SOTA continual learning algorithms have also used the sim-
ple SGD (Aljundi et al. 2019a,b; Chaudhry et al. 2019a,b;
Lopez-Paz and Ranzato 2017). For all experiments, we use
the learning rate of 0.1 following the same setting as in
Aljundi et al. (2019a). The mini-batch size is 10 and the size
of the mini-batch retrieved from memory is also set to 10
irrespective of the size of the memory. Since we apply the
online setting, the model only sees each batch once, so the
number of epochs is set to 1 for all experiments.

We have used the memory size M = 1k, 2k and 5k for
Mini-ImageNet and CIFAR-100, while M = 0.2k, 0.5k and

Split Mini-ImageNet Split CIFAR-100 Split CIFAR-10

num. of tasks 10 10 5
image size 3x84x84 3x32x32 3x32x32
num. of classes per task 10 10 2
num. of training images per task 4800 4500 9000
num. of validation images per task 600 500 1000
num. of testing images per task 600 1000 1000

Table D.1: Dataset statistics

1k for CIFAR-10. As for CIFAR-10, we use the same mem-
ory sizes as in MIR (Aljundi et al. 2019a) (0.4%, 1.1%
and 2.2%); however, we found that they used disproportion-
ately bigger memory for Mini-ImageNet (20% of the train-
ing data). One of the key desiderata of continual learning
for deployment is limited memory footprint (Chaudhry et al.
2019a,b; Farquhar and Gal 2018; Parisi et al. 2019). Hence,
we instead use smaller sizes of memory for both CIFAR-100
and Mini-ImageNet (around 2%, 4% and 10% of the train-
ing data) that better reflect real-world use cases with a high
ratio of data to memory.

As for the hyperparameters of baselines, we tune the num-
ber of samples used for computing maximal gradients cosine
similarity for GSS. For MIR, we tune the number of sub-
samples used to apply the MIR search criterion using the
validation sets.

As for the hyperparameters of baselines, we use the val-
idation sets to tune the number of samples (S) used for
computing maximal gradients cosine similarity for GSS; the
number of subsamples (C) used to apply the MIR search
criterion for MIR. We have tuned two hyperparameters for
ASER: the number of candidate samples (Nc) and the num-
ber of neighbors (K) for KNN-SV computation. Details of
the datasets used in the experiment are shown in Table D.1
in Appendix D. We have summarized the hyperparameters
used in the experiments in Table E.1.

The code to reproduce all results can be found in the at-
tached zip file.

F Discrepancy of CIFAR-10 Result for MIR
between Original Paper and our Work

In the official repository of MIR, the authors apply a
trick to improve performance that is not mentioned in the
original paper. Specifically, during MemoryRetrieval, the
trick excludes the memory samples from the current task.
Note that to apply this trick, task identity is required during
training. Our experimental results for MIR shown in Table
1 are based on the implementation of the original paper and
therefore we have not applied this trick.

To understand the effect of this trick, we apply it to
both MIR and our proposed ASER & ASERµ. As we
can see in Table F.1, the trick indeed improves the results
of MIR, especially in Mini-ImageNet (when M=5k) and
CIFAR-10 (when M=1k). Nevertheless, this trick is not
always useful. For example, when the memory buffer is

small, this trick does not help and, in some cases, shows
detrimental effects. In contrast, the trick does not have too
much effect on our proposed ASER & ASERµ. Most results
are very similar to the ones without the trick.

Method

GSS S=20
MIR C=100

ASER K = 7 Nc = 200
ASERµ K = 3 Nc = 250

(a) Mini-ImageNet

Hyperparameters

S=10
C=50

K = 1 Nc = 350
K = 3 Nc = 150

(b) CIFAR-100

S=10
C=50

K = 3 Nc = 90
K = 3 Nc = 90

(c) CIFAR-10

Table E.1: Hyperparameters selected for baselines and two variations of ASER.

Method M=1k M=2k M=5k

MIR 8.1± 0.3 11.2± 0.7 15.9± 1.6
MIRt 7.7± 0.6 10.2± 0.7 17.8± 1.0

ASER 11.7± 0.7 14.4± 0.4 18.2± 0.7
ASERµ 12.2± 0.8 14.8± 1.1 18.2± 1.1
ASERt 11.3± 0.4 13.8± 0.5 18.0± 1.0
ASERtµ 12.2± 0.5 15.3± 0.5 18.4± 0.9

(a) Mini-ImageNet

M=1k M=2k M=5k

11.2± 0.3 14.1± 0.2 21.2± 0.6
11.2± 0.3 14.5± 0.3 21.9± 0.5

12.3± 0.4 14.7± 0.7 20.0± 0.6
14.0± 0.4 17.2± 0.5 21.7± 0.5
13.2± 0.5 16.1± 0.3 20.7± 0.5
13.8± 0.3 17.3± 0.5 21.5± 0.7

(b) CIFAR-100

M=0.2k M=0.5k M=1k

28.3± 1.6 35.6± 1.2 42.4± 1.5
28.0± 1.1 36.9± 1.7 44.9± 0.9

27.8± 1.0 36.2± 1.1 43.1± 1.2
26.4± 1.5 36.3± 1.2 43.5± 1.4
27.6± 1.4 35.8± 1.9 42.4± 1.4
26.2± 1.3 36.9± 1.3 44.0± 1.1

(c) CIFAR-10

Table F.1: The superscript t means using the ”exclude current task samples” trick, namely excluding the samples from current
task during MemoryRetrieval

